This volume collects the lecture notes of the Advanced Webiner on Innovative Structures for Lightweight Vehicles, which brought together experts in the fields of structural modelling, composite materials, nano-materials, and smart structures for vibration control. The course combined the academic scientific excellence with industrially-relevant applications and was organized by the partners of the on-going intersectorial MIUR PRIN project DEVISU: DEvelopment and applications of a VIrtual hybrid platform for multiscale analysis of advanced StructUres of aircraft. The course was organised in six sessions and they are briefly detailed in the following. The first Part considers the development of the Carrera Unified Formulation (CUF) as a tool to develop 2nd generation of theories of structures, including beams, plates and shells. In the first part, enhanced 1D and 2D formulations are presented with reference to the condensed CUF notation and using the so-called equivalent-single-layer, zig-zag and layer-wise theories. In the second part, asymptotic and axiomatic approaches are compared, which lead to the Best Theory Diagram using genetic-type algorithms rotating blades and rotor-dynamic analysis, applications to bio-structures and fluid dynamics of Poiseuille flow with Stokes fluid flux. The second Part is focussed on design and optimization of new, disruptive structural solutions for aerospace systems. Initially the focus is on the extension of CUF to geometrical nonlinear problems. Then, the stiffness tailoring of variable stiffness laminates is examined, considering curvilinear stiffeners too. Finally aerodynamic and aeroelastic preliminary design tools and theoretical frameworks are introduced, which are customized for innovative non planar wing systems. The third Part aims at introducing new trends in multi-scale and coupled computational mechanics. The main aspects are first discussed for a recently developed three-dimensional computational framework for multiscale and multi-physics analysis of structures made of polycrystalline materials. Then, the solution of discontinuous mechanical problems by Peridynamics, which is a non-local continuum theory based on integral equations, are presented. Finally, variable kinematics (eventually multi-dimensional) models for the analysis of multi-component structures and local-nonlocal material subdomains are revised using CUF. The fourth Part concerns a presentation of a range of activities focused on similitudes in vibroacoustics. The main rules for building complete or distorted/incomplete models will be presented and discussed with theoretical, numerical and experimental investigations. Specific attention will be paid also to the structural and the aero/acoustic responses. The approach will be presented by using all the available information coming from analytical developments, numerical investigations and experimental tests. Also emphasis will be given to the adoption of Machine Learning to support the analysis and the definition of the scaling laws for mechanical systems. The fifth Part provides a comprehensive overview of the principal features of smart thin structures equipped with feed-forward and feedback systems for the control of the flexural response and sound transmission due respectively to tonal and to stochastic broadband disturbances. The Session is structured in 3 Parts. Part 1, presents an overview of the excitation, flexural response and sound radiation of thin structures exposed either to deterministic (e.g. plane acoustic waves) and stochastic (e.g. acoustic diffuse field and turbulent boundary layer) excitations. The second part introduces and discussed the physical effects of a single channel and multi-channel feed-forward and feedback control systems. Finally the third part presents an overview of practical smart structures. The sixth Part is dedicated to: i) a general presentation of an Aeroelastic Tailoring Methodology, ii) its application to develop adequate margins in buckling of wing panels, iii) the use of lightweight composites as substitutes to die forgings in aircraft structures like la nding gears. The first part discusses the Aeroelastic Tailoring methodology, which is used to design wing structures to meet strength, buckling and flutter requirements simultaneously. The second part presents an application of the Aeroelastic Tailoring in typical composite wing panels to study the effect of pure compression loads and develop adequate margins in buckling. Finally, the third part discusses the design of composite complex shaped components as replacement of parts made with metal forgings is introduced.

Innovative Structures for Lightweight Vehicles / Carrera, E.; Gardonio, P.; Pagani, A.; De Rosa, S.. - (2020).

Innovative Structures for Lightweight Vehicles

S. De Rosa
Ultimo
2020

Abstract

This volume collects the lecture notes of the Advanced Webiner on Innovative Structures for Lightweight Vehicles, which brought together experts in the fields of structural modelling, composite materials, nano-materials, and smart structures for vibration control. The course combined the academic scientific excellence with industrially-relevant applications and was organized by the partners of the on-going intersectorial MIUR PRIN project DEVISU: DEvelopment and applications of a VIrtual hybrid platform for multiscale analysis of advanced StructUres of aircraft. The course was organised in six sessions and they are briefly detailed in the following. The first Part considers the development of the Carrera Unified Formulation (CUF) as a tool to develop 2nd generation of theories of structures, including beams, plates and shells. In the first part, enhanced 1D and 2D formulations are presented with reference to the condensed CUF notation and using the so-called equivalent-single-layer, zig-zag and layer-wise theories. In the second part, asymptotic and axiomatic approaches are compared, which lead to the Best Theory Diagram using genetic-type algorithms rotating blades and rotor-dynamic analysis, applications to bio-structures and fluid dynamics of Poiseuille flow with Stokes fluid flux. The second Part is focussed on design and optimization of new, disruptive structural solutions for aerospace systems. Initially the focus is on the extension of CUF to geometrical nonlinear problems. Then, the stiffness tailoring of variable stiffness laminates is examined, considering curvilinear stiffeners too. Finally aerodynamic and aeroelastic preliminary design tools and theoretical frameworks are introduced, which are customized for innovative non planar wing systems. The third Part aims at introducing new trends in multi-scale and coupled computational mechanics. The main aspects are first discussed for a recently developed three-dimensional computational framework for multiscale and multi-physics analysis of structures made of polycrystalline materials. Then, the solution of discontinuous mechanical problems by Peridynamics, which is a non-local continuum theory based on integral equations, are presented. Finally, variable kinematics (eventually multi-dimensional) models for the analysis of multi-component structures and local-nonlocal material subdomains are revised using CUF. The fourth Part concerns a presentation of a range of activities focused on similitudes in vibroacoustics. The main rules for building complete or distorted/incomplete models will be presented and discussed with theoretical, numerical and experimental investigations. Specific attention will be paid also to the structural and the aero/acoustic responses. The approach will be presented by using all the available information coming from analytical developments, numerical investigations and experimental tests. Also emphasis will be given to the adoption of Machine Learning to support the analysis and the definition of the scaling laws for mechanical systems. The fifth Part provides a comprehensive overview of the principal features of smart thin structures equipped with feed-forward and feedback systems for the control of the flexural response and sound transmission due respectively to tonal and to stochastic broadband disturbances. The Session is structured in 3 Parts. Part 1, presents an overview of the excitation, flexural response and sound radiation of thin structures exposed either to deterministic (e.g. plane acoustic waves) and stochastic (e.g. acoustic diffuse field and turbulent boundary layer) excitations. The second part introduces and discussed the physical effects of a single channel and multi-channel feed-forward and feedback control systems. Finally the third part presents an overview of practical smart structures. The sixth Part is dedicated to: i) a general presentation of an Aeroelastic Tailoring Methodology, ii) its application to develop adequate margins in buckling of wing panels, iii) the use of lightweight composites as substitutes to die forgings in aircraft structures like la nding gears. The first part discusses the Aeroelastic Tailoring methodology, which is used to design wing structures to meet strength, buckling and flutter requirements simultaneously. The second part presents an application of the Aeroelastic Tailoring in typical composite wing panels to study the effect of pure compression loads and develop adequate margins in buckling. Finally, the third part discusses the design of composite complex shaped components as replacement of parts made with metal forgings is introduced.
2020
9788890648472
Innovative Structures for Lightweight Vehicles / Carrera, E.; Gardonio, P.; Pagani, A.; De Rosa, S.. - (2020).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/826197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact