For every given $\beta<0$, we study the problem of maximizing the first Robin eigenvalue of the Laplacian $\lambda_\beta(\Omega)$ among convex (not necessarily smooth) sets $\Omega\subset\mathbb{S}^{n}$ with fixed perimeter. In particular, denoting by $\sigma_n$ the perimeter of the $n$-dimensional hemisphere, we show that for fixed perimeters $P<\sigma_n$, geodesic balls maximize the eigenvalue. Moreover, we prove a quantitative stability result for this isoperimetric inequality in terms of volume difference between $\Omega$ and the ball $D$ of the same perimeter.
A spectral isoperimetric inequality on the n-sphere for the Robin-Laplacian with negative boundary parameter / Acampora, Paolo; Celentano, Antonio; Cristoforoni, Emanuele; Nitsch, Carlo; Trombetti, Cristina. - (2024).
A spectral isoperimetric inequality on the n-sphere for the Robin-Laplacian with negative boundary parameter
Paolo Acampora;Antonio Celentano;Emanuele Cristoforoni;Carlo Nitsch;Cristina Trombetti
2024
Abstract
For every given $\beta<0$, we study the problem of maximizing the first Robin eigenvalue of the Laplacian $\lambda_\beta(\Omega)$ among convex (not necessarily smooth) sets $\Omega\subset\mathbb{S}^{n}$ with fixed perimeter. In particular, denoting by $\sigma_n$ the perimeter of the $n$-dimensional hemisphere, we show that for fixed perimeters $P<\sigma_n$, geodesic balls maximize the eigenvalue. Moreover, we prove a quantitative stability result for this isoperimetric inequality in terms of volume difference between $\Omega$ and the ball $D$ of the same perimeter.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.