In this talk we consider convex functions on general Carnot groups. We consider several definitions, prove their equivalence, and establish basic regularity properties. A key observation is the realization that convexity depends only on the horizontal distribution and not on the particular base chosen to represent it . This allows us to use potential theoretic representation formulas developed by Bonfiglioli and Lanconelli to approximate convex functions by smooth convex functions. Another new ingredient is Wang's extension to Carnot groups of Bieske's uniqueness result for ∞-harmonic functions in the Heisenberg group.

Convex functions in Carnot Groups: old and new / Stroffolini, Bianca. - (2005). (Intervento presentato al convegno Infinite energy solutions of partial differential tenutosi a Cortona, Palazzone Scuola Normale nel 2 giugno).

Convex functions in Carnot Groups: old and new

STROFFOLINI, BIANCA
2005

Abstract

In this talk we consider convex functions on general Carnot groups. We consider several definitions, prove their equivalence, and establish basic regularity properties. A key observation is the realization that convexity depends only on the horizontal distribution and not on the particular base chosen to represent it . This allows us to use potential theoretic representation formulas developed by Bonfiglioli and Lanconelli to approximate convex functions by smooth convex functions. Another new ingredient is Wang's extension to Carnot groups of Bieske's uniqueness result for ∞-harmonic functions in the Heisenberg group.
2005
Convex functions in Carnot Groups: old and new / Stroffolini, Bianca. - (2005). (Intervento presentato al convegno Infinite energy solutions of partial differential tenutosi a Cortona, Palazzone Scuola Normale nel 2 giugno).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/307804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact