
Automatic Assessment of Architectural Anti-patterns and Code
Smells in Student Software Projects

Marco De Luca
marco.deluca2@unina.it

University of Naples Federico II
Naples, Italy

Sergio Di Meglio
sergio.dimeglio@unina.it

University of Naples Federico II
Naples, Italy

Anna Rita Fasolino
fasolino@unina.it

University of Naples Federico II
Naples, Italy

Luigi Libero Lucio Starace
luigiliberolucio.starace@unina.it
University of Naples Federico II

Naples, Italy

Porfirio Tramontana
ptramont@unina.it

University of Naples Federico II
Naples, Italy

ABSTRACT
When teaching Programming and Software Engineering in Bache-
lor’s Degree programs, the emphasis on creating functional soft-
ware projects often overshadows the focus on software quality, a
trend consistent with ACM curricula recommendations. Dedicated
Software Engineering courses take typically place in the later stages
of the curriculum, and allocate only limited time to software quality,
leaving educators with the difficult task of deciding which quality
aspects to prioritize. To educate students on the importance of de-
veloping high-quality code, it is important to introduce these skills
as part of the assessment criteria. To this end, we have implemented
a pipeline based on advanced frameworks such as ArchUnit and
SonarQube. It was successfully tested on a class of students engaged
in the Object Oriented Programming course, demonstrating its use-
fulness as a resource for educators and providing some concrete
evidence of quality problems in student projects.

CCS CONCEPTS
• Social and professional topics → Software engineering edu-
cation; Student assessment; • Software and its engineering
→ Software creation and management.

KEYWORDS
oop courses, code quality, quality criteria, architectural anti-patterns

ACM Reference Format:
Marco De Luca, Sergio Di Meglio, Anna Rita Fasolino, Luigi Libero Lucio
Starace, and Porfirio Tramontana. 2024. Automatic Assessment of Archi-
tectural Anti-patterns and Code Smells in Student Software Projects . In

This work has been partially funded by ENACTEST (European innovation alliance for
testing education), ERASMUS+ Project number 101055874, 2022-2025 and by GATT
(GAmification in Testing Teaching), funded by the University of Naples Federico II
Research Funding Program (FRA)..

This work is licensed under a Creative Commons Attribution International
4.0 License.

EASE 2024, June 18–21, 2024, Salerno, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1701-7/24/06
https://doi.org/10.1145/3661167.3661290

28th International Conference on Evaluation and Assessment in Software En-
gineering (EASE 2024), June 18–21, 2024, Salerno, Italy. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3661167.3661290

1 INTRODUCTION
The teaching of Programming and Software Engineering in Bache-
lor’s Degree programs, such as Computer Science and Computer En-
gineering, often emphasizes the ability to create functional projects
rather than focusing on software quality. This approach is consis-
tent with the ACM Computer Science and Computer Engineering
curricula recommendations for Bachelor degrees [2]. According
to these recommendations, software quality is only marginally
addressed in typical three-year Bachelor’s degree programs, with
introductory CS1 courses focusing mainly on programming aspects,
and some preliminary software quality concepts being introduced
only later in the program, in Software Engineering courses.

Still, Software Engineering courses can allocate only limited
time to delve into software quality aspects, and deciding which
quality aspects to prioritize within the limited time frames is a key
challenge for educators. Indeed, to date, there is a noticeable gap
in the literature regarding research into the foundational software
quality challenges specifically encountered by intermediate-level
students when developing software projects. The scarcity of such
insights leaves educators in more advanced Software Engineering
courses with limited guidance on which quality aspects to prior-
itize within their courses. A further difficulty for teachers who
want to make students more aware of the quality flaws in their
projects is related to the difficulty of automatically assessing these
aspects. The objective of this paper is to aim for a methodological
and technological framework that provides teachers with a quick
assessment of certain quality aspects of student projects.

To this aim, we have used automated state-of-the-art static anal-
ysis tools to investigate the prevalent architectural anti-patterns
[14] and code smells. Our results may represent a useful resource
for educators to enhance the efficacy of their teaching at an intro-
ductory level and in later stages of the curriculum. The applicability
of such automation was assessed by examining 26 software projects
produced by students in an Object Oriented Programming course
taught by one of the authors at the University of Naples Federico
II. The quality analysis of these projects revealed frequent types
of issues that should be addressed by teachers of future Object
Oriented Programming courses.

565

https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3661167.3661290
https://doi.org/10.1145/3661167.3661290
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3661167.3661290&domain=pdf&date_stamp=2024-06-18


EASE 2024, June 18–21, 2024, Salerno, Italy Marco De Luca, Sergio Di Meglio, Anna Rita Fasolino, Luigi Libero Lucio Starace, and Porfirio Tramontana

The remainder of the paper is structured as follows. Section 2
presents background information about software quality and related
work. Section 3 presents the proposed evaluation framework, while
Section 4 describes a case study we conducted involving students
of an Object Oriented Programming course, with a preliminary
discussion of the most common quality issues encountered. Finally,
Section 5 provides conclusions and future work.

2 BACKGROUND AND RELATEDWORKS
2.1 Software Quality
The concept of software quality is defined as the extent to which
a software product or system adheres to predefined requirements
and meets user expectations [5]. ISO 25010 [8] provides a frame-
work that outlines various quality characteristics that should be
addressed in software products, like modularity, reusability, and
testability. These quality characteristics depend on two pivotal as-
pects: the soundness of the underlying architectural design and the
quality of the source code.

2.1.1 Software Architecture Design. The quality of a software sys-
tem also depends on its architecture, i.e., its organization as a col-
lection of components, their interconnections, and constraints be-
tween their interactions [1]. A well-designed architecture lays the
foundation for a robust, scalable, and maintainable system, while
poor architecture can introduce a lot of challenges that impact
performance, reliability, and overall user satisfaction.

Software architectural patterns provide generalized and reusable
solutions to common software design problems [17]. These pat-
terns are fundamental guidelines for structuring the components
of a software system to enhance the overall quality of the software
architectural design like its modularity, reusability, and scalabil-
ity [3, 15]. To ensure that the implemented architecture does not
deviate from the intended architectural design, architecture con-
formity checks (ACC) can be performed [18]. These checks can
be performed automatically, leveraging existing techniques and
libraries such as ArchUnit.

2.1.2 Source CodeQuality. Source code quality is a concept that
often lacks a universal definition, leading to diverse interpretations.
A common term used to refer to code quality is Clean Code. The
definition of Clean Code is provided in the work of Martin et al. [13]
and refers to code that is easy to read, to write, and to maintain, and
where the developer’s intent is clear not just in the compiler but to
humans who read it. Many static analysis tools have been proposed
and are widely used to ensure that source code satisfies Clean Code
principles. Lenarduzzi et al., in [11], carried out a comparative
analysis of the most popular static analysis tools (Better Code Hub,
CheckStyle, Coverity Scan, FindBugs, PMD, and SonarQube). Their
results indicate that SonarQubewas themost effective in identifying
the majority of quality issues.

2.2 Software Quality Issues in Student Code
In the literature, many works have dealt with evaluating the quality
of software developed by university students at the introductory
level or by novice programmers.

Several works (e.g. [4, 9, 12]) applied techniques and tools for
automatically analyzing the quality of student-developed code to

provide continuous feedback during the course and support the
learning process. While these approaches proved to have a positive
impact on the quality of student-developed code, their analyses
focus on assessing the extent of the quality improvement when
using such tools rather than exploring what are the foundational
challenges encountered by introductory-level students.

Other works specifically focused on analyzing code developed
by university students and novice programmers ex-post, to identify
the most common quality flaws [7, 10]. Recently, Sun et al. [16]
investigated the learning performance of students in object oriented
programming courses, evaluating the quality of the code and tests
produced by the students on simple assignments.

Most of this research is limited to evaluating the software quality
of non-graduates from online programming platforms or introduc-
tory CS1 university courses. However, these works are affected
by two key limitations. First, their analyses are based on simple
assignments that, in most cases, could be solved with a few lines
of code. It is not clear whether, and to what extent, the findings
could apply when novice programmers develop more complex ob-
ject oriented projects, involving a database and a Graphical User
Interface (GUI). Second, due to the simplicity of the programming
tasks involved, existing studies have, to the best of our knowledge,
neglected quality issues arising from the presence of architectural
anti-patterns. To the best of our knowledge, these limitations con-
strain the applicability of such studies to students in object oriented
programming courses, where complexities in project scope and
architectural considerations are markedly different.

3 AUTOMATIC ASSESSMENT OF QUALITY
ISSUES IN STUDENTS’ PROJECTS

In this section, we present the evaluation framework we developed
to automatically assess quality issues of student software projects.

The proposed framework submits the student software projects
to two analysis activities, namely Architectural Analysis and Code
Quality Analysis, as reported in Figure 1. The former analysis aims
at the identification of the violations of a fixed architectural pattern,
while the latter aims at the detection of code smells. Both analyses
deliver as output a report listing all the found issues.

The main features of the tools used to carry out the analyses and
details of how we configured them to evaluate the student software
projects will be explained in the following subsections.

Figure 1: Evaluation Process

3.1 Assessment of Architectural Patterns
Violations

The activity in the upper part of the process reported in Figure 1
aims to ensure that the architecture implemented by the students

566



Automatic Assessment of Architectural Anti-patterns and Code Smells in Student Software Projects EASE 2024, June 18–21, 2024, Salerno, Italy

in their projects follows the pattern that was presented by the
teacher during the lectures. To automate this verification process
there are many available tools and libraries, in particular, we have
used ArchUnit1. ArchUnit is a free and easy-to-use library designed
for architecture testing in Java projects, its simplicity lies in the
possibility of defining architectural rules in the form of JUnit tests.
It allows specific tests that can be performed to verify dependencies
between packages and classes, as well as to examine the presence
of cyclic dependencies and other relevant architectural aspects.

Figure 2: Package Dependencies example.

Listing 1: Sample ArchUnit test to ensure that dependencies
are met, as shown in Figure 2

@ArchTest
public static final ArchRule enforce_package_dependencies =

noClasses ().that().resideInAPackage(".. Package B..")
.should ().dependOnClassesThat ().resideInAPackage(".. Package A");

For example, suppose we want to check that dependencies be-
tween packages follow the constraint shown in Figure 2, i.e., no
classes within package B should have dependencies on classes
within package A. By exploiting ArchUnit it is possible to imple-
ment this check by means of a single, very readable test case such
as the one shown in Listing 1.

3.1.1 ArchUnit Configuration: To enable architectural pattern vio-
lation detection, it is needed to add the ArchUnit library to the build
automation script (e.g. pom.xml for Maven projects) and implement
a test case expressing the defined architectural constraints by refer-
ring to the actual package names used in the project under analysis.
Of course, ArchUnit test cases can be executed in the context of
the adopted build automation tool and they automatically generate
reports of the observed architectural pattern violations.

3.2 Assessment of Code Quality
The activity in the lower part of Figure 1 leverages the functional-
ities of SonarQube2, one of the most popular and effective static
analysis tools [11]. The tool compares the code against a comprehen-
sive set of rules and best practices. In our experiment, we configured
the tool to consider the set of 677 Java rules3 and eventually filtered
out only the rule violations of interest. SonarQube reports an issue
each time one of these rules is violated, categorizing them into three
types: Bug, Vulnerability and Code Smell. Each issue is assigned a
levels of severity. The most severe issues, labelled as Blocker, can
affect the application’s behaviour and must be resolved before de-
ployment. Next in severity is Critical issues and then Major, Minor
and lastly Info. SonarQube code smells may affect different quality
factors like maintainability, reusability, understandability, security,
performance, and adherence to coding rules.
1ArchUnit documentation, available at https://www.archunit.org/
2SonarQube documentation, available at https://docs.sonarsource.com/sonarqube/latest/
3Java Rules list available at https://rules.sonarsource.com/java/

Figure 3: UML Package diagram representing the proposed
reference architecture for student’s projects

3.2.1 SonarQube Configuration: To enable automated code smell
analysis, we deploy a dedicated SonarQube instance and instrument
the build automation script to link it to the SonarQube instance. As
a result, each time a project build is executed, SonarQube analysis
is automatically performed.

As the output of the code quality analysis phase, SonarQube
produces an Issues Report, namely a table containing all identified
rule violations, classified by type and severity, and an estimation
of the effort required, in terms of working hours, to correct the
identified issue (i.e., the technical debt).

4 CASE STUDY
4.1 Study Design
To validate the proposed framework, we experimented with it on
a set of Java projects produced by students of an Object Oriented
Programming course. This kind of course typically represents the
first introduction to the design and implementation of software
systems using the object-oriented paradigm. This study aims to
assess the usefulness of the proposed framework for identifying
the prevalent issues and smells of the design and code of student
projects. Two research questions were investigated:

RQ1: How common are architectural pattern violations in student
projects?

RQ2: How common are code quality issues in student projects?
The subjects of the experiment were the students of an Object

Oriented Programming course held by one of the authors in the
second year of a Computer Science bachelor’s degree program dur-
ing the academic year 2021-22 at the University of Naples Federico
II. The Object Oriented Programming course included 48 hours of
lectures, corresponding to 6 ECTS, in the standard European Credit
Transfer and Accumulation System (ECTS) way of defining the
academic characteristics of courses.

As for the course topics, besides the basics of the object orien-
tation paradigm, the course also presented an introduction to the
UML language and the basics of the Java programming language.
Moreover, the course hinted at the basics of code quality and ar-
chitecture design principles, providing a reference architectural
pattern for GUI-based applications, separating into four modules its
different responsibilities. More in detail, the reference architectural
pattern included: (1) a GUI package (2) a Controller package, (3)
a Model package, (4) a Data Access Object (DAO) package, with,
possibly, another package with utility classes. The proposed refer-
ence architecture is sketched in Figure 3. The GUI Package includes
GUI classes representing the user entry point to the application.

567

https://www.archunit.org/
https://docs.sonarsource.com/sonarqube/latest/
https://rules.sonarsource.com/java/


EASE 2024, June 18–21, 2024, Salerno, Italy Marco De Luca, Sergio Di Meglio, Anna Rita Fasolino, Luigi Libero Lucio Starace, and Porfirio Tramontana

Table 1: Percentage of Projects presenting disallowed Depen-
dencies between GUI (G), Controller (C), Model (M), and DAO
(D) Packages

Couplings

G→M M→G G→D D→G M→C D→C M→D D→M
23 (88%) 0 8 (31%) 1 (4%) 1 (4%) 1 (4%) 0 25 (96%)

These classes should depend on Controller classes, implementing
the application logic. Controller classes, on the other hand, depend
on Model classes that are responsible for the transient storage of
the information domain data and on DAO classes for accessing
the persistent data stored in the database. Controller classes are
allowed to open GUI instances.

We carried out a post-evaluation of the quality issues of each
project, searching both for architectural pattern violations (RQ1)
leveraging ArchUnit, and for code smells (RQ2), using SonarQube.
ArchUnit test cases were implemented for each project to measure
the presence of each of the eight dependencies between packages
that were forbidden by the reference architecture, i.e. from GUI to
Model or Database and vice-versa, from Model to Database and
vice-versa, from Model or Database to Controller. An example of
the implemented test case is reported in the supporting material [6].
Next, the ArchUnit library was added to library dependencies in
the Maven build automation script of each project. As for the code
smell analysis, it was carried out by using a SonarQube instance
installed in a Docker container accessible from the Maven build
automation script of each project.

We collected in total 26 projects developed by 50 students. The
projects featured, on average, 41 classes and 4,647 non-commenting
lines of code. Note that these projects are remarkably more complex
than the simple assignments employed in related works investigat-
ing software quality in student-developed code.

It is worth noting that setting up and tailoring the pipeline to
automatically analyze the collected projects proved to be a straight-
forward process, as the students were already instructed to use
Maven as a build tool, which simplified the integration operations.
The biggest effort was required to manually tailor ArchUnit tests
to the specific package naming used by students in each project
and to integrate the SonarQube analysis in the student project’s
build phase. This step requires the creation of a new SonarQube
project and the inclusion of an additional metric computation step
in the project build pipeline, by editing Maven pom.xml files. More
in detail, it took two of the authors of this paper approximately 7
minutes per project, on average, to complete the setup and run the
analyses.

4.2 Results
4.2.1 RQ1 - How common are architectural pattern violations in
student projects? Table 1 reports the number and percentage of
projects from each considered group that presented at least one
occurrence of a disallowed type of coupling (respectively from GUI
to Model, from Model to GUI, from GUI to DAO, from DAO to GUI,
from Model to Controller, from DAO to Controller, from Model to
DAO and from DAO to Model).

The prevalent architectural violations were related to dependen-
cies from DAO to Model (D→M). They were mostly due to cases in
which classes from the DAO package extract data from the database
and create instances of the Model classes to store them. These issues
occurred on average in 96% of projects. Students often coupled DAO
and Model as another shortcut instead of passing serialized data to
the Controller, which should have this responsibility.

The direct dependencies from GUI to Model (G→M) were not
allowed because Model classes and objects should be managed only
by Controllers and not directly by GUI classes in order to make the
GUI implementation independent from the information modelling.
We observed this architectural issue very often (in 88% of projects).
These dependencies were shortcuts used by students to avoid the need
to serialize data from model classes in data structures for the GUI.

Another common architectural violation was the direct request
of data from the GUI classes (G→D) that was observed in 31% of
projects. The other violations were observed rarely: only in one
project were found calls from DAO to GUI (D→G), from Model to
Controller (M→C) or from DAO to Controller (D→C). Interactions
from Model to GUI (M→G) and from Model to Data (M→D) were
never observed.

4.2.2 RQ2 - How common are code quality issues in student’s projects?
The SonarQube analysis was carried out on the source code of each
project and returned an average of 36.8 different typologies of de-
tected issues per project. Tables including the overall list of smell
typologies observed in all the student projects are available in the
supporting material [6].

To have a summary view of the most common issues in the
selected student projects, we limited the scope of our analysis to the
top ten in order of frequency of observation, as reported in Table 2.
For each issue type, the table reports its description as provided by
SonarQube. In the other columns, we reported the classification of
the issue (Bug or Code Smell), its severity (Blocker, Critical, Major,
or Minor) and the number (and percentage) of students’ projects in
which the issue type was detected.

Among these 10 most frequently occurring issues, only one is
classified as Blocker, 2 as Critical, 3 as Major and the remaining 4
as Minor. Moreover, only one of them is considered a Bug, whereas
all the other ones are classified as Code Smells. No issues labelled
with the Vulnerability tag were in the top ten list. 9 out of 10 issues
affect the maintainability of the project, whereas the remaining one
(i.e., the Bug) affects its reliability.

The Blocker category issue concerns “Resources that were not
properly closed”. It was found in 85% of projects. The issues were
generally due to student inexperience: leaving open a stream or
connection to an external resource can cause concurrency problems
or memory leaks.

The two Critical issues are “String literals should not be dupli-
cated” and “Cognitive Complexity of methods should not be too high”.
These issues are classified as Code Smells and are present in, respec-
tively, 100% and 96% of projects. All of them negatively affected
the maintainability of the projects. In particular, the first one may
cause inconsistencies when string literals have to be modified (e.g.,
translated into another language), while the second one may make
hard the comprehension of methods behaviour.

568



Automatic Assessment of Architectural Anti-patterns and Code Smells in Student Software Projects EASE 2024, June 18–21, 2024, Salerno, Italy

Table 2: List of the more common code issues found in student projects

Sonar Rule Description Issue Type Severity Occurrence

Resources should be closed BUG BLOCKER 22 (85%)

String literals should not be duplicated SMELL CRITICAL 26 (100%)
Cognitive Complexity of methods should not be too high SMELL CRITICAL 25 (96%)

Standard outputs should not be used directly to log anything SMELL MAJOR 24 (92%)
Unused assignments should be removed SMELL MAJOR 21 (81%)
Branches in a conditional structure should not have the same implementation SMELL MAJOR 23 (88%)

Variables and method parameters should comply with naming conventions SMELL MINOR 25 (96%)
Field names should comply with a naming convention SMELL MINOR 23 (88%)
Unnecessary imports should be removed SMELL MINOR 25 (96%)
Method names should comply with a naming convention SMELL MINOR 18 (69%)

Three issues in the list are SonarQube Major issues and corre-
spond to other Code Smells negatively affecting understandabil-
ity and modifiability of the source code. For example, the use of
System.out for logging (found in 92% of the projects) is not recom-
mended because log outputs may mix with standard outputs and
error outputs. Other frequent issues are related to unused assign-
ments (81%) or branches of the same conditional structure with the
same implementation (88%). All these bad practices appeared to be
due to programmers’ lack of attention to the quality of their code.

Similarly, the 4most commonMinor issues corresponded to Code
Smells. Many of them represented a lack of coherence in the use of
naming conventions about local variables, method parameters, field
and method names (e.g., starting with a capital letter). In addition,
in 96% of the projects unused imports were found. All these smells
denoted a lack of knowledge or attention about naming conventions
and best practices that were explicitly presented during lectures.

5 CONCLUSIONS AND FUTUREWORK
This paper has presented an ongoing experience about the au-
tomatic assessment of architectural pattern violations and code
smells in Java projects realized by students. To this aim, we have
implemented a pipeline by exploiting two state-of-the-art tools
respectively ArchUnit to find architectural pattern violations and
SonarQube for code smell analysis.

We presented the results of a case study conducted by analyzing
26 Java projects realized by students in an object-oriented program-
ming course as part of a degree course in Computer Science at the
University of Naples Federico II. The results showed that students
produced frequent architectural pattern violations due to (1) bad
practices adopted to avoid serialization and de-serialization opera-
tions for passing data between classes of different packages, and (2)
inadequate understanding of the principles for correctly assigning
responsibilities to classes. As regards code smells, we have observed
frequent bad smells negatively affecting mainly reliability and main-
tainability. This work provides a pipeline for the automatic analysis
of some architectural pattern violations and code smells that could
be useful for teachers both to understand which quality aspects are
more neglected by students and to support the quality assessment
process of a large number of student projects.

In future work, we intend to replicate this study in the context of
other editions of this course or other similar courses offered in other
universities or degrees (e.g., in Software Engineering courses) to
extend the general applicability of the automatic quality assessment.

REFERENCES
[1] Jonathan Aldrich, Craig Chambers, and David Notkin. 2002. ArchJava: Con-

necting Software Architecture to Implementation. In Proceedings of the 24th
International Conference on Software Engineering (ICSE ’02). ACM, 187–197.

[2] Alison Clear, Allen S Parrish, John Impagliazzo, and Ming Zhang. 2019. Comput-
ing Curricula 2020: introduction and community engagement. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education. 653–654.

[3] P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford. 2003. Documenting
software architectures: views and beyond. In 25th International Conference on
Software Engineering, 2003. Proceedings. 740–741.

[4] Pedro Henrique de Andrade Gomes, Rogério Eduardo Garcia, Gabriel Spadon,
Danilo Medeiros Eler, Celso Olivete, and Ronaldo Celso Messias Correia. 2017.
Teaching software quality via source code inspection tool. In 2017 IEEE Frontiers
in Education Conference (FIE). 1–8. https://doi.org/10.1109/FIE.2017.8190658

[5] Peter J Denning. 1992. What is software quality? Commun. ACM 35, 1 (1992),
13–15.

[6] Sergio DiMeglio, Luigi Libero Lucio Starace, Marco De Luca, Porfirio Tramontana,
and Anna Rita Fasolino. 2024. Automatic assessment of architectural anti-patterns
and code smells in Student Software Projects. https://zenodo.org/records/
10800604

[7] Tomáš Effenberger and Radek Pelánek. 2022. Code Quality Defects across Intro-
ductory Programming Topics. In 53rd ACM Technical Symposium on Computer
Science Education - Volume 1 (SIGCSE 2022). ACM, 941–947.

[8] John Estdale and Elli Georgiadou. 2018. Applying the ISO/IEC 25010 quality
models to software product. In Systems, Software and Services Process Improve-
ment: 25th European Conference, EuroSPI 2018, Bilbao, Spain, September 5-7, 2018,
Proceedings 25. Springer, 492–503.

[9] Julian Jansen, Ana Oprescu, and Magiel Bruntink. 2017. The impact of automated
code quality feedback in programming education. CEUR Workshop Proceedings
2070 (2017).

[10] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code Quality Issues in
Student Programs. In ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE ’17). ACm, 110–115.

[11] Valentina Lenarduzzi, Fabiano Pecorelli, Nyyti Saarimaki, Savanna Lujan, and
Fabio Palomba. 2023. A critical comparison on six static analysis tools: Detection,
agreement, and precision. Journal of Systems and Software 198 (2023), 111575.
https://doi.org/10.1016/j.jss.2022.111575

[12] Yao Lu, Xinjun Mao, TaoWang, Gang Yin, and Zude Li. 2019. Improving students’
programming quality with the continuous inspection process: a social coding
perspective. Frontiers of Computer Science 14, 5 (2019). https://doi.org/10.1007/
s11704-019-9023-2

[13] Robert C Martin. 2009. Clean code: a handbook of agile software craftsmanship.
Pearson Education.

[14] RanMo, Yuanfang Cai, Rick Kazman, Lu Xiao, and Qiong Feng. 2021. Architecture
Anti-Patterns: Automatically Detectable Violations of Design Principles. IEEE
Transactions on Software Engineering 47, 5 (2021), 1008–1028.

[15] Mary Shaw and David Garlan. 1996. Software architecture: perspectives on an
emerging discipline. Prentice-Hall, Inc.

[16] Qing Sun, Ji Wu, and Kaiqi Liu. 2020. Toward understanding Students’ learning
performance in an object-oriented programming course: The perspective of
program quality. IEEE Access 8 (2020), 37505–37517.

[17] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. 2010. Software
Architecture: Foundations, Theory, and Practice. John Wiley & Sons.

[18] Alla Zakurdaeva, Michael Weiss, and Steven Muegge. 2020. Detecting architec-
tural integrity violation patterns using machine learning. In 35th Annual ACM
Symposium on Applied Computing (SAC ’20). ACM, 1480–1487.

569

https://doi.org/10.1109/FIE.2017.8190658
https://zenodo.org/records/10800604
https://zenodo.org/records/10800604
https://doi.org/10.1016/j.jss.2022.111575
https://doi.org/10.1007/s11704-019-9023-2
https://doi.org/10.1007/s11704-019-9023-2

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Software Quality
	2.2 Software Quality Issues in Student Code

	3 Automatic Assessment of Quality Issues in Students' Projects
	3.1 Assessment of Architectural Patterns Violations
	3.2 Assessment of Code Quality

	4 Case Study
	4.1 Study Design
	4.2 Results

	5 Conclusions and Future Work
	References

