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ABSTRACT 

Periodic structures have found a big interest in engineering application because they introduce 

frequency band effects due to the impedance mismatch generated by periodic discontinuities in the 

geometry, material, or boundary conditions. Adding periodicity to structures leads to wave mode 

interaction, which generates pass- and stop-bands. The frequencies at which stop-bands occur are 

related to the periodic nature of the structure. The presence of defects or irregularity in the structure 

leads to a partial loss of regular periodicity (quasi periodic structure) that can have a noticeable 

impact on the vibrational and/or acoustic behavior of the elastic structure.  

The aim of this study is to analyze the dynamic behaviors of periodic and quasi-periodic structures, 

and to investigate where band gaps appear in the frequency range. First, the behavior of an infinite 

periodic structure through the dispersion diagrams is studied compared with the results obtained 

through the Carrera Unified Formulation (CUF). Then, numerical studies on different beams are 

done to compare band gaps position at different periodic and quasi-periodic sequences. 

1 INTRODUCTION 

The advantage of dealing with periodic configurations is that it is possible to study the base cell by 

applying the periodic boundary conditions, thus reducing computational costs. A one-dimensional 

base cell is considered, and the dispersion curves are obtained [1]. A first study is then carried out 

with the COMSOL software. The results are compared with those obtained with the Carrera Unified 

Formulation (CUF) method [2, 3]. In the framework of the unified formulation, classical theories 

assumptions are systematically neglected by enriching the kinematic field with an arbitrary number 

of terms that expand the mechanical variables over the cross-section domain, with certain functions 

of the 𝑥𝑧-plane. In its compact form it can be expressed as: 

 

u(x, y, z) = 𝐹𝜏(x, y) 𝒖𝝉 (y),  τ= 1, 2, ...,M  

 

where u(x, y, z) is the three-dimensional displacement field, 𝒖𝝉 (y) is the vector of generalized 

displacements, M is the number of terms of the kinematic field and 𝐹𝜏 (x, y) are the so-called expansion 

functions. The choice of the theory of structure becomes in this way arbitrary and can be introduced 

in the structural beam model as an input when defining 𝐹𝜏 [4]. In this case Taylor Expansions are 

chosen. The reference wave guide is shown in Figure 1. 
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Figure 1: Sketch of a multi-section wave guide. 

The geometric characteristics are: 𝐿1=0.17 m, 𝐿2=0.1 m, 𝑡1=0.025 m and 𝑡2=0.01 m. Material 

characteristics are: Young modulus 𝐸=210 GPa, Poisson ratio 𝜈=0.30, density 𝜌=7850 kg/m³. For the 

first analysis, the unit cell is discretized in three Lagrangian elements considering a first case with 3 

nodes for each portion of segment, and a second case with 4 nodes. The second analysis is made with 

the software COMSOL and the geometry is discretized with 373 triangular and tetrahedral elements. 

Periodic boundary conditions of Floquet-Bloch are applied [5,6]. 

 
Figure 2: Dispersion curves (COMSOL and TE2).  Figure 3: Dispersion curves (COMSOL and TE3). 

Figure 2 and Figure 23 show the results of the dispersion curves. About CUF method, the solutions 

are indicated with the acronym TEN, where N is the polynomial order. Instead, the notations 6B3 and 

9B3 indicate respectively the case with 3 and 4 nodes for each portion of segment. The numerical 

results show that two stopbands are generated. These are 210-480 Hz and 1200-3090 Hz. Both 

theories predict approximately the same position and length of the stopbands and as the degree of the 

polynomial increases, the solutions tend to overlap with those obtained with COMSOL analysis. 

2 PERIODICITY EFFECTS ON VIBRATION BAND GAPS 

2.1 Geometric impedance 

For finite structures, vibrations levels are calculated by the frequency response function (FRF) [7,8]. 

A first study is carried out on 1D beams of fixed length L=1.2 m and made of aluminum (𝐸=73 GPa, 

𝜈=0.33, 𝜌=2700 kg/m³). The base structure is divided in 12 cells of equal length, each cell is modelled 

on finite element (FE) in 3 beams element. To obtain the normalized response, the entire structure is 

loaded with a flexural load on extreme point of 1 N. To consider the physics of the problem, a 1% 

damping is also considered. No constraints have been placed on the structure which therefore has 

free-free boundary conditions. To compare the answer between the various analyses a constant mass 

of 5 kg is set for each beam and the height of the individual cells is obtained. The solution is evaluated 

considering the mean energy value in dB that pass thought the structures. The reference case has cells 

of equal height. The first periodic structure analyzed is that with two periodic cells: A, B. The unit 

cells, that are repeated all over the structures are: AB and BA. Two different cases of their height’s 

ratio 
ℎ𝑎

ℎ𝑏
 are considered to analyze the effects of the impedance on bandgaps: case 1 with 

ℎ𝑎

ℎ𝑏
= 2.6 and 

case 2 with 
ℎ𝑎

ℎ𝑏
= 1.6. 
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Figure 4: Mean value of the squares of velocities (AB cells). Figure 5: Mean value of the squares of velocities (BA cells). 

As expected, the higher is the impedance mismatch, the higher is the frequency range in which the 

bandgap appears. In AB sequence (Figure 4), the bandgap is in the same frequency range of the BA 

one (Figure 5), the only difference being the lower energy level, because the load is applied on B cell. 

This allows more energy to enter in the structure. 

2.2 Material impedance 

Impedance mismatch generated by material is now analyzed: aluminum (cell A) and steel (cell B, 

𝐸=210 GPa, 𝜈=0.26, 𝜌=7800 kg/m³) are chosen.  

 
Figure 6: Mean value of the squares of velocities (material impedance effect). 

No extended bandgaps are generated, and only one between 5000-6000 Hz is visible (Figure 6). As 

expected, loading the aluminum cell, more energy enters through the system. 

3 QUASI-PERIODICITY EFFECTS ON VIBRATION BAND GAPS 

The presence of imperfections in the structure, such as defects or irregularities, leads to the loss of 

the periodicity and thus can have a noticeable impact on the vibrational and/or acoustic behavior of 

the elastic structure [9,10]. 

 
Figure 7: Comparison of quasi periodic sequences. 
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In this case, the property of quasi-periodicity is defined [11]. The quasi-periodic structures considered 

in this work are of the type generally known as substitutional sequences and are: Fibonacci sequence, 

Thue Morse sequence, Rudin Shapiro sequence [12,13]. 

Results in Figure 7 show that, compared to periodic sequences, quasi-periodic structures have an 

efficient impact on reducing the response in lower frequency but do not show large band gap widths. 

4 CONCLUSIONS 

The contents presented herein deal with the FE models of beams focused on the spectral analysis and 

the damped forced responses: a FE model is developed to predict the modal and frequency response 

of different configurations of beams. The average energy is evaluated, and results show that the 

frequency range in which band gaps appear depends on periodic sequences, and the higher the 

impedance mismatch, the more extended it is. The quasi-periodic structures with geometrical 

impedance mismatch have an efficient impact on reducing the response in lower frequency regimes. 
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