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Abstract 

Astronomically controlled variations in the Earth’s climate induce cyclic trends in the sedimentary process and record 
(Milankovitch periodicity). One of the main difficulties to be solved in order to choose among the registered pericdicities is 

the conversion from the spatial (i.e. recurrent variations along the strata1 sequences) to the temporal domains of the 
astronomically induced frequencies present in the rock record. We discuss here how this problem can be circumvented by 
teaching a neural net how to recognize priodicities in the signal. The application to two sequences of shallow water 
carbonate deposits from the Cretaceous of Southern Italy has shown this approach to be particularly effective, confirming the 
existence of Milankovitch-type periodicities in the records examined, where climate, sediments and biota concomitantly 

react to the variation in the solar constant induced by secular perturbations of the Earth’s orbital elements. 

Keywords: Milanbovitch theory; paleoclimatology; Cretaceous; Southern Apennines 

1. Introduction 

Periodic changes in climate, induced by astronom- 
ically induced variations in the distribution of solar 
energy over the Earth, have been recognized as 
influencing the production of carbonate sediments, 
which are mostly formed by marine organisms and 
by their activity [l-4]. On the other hand, these 
periodic signals may be recorded in and have been 
extracted from a variety of other non-carbonate de- 

’ Corresponding author. E-mail: robtag@dia.unisa.it 

posits originated in different sedimentary environ- 

ments, from continental to deep marine [ 1,4]. 

The whole topic presents two incongruent aspects. 
The availability of detailed dynamic models of the 
Earth-Moon-Sun system, as well as of the Solar 
System as a whole, together with reliable algorithms, 
has led to very accurate predictions of the secular 
variations in the Earth’s orbital parameters [5], while 
the signature left by these periodic modulations in 
the stratigraphic record generally appears “ex- 
tremely imperfect, unreliable, noisy and poorly time 
calibrated” [31. This lack of congruent effects in the 
sedimentary record is the outcome of a complex 
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Fig. 1. Textural signal extracted from Mount Raggeto sequence. The horizontal scale gives the stratigraphic thickness of the sampled 
succession of strata in centimetres (younging to the right). Each interval in the vertical scaIe corresponds to a different standard texture 
(based on Embry and Klovan classification), as coded in Table 1. 

process, driven by a number of variables, of which [ 1,4,6]. In addition, we must consider that, if the time 
climate (together with sediment supply, global sea series analyzed are acquired with not very dense 
level change, subsidence, biologic activity, etc.> is sampling, many of the high-frequency cycles may be 
just one. An extensive review of these processes can lost in the rock record [3,4]. 
be found in a recently published volume of proceed- For these reasons high-frequency cyclicity has 
ings [3], as well as in other recent publications been more and more studied in modem stratigraphy 

Code used for the Mount Raggeto and Mount TobeMa deposits (see also Fig. IFig. 2) 

Mount Raggeta 
- 

Mount Tobenna 
Q 

C&S 

“SIromatolitic” and “loferitic” boundstones (criptalgal laminitts) 0 
Aeolissaccus sp. and Thaumatoponlla sp., wack and wack-pa&tone. 0.1 
locally with burrows 

Note that while for M. Raggeto only the textures (based on Embry and Klovan, 1971, standard classification) are used, a more detailed study 
has allowed determination of the lithofacies for M. Tobenna. 
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for irs potential predictive value, in order to tie 
sedimentary processes to absolute time. In spite of 
the pioneer work of Croll and Gilbert [7,8] at the turn 
of the Iast century, it has been only in the past 15 
years that an increasing interest has developed and 
the new term of ‘cyclosrrutigruphy’ has become 
established, stressing the genetic connection of the 
orbital perturbations induced by the variability of 
Earth’s thermal budget (Milankovitch cyclicity) with 
the climate, sedimentation and biosphere [2]. The 
vast majority of works in cyclostratigraphy have 
been devoted to the pelagic realm; that is, where the 
biostratigraphy gives the best time definition, allow- 
ing for the detected cyclicities to be framed into the 
Milankovitch periodicity [2-41. More recently, a 
number of authors have focused their attention on 
shallow marine carbonates, which seem to offer the 
best conditions for the detection of the shortest pe- 
riod components (see, e.g., [g-13]) even though, for 
these types of data, the chance of gaps punctuating 
the record may be high (e.g., in the peritidal domain). 

In the Cretaceous sequences of the Southern 
Apennines more than 700 m of well bedded carbon- 
ate platform deposits, spanning from the Hauterivian 
to the Coniacian, have been analyzed on a centimet- 
ric scale. In these shallow water sequences three 
main rock types alternate and the relative lithofacies 
associations qualify them as subtidal, tidal-supra- 
tidal and storm-controlled deposits [9- I 2,141 (Table 
1, Figs. I and 2). The cycles are aggradationally 

stacked, shallow upwards and are often capped by 
ephemeral, emersion related features. Environmental 
changes, expressed by texture or lithofacies varia- 
tions, plotted at a centimetre scaIe on the aggradation 
axis show a hierarchy of at least 3 orders of cycles 

1151. 
A package of spectral analysis, based on analyti- 

cal techniques originally tailored for astronomical 
applications, was used to search for possible period- 
icities [16]. Tbis package includes pre-processing and 
spectral analysis of the signal; it deals with unevenly 
spaced data; it allows discrimination between mean- 
ingful frequencies and spurious ones on a physical 
basis and, finally. reduces the effects of aliasing bias 
in the data. 

The duration of cycles was calculated for about 
420 m of well bedded sequences by comparing the 
Relative Ratio Sets (RRS) of the recurrence of sedi- 
mentary features (expressed in centimetres) with the 
RRS of orbital parameters (Precession, Obliquity and 
Eccentricity) calculated by Berger [17,5] for the Cre- 
taceous (expressed in years). The two ratio sets 
show, for every sequence analyzed, a very good 
linear correlation (r > 0.99), suggesting that Creta- 
ceous carbonate platform strata of Southern Italy 
have an allocyclic organization (their cyclicity is not 
inherent to the sediment deposition [l I, 12,143). and 
that the relative time scale falls in the Milankovitch 
periodicities (Table 2). Furthermore, spectral analy- 
sis of palaeomagnetic data from a z 90 m chick 

I I I 

6000 cm 

Fig. 2. Lithofacies signal extracted from Mount Tobenna sequence. On the horizontal scale the stratigraphic thickness is indicated (expressed 

in centlmttres and younging to the right), while the vettical scale is punctuated with the IO different lithofacies, reported in Table I, 
recognized from a sedimentologic study at the outcrop as well as by using thin section and acetate peels. 
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core, drilled in lower Cretaceous shallow marine 
carbonate deposits from Mount Raggeto in Southern 
Italy (and partly overlapping with one of the se- 
quences discussed in the present paper), also demon- 
strates cyclic recurrence of the remanent magnetiza- 
tion values (declination, inclination and intensity) 
[ 18,191. These paleomagnetic periodicities are, again, 
linked to the orbital parameters with r > 0.99 (Table 

2). 
We discuss here a new approach based on neural 

networks, to identify meaningful periodicities, a tool 
which has proved particularly effective in speech 
processing [20], and in pattern recognition [21]. In 
Section 2, the data are presented, together with a 
short summary of the classical ‘power spectrum’ 
approach to the search for periodicities in strati- 
graphic records. The general background of the neu- 
ral network implementation and training is intro- 
duced in Section 3, data reduction and analysis are 
detailed in Section 4, while results 
remarks are presented in Section 5. 
pendix A we provide the reader with 
the training of the neural network. 

2. The data 

and concluding 
Finally, in Ap- 
some details on 

The data used for the present analysis refer to two 
stratigraphic sequences sampIed in a few quarries at 
Mount Raggeto ([15,111 and Mount Tobenna [14], 

located near Caserta and Salerno, Southern Italy, 
respectively. The geological characterization of these 
sequences has been discussed at length elsewhere 
[ 15,141 and we refer to these papers for further 
details. We want, however, to stress a few points: 
1. 

2. 

3. 

3. 

1. 

2. 

the data were obtained by identifying/sampling 
the rocks directly from the outcrop at a centimet- 
ric scale and the lithofacies were determined by 
supplementary examination using thin sections 
and acetate peels; 
both sequences refer to carbonate strata formed in 
shallow water environments, within the photic 
zone, at a depth never exceeding - on average 
- a few or a few tens of metres and, therefore, in 
environments very sensitive to global sea level 
oscillations (eustasy); 
the sedimentation rates in these environments are 
usually fairly high and, therefore, sampling at a 
centimetre scale provides a good time resolution. 

Methodology 

Neural nets are powerful tools in dealing with: 
function approximation: it has been shown that 
they are universal function approximators [22,23]; 
classification and clustering: a neural net can 
learn from examples how to classify input pat- 
terns in a supervised ([24,25]) or unsupervised 
([24,26,27]) manner. 

Fig. 3. The topological structure of the Multilayer Perception Neural Network used for our experiment. 
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In particular, their use is recommended when: 
1. 

2. 

3. 

4. 
5. 

there is no good algorithm for solving the prob- 
lem; 
input data are incomplete, noisy and not directly 
understandable; 
applications are data-intensive; that is, there are 
more data than computations; 
the procedure needs to be repeated many times; 
many examples for ‘training’ are available. 
All these requirements are fulfilled by our data, 

thus making neural nets an ideal tool to deal with 
periodicity recognition in stratigraphic signals. 

3.1. The neural net 

A neural net is a computational structure made by 
many processing elements (units) - the neurons - 
operating in parallel. These neurons are generally 
organized into clusters or layers. They are grouped in 
‘input’, ‘output’ and ‘hidden’ (i.e., those units which 
are neither input nor output) layers. Three fundamen- 
tal elements characterize any neural nets: 
1. the net structure or topology; that is, the way the 

layers are linked; 
2. the activation function, which represents the an- 

swer of a neuron to the input stimuli; 
3. the learning algorithm. 

In the present case, the net model adopted is the 
well known ‘Multilayer Perceptron’ [25] shown in 
Fig. 3. It consists of one input layer, one output layer 
and one or two hidden layers. Each neuron in a given 
layer is connected to all the neurons of the next one. 

Our model is synchronous: at each time every 
neuron receives as input the weighted sum of the 

input patterns and/or of the other neuron outputs, as 
shown in the following equation: 

Ok =A c WknOn - 41 (1) 
Ln 1 

where: W,, is the weight associated to the link 
from neuron n to neuron k; 0, is the output of 
neuron n or of the nth input; and B, is the neuron 
threshold, generally called bias. Thus, the neuron 
output is a continuous and derivable function of its 
net input, with values comprised in the [O,l] range. 
This function, f, is not linear for the hidden units. 
For our experiment, we chose the sigmoidal func- 
tion, shown in Fig. 4, which looks like: 

f(x) = l/(1 +emX) (2) 
The training procedure was the so-called ‘back 

propagation’, which works as follows: the first pat- 
tern is presented to the input neurons and then the 
net gives its output. If it is not equal to the desired 
output pattern, we compute the difference (error) 
between these two values and change the weights in 
order to minimize it. Then we propagate the informa- 
tion to the previous layers, changing the weights. For 
a detailed explanation of the algorithm see Appendix 
A. We repeat these operations for each input pattern 
until we minimize the mean square error of the 
system. Given the pth pattern in input, the error E,, 
is: 

E,,= 1/2x ~(tpj-Opj)2 (3) 

where t,,j is the #’ desired output value of neuron j 
and Opj is the output of the corresponding neuron. 

Fig. 4. Sigmoidal function used for the experiment of neural net training. 
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3.2. Application to geologic record 4. Data analysis 

In this paper we address the specific problem of 
how to train a neural net to recognize the existence 
of those periodic signals which have been known for 
a long time to exist in biologic [%I as well as in 
stratigraphic signals [1,3,4]. Several authors have 
suggested that these signals might be linked to the 
secular variations of the Earth’s orbit [5,3,17]. The 
main problem to be solved remains, however, how to 
convert the spatial frequencies observed in the signal 
to the time frequencies predicted by the orbital the- 
ory. Starting from the quite accurate time frequencies 
predicted for the Mesozoic, by Berger and his collab- 
orators on the basis of N-body simulations of the 
solar system 15,171, we trained the neural network 
described above to recognize the existence of such 
periodic signals (regardless of their amplitude) in 
real data, once a rough estimate of the sedimentation 
rate S,,, has been provided. This was achieved by 
producing a synthetic data string, based on Ses,, and 
the set of frequencies estimated by Berger as the 
most likely for the assumed age of the strata consid- 
ered. These strings were then used to train the net. In 
the following section we shall give more details on 
the application of the method to two specific cases. 

Data analysis consisted of two main steps: (1) 
pre-processing aimed to reduce the noise level in the 
data; and (2) spectral analysis needed to have a first 
guess on the spatial harmonics present in the signal. 
The first goal was achieved by means of a simple 
running mean algorithm. The use of more refined 
filters would have been inappropriate due to the 
typology of the signal. The second step makes use, 
instead, of the so called Modified Scargle Algorithm 
[ll,l2] and leads to a rough estimate of S,,,. 

The Scargle algorithm has exactly the characteris- 
tics required. To be more precise: 
1. it deals with unevenly spaced data; this character- 

istic is important because the rebinning of un- 
evenly sampled data, like the stratigraphic sig- 
nals, into equally spaced bins and the following 
computation of a conventional periodogram may 
alter the spectrum and the significance of a peri- 
odic signal; 

2. it allows discrimination between meaningful fre- 
quencies and spurious ones on a physical basis; 
this is made by evaluating the false alarm proba- 
bility [16]; that is, an estimate of the significance 
of the height of a peak in the power spectrum; 

100 
MONTE TOBENNA 
F’OWERSPECTRIJM 

80 OF THE LITHOFACIES 
SIGNAL WITH DETREND 

Fig. 5. Periodogram of the Mount Tobenna lithofacies. The signal has been tapered, to adjust spectral leakage, with a Gaussian window 
function. ‘Ihe horizontal dashed line gives the 90% confidence level. 
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this is possible only if the periodogram has an 
exponential probability distribution function [ 161, 
achieved by normalizing the periodogram with 
respect to (r*; that is, the variance of the data; 

3. it reduces the effects of aliasing bias in the data. 
To be more detailed, let X(ti), with i = 

12 , , . . . J’,, be the time series data, sampled at dis- 
crete intervals, and P,(w) the corresponding power 
spectrum at frequency w. The equation to calculate 
P,(w) is: 

Px( w) 

= L [cjxjcoso(?j - T)]’ 
2 

[ 
cjcos*o( fj - 7) 

+ [CjXj sinw(fj- r)]’ 

Cj sin*w( rj - 7) 
I 

where T is defined as follows: 

(Cj sin2wrj) 

tan(2wr) = (Cj COS2Wfj) (5) 

and represents a term that makes the periodogram 
invariant to a shift in the zero point of the time scale. 

4.1. Description of the experiments: Mount Tobenna 
and Mount Raggeto data 

The stratigraphic record obtained for the exposed 
sequences in Mount Tobenna and Mount Raggeto 

985 cm 

was processed according to the previous section, 
leading to the identification of the spatial periodici- 
ties shown in Figs. 5 and 6, and listed in Table 2. 

4.1 .I. Pre-processing 
This is the most delicate step of any experiment 

done with neural networks and on it depend the 
choices of the training and test sets, as well as the 
best structure for the input data. The aim of our 
experiment was to teach the network how to recog- 
nize the possible existence of periodic signals in a 
very noisy spatial record, choosing between six pos- 
sible classes; namely the six main periodicities ex- 
pected for Milankovitch-type phenomena. In order to 
train the network we produced a series of simulated 
records having the following characteristics: 
1. all possible combinations of the six Milankovitch 

periodicities; 
2. additive noise; 
3. the same length of the real stratigraphic sequence; 
4. a similar square-like shape; 
5. the same sampling rate as the real data set. 

Due to the different domains of the real (space) 
and simulated (time> series, it was first necessary to 
find the conversion factor (sedimentation rate) LY. In 
order to estimate LY we proceeded as follows: from a 
preliminary spectral analysis of the data we derived 
the most significant peak and assumed it to be 
related to the highest Milankovitch frequency, as in 
[5,17], thus obtaining an estimate of (Y. This value 

MONTE RAGGETO 
POWER SPECTRUM 
OF THE TEXTURAL SIGNAL 
WITH DETREND 
(OUTCROPS) 

Fig. 6. Periodogram of the Mount Raggeto texture. The signal has been tapered, to adjust spectral leakage, with a Gaussian 

function. The horizontal dashed line gives the 90% confidence level. 

window 
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MONTETOBENNA 

o.91 
SYNTHETICSIGNAL 
WITHSIXMILANKOVIC 

0.8 

0 1000 2ooo 3cCKl 4ooo moo 6ooO cm 

Fig. 7. Synthetic signal obtained for the Mount Tobenna texture record by combining the six Milankovitch cycles and assuming .S,,, = 3.71 

cm X kyz-’ 

gave the sampling rate for the synthetic signals, 
which were therefore degraded by adding randomly 
generated additive noise. Fig. 7 shows an example of 
synthetic signal, containing all six Milankovitch fre- 
quencies, created by our procedure. 

4.1.2. Creation of training and test sets 
The net model used for these experiments is not 

shift-invariant and it is also impossible to submit the 
whole signal to the net at the same time. In order to 
by-pass this problem, we subdivided every simulated 
data set into smaller subsequences long enough to 
contain all the information. Every subsequence is 
slightly overlapping the next in order to simulate a 
sort of continuity in submitting the signals to the net. 
For each subsequence, a Fourier transform allows 
identification of the six amplitude values which rep- 
resent the pattern input; so every signal is submitted 

Table 3 

The training phase 

to the network as a pattern set. We give the net two 
consecutive overlapped sequences in order to obtain 
the best experimental results. In this way we ob- 
tained the 12 input values of the single input pattern. 
Each time series is composed of 10 and 13 consecu- 
tive overlapped sequences for the Mount Tobenna 
and Mount Raggeto experiments, respectively (de- 
pending on the length of the related original strati- 
graphic signal); we obtained 9 and 12 input patterns 
for each synthetic signal related to the Tobenna and 
Raggeto experiments respectively. We have 64 (26) 
different synthetic signals, containing all the combi- 
nations of the 6 Milankovitch periodicities [(frEq. 
[;l$ CfrEq. (2)X.. . , (f&l. (6)), (frEq. (1) and frEq. 

, . . . ,(frEq. (1) and frEq. (6)), (frEq. (2) and frEq. 
(3)), . . . ,(frEq. (2) and frEq. (6)), . . . ,(frEq. (1) and 
frEq. (2) and frEq. (3) and frEq. (4) and frEq. (5) 
and frEq. (6))] plus an additive pseudo-random noise. 

The network topology contains the information on the number of layers and the number of neurons per layer, respectively: “in-hid1 -hid2- 
out”. 
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Table 4 

The test phase 

F,, i= I,..., 6 are the six Milankovitch periodicities, from the highest (F, = 400 Ky) to the lowest (F6 1 18 Ky). 

The training set is composed of 30 synthetic signals, 
chosen from the 64 available, in such a way that 
samples of the 6 fundamental periodicities and of 
their combinations are present. For each time series 
the output error is evaluated as the mean value of the 
output of the 9 or 12 consecutive input patterns. The 
error is back-propagated after each submission of all 
30 synthetic signals to the net . 

4.2. Experimental resdts 

We used the pre-processing strategies, described 
in Section 4.1.1, to evaluate the sedimentation rate 
and the sampling rate for the sequences related to 
Mount Tobenna and Mount Raggeto. Once the sam- 
pling rate was fixed, a complete series of synthetic 
signals covering all possible combinations of the six 
main Milankovitch frequencies was produced. We 
then applied the procedure described in Section 4.1.2 
to create the training and test set. After the training 
phase (see also Appendix A we used a subset of 
synthetic signals not used in the training phase in 
order to evaluate the network performance. With 
these signals we obtained results with 100% of cor- 
rect output detection (with an output value greater 
than 0.9 for the output nodes related to the Mi- 

Table 5 

The test phase 

lankovitch cycles present into the signals). Finally, 
we used the Tobenna and Raggeto sequences in 
order to evaluate the network behaviour with real 
signals. The results are illustrated in Table 3, Tables 
4 and 5. We used a threshold on the output equal to 
0.5 for the detection. Therefore, this procedure al- 
lowed us to recognize the Milankovitch periodicities 
present in the stratigraphic signals studied. These 
results are confirmed by spectral analysis developed 
with the Scargle algorithm and the evidence from the 
outcrop (thickness of the cycle) [I 4,111. 

The neural net approach here illustrated is com- 
pletely automatic and permits the users to detect 
Milankovitch periodicities without complex interpre- 
tations of the power spectrum. 

5. Conclusions 

We have presented a neural net approach to the 
recognition of periodicities in the stratigraphic record. 
With respect to the traditional techniques based on 
the power spectrum (PST), this method offers several 
methodological and practical advantages which ren- 
der the detection of periodicities much more reliable. 
In fact, instead of searching blindly for peaks in the 

The output value of the output nodes corresponding to the 6 Milankovitch frequencies. The values arc expressed in centesimals. Since the 

threshold is 50.0, we recognized the frequencies given in Table 4. 



M. Brescia et al./ Earth und Planetary Science Lerters 139 (1996) 33-45 43 

periodogram, the neural net approach presented here 
makes use of PST only to obtain a first-order esti- 
mate of the sedimentation rate. The existence of 
periodic components in the stratigraphic record is 
then performed on a yes/no base by training the net 
to recognize signals of a given frequency. The time 
and effort required for training of the net is largely 
compensated for by the effectiveness of the method 
and by the relatively short computing time required 
by the following processing steps. 

The method has been tested on Cretaceous se- 
quences, formed by well bedded carbonate rocks of 
shallow water origin. The data processed were ob- 
tained with centimetric accuracy along two exposed 
sections at Mount Raggeto and Mount Tobenna, 
Southern Italy, which had been studied previously by 
the authors with traditional PST’s [ 11,141. The tex- 
ture and lithofacies based analysis had already 
showed a repetitive organization of the sedimentary 
environments, suggesting cyclical alternation of 
deeper and shallower depositional settings up to 
emersions [14,15]; this behaviour was assumed to be 
controlled by Earth’s orbital perturbation [ll]. The 
results of the present study confirm the existence of 
Milankovitch type signals ( e 20- z 400 Ky) in both 
sequences and, in particular: 
1. 

2. 

Eccentricity (long and short), Obliquity (long and 
short) and Precession (long) terms for the Mount 
Tobenna samples; 
Eccentricity (long and short), Obliquity (long and 
short) terms for the Mount Raggeto samples. 
Each of the above periodicities is attached to a 

specific strata1 thickness and recurrent textures or 
lithofacies. 

In forthcoming papers we shall discuss the appli- 
cation of wavelets to the pre-processing of the data, 
as well as the effect of other net architectures on the 
accuracy of the data. 
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Appendix A 

A.I. Neural net learning procedure 

In this section we discuss in more detail the 
neural network learning procedure. First, the error 
back propagation algorithm (EBP) is presented and 
then we discuss the learning procedure, explaining 
the meaning of its main parameters. The algorithm is 
shown below. As already stated, it is necessary that 
the units have non-linear threshold functions that are 
continuously differentiable; such as, for instance, the 
sigmoidal function (Eq. (2)): 

WknOn - B, 
I 

(6) 

A.2. Algorithm 

Let us assign small random values to weight and 
thresholds and a fixed small value to the error 
confidence; 
input patterns X, = xpO,. . . xpn_ , , where p is 
the index of the pth pattern and n is the number 
of the input nodes; 
for the first hidden layer calculate the actual 
output: 

n- 1 

O,,=f c wjixi-Bj 
i=O 

and pass it as input to the next layer and so on for 
the next layers. f is the activation function. At 
the output layer calculate the actual error by a 
comparison between the actual net output and 
relative corrected output; 
after an entire cycle of input pattern presentations, 
calculate the whole error function: E = l/2 X Cj 
(tPj - 0,Jj>2 on all input patterns p; 
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5. adapt weights starting from the output layer and 
going backwards.Calculate: Wji(new) = Wji(old) 
+ 77 X S,,jOPj + (Y X (Wj,(new) - W,;(old)), where 
v and (Y are constants called learning rate and 
momentum, respectively, and:SPj =f’(OPj) (rPj - 
O,,) for output units,SPj =f(OPj) (C, Wkj X &) 
for hidden units,are the error terms for pattern p 
on node j; 

6. If E > error confidence then go to step 2 ather- 

wise srop. 
The meaning of the hidden units in the net can be 

summarized as feature detectors. It can be seen as a 
recording of the inputs so that a neural net can learn 
the mapping of input patterns to output patterns. This 
recording, or internal representation, is critical to the 
behaviour of the network, in terms of the number of 
hidden units. In fact, to form internal representations 
of any input pattern, and to produce the correct 
response of output units, requires enough hidden 
units. The weight updating phase in the above algo- 
rithm, well known in literature as the ‘generalized 
delta rule’, provides a method for teachmg multilayer 
perceptron networks, producing the necessary inter- 
nal representation of the hidden nodes. It must be 
recalled that the learning procedure is not guaranteed 
to produce convergence. It is possible for the net- 
work to fall into a so-called local minimum of the 
error function E. The correct learning situation is, 
instead, the falling of the error function E to a 
so-called absolute minimum. In fact, the error func- 
tion and its related network weight can be depicted 
as an energy surface that is a rippling landscape of 
hills and valleys, wells and mountains, with points of 
minimum energy corresponding to the wells and 
maximum energy found on the peaks [24]. 

In this context; the generalized delta rule aims to 
minimize the error function E by adjusting the 
weights so that they correspond to those at which the 
energy surface is the lowest. It does this by a method 
known as gradient descent, where the energy func- 
tion is calculated and changes are made in the steep- 
est downward direction. This is guaranteed [o find a 
solution in cases where the energy Iandscape is 
simple. Each possible solution is represented as a 
hollow in the landscape. These ‘basins of attractions’ 
represent the solution to the values of the weights 
that produce the correct output. Three layers of 
neurons can, therefore, form arbitrarily complex 

shapes, and are capable of separating any classes, as 
is stated by the well known Kolmogorov Theorem 
[24]. One of the main criticisms against the multi- 
layer perceptron is that it requires many presenta- 
tions of the input pattern set and a repetition of the 
corresponding calculations before the network is able 
to settle into a stable solution. The method of gradi- 
ent descent is slow to converge, due to the complex- 
ity of the error surface. The addition of tie two 
terms, learning rate and momentum, often speeds up 
convergence. The TJ term is a measure of the degree 
of influence of the updating weights formula of the 
error term, whereas the CY term determines the influ- 
ence of the past history of weight changes in the 
same formula. Determining the optimal choices for 
all these parameters must be achieved on the basis of 
a trial and error approach. 
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