We describe inertial endomorphisms of an abelian group $A$, that is endomorphisms $\varphi$ with the property $|(\varphi(X)+X)/X|<\infty$ for each $X\le A$. They form a ring containing multiplications, the so-called finitary endomorphisms and non-trivial instances. We show that inertial invertible endomorphisms form a group, provided $A$ has finite torsion-free rank. In any case, the group $IAut(A)$ they generate is commutative modulo the group $FAut(A)$ of finitary automorphisms, which is known to be locally finite. We deduce that $IAut(A)$ is locally-(center-by-finite). Also we consider the lattice dual property, that is $|X/(X\cap \varphi(X))|<\infty$ for each $X\le A$. We show that this implies the above one, provided $A$ has finite torsion-free rank.
Inertial endomorphisms of an abelian group, arXiv:1310.4625 / Dardano, Ulderico; S., Rinauro. - ELETTRONICO. - arXiv:1310.4625:(2013).
Inertial endomorphisms of an abelian group, arXiv:1310.4625
DARDANO, ULDERICO;
2013
Abstract
We describe inertial endomorphisms of an abelian group $A$, that is endomorphisms $\varphi$ with the property $|(\varphi(X)+X)/X|<\infty$ for each $X\le A$. They form a ring containing multiplications, the so-called finitary endomorphisms and non-trivial instances. We show that inertial invertible endomorphisms form a group, provided $A$ has finite torsion-free rank. In any case, the group $IAut(A)$ they generate is commutative modulo the group $FAut(A)$ of finitary automorphisms, which is known to be locally finite. We deduce that $IAut(A)$ is locally-(center-by-finite). Also we consider the lattice dual property, that is $|X/(X\cap \varphi(X))|<\infty$ for each $X\le A$. We show that this implies the above one, provided $A$ has finite torsion-free rank.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.