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Abstract: This study investigates the effectiveness of amplitude transformation in enhancing the
performance and robustness of Multiscale Fuzzy Entropy for Alzheimer’s disease detection using elec-
troencephalography signals. Multiscale Fuzzy Entropy is a complexity measure particularly sensitive
to intra- and inter-subject variations in signal amplitude, as well as the selection of key parameters
such as embedding dimension (m) and similarity criterion (r), which often result in inconsistent
outcomes when applied to multivariate data, such as electroencephalography signals. To address
these challenges and to generalize the possibility of adopting Multiscale Fuzzy Entropy as a diag-
nostic tool for Alzheimer’s disease, this research explores amplitude transformation preprocessing
on electroencephalography signals in Multiscale Fuzzy Entropy calculation across varying param-
eters. The statistical analysis of the obtained results demonstrates that amplitude transformation
preprocessing significantly enhances Multiscale Fuzzy Entropy’s ability to detect Alzheimer’s disease,
achieving higher and more consistent significant comparison percentages, with an average of 73.2%
across all parameter combinations, compared with only one raw data combination exceeding 65%.
Clustering analysis corroborates these findings, showing that amplitude transformation improves the
differentiation between Alzheimer’s disease patients and healthy subjects. These results highlight the
potential of amplitude transformation to stabilize Multiscale Fuzzy Entropy performance, making it
a more reliable tool for early Alzheimer’s disease detection.

Keywords: electroencephalography; biomedical signal processing; multiscale fuzzy entropy;
Alzheimer’s disease; complexity; measurements; measures

1. Introduction

Complexity measures have emerged as convenient tools for characterizing elec-
troencephalographic (EEG) signals, particularly in the diagnosis of neurodegenerative
diseases [1,2]. Traditional EEG analysis techniques, such as event-related potentials and
time-frequency analysis, often fail to capture the dynamic complexity of brain activity [2–5].
In contrast, complexity measures, particularly those based on entropy, provide a deeper
understanding of the brain’s irregularities and unpredictability, offering a more nuanced
approach to early diagnosis [1,6]. Among these measures, Multiscale Fuzzy Entropy (MFE)
has emerged as a powerful tool for quantifying the complexity of EEG signals across dif-
ferent time scales [7]. MFE is based on the concept of fuzzy entropy, which quantifies the
degree of regularity in a signal through the analysis of a sliding window that identifies
similar patterns [8,9]. In recent years, MFE has been applied to the study of brain activity,
particularly for Alzheimer’s disease (AD) [1,7,10,11].
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Nevertheless, despite its potential, there is no established method for applying MFE
to EEG signals, limiting comparison between studies [12,13] and ultimately hindering
the reliability of MFE as biomarker of AD. The application of MFE to EEG signals faces
two main challenges: its sensitivity to parameter selection and its dependence on signal
amplitude [14,15]. Indeed, MFE employs a set of tunable parameters, namely m, which
denotes the template length or embedding dimension, and r, which represents the matching
threshold or similarity criterion [7,11]. These parameters have a significant impact on the
entropy results [14]. Additionally, MFE is inherently dependent on signal amplitude [15],
especially when dealing with multivariate data such as EEG. The amplitude values of EEG
signals can vary significantly between different EEG systems and across subjects, thus
potentially biasing the calculated distances on embedded vectors toward data with larger
amplitude ranges [15,16]. Addressing these issues is crucial to standardizing MFE as a
reliable biomarker for AD. Thus, this study introduces an amplitude transformation (AT)
preprocessing approach to mitigate amplitude variability and improve MFE robustness
across various parameter combinations. Thus, based on the hypothesis that AT prepro-
cessing can improve the performance and robustness of MFE, the aim is to establish AT
preprocessing as a key methodological enhancement for AD detection based on MFE. To
this purpose, this work investigates the effectiveness of AT preprocessing by applying
MFE across varying m and r parameters. Specifically, this study explores the potential of
min–max amplitude normalization to enhance the performance and robustness of MFE for
AD detection. MFE was assessed across 12 combinations of m and r on raw and amplitude-
transformed EEG data from AD subjects and HSs. Statistical analyses, including t-tests
(α = 0.05) and Cohen’s D, were performed to assess the significance of differences between
the HS and AD groups under both conditions (raw and AT data) for each MFE scale factor
and EEG channel, with each parameter combination. Additionally, a clustering analysis
using k-means was conducted to evaluate the clustering capability based on MFE values.
The findings demonstrate that AT preprocessing significantly enhances the performance
and robustness of MFE, making it less sensitive to the chosen parameters m and r and more
reliable in distinguishing between HSs and subjects with AD. By effectively addressing
these challenges, this paves the way for the development of more accurate diagnostic tools
for Alzheimer’s disease.

The paper is organized as follows. Section 2 reports an overview of related works.
Section 3 describes the theoretical background of MFE. Section 4 details the proposed
method, including the dataset description, amplitude transformation strategy, MFE calcula-
tion, and used data analysis approach. Section 5 reports the obtained results, comparing
raw data and amplitude-transformed data, highlighting the impact of preprocessing on
the stability and robustness of MFE. Finally, the conclusions and future work are outlined
in Section 6.

2. Related Works

The MFE approach has been employed to investigate brain function, particularly
in relation to AD [1,7,10,11]. AD is the most common form of dementia, and it severely
impairs cognitive and behavioral functions leading to significant neurological deterioration
and affecting daily life activities [17]. Hence, early and reliable diagnosis is crucial for
effective disease management and treatment. The presence of the ApoEϵ4 allele, a known
genetic risk factor for AD, has also been shown to modify EEG complexity patterns in
different brain regions, particularly within the temporal lobes [18,19]. In this context, MFE
has been demonstrated as suitable in differentiating between healthy subjects (HSs) and
those with AD [7,10,11,20]. Table 1 provides a summary of key works, their contributions,
and limitations.
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Table 1. Multiscale Fuzzy Entropy analysis of EEG signals for detecting Alzheimer’s disease (AD) in
existing research.

Author(s) Year Methodology Data Used Key Findings Limitations

Simons et al. [14] 2018 Fuzzy Entropy (FuzEn) EEG from 22 subjects
(AD and HSs)

FuzEn outperformed other
entropy metrics in

distinguishing
AD from HSs, achieving

86.36% accuracy.

Small sample size;
heavy dependence

on input parameters
for entropy calculation.

Azami et al. [11] 2019

Fuzzy entropy
with various
membership

functions (MFs)

Synthetic
clinical
datasets

Gaussian MF yielded
the best performance

for long signals;
exponential MF

for the short ones.

Limited comparability
across methods

without defuzzification;
no focus on AD.

Su et al. [10] 2021 MFE and Phase
Locking Value (PLV)

EEG from 49 subjects
(AD and HSs)

Combined MFE and
PLV achieved 83.34%

classification accuracy.

Focused on prefrontal regions;
limited generalizability

to other brain areas.

Cataldo et al. [7] 2024 Multiscale Fuzzy
Entropy (MFE)

Public EEG dataset
MFE showed a trend

inversion in complexity
across frequency

bands for AD patients.

Requires more robust
validation for clinical use;

dataset size could be larger.

Arpaia et al. [21] 2024 MFE Two public EEG datasets

Emphasis on the
preprocessing phases.

The importance of data
normalization, in improving

the effectiveness of
clustering algorithms
for AD identification.

The method has been
tested on two public datasets,

but the data are still
scarce for application

in the clinical field.

Despite its potential, there is no established method for applying MFE to EEG signals,
limiting comparison between studies [12,13] and ultimately hindering the reliability of MFE
as a biomarker for AD. In particular, the choice of specific parameters and the amplitude
of EEG signals are among the factors that influence the performance of MFE [14,15]. MFE
employs tunable parameters, namely m (template length or embedding dimension) and r
(matching threshold or similarity criterion) [7,11], which significantly impact the entropy
results [14]. Moreover, MFE is inherently dependent on signal amplitude, especially when
dealing with multivariate data such as EEG [15]. In particular, the amplitude values of
EEG signals can vary significantly between different EEG systems and across subjects, thus
potentially biasing the calculated distances on embedded vectors toward data with larger
amplitude ranges [15,16]. For all these reasons, it is crucial to gain an understanding of the
sensitivity and impact of these factors, i.e., parameters and signal amplitude, to ensure the
effective application of MFE in AD detection.

Regarding parameter selection, although the literature often suggests default param-
eter values (m = 2 and r = 0.20) [22], these values are not necessarily optimal in every
context. Consequently, using suboptimal parameters may result in the distortion and alter-
ation of the obtained results [14]. This issue has been highlighted in numerous studies that
have attempted to identify the best parameter configuration for specific contexts [14,23–26].
For instance, in [14], various combinations of m and r were explored to optimize MFE calcu-
lations for distinguishing between AD and HSs. Other studies have focused on evaluating
electrocardiogram (ECG) signals, highlighting the need for even greater attention to pa-
rameter selection in EEG analysis [23–26]. On this basis, instead of continuously searching
for the optimal parameter combination for each scenario, it would be more beneficial to
develop a strategy for improving the performance of MFE by making it independent of
parameter selection.

As aforementioned, the effectiveness of MFE is further complicated by the inherent
variability in EEG signal amplitude, which can differ significantly both within and between
subjects [27]. Typically, EEG signals are preprocessed to remove artifacts, filtering in the
bands of interest, and division into epochs [28,29], neglecting the intra- and inter-subjects
EEG signal amplitude variations that can lead to biased results in MFE calculation [21].
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To address this dual challenge—sensitivity to parameter selection and variability in
EEG signal amplitude— this work proposes an AT-preprocessing approach for mitigating
the impact of parameter sensitivity and amplitude variability on MFE calculations for
AD detection.

3. Theoretical Background

The multiscale entropy analysis method enables the complexity of a time series to be
evaluated by estimating the information content across a range of temporal scales. These
techniques aim to quantify the degree of regularity or chaos in a time series by analysing the
signal through a sliding window that searches for similar patterns. MFE has emerged as an
advanced method, evolving from traditional entropy-based techniques such as multiscale
approximate entropy and multiscale approximate sample [10,30–32]. In contrast to the
latter, which depends on binary matching (1 or 0), which can be unsuitable for highly
variable biological signals, MFE leverages the theory of fuzzy logic, which embraces the
concept of partial truth. According to this logic, the matching of a signal segment to a
set of similar patterns is assessed using a continuous function known as the membership
function. It assigns real values from 0 (indicating no match) to 1 (indicating a complete
match) to quantify a certain degree of similarity among patterns throughout the entire EEG
time series. Then, the total contribution of all values between 0 and 1 computed for each
template will represent a measure of the complexity of the brain waveforms.

Formally, given a univariate time series x[k] of N samples,

x[k] = {x[i] : 1 ≤ i ≤ N}, (1)

a vector of m consecutive samples is considered, as follows:

Xm
i = {x[i], x[i + 1], . . . , x[i + m − 1]} − x0[i], (2)

where i is the starting time point of the generic pattern and x0[i] is the mean value of all
m-selected samples. More specifically, m represents the embedding dimension, i.e., the
length of sequences to be compared.

Then, given Xm
j as a shifted version of Xm

i , a similarity degree Dm
ij of Xm

j to Xm
i is

calculated as

Dm
ij = exp

(
−(dm

ij )
n

r

)
, (3)

where dm
ij is the maximum absolute difference between the two vectors and an exponential

function is used as a fuzzy membership function [33]. The smoothness of the fuzzy function
is adjusted by r, defined arbitrarily. More specifically, r is known as the similarity criterion or
matching threshold, and determines the sensitivity of the entropy calculation to differences
between elements in the system. This parameter r, multiplied by the standard deviation
of the data sequence, defines the tolerance interval within which two elements can be
considered similar [14].

The mean similarity for all patterns of length m is computed as

ϕm =
1

N − m

N−m

∑
i=1

(
1

N − m − 1

N−m−1

∑
j ̸=i,j=1

Dm
ij

)
. (4)

Then, the mean ϕm+1 is calculated for Xm+1
i . Finally, fuzzy entropy (FE) can be

estimated as

FE(m, n, r) = − ln
(

ϕm+1

ϕm

)
(5)

Thus, the fuzzy entropy represents the conditional probability that the patterns ob-
served for m samples are the same for (m + 1) samples.
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Based on this formalism, MFE extends this by averaging FE across multiple scales:

MFE(m, n, r, s) =
1
S

S

∑
s=1

FE(s)(m, n, r) (6)

where S is the scale factor. In this way, MFE allows the complexity of brain processes to be
estimated over a time interval [10].

From these equations, it can be observed how the fuzzy entropy and its multiscale
variation (MFE) are affected by signal amplitude and the parameters m and r. In more
detail, increasing m allows for a more comprehensive reconstruction of the dynamic process,
capturing more intricate details of the signal’s behavior. However, this also requires a
significant number of sampling points (10m–20m), which can be difficult to achieve with
physiological data [11]. Therefore, selecting the appropriate value of m is essential for
balancing the depth of analysis with the practical limitations of the data. On the other hand,
the parameter r defines the similarity criterion, establishing an interval within which two
elements can be considered similar. Importantly, r is multiplied by the standard deviation
of the signal, directly linking it to the signal’s amplitude. This relationship introduces
a sensitivity to amplitude variations: signals with higher amplitudes result in a larger
distances metric dm

ij between sequences, potentially increasing the entropy values. If r is set
too low, the conditional probability estimates may become inadequate, while a high r value
could lead to a loss of detailed signal information [11]. As such, the selection of r must
carefully account for the signal amplitude, as it significantly affects the resulting MFE values
and, consequently, the interpretation of the signal’s complexity and irregularity [15]. Based
on these considerations, it is essential to develop a strategy to enhance the performance of
MFE and increase its robustness against parameter variations.

4. Materials and Method

This section outlines the methodology proposed in this study. It begins with a de-
scription of the EEG data used for validating the method, followed by a description of
the developed amplitude transformation preprocessing, which is pivotal to enhancing the
robustness and reliability of MFE analysis. Then, the MFE calculation on both raw and
amplitude-transformed data across various parameter combinations is reported. Finally,
the data analysis methodology, including statistical tests and clustering techniques, is
presented. Figure 1 shows a visual representation of the workflow.

Figure 1. Workflow: (A) the process begins with data acquisition. The same EEG data are subjected
to two parallel processes: the raw EEG data are analyzed to establish a baseline for comparison;
(B) the amplitude transformation (AT) preprocessing is applied. (C) For each scenario (raw and
AT data), Multiscale Fuzzy Entropy (MFE) is then calculated for various parameter combinations.
(D) The data are analyzed via statistical evaluation and clustering for both amplitude-transformed
and raw data. Finally, the results from these evaluations are compared to assess the robustness of the
MFE calculations at parameters m and r in each scenario (raw and AT).
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4.1. EEG Data Description

The EEG data used in this study belong to two publicly available EEG datasets:
the Temple University Hospital (TUH) EEG Corpus [34] and the Chung-Ang University
Hospital EEG (CAUEEG) [35]. Each EEG recording is accompanied by a detailed report
containing the diagnosis made by specialized neurologists. Signals were re-sampled at
a frequency of 200 Hz, and the channel position used in the recordings followed the
international 10-20 system, encompassing 19 channels: FP1, FP2, F3, F4, C3, C4, P3, P4,
O1, O2, F7, F8, T3, T4, T5, T6, FZ, CZ, and PZ. Both datasets employed linked earlobe
referencing (A1 and A2), with the ground electrode positioned at FPz. The datasets were
balanced with respect to age and sex of the subjects, ensuring comprehensive and unbiased
data. In particular, 17 subjects with AD and 17 HSs were selected from the TUH EEG
dataset, and 13 subjects with AD and 13 HSs were selected from the CAUEG dataset.
This resulted in a total of 30 AD subjects and 30 HSs, providing a dataset of 60 subjects
for analysis.

For each subject, 51 s of clean EEG signals in closed-eye resting state condition was
considered, as the minimum continuous closed-eye segments of EEG signals available in
the two datasets. All EEG data were bandpass filtered between 0.5 Hz and 45 Hz using a
finite impulse response (FIR) filter with an order equal to the number of samples in a 3 s
window. Thus, the first 3 s related to the transient were excluded from each EEG signal;
in this way, 48 s of filtered EEG were obtained for each subject. The EEG data were then
divided into epochs of 3 s without overlap, resulting in a total of 16 epochs for each subject.

4.2. Amplitude Transformation

Considering the inherent dependency of MFE on signal amplitude, this study de-
veloped an AT-preprocessing procedure to investigate its effectiveness in enhancing the
robustness and reliability of MFE analysis. This strategy was developed with the specific
objective of mitigating the effects of intra- and inter-subject amplitude variations caused by
a range of factors, such as instrumentation. By applying min–max normalization, the EEG
data were scaled to a common range, minimizing inter- and intra-subject variability and
preserving the proportional significance of amplitude variations. In addition, this method
not only ensured more consistent results but also enhanced the robustness of MFE, making
it less sensitive to the chosen parameters and more reliable in distinguishing between HSs
and AD.

To implement this approach, the AT was applied to each EEG epoch as follows:

xAT,i =
xi − xmin

xmax − xmin
· (Amax − Amin) + Amin (7)

where xAT,i is the amplitude-transformed signal, i is the i-th channel, Amax and Amin are
the output amplitude-transformed ranges (from −5 to 5), empirically chosen to guarantee
signal symmetry and a standard deviation of approximately 1, thereby maintaining the
relative importance of each data point. For each subject, xmax and xmin were determined by
first identifying the maximum and minimum values for each epoch. Then, the median of the
maximum values and the median of the minimum values across all epochs were calculated,
resulting in a single maximum value and a single minimum value per subject. A global AT
approach was chosen, meaning that xmax and xmin were obtained, taking into account all
channels simultaneously, and maintaining the amplitude ratio between channels.

4.3. MFE Calculation and Parameters Selection

MFE was evaluated considering raw and amplitude-transformed EEG data. In the
initial stage of the analysis, the same EEG data were subjected to two parallel processes.
Firstly, as reported in Figure 1, the raw EEG data (A) were analyzed to establish a baseline
for comparison. Then, as shown in Figure 1B, the AT procedure was applied to each
EEG signal. For each scenario (raw and AT data), the MFE was computed epoch-wise for
each channel, considering the different combinations of m and r (Figure 1C). A range of
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scale factors from 1 to 20 was selected to effectively distinguish between AD and HSs, as
indicated in prior studies [7,20]. Consequently, for each epoch, a total of 20 entropy values
was yielded for each channel. These values were then averaged across epochs for each
subject, resulting in 20 entropy values per channel.

More specifically, MFE was calculated for a range of combinations of its two principal
parameters, m, which represents the embedding dimension, and r, which is the similarity
criterion, for both the raw and amplitude-transformed datasets. As previously stated, the
value of m determines the length of the sequences to be compared, with larger values
enabling a more detailed reconstruction of the dynamic process. However, this requires
a substantial number of sampling points, which can be challenging with physiological
data [11]. The parameter r defines the threshold for the similarity between elements,
balancing the accuracy of the likelihood against the potential loss of signal information [11].

Both parameters are crucial for the performance of MFE, and thus in analyzing EEG
data and distinguishing between AD and HSs. As stated in Section 1, the objective of
this study was to enhance the robustness of MFE with regard to the amplitude of EEG
signals and parameter selection through the AT procedure. To investigate this, 12 different
combinations of m and r were considered. The chosen combinations are listed in Table 2.
In more detail, m was varied between 2, 3, and 4, while r = 0.10, r = 0.15, r = 0.20, and
r = 0.25 times the standard deviation of EEG data were used. These ranges were chosen to
capture a wide spectrum of potential influences on the entropy calculations, allowing for a
thorough analysis of MFE’s robustness and effectiveness [14].

Table 2. Combinations of parameters r and m for MFE.

Combination m r

1 2 0.10
2 2 0.15
3 2 0.20
4 2 0.25
5 3 0.10
6 3 0.15
7 3 0.20
8 3 0.25
9 4 0.10

10 4 0.15
11 4 0.20
12 4 0.25

4.4. Data Analysis Approach

The data analysis approach involves a systematic examination of MFE applied to
both raw and preprocessed EEG data with the AT procedure, using various parameter
combinations. The analysis aims to analyze the correlation between signal amplitude and
MFE parameters in distinguishing between HSs and AD. Specifically, the objective is to
investigate the potential of AT preprocessing in enhancing the performance and robustness
of MFE. As shown in Figure 1D, after the MFE calculation, statistical and cluster analyses
were employed to assess the impact of amplitude transformation on MFE. The statistical
analysis was used to evaluate the discriminatory power of MFE in each scenario (raw and
AT with different parameter combinations). In more detail, the resulting MFE values from
different parameter settings were statistically analyzed at each scale factor to identify the
optimal parameter combinations for distinguishing between the two groups in the raw
data and in AT data. Subsequently, clustering analysis was employed to further assess
the performance of MFE in discriminating AD and HSs. By clustering the data, this study
aimed to identify distinct groupings that corresponded to HS and AD patients. Cluster-
ing provided a complementary perspective to statistical analysis, helping to visualize the
separation between the groups and offering a more intuitive understanding of the data
structure. More specifically, the methods used in the analysis were as follows:
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1. Statistical Evaluation

• The t-test: Conducted to compare the entropy values between HSs and AD
patients, determining the statistical significance of the differences observed. In
particular, a two-tailed t-test with significance level α = 0.05 was employed for all
comparisons, as no specific direction of the differences between the HS and AD
groups was hypothesized. This approach ensured that any significant difference,
regardless of direction, was detected. To ensure the validity of the t-test, the
assumptions of normality and homogeneity of variances were verified prior to
analysis. Normality was assessed using the Lilliefors test, and homogeneity of
variances was evaluated using Levene’s test. These assumptions were verified
for each combination of 20 scale factors, 19 channels, and the parameters r and m,
resulting in a comprehensive evaluation. The results indicated that normality was
satisfied in 75.92% of the combinations and homogeneity of variances in 81.51%.
Although not all combinations met these assumptions, the t-test was robust for
sample sizes N ≥ 30 as justified by the central limit theorem. This analysis was
conducted at each scale factor. A percentage of significant comparisons (PSCs)
was calculated by dividing the number of comparisons with p-values less than α
by the total number of comparisons (channels multiplied by scale factors), then
multiplying by 100, as shown in the following formula:

PSC =

(
∑N

i=1 1(pi < α)

N

)
× 100 (8)

where 1pi < α is an indicator function that equals 1 if pi < α, and 0 otherwise.
N is the total number of comparisons equal to Ns f × Nch where Ns f is the number
of scale factors and Nch is the number of channels.

• Cohen’s D: Calculated to measure the effect size, providing insight into the
magnitude of the differences between the groups. It is worth noting that while
the t-test indicates whether the differences between groups are statistically sig-
nificant, it does not convey the practical significance of these differences. For
these reasons, Cohen’s D was adopted since it addresses this by quantifying
the effect size, which helps with understanding the real-world relevance of
the findings. Typically, an effect size of 0.2 is considered small, 0.5 is medium,
and 0.8 is large, indicating the practical significance of the observed differences.
This effect size measurement was also conducted at each scale factor using the
following formula:

d =
x̄HS − x̄AD

sp
(9)

where x̄HS and x̄AD are the sample means of the two groups and sp is the pooled
standard deviation.

sp =

√
(NHS − 1)s2

HS + (NAD − 1)s2
AD

NHS + nAD − 2
(10)

where sHS and sAD are the sample standard deviations of the HS and AD groups,
respectively, and NHS and NAD are the sample sizes of the two groups. To obtain
an overall evaluation of the effect size, the mean of the Cohen’s D values across
scale factors and channels was calculated, according to the following formula:

dmean =
1

Nch · Ns f

Nch

∑
i=1

Ns f

∑
j=1

dij (11)
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where di,j is Cohen’s D value for channel i (ranging from 1 to 19) and the scale
factor j (ranging from 1 to 20).

2. Clustering
The k-means clustering approach [36] was applied to group the EEG data based on
MFE values, with the goal of identifying distinct clusters corresponding to HSs and
patients with AD. The number of clusters k was set to 2, representing the two groups
(HSs and AD). The feature matrix was constructed with data from 30 HSs and 30 AD
patients, resulting in a total of 60 subjects. For each subject, the mean of the MFE
values across the 20 scale factors was calculated for each of the 19 channels, yielding
a single entropy value per channel. This resulted in a feature matrix of dimensions
60 × 19, where each row represented a subject and each column represented a specific
MFE feature for one of the 19 channels. The clustering performance was evaluated
using the V-measure [37], Adjusted Mutual Information (AMI) [38], and Adjusted
Rand Index (ARI) [39] metrics. These methods were used in order to assess the
quality of the clusters generated by k-means, ensuring that they accurately reflected
the underlying patterns in the data. Specifically, the V-measure, ranging between 0
and 1, enables the evaluation of both the homogeneity and completeness of clusters. It
quantifies the degree of similarity between the samples within a cluster and the extent
to which similar samples are grouped together by the clustering algorithm. The AMI
is a measure of the degree of overlap between two cluster assignments. It is a value
between 0 and 1, with 0 indicating complete independence and 1 indicating complete
similarity. Finally, ARI is a metric that quantifies the degree of similarity between
two data partitions: the clustering results and the true labels. It assumes values within
the range of [−1, 1]. Negative values signify the independence of splits, whereas
positive values indicate that these splits are consistent.

5. Experimental Results and Discussion

In this section, the obtained results across various parameter combinations for both
raw and processed EEG data are presented, and detailed statistical and clustering analyses
are provided to evaluate the correlation between the signal amplitude and parameters of
MFE in distinguishing between HSs and AD.

5.1. Preliminary Entropy Analysis

Figure 2 shows the MFE results for different scale factors across the established param-
eter combinations, using the CZ channel as an example. Specifically, for each group, the
mean across the subjects and the associated standard deviation are reported for each scale
factor. The visual representation of entropy variation demonstrates the differences in dis-
crimination capability between the two groups (HS and AD) for both raw and AT-processed
data. In more detail, in the case of raw data, it was evident that a certain separability be-
tween the groups was noticeable only for combinations 1 to 4. For the other combinations,
there was a flattening of the entropy values for HS and an excessive increase in the standard
deviation bars for AD, making it difficult to separate the groups effectively. Consequently,
these results are not reliable for use as reference data for the development of diagnostic
tools. The observed variability in raw data can be attributed to intrinsic EEG irregularities
in AD, which are linked to disrupted neural connectivity and increased complexity in brain
activity. Furthermore, structural and functional brain differences, particularly in regions
affected by AD such as the temporal and parietal lobes, contribute to the heterogeneity
of EEG signals in AD subjects. In contrast, for AT-processed data, the entropy trends
for AD and HSs remain consistently distinguishable across all parameter combinations.
This improved separability highlights the impact of AT preprocessing, which normalizes
amplitude-related variability across datasets and subjects. By reducing the influence of
raw signal amplitude on MFE calculations, AT enhances the robustness and reliability of
the entropy measures, ensuring that the observed differences more accurately reflect the
intrinsic signal complexity rather than artifacts of signal preprocessing.
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Figure 2. Comparison of MFE on 20 scale factors for raw (a) and processed data with AT procedure
(b) by using CZ electrode.
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This preliminary observation suggests that AT preprocessing addresses challenges
related to signal amplitude and parameter sensitivity, thereby enhancing the discriminatory
power of MFE in clinical diagnostics.

These results were further quantified through the following statistical and
clustering analyses.

5.2. Statistical Analysis Results

The t-test was applied to each scale factor and channel for each parameter combination
to determine the significance of differences between the HS and AD groups. The results are
summarized in Table 3, which presents the t-value, p-value, Cohen’s D, and PSCs for each
combination of parameters m and r, both for raw and AT-processed data. Since the t-test
was performed for each scale factor, channel, and parameter combination (20× 19× 12 tests
in total), the t-value and p-value were reported as ranges to better capture the variability
across all these tests. For the raw data, the t-values ranged from 0.00 to 9.49, while the AT-
processed data exhibited a broader range, from 0.01 to 10.29. Similarly, the p-values spanned
from 3.38 × 10−12 to 9.82 × 10−1 for raw data and from 1.53 × 10−14 to 9.49 × 10−1 for AT-
processed data. These ranges reflect the significant improvement in discriminative power
introduced by the AT procedure, with consistently lower p-value minima and higher t-value
maxima across all parameter combinations. Additionally, Cohen’s D was calculated to
measure the effect size, providing insights into the magnitude of differences between the HS
and AD groups and the practical significance of the observed results. See Figure 3. For the
raw data, the mean Cohen’s D values confirmed moderate discrimination for the first four
combinations, with values ranging from 0.48 ± 0.10 to 0.75 ± 0.10. However, starting from
the fifth combination, the mean values dropped significantly, reaching as low as 0.35 ± 0.10
for the twelfth combination (m = 4 and r = 0.25). In contrast, the AT-processed data
exhibited consistently higher mean Cohen’s D values across all parameter combinations,
ranging from 0.95 ± 0.07 to 0.97 ± 0.07. This stability across all combinations highlights the
robustness of MFE in distinguishing between the two groups when the AT procedure is
applied. To better highlight the improvement in the discrimination between the two groups
and the proportion of statistically significant comparisons, particular attention should be
given to the PSCs. This metric provides a more immediate and intuitive understanding
of the fraction of comparisons that reach statistical significance, summarizing the overall
effectiveness of the parameter combinations in distinguishing between the HS and AD
groups. The PSC values clearly demonstrate that the AT procedure not only improves the
robustness of the analysis but also ensures consistently higher discrimination performance
across all parameter combinations. In more detail, the PSCs for the raw data were generally
lower than the AT-processed data, with the fourth combination (m = 2 and r = 0.25)
appearing to be the most effective. In particular, the first four parameter combinations
showed a moderate level of separability between the HS and AD groups, with significant
comparison percentages exceeding 65%. However, from the fourth combination onward,
the percentages dropped drastically, reaching as low as 39.48% for m = 4 and r = 0.10.
The overall mean PSC for the raw data was 59.30%, with a standard deviation of 9.10%.
As previously discussed, the variability in PSC values for raw data can also be linked
to the inherent heterogeneity of EEG signals in AD patients, driven by disrupted neural
synchronization and variations in brain network connectivity. These irregularities are
further amplified by the absence of preprocessing, which leaves raw signal amplitudes and
noise unfiltered, leading to reduced consistency in entropy-based separability measures.
These findings are also in accordance with the results of previous studies on the impact of
parameters in fuzzy entropy in differentiating between AD and HSs [14].
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Table 3. Comparison of t-value, p-value, Cohen’s D, and PSCs for raw and transformed data (degrees
of freedom d f = 58).

t-Value (Range) p-Value (Range) Cohen’s D (Mean ± std) PSC (%)
Comb

Raw Transformed Raw Transformed Raw Transformed Raw Transformed

1 [0.02, 8.75] [0.06, 10.19] [3.38 ×10−12, 9.82 ×10−1] [1.53 ×10−14, 9.49 ×10−1] 0.48 ± 0.10 0.96 ± 0.08 66.84 72.37
2 [0.05, 9.17] [0.01, 10.21] [6.88 ×10−13, 9.63 ×10−1] [1.43 ×10−13, 9.90 ×10−1] 0.51 ± 0.11 0.96 ± 0.06 69.74 72.89
3 [0.06, 9.33] [0.00, 10.27] [3.84 ×10−13, 9.55 ×10−1] [1.14 ×10−12, 9.99 ×10−1] 0.52 ± 0.11 0.96 ± 0.05 71.84 72.89
4 [0.03, 9.49] [0.00, 10.29] [2.06 ×10−13, 9.72 ×10−1] [1.07 ×10−12, 9.85 ×10−1] 0.55 ± 0.10 0.96 ± 0.06 72.63 73.15
5 [0.00, 5.49] [0.02, 10.05] [9.30 ×10−7, 9.99 ×10−1] [2.56 ×10−14, 9.87 ×10−1] 0.36 ± 0.12 0.97 ± 0.07 54.47 73.42
6 [0.01, 5.45] [0.05, 10.04] [1.08 ×10−6, 9.95 ×10−1] [2.71 ×10−14, 9.63 ×10−1] 0.36 ± 0.12 0.96 ± 0.07 55.79 73.42
7 [0.00, 5.83] [0.09, 9.99] [2.59 ×10−6, 9.93 ×10−1] [2.03 ×10−14, 9.99 ×10−1] 0.37 ± 0.11 0.96 ± 0.08 56.84 72.89
8 [0.00, 6.21] [0.00, 9.96] [6.12 ×10−8, 9.97 ×10−1] [3.79 ×10−14, 9.99 ×10−1] 0.37 ± 0.11 0.96 ± 0.07 57.11 72.63
9 [0.02, 5.54] [0.02, 9.86] [7.65 ×10−7, 9.87 ×10−1] [5.14 ×10−14, 9.82 ×10−1] 0.36 ± 0.11 0.93 ± 0.06 39.47 72.63
10 [0.02, 5.51] [0.01, 10.04] [8.60 ×10−7, 9.86 ×10−1] [2.68 ×10−14, 9.91 ×10−1] 0.36 ± 0.11 0.95 ± 0.07 52.89 73.42
11 [0.02, 5.48] [0.00, 10.13] [9.71 ×10−9, 9.84 ×10−1] [1.89 ×10−14, 9.99 ×10−1] 0.36 ± 0.11 0.95 ± 0.07 56.84 73.95
12 [0.01, 5.45] [0.01, 10.17] [1.09 ×10−6, 9.94 ×10−1] [1.64 ×10−14, 9.93 ×10−1] 0.35 ± 0.10 0.96 ± 0.07 57.11 74.47
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Figure 3. Cohen’s D values for raw and AT data across the 12 parameter combinations.

In addition, to ensure the reported findings’ reliability, the analysis of statistical power
was calculated. The calculation was based on the mean effect size represented by the mean
Cohen’s D (CDmean = 0.9567), derived from the results obtained after the AT transformation,
since it enhances the differences between the HS and AD groups. The standard approach
for two-sample t-tests [40] was adopted, where the Type II error β is defined as

β = P

(
t < tcritical − CDmean ·

√
NHS · NAD

NHS + NAD

)
(12)

where P is the cumulative probability under the t-distribution, NHS and NAD are the sample
sizes for the HS group and AD group, respectively, each consisting of 30 subjects, and tcritical
is the critical t-value determined based on a significance level of α = 0.05 and degrees of
freedom d f = 58 (NHS + NAD − 2). The statistical power, calculated as 1 − β, was found to
be 95.31%, confirming that the sample size was sufficient to detect the observed effect size.

5.3. Clustering Outcomes

Table 4 summarizes the clustering results in terms of V-measure, ARI, and AMI for
each parameter combination. For the raw data, the results show that the clustering perfor-
mance is generally low, with the V-measure, ARI, and AMI values being relatively modest.
The fourth combination (m = 2, r = 0.25) stands out with higher values across all three
metrics, indicating that this combination provides the best separability between HS and AD
subjects among the raw data. However, for the remaining combinations, the performance
drops significantly, highlighting the sensitivity of MFE to parameter variations when ap-
plied to raw data. In contrast, the AT-processed data demonstrate markedly improved and
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more stable clustering performance across all combinations. The V-measure, ARI, and AMI
values are consistently higher compared with those from the raw data, with the highest
values observed for combinations 6 and 12.

Table 4. Comparison of clustering metrics (V-measure, ARI, AMI) for raw and transformed data,
with mean and standard deviation (std) in bold.

Comb
V-Measure ARI AMI

Raw Transformed Raw Transformed Raw Transformed

1 0.08 0.18 0.03 0.21 0.07 0.17
2 0.07 0.18 0.02 0.21 0.05 0.17
3 0.11 0.18 0.05 0.21 0.09 0.17
4 0.27 0.18 0.27 0.21 0.26 0.17
5 0.07 0.22 0.02 0.27 0.05 0.21
6 0.07 0.26 0.02 0.31 0.05 0.25
7 0.04 0.22 0.01 0.23 0.02 0.21
8 0.04 0.22 0.01 0.27 0.01 0.21
9 0.05 0.19 0.02 0.24 0.04 0.18

10 0.05 0.19 0.01 0.24 0.03 0.19
11 0.06 0.19 0.01 0.24 0.03 0.18
12 0.03 0.25 0.00 0.31 0.00 0.24

mean ± std 0.06 ± 0.02 0.21 ± 0.03 0.02 ± 0.02 0.025 ± 0.04 0.07 ± 0.07 0.19 ± 0.02

Furthermore, these three metrics are plotted together in Figure 4 as they vary within
the same range of values.
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Figure 4. Comparison of clustering performance metrics (V-measure, ARI, AMI) for raw and trans-
formed EEG data across 12 parameter combinations. The graph highlights the peak in performance
for the fourth parameter combination in raw data and shows the consistently higher and stable
performance metrics for processed data, indicating the robustness of the AT procedure.

This visual representation allows for immediate and clear observation of the peak
present at the fourth combination for the raw data, with the other metric values declining
sharply. In contrast, the AT-processed data show a trend of consistently higher and more
stable values across all three metrics, reinforcing the notion that the preprocessing step
effectively stabilizes the MFE results. This stability suggests that the AT procedure enhances
the robustness of MFE, making it less sensitive to the choice of parameters.

As a further confirmation of the obtained results, Figure 5 reports the clustering of
HSs and AD subjects by using the t-Distributed Stochastic Neighbour Embedding (t-SNE)
technique. The t-SNE is a non-linear dimensionality reduction method that is particularly
effective for visualizing high-density data by projecting them into a low-density space,
typically two or three dimensions, while preserving the local structure of the data [41]. In
this study, the first three principal components were extracted, and the data were plotted to
observe the spatial distribution of HSs and AD subjects. For brevity, visualizations were
provided for three parameter combinations, reporting transformed data on the left and raw
data on the right. Blue circles represent the HSs, while red squares indicate the AD subjects.
In particular, Figure 5 includes clustering visualization for the following:
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• Combination 3 (m = 2, r = 0.2): default parameter settings, which serve as a basis
for comparison.

• Combination 4 (m = 2, r = 0.25): the best performing for raw data, where the clustering
metrics (V-measure, ARI, and AMI) have reached their maximum values.

• Combination 8 (m = 3, r = 0.25): a scenario following the best combination, where
performance for the raw data decreases significantly.

Figure 5. Three-dimensional t-SNE plots for clustering visualization in the case of transformed
data on the left and raw data on the right. Blue circles represent HSs, while red squares indicate
AD subjects.

5.4. Discussion

The results show that, without AT, the performance of MFE on raw data is highly
dependent on the choice of parameters m and r. This dependency arises because the fuzzy
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entropy algorithm calculates distances between vectors in the signal, which are directly
influenced by the amplitude of the EEG signal. As a result, a single value of r may not
effectively capture similarities across the entire signal, as it could be too small for some
parts and too large for others. This variation makes it challenging to select an optimal r
that works consistently across the signal, leading to a less robust FuzzyEn that is more
sensitive to the data’s amplitude. This may lead to an incorrect assessment of the true
complexity of the EEG signals. Consequently, selecting optimal parameters for m and
r becomes challenging, and the reliability of fuzzy entropy as a complexity measure is
compromised. The application of AT preprocessing significantly mitigated these issues
by normalizing the EEG signal amplitudes. This normalization ensures that the distances
calculated between the vectors are consistent, regardless of the amplitude variations across
different sections of the signal. As a result, MFE’s sensitivity to the parameters m and r was
significantly reduced, as demonstrated by the more stable and robust performance across
all parameter combinations in the AT-preprocessed data. Additionally, AT preprocessing
may minimize variability introduced by differences in EEG acquisition systems, such
as variations in reference electrode placements or montage configurations, which could
otherwise affect signal amplitudes. This standardization enhances the method’s robustness
and comparability across datasets, making it less susceptible to artifacts introduced by
acquisition conditions and ensuring generalization.

The effectiveness of the AT procedure was confirmed by the statistical and clustering
analysis. Without AT, the MFE algorithm shows significant variability, particularly in its
sensitivity to different parameter combinations, with only few combinations exceeding a
PCS of 65%. This variability poses a challenge for reliable discrimination between the HS
and AD groups, as the raw data often resulted in inconsistent outcomes. In contrast, the
AT-processed data exhibited significantly higher and more stable performances across all
parameter combinations. The percentage of significant comparisons consistently exceeded
70%, indicating that AT effectively eliminates the sensitivity of MFE to parameter varia-
tions. Finally, in the clustering analysis, amplitude-transformed data highlighted clearer
separability between the HS and AD groups.

This approach reduces the need for fine-tuning parameters and simplifies the imple-
mentation process, which is particularly beneficial in clinical settings where efficiency and
simplicity are crucial. In addition, maintaining high accuracy irrespective of the chosen
parameters increases the generalizability of the method across different datasets and exper-
imental conditions. Furthermore, the improved reliability of predictions ensures that the
results are less likely to be artifacts of specific parameter settings and more likely to reflect
the true complexity of the EEG signals.

6. Conclusions

This study highlights the crucial role of amplitude transformation in improving the
robustness and reliability of MFE for EEG-based discrimination between HSs and patients
with AD across various parameter combination. The obtained results demonstrate that the
inherent dependency of MFE on data amplitude and its sensitivity to parameter variations
were effectively mitigated by the AT procedure. Moreover, the statistical and clustering
results confirm that not only does AT improve the robustness of MFE but it also enhances
its ability to differentiate between the two groups, making it a valuable preprocessing step
in EEG analysis for neurodegenerative disease detection.

The proposed approach reduces the necessity for fine-tuning parameters and simplifies
the implementation process, which is particularly advantageous in clinical settings where
efficiency and simplicity are paramount. Moreover, the enhanced reliability of predictions
ensures that the results are less likely to be artifacts of specific parameter settings and more
accurately reflect the true complexity of EEG signals.

Further investigations have been planned to explore additional aspects. For example,
while the AT procedure in this study is based on min–max normalization, alternative
normalization techniques will be examined to enhance the analysis of MFE. Additionally,
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future studies will expand the sample size by including a larger cohort and considering
potential comorbidities. To complement these efforts, the integration of Current Source
Density (CSD) analysis will also be explored [42]. By improving spatial resolution and
isolating local neuronal activity, CSD could provide a refined input for MFE analysis,
potentially unveiling new insights into the interplay between spatial and temporal neural
dynamics. This comprehensive approach will pave the way for a more robust evaluation of
the method’s efficacy and its future validation in real clinical settings.
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