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Abstract

Astronomically controlled variations in the Earth’s climate induce cyclic trends in the sedimentary process and record
{Milankovitch periodicity). One of the main difficulties to be solved in order to choose among the registered periodicities is
the conversion from the spatial (i.e. recurrent variations along the stratal sequences) to the temporal domains of the
astronomically induced frequencies present in the rock record. We discuss here how this problem can be circumvented by
teaching a neural net how to recognize periodicities in the signal. The application to two sequences of shallow water
carbonate deposits from the Cretaceous of Southern Italy has shown this approach to be particularly effective, confirming the
existence of Milankovitch-type periodicities in the records examined, where climate, sediments and biota concomitantly
react to the variation in the solar constant induced by secular perturbations of the Earth’s orbital elements.

Keywords: Milankovitch theory; paleoclimatology; Cretaceous; Southern Apennines

1. Introduction

Periodic changes in climate, induced by astronom-
ically induced variations in the distribution of solar
energy over the Earth, have been recognized as
influencing the production of carbonate sediments,
which are mostly formed by marine organisms and
by their activity [1-4]. On the other hand, these
periodic signals may be recorded in and have been
extracted from a variety of other non-carbonate de-
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posits originated in different sedimentary environ-
ments, from continental to deep marine [1.4).

The whole topic presents two incongruent aspects.
The availability of detailed dynamic models of the
Earth-Moon-Sun system, as well as of the Solar
System as a whole, together with reliable algorithms,
has led to very accurate predictions of the secular
variations in the Earth’s orbital parameters [5], while
the signature left by these periodic modulations in
the stratigraphic record generally appears ‘‘ex-
tremely imperfect, unreliable, noisy and poorly time
calibrated’” [3]. This lack of congruent effects in the
sedimentary record is the outcome of a complex
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Fig. 1. Textural signal extracted from Mount Raggeto sequence. The horizontal scale gives the stratigraphic thickness of the sampled
succession of strata in centimetres (younging to the right). Each interval in the vertical scale corresponds to a different standard texture

(based on Embry and Klovan classification), as coded in Table 1.

process, driven by a number of variables, of which
climate (together with sediment supply, global sea
Jevel change, subsidence, biologic actwity, etc.) is
just one. An extensive review of these processes can
be found in a recently published volume of proceed-
ings [3), as well as in other recent publications

Tabte §

[1,4.6]. In addition, we must consider that, if the time
series analyzed are acquired with not very denmse
sampling, many of the high-frequency cycles may be
lost in the rock record [3,4].

For these reasons high-frequency cyclicity has
been more and more studied in modem stratigraphy

Code used for the Mount Raggeto and Mount Taobenna deposits (see also Fig. IFig. 2)

Mount Raggeto Mount Tobenna Codes
Textures Lithofacies
Bindstone *Stromatolitic” and “loferitic” boundstones (criptalgal laminites) 0
Mudstone Aeolissaccus sp. and Thaumatoporella sp., wack and wack-packstone} 0.1
ocally with burrows
Wackestone e Miliolid pack and pack-wack with Thaumatoporella sp. and 0.2
Ostracods
Packstone ack, wack-pack and pack thin levels with criptalgal laminites 0.3
Miliolid wack and wack-pack with benthonic foraminifers
Grainstone [Thaumatoporella sp., Aeclisaccus sp., Dyciclina sp., Ostracods and 04
micritized grains
Rudstone Oncaid pack, pack-wack and grains with Dyciclina sp., benthoniq 0.5
foraminifcrs and small planktonics
Floatstone IForaminifers wack-pack and pack with small planktonics 0.6
Undetermined  WForaminifer wack and mud-wack, with small planktonics and wi 0.7
biotwbations
Clay levels adiolitid floatstone with bioclastic matrix 0.8

Note that while for M. Raggeto only the textures (based on Embry and Klovan, 197, standard classification) are used, a more detailed study

has allowed determination of the lithofacies for M. Tobenna.
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for ns potential predictive value, in order to tie
sedimentary processes to absolute time. In spite of
the pioneer work of Croll and Gilbert [7,8] at the turn
of the last century, it has been only in the past 15
years that an increasing interest has developed and
the new term of ‘cyclostratigraphy’ has become
established, stressing the genetic connection of the
orbital perturbations induced by the variability of
Earth’s thermal budget (Milankovitch cyclicity) with
the climate, sedimentation and biosphere [2]. The
vast majority of works in cyclostrangraphy have
been devoted to the pelagic realm; that is, where the
biostratigraphy gives the best time definition, allow-
ing for the detected cyclicities to be framed into the
Milankovitch periodicity [2-4). More recently, a
number of authors have focused their attention on
shallow marine carbonates, which seem to offer the
best conditions for the detection of the shortest pe-
riod components (see, e.g., [9-13]) even though, for
these types of data, the chance of gaps punctuating
the record may be high (e.g., in the peritidal domain).

In the Cretaceous sequences of the Southern
Apennines more than 700 m of well bedded carbon-
ate platform deposits, spanning from the Hauterivian
to the Coniacian, have been analyzed on a centimet-
ric scale. In these shallow water sequences three
main rock types alternate and the relative lithofacies
associations qualify them as subtidal, tidal-supra-
tidal and storm-controlled deposits (9-12,14] (Table
1, Figs. 1 and 2). The cycles are aggradationally

stacked, shallow upwards and are often capped by
ephemeral, emersion related features. Environmental
changes, expressed by texture or lithofacies varia-
tions, plotted at a centimetre scale on the aggradation
axis show a hierarchy of at least 3 orders of cycles
[15].

A package of spectral analysis, based on analyti-
cal techniques originally tailored for astronomical
applications, was used to search for possible period-
icities [16]. This package includes pre-processing and
spectral analysis of the signal; it deals with unevenly
spaced data; 1t allows discrimination between mean-
ingful frequencies and spurious ones on a physical
basis and, finally, reduces the effects of aliasing bias
in the data.

The duration of cycles was calculated for about
420 m of well bedded sequences by comparing the
Relative Ratio Sets (RRS) of the recurrence of sedi-
mentary features (expressed in centimetres) with the
RRS of orbital parameters (Precession, Obliquity and
Eccentricity) calculated by Berger [17.5] for the Cre-
taceous (expressed in years). The two ratio sets
show, for every sequence analyzed, a very good
linear correlation (r> 0.99), suggesting that Creta-
ceous carbonate platform strata of Southem Italy
have an allocyclic organization (their cyclicity is not
inherent to the sediment deposition [11,12,14}), and
that the relative time scale falls in the Milankovitch
periodicities (Table 2). Furthermore, spectral analy-
sis of palacomagnetic data from a =90 m thick
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Fig. 2. Lithofacies signal extracted from Mount Tobenna sequence. On the horizontal scale the stratigraphic thickness is indicated (expressed
in centimetres and younging to the right), while the vertical scale is punctuated with the 10 different lithofacies, reported in Table 1,
recognized from a sedimentologic study at the outcrop as well as by using thin section and acetate peels.
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core, drilled in lower Cretaceous shallow marine
carbonate deposits from Mount Raggeto in Southern
Italy (and partly overlapping with one of the se-
quences discussed in the present paper), also demon-
strates cyclic recurrence of the remanent magnetiza-
tion values (declination, inclination and intensity)
[18 19] These paleomagnetlc periodicities are, again,

with + > N OQ (Takla
arameters will 1 ~ U.77 (1auvic

—

We discuss here a new approach based on neural
networks, to identify meaningful periodicities, a tool
which has proved particularly effective in speech
processing [20], and in pattern recognition [21]. In
Section 2, the data are presented, together with a
short summary of the classical ‘power spectrum’
approach to the search for periodicities in strati-
graphic records. The general background of the neu-
ral network implementation and training is intro-

Aucad in Cactinn 2 data rednctinn and analvgic ara
Qucca i SCAUON o, dawa reaucudn afG afaiysis are

detailed in Section 4, while results and concluding
remarks are presented in Section 5. Finally, in Ap-
pendix A we provide the reader with some details on
the training of the neural network.

2. The data
The data used for the present analysis refer to two
stratigraphic sequences sampled in a few quarries at

Mount Raggeto ([15,11] and Mount Tobenna [14],

T3 ET
(TN

located near Caserta and Salerno, Southern Italy,

respectively. The geological characterization of these

sequences has been discussed at length elsewhere

[15,14] and we refer to these papers for further

details. We want, however, to stress a few points:

i. the data were obtained by identifying/sampiing
the rocks directly from the outcrop at a centimet-

ala and tha Lithafansiac wara datarminad hy
ux. sCai and e 1uodiacics were aGeerminca uy

supplementary examination using thin sections
and acetate peels;

2. both sequences refer to carbonate strata formed in
shallow water environments, within the photic
zone, at a depth never exceeding — on average
— afew or a few tens of metres and, therefore, in
environments very sensitive to global sea level
oscillations (eustasy);

3. the sedimentation rates in these environments are
usually fairly high and, therefore, sampling at a

centimeotre ccala nr

o ry a aonnd time racoliuti
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vidac inn
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3. Methodology

Neural nets are powerful tools in dealing with:
1. function approximation: it has been shown that
they are universal function approximators {22,23];
2. classification and clustering: a neural net can

loooify imeme

learn from cz\muylca how to Ciassiry luput pat—
terns in a supervised ([24,25]) or unsupervised
([24,26.27]) manner.

Layer
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In particular, their use is recommended when:

1. there is no good algorithm for solving the prob-
lem;

2. input data are incomplete, noisy and not directly
understandable;

3. applications are data-intensive; that is, there are
more data than computations;

4. the procedure needs to be repeated many times;

5. many examples for ‘training’ are available.
All these requirements are fulfilled by our data,

thus making neural nets an ideal tool to deal with

periodicity recognition in stratigraphic signals.

3.1. The neural net

A neural net is a computational structure made by
many processing elements (units) — the neurons —
operating in parallel. These neurons are generally
organized into clusters or layers. They are grouped in
‘input’, ‘output’ and ‘hidden’ (i.e., those units which
are neither input nor output) layers. Three fundamen-
tal elements characterize any neural nets:

1. the net structure or topology; that is, the way the
layers are linked;

2. the activation function, which represents the an-
swer of a neuron to the input stimuli;

3. the learning algorithm.

In the present case, the net model adopted is the
well known ‘Multilayer Perceptron’ [25] shown in
Fig. 3. It consists of one input layer, one output layer
and one or two hidden layers. Each neuron in a given
layer is connected to all the neurons of the next one.

Our model is synchronous: at each time every
neuron receives as input the weighted sum of the

input patterns and /or of the other neuron outputs, as
shown in the following equation:

0k=][¥w,m0,,—Bk] (1)

where: W, is the weight associated to the link
from neuron n to neuron k; O, is the output of
neuron n or of the nth input; and B, is the neuron
threshold, generally called bias. Thus, the neuron
output is a continuous and derivable function of its
net input, with values comprised in the [0,1] range.
This function, f, is not linear for the hidden units.
For our experiment, we chose the sigmoidal func-
tion, shown in Fig. 4, which looks like:

f(x)=1/(1+e7) (2)

The training procedure was the so-called ‘back
propagation’, which works as follows: the first pat-
tern is presented to the input neurons and then the
net gives its output. If it is not equal to the desired
output pattern, we compute the difference (error)
between these two values and change the weights in
order to minimize it. Then we propagate the informa-
tion to the previous layers, changing the weights. For
a detailed explanation of the algorithm see Appendix
A. We repeat these operations for each input pattern
until we minimize the mean square error of the
system. Given the pth pattern in input, the error E,
is:

EP= ]/2X E(tpj_ Opj)2 (3)
J

where ¢,; is the p'* desired output value of neuron j
and O,; is the output of the corresponding neuron.

00 LI L L L B B B
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TT T T TTUT, 7T ]
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X

Fig. 4. Sigmoidal function used for the experiment of neural net training.
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3.2. Application to geologic record

In this paper we address the specific problem of

how to train a neural net to recognize the existence
of those periodic signals which have been known for
a long time to exist in bioclogic [26] as well as in
stratigraphic signals [1,3,4]. Several authors have
suggested that these signals might be linked to the
secular variations of the Earth’s orbit [5,3,17]. The
main problem to be solved remains, however, how to
convert the spatial frequencies observed in the signal
to the time frequencies predicted by the orbital the-
ory. Starting from the quite accurate time frequencies
predicted for the Mesozoic, by Berger and his collab-
orators on the basis of N-body simulations of the
solar system [5,17], we trained the neural network
described above to recognize the existence of such
periodic signals (regardless of their amplitude) in
real data, once a rough estimate of the sedimentation
rate S, , has been provided. This was achieved by
producing a synthetic data string, based on S, ,, and
the set of frequencies estimated by Berger as the
most likely for the assumed age of the strata consid-
ered. These strings were then used to train the net. In
the following section we shall give more details on
the application of the method to two specific cases.

4. Data analysis

main qtenc (1)

Nata analvcic 0 a
wU Illdiil SwWpsS. 1/

Data analysis consiste
pre-processing aimed to reduce the noise level in the
data; and (2) spectral analysis needed to have a first
guess on the spatial harmonics present in the signal.

The first goal was achieved by means of a simple

running mean algorithm. The use of more refined

filters would have been inappropriate due to the
typology of the signal. The second step makes use,
instead, of the so called Modified Scargle Algorithm

[11,12] and leads to a rough estimate of S,,,.
The Scargle algorithm has exactly the characteris-

tics required. To be more precise:

1. it deals with unevenly spaced data; this character-
istic is important because the rebinning of un-
evenly sampled data, like the stratigraphic sig-
nals, into equally spaced bins and the following
computation of a conventional periodogram may
alter the spectrum and the significance of a peri-
odic signal;

2. it allows discrimination between meaningful fre-
quencies and spurious ones on a physical basis;
this is made by evaluating the false alarm proba-
bility [16]; that is, an estimate of the significance
of the height of a peak in the power spectrum;

100
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Fig. 5. Periodogram of the Mount Tobenna lithofacies. The signal has been tapered, to adjust spectral leakage, with a Gaussian window

function. The horizontal dashed line gives the 90% confidence level.



this is possible only if the periodogram has an
exponential probability distribution function [16],
achieved by normalizing the periodogram with
respect to o %; that is, the variance of the data;
3. it reduces the effects of aliasing bias in the data.
To be more detailed, let X(r,), with i=
1,2,...,N,, be the time series data, sampled at dis-

+. + 1 A D ()¢ Ai
crete intervals, and f x\WJ the COorresponaing power

spectrum at frequency w. The equation to calculate
Py (o) is:

Py(w)
1 [ {Z‘,ijcosw(tj— 'r)]z

2| Icos’w(t;— 1)
|~ )

[,%,{(I,Sinw(tf_ T)]2 ]

4)
) _
L, sin‘w(r,— 1) J
where 7 is defined as follows:

(L, sin2wt,)
tan{ 2 I-lﬂ'\ = (q\
tan(2 wT) (5)

(E, cos2w1)
and represents a term that makes the periodogram
invariant to a shift in the zero point of the time scale.
4.1. Description of the experimenis: Mount Tobenna
and Mount Raggeto data

The stratigraphic record obtained for the exposed
sequences in Mount Tobenna and Mount Raggeto

was processed according to the previous section,
leading to the identification of the spatial periodici-
ties shown in Figs. 5 and 6, and listed in Table 2.

4.1.1. Pre-processing

This is the most delicate step of any experiment
done with neural networks and on it depend the
choices of the training and test sets, as well as the
best structure for the input data. The aim of our
experiment was to teach the network how to recog-
nize the possible existence of periodic signals in a
very noisy spatial record, choosing between six pos-
sible classes; namely the six main periodicities ex-
pected for Milankovitch-type phenomena. In order to

train tha natwaork wa nraduced a cariac of cimulatad
Udiil wib NUUWUIR woe PriUluuilyd a SUiivs Ul siiruiawu

records having the following characteristics:

1. all possible combinations of the six Milankovitch
periodicities;

. additive noise;

. the same length of the real stratigraphic sequence;

. a similar square-like shape;

. the same sampling rate as the real data set.
Due to the differem domains of the real (space)

W bW

nnnnnnnnnnnnnnnnnnn

find the conversion factor (sedlmentatlon rate) a. In
order to estimate o we proceeded as follows: from a
preliminary spectral analysis of the data we derived
the most significant peak and assumed it to be
related to the highest Milankovitch frequency, as in
[5,17], thus obtaining an estimate of «. This value

120 ~—
. | 985 cm MONTE RAGGETO
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] OF THE TEXTURAL SIGNAL
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Fig. 6. Periodogram of the Mount Raggeto texture. The signal has been tapered, to adjust spectral leakage, with a Gaussian window
function. The horizontal dashed line gives the 90% confidence level.
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Fig. 7. Synthetic signal obtained for the Mount Tobenna texture record by combining the six Milankovitch cycles and assuming S, , = 3.71

cm X kyz~ L.

gave the sampling rate for the synthetic signals,
which were therefore degraded by adding randomly
generated additive noise. Fig. 7 shows an example of
synthetic signal, containing all six Milankovitch fre-
quencies, created by our procedure.

4.1.2. Creation of training and test sets

The net model used for these experiments is not
shift-invariant and it is also impossible to submit the
whole signal to the net at the same time. In order to
by-pass this problem, we subdivided every simulated
data set into smaller subsequences long enough to
contain all the information. Every subsequence is
slightly overlapping the next in order to simulate a
sort of continuity in submitting the signals to the net.
For each subsequence, a Fourier transform allows
identification of the six amplitude values which rep-
resent the pattern input; so every signal is submitted

Table 3
The training phase

to the network as a pattern set. We give the net two
consecutive overlapped sequences in order to obtain
the best experimental results. In this way we ob-
tained the 12 input values of the single input pattern.
Each time series is composed of 10 and 13 consecu-
tive overlapped sequences for the Mount Tobenna
and Mount Raggeto experiments, respectively (de-
pending on the length of the related original strati-
graphic signal); we obtained 9 and 12 input patterns
for each synthetic signal related to the Tobenna and
Raggeto experiments respectively. We have 64 (2°)
different synthetic signals, containing all the combi-
nations of the 6 Milankovitch periodicities [(frEqg.
(1)), (frEq. (2)),..., (frEq. (6)), (frEq. (1) and frEq.
(2)),... (frEq. (1) and frEq. (6)), (frEq. (2) and frEq.
(3)),... (frEq. (2) and frEq. (6)),... (frEq. (1) and
frEq. (2) and frEq. (3) and frEq. (4) and frEq. (5)
and frEq. (6))] plus an additive pseudo-random noise.

Synthetic signal | Network topology Cycles RMS - Trains
Tobenna 12-6-6-6 77,000 0.013117
Raggeto 12-6-6-6 95,000 0.009991

The network topology contains the information on the number of layers and the number of neurons per layer, respectively: ‘*

out’’.

in-hid1-hid2-



Table 4
The test phase

Signal | RMS - Test | Target periodicities | Recognized periodicities
Tobenna | 0.124958 |  F1F2F3F4F5 F1,F2,F3,F4,F5
|_Raggeto | 0031333 F1,F2,F3 F4 F1F2,F3,F4

F,i=1

i ,..., 6 are the six Milankovitch periodicities, from the highest (F, =

The training set is composed of 30 synthetic signals,
chosen from the 64 available, in such a way that
samples of the 6 fundamental periodicities and of

air combinatione are nracent Far each time cerieg
their combinations are PiCSCill. O Calil dmid SCrics

the output error is evaluated as the mean value of the
output of the 9 or 12 consecutive input patterns. The
error is back-propagated after each submission of all
30 synthetic signals to the net .

4.2. Experimental results

We used the pre- processing strategies described

lll DCLUUU ‘f l l o CleUdI.C ult bCUllllCllldllUll raie

and the sampling rate for the sequences related to
Mount Tobenna and Mount Raoosm Once the sam-
pling rate was fixed, a complete series of synthetic
signals covering all possible combinations of the six
main Milankovitch frequencies was produced. We
then applied the procedure described in Section 4.1.2
to create the training and test set. After the training
phase (see also Appendix A we used a subset of
synthetic signals not used in the iraining phase in
order to evaluate the network performance. With
these sionals we obtained results with 100% of cor-

these signals we obtained results with 100% of cor
rect output detection (with an output value greater
than 0.9 for the output nodes related to the Mi-

400 Ky) to the lowest (Fg = 18 Ky).

lankovitch cycles present into the signals). Finally,
we used the Tobenna and Raggeto sequences in
order to evaluate the network behaviour with real

gionale Tha -gn‘|‘ tq ara illhgtratad in Tahla 2 Tohlag
Si1gNdLS, 11l I 18 are iuusirawa ifi 1aoic 5, 1aoies

4 and 5. We sed a threshold on the output equal to
0.5 for the detection. Therefore, this procedure al-
lowed us to recogmze the Milankovitch periodicities
present in the stratigraphic signals studied. These
results are confirmed by spectral analysis developed
with the Scargle algorithm and the evidence from the
outcrop (thickness of the cycle) [14,11].

The neural net approach here illustrated is com-

p lt:ly automatic and pCl'IIlllb the users io detect
Milankovitch periodicities without complex interpre-

tations of the power spectrum

viieiii.

5. Conclusions

We have presented a neural net approach to the
recognition of periodicities in the stratigraphic record.
With respect to the traditional techniques based on
the power spectrum (PST), this method offers several

methodolooical and nractical advantasac which ren-

ML UNULUIDEILGL QiU pialuldl duVaiiaels valuil 1ol

der the detection of periodicities much more reliable.
In fact, instead of searching blindly for peaks in the

Signal Freq. 1 Freq. 2 Freg. 3 Freq.4 Freq.5 | Freq.6
Tobenna 99 .48 97.77 27.69 63.51 57.44 0.38
‘ Raggeto 82.17 85.96 55.18 57.84 41.22 16.53

The output value of the output nodes corresponding to the 6 Milankovitch frequencies. The values are expressed in centesimals. Since the

threshold is 50.0, we recognized the frequencies given in Table 4.
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periodogram, the neural net approach presented here
makes use of PST only to obtain a first-order esti-
mate of the sedimentation rate. The existence of
periodic components in the stratigraphic record is
then performed on a yes/no base by training the net
to recognize signals of a given frequency. The time
and effort required for training of the net is largely
compensated for by the effectiveness of the method
and by the relatively short computing time required
by the following processing steps.

The method has been tested on Cretaceous se-
quences, formed by well bedded carbonate rocks of
shallow water origin. The data processed were ob-
tained with centimetric accuracy along two exposed
sections at Mount Raggeto and Mount Tobenna,
Southern Italy, which had been studied previously by
the authors with traditional PST’s [11,14]. The tex-
ture and lithofacies based analysis had already
showed a repetitive organization of the sedimentary
environments, suggesting cyclical alternation of
deeper and shallower depositional settings up to
emersions [14,15]; this behaviour was assumed to be
controlled by Earth’s orbital perturbation [11]. The
results of the present study confirm the existence of
Milankovitch type signals (= 20-= 400 Ky) in both
sequences and, in particular:

1. Eccentricity (long and short), Obliquity (long and
short) and Precession (long) terms for the Mount
Tobenna samples;

2. Eccentricity (long and short), Obliquity (long and
short) terms for the Mount Raggeto samples.
Each of the above periodicities is attached to a

specific stratal thickness and recurrent textures or

lithofacies.

In forthcoming papers we shall discuss the appli-
cation of wavelets to the pre-processing of the data,
as well as the effect of other net architectures on the
accuracy of the data.
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Appendix A
A.l. Neural net learning procedure

In this section we discuss in more detail the
neural network learning procedure. First, the error
back propagation algorithm (EBP) is presented and
then we discuss the learning procedure, explaining
the meaning of its main parameters. The algorithm is
shown below. As already stated, it is necessary that
the units have non-linear threshold functions that are
continuously differentiable; such as, for instance, the
sigmoidal function (Eq. (2)):

ok=/[§wk,,o"—8k] (6)

A.2. Algorithm

1. Let us assign small random values to weight and
thresholds and a fixed small value to the error
confidence;

2. input patterns X, =x,q,... x,,_,, where p is
the index of the pth pattern and » is the number
of the input nodes;

3. for the first hidden layer calculate the actual
output:

n—1
Op;=f X w;ixi =B

i=0
and pass it as input to the next layer and so on for
the next layers. f is the activation function. At
the output layer calculate the actual error by a
comparison between the actual net output and
relative corrected output;

4. after an entire cycle of input pattern presentations,

calculate the whole error function: E=1/2X¥;
(t,;— 0,,)* on all input patterns p;
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5. adapt weights starting from the output layer and
going backwards.Calculate: W {new) = W, (old)
+nX 8,0, + aX (W new) — W,(old)), where
n and o are constants called learmng rate and
momentum, respectively, and:8,, = /'(0,)) (1, —
0,,) for output units,§,; = f'( pj) (L, W,;X38,,)
for hidden units,are the error terms for pattern p
on node J

6. If E> error confidence then go to step 2 other-
wise s1op.

The meaning of the hidden units in the net can be
summanzed as feature detectors. It can be seen as a
recording of the inputs so that a neural net can learn
the mapping of input patterns to output patterns. This
recording, or internal representation, is critical to the
behaviour of the network, in terms of the number of
hidden units. In fact, to form internal representations
of any input pattern, and to produce the correct
response of output units, requires enough hidden
units. The weight updating phase in the abave alge-
rithm, well known in literature as the ‘generalized
delta rule’, provides a method for teaching multilayer
perceptron networks, producing the necessary inter-
nal representation of the hidden nodes. It must be
recalled that the learning procedure is not guaranteed
to produce convergence. It is possible for the net-
work to fall into a so-called local minimum of the
error function E. The correct learning situation is,
instead, the falling of the error function E to a
so-called absolute minimum. In fact, the error func-
tion and its related network weight can be depicted
as an energy surface that is a rippling Jandscape of
bills and valleys, wells and mountains, with points of
minimum energy corresponding to the wells and
maximum energy found on the peaks [24).

In this context; the generalized delta rule aims to
minimize the error function E by adjusting the
weights so that they correspond to those at which the
energy surface is the lowest. It does this by a method
known as gradient descent, where the energy func-
tion is calculated and changes are made in the steep-
est downward direction. This is guaranteed to find a
solution in cases where the energy landscape is
simple. Each possible solution is represented as a
hollow in the landscape. These ‘basins of attractions’
represent the solution to the values of the weights
that produce the correct output. Three layers of
neurons can, therefore, form arbitrarily complex

shapes, and are capable of separating any classes, as
is stated by the well known Kolmogorov Theorem
[24]. One of the main criticisms against the multi-
layer perceptron is that it requires many presenta-
tions of the input pattern set and a repetition of the
corresponding calculations before the network is able
to settle into a stable solution. The method of gradi-

agran ¢latey ta Anmuaraa camnl
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ity of the error surface. The addition of the two
terms, learning rate and momentum, often speeds up
convergence. The 7 term is a measure of the degree
of influence of the updating weights formula of the
error term, whereas the « term determines the influ-
ence of the past history of weight changes in the
same formula. Determining the optimal choices for
all these parameters must be achieved on the basis of
a trial and error approach.
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