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Abstract
Once thought to be a sterile environment, it is now established that lungs are populated by various microorganisms that 
participate in maintaining lung function and play an important role in shaping lung immune surveillance. Although our 
comprehension of the molecular and metabolic interactions between microbes and lung cells is still in its infancy, any event 
causing a persistent qualitative or quantitative variation in the composition of lung microbiome, termed “dysbiosis”, has been 
virtually associated with many respiratory diseases. A deep understanding of the composition and function of the “healthy” 
lung microbiota and how dysbiosis can cause or participate in disease progression will be pivotal in finding specific thera-
pies aimed at preventing diseases and restoring lung function. Here, we review lung microbiome dysbiosis in different lung 
pathologies and the mechanisms by which these bacteria can cause or contribute to the severity of the disease. Furthermore, 
we describe how different respiratory disorders can be caused by the same pathogen, and that the real pathogenetic mechanism 
is not only dependent by the presence and amount of the main pathogen but can be shaped by the interaction it can build 
with other bacteria, fungi, and viruses present in the lung. Understanding the nature of this bacteria crosstalk could further 
our understanding of each respiratory disease leading to the development of new therapeutic strategies.
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Abbreviations
URT​	� Upper respiratory tract
LRT	� Lower respiratory tract
BE	� Bronchiectasis
CF	� Cystic fibrosis
COPD	� Chronic obstructive pulmonary disease
PDE	� Phosphodiesterase

CFTR	� Cystic fibrosis transmembrane regulator
AMP	� Antimicrobial peptide
BAL	� Bronchoalveolar lavage
SCLC	� Small cell lung cancer
NSCLC	� Non small cell lung cancer
EBC	� Exhaled breath condensate

Introduction

The term microbiome is used to define the genetic content 
of the microorganisms (bacteria, fungi, yeast, viruses, and 
others) that can be found in a specific site, such as a particu-
lar terrain or organ of our body; the actual collection of the 
microbial species that corresponds to a specific microbiome 
is called microbiota [1]. Microorganisms have co-evolved 
with all animal species including humans for millions of 
years becoming crucial players in different physiological 
processes such as the regulation of the immune system, the 
production of short-chain fatty acids/vitamins and other 
nutrients, and digestion. Although for a long time the lungs 
were thought to be sterile organs, microbes can be found 
everywhere in our body and lungs are not an exception [2, 
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3]. Lungs are continuously exposed to the environment and, 
therefore, to a variety of microbes that can colonize both 
the upper (URT) and lower respiratory tract (LRT) [4, 5]. 
The pulmonary microbiome is different from the gut or 
skin microbiome in terms of bacterial abundance and com-
position but is similar to the mouth and URT. The main 
bacteria present in healthy adult lungs include Firmicutes, 
Proteobacteria, Bacteroitedes, and Actinobacteria; the main 
genera are Prevotella, Veillonella, Streptococcus, Neisse-
ria, Haemophilus, Fusobacterium, Sphingomonas, Pseu-
domonas, Acinetobacter, Megasphaera, Staphylococcus, 
and Corynebacterium [6–8]. Environment influences lung 
microbial composition as early as neonate delivery: in fact, 
LRT is colonized by vaginal/colon microbiome in case of 
vaginal delivery, whereas Staphylococcus is predominant 
after C-section delivery [9, 10]. Furthermore, URT micro-
biota is characterized by higher and very dynamic biomass 
with a prevalence of Streptococcus, Moraxella, Corynebac-
terium, Staphylococcus, Prevotella, Veillonella, and Rothia 
species amongst others [11]. In contrast, the LRT is more 
static and is characterized by lower biomass, controlled by 
both mechanical components, such as cough and mucocili-
ary clearance, and adaptive/innate host immune response 
[11, 12]. Maintaining low bacterial biomass in the lungs is 
crucial to preserve oxygen and carbon dioxide exchange, 
their main physiological function. In fact, as we will discuss 
below, both qualitative and quantitative changes in bacte-
rial composition can result in “dysbiosis” associated with 
several respiratory diseases [13]. However, in many patholo-
gies such as chronic obstructive pulmonary disease (COPD), 
asthma, bronchiectasis, and lung cancer, it is still not clear 
whether lung microbiome dysbiosis is implicated in initiat-
ing events that will eventually lead to the disease or repre-
sent a consequence of the pathology itself. Furthermore, it 
is also relevant to understand whether lung dysbiosis is a 
cause or a consequence of clinical and pathophysiological 
disease exacerbation/progression (Fig. 1). This is a critical 
aspect to address, especially because the lung microbiome 
plays a key role in shaping the adaptive and innate immune 
response from the first week of life and, therefore, its mod-
ulation can have a significant impact on lung health [11]. 
In physiological conditions, the immune response leads to 
pathogens elimination and clearance; however, genetic muta-
tions such as in the case of Cystic Fibrosis (CF) or constant 
exposure to air pollution, airborne organisms, or cigarette 
smoke [14] can modulate the lung environment making it 
more suitable for pathogens colonization and increasing the 
susceptibility to infection. Ultimately, this mechanism drives 
an inflammatory response that could impair lung function, 
compromise the immune response and lead to a respiratory 
pathology or trigger the exacerbation of existing pulmonary 
pathologies [12]. Inflammation in chronic lung diseases can 
be caused by an impaired barrier function; indeed, epithelial 

cells lose tight junctions resulting in an increase in perme-
ability that promotes the entry of pathogens and toxic parti-
cles [15, 16]. In this review, we will focus on the association 
between several chronic lung diseases and microbiome dys-
biosis highlighting the prevalence of certain bacteria shared 
amongst chronic lung pathologies including lung cancer. We 
will describe the mechanisms by which these lung micro-
biome dysbiosis can cause or participate in triggering res-
piratory disorders and their exacerbations, highlighting the 
importance of crosstalk mechanisms normally established 
amongst different pathogens and that are pivotal in establish-
ing a pathological condition.

Lung Microbiome Dysbiosis in COPD

COPD is a chronic inflammatory disorder affecting the lungs 
and it is characterized by non-reversible airflow limitation 
[17]. The main cause of COPD is exposure to tobacco, that 
as well as causing damage to the airway through the action 
of toxins and carcinogen molecules contained in the tobacco 
mixture, can facilitate bacterial colonization thus interfer-
ing with normal defence mechanisms such as mucociliary 
clearance, damage to nasal cilia, depletion of the airway 
surface liquid and interfering with the action of the immune 
systems [18]. Bacterial infections and colonization are also 
frequently associated with the episodes of exacerbations that 
characterize COPD [19]. Fifty percent of patients affected 
by COPD harbour pathogens such as Streptococcus pneu-
moniae (Sp), Haemophilus influenzae (Hi), and Moraxella 
catarrhalis, and their presence promotes a state of chronic 
inflammation leading to COPD and COPD exacerbations 
[20, 21]. This inflammation state is promoted by the High 
Mobility Group Box 1 (HMGB1), a prototypical damage-
associated molecular pattern (DAMP) protein, that through 
the activation of Receptor for advanced glycation end 
products (RAGE) and/or Toll-like receptor 4 (TLR4) acti-
vates NF‐κB transcription factor promoting the production 
of chemokines and inflammatory molecules [22]. This is 
responsible for the pathological changes that can be seen in 
COPD patients [23]. Interestingly, HMGB1 has been shown 
to correlate with pneumococcal bacteremia in the sputum 
of patients with acquired pneumonia [24]. Cigarette smoke 
can also promote a hyper-activation of platelets through 
the induction of an activating factor receptor that enhances 
the adherence of Hi and Sp to epithelial cells of bronchi. 
Furthermore, susceptibility to bacterial colonization also 
leads to the reduction of both macrophage phagocytosis 
and secretion of IgA [25]; in turn, bacterial colonization 
increases neutrophilic-mediated airway inflammation lead-
ing to lung tissue injury [26]. In patients with very severe 
COPD, an increase in Proteobacteria phylum and a decrease 
in Firmicutes have been found [27]. An interesting study 
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from Molyneaux et al., reveals that another possible cause 
of exacerbation in COPD patients is viral over-infection that 
leads not only to a change in bacterial load but even to a 
qualitative alteration of the phyla, with an increase in Pro-
teobacteria. In addition, significant interplay between intes-
tinal and respiratory microbiota prompting modifications 
of the mucosal immunity in bidirectional mode has been 
documented [28]. In the murine model, the absence of an 
intestinal microbiota is associated with a blunted phagocytic 
activity and bacterial clearance of alveolar macrophages 
favouring an increased susceptibility to pneumonia [29, 
30]. On the other hand, clinical data showed that during an 

acute exacerbation of COPD (AECOPD) there is a signifi-
cant increased permeability of small intestine, with poten-
tial negative impact on systemic inflammation for potential 
spillover of pro-inflammatory mediators [31, 32].

Focussing on upper gastrointestinal tract, gastroesopha-
geal reflux disease (GERD), defined as the abnormal reflux 
of gastric contents into the oesophagus with consequent 
oesophageal mucosal injury, represents one of the most 
common comorbidity in patients with COPD [33]. Whilst 
GERD is related to a reduction of lung function, COPD 
symptoms such as cough and β2-agonists use worsen reflux, 
promoting a vicious circle [34]. In a recent meta-analysis of 

Fig. 1   Lung microbiome dysbiosis and respiratory pathologies. Here 
are described different hypothetical scenarios where lung microbi-
ome dysbiosis can represent a driver or a consequence of a respira-
tory pathology. In the first hypothesis (red arrows), changes in genetic 
sequences, immune system dysregulation and chronic inflammation 
can cause direct damage to lung structure that will eventually lead 
to a lung pathology. This pro-inflammatory state provides a fertile 
substrate for pathogen colonization leading to dysbiosis and a subse-
quent exacerbation of the disease state (A). Alternatively, the genetic 
instability, immune system dysregulation and chronic inflammation 
will first promote pathogens colonization and dysbiosis that will be 

responsible to drive disease development and progression (B). In a 
second hypothesis (blue arrows) cigarette smoke, air pollution and 
airborne organism can cause a direct damage to lung structure lead-
ing to lung pathology. This will create the optimal conditions for 
pathogens colonization resulting in lung microbiome dysbiosis (C). 
Differently, an early colonization of pathogens due to changes in lung 
environment (decreased pH level, oxygen availability, and altered 
defences mechanism) caused by external insults such as cigarette 
smoke and air pollution promote pathogens colonization and lung 
microbiome dysbiosis that as in (A) would drive disease development 
and progression (D)
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observational studies, it has been demonstrated that GERD 
increased the risk of exacerbation of patients with COPD 
[35]. In this regard, data on impact of proton pump inhibi-
tors (PPIs) are not homogeneous. However, a recent meta-
analysis of randomized controlled trials suggested that PPIs 
treatment in COPD patients may reduce the case fatality rate, 
incidence of gastrointestinal bleeding, and other adverse 
reactions along with the number of acute exacerbations 
[36]. Large cohort clinical trials and preventive strategies 
for GERD in patients with COPD are however warranted. 
Finally, concerns exist about the selective pressure on micro-
biota from chronic therapies altering host-microbial homeo-
stasis. Pharmacological treatment of COPD mainly consists 
of bronchodilators [37]. Contoli and coll. originally investi-
gated the effects on sputum bacterial load of 12-month treat-
ment with either salmeterol or salmeterol/ fluticasone propi-
onate. They found that the combination therapy resulted in 
a significant increase in sputum bacterial load, modification 
of the microbiome composition and increased airway load 
of potentially pathogenic bacteria. When comparing salmet-
erol/FP versus salmeterol alone, there was an increased pro-
portion of Firmicutes and Candida species, with a significant 
reduction in Proteobacteria [38].

In COPD patients who experience frequent exacerbations 
despite optimal inhaled treatment prolonged azithromycin 
treatment can be considered. However, antibiotic prophy-
laxis therapy was associated with a decreased microbial 
α-diversity of the airways. Carrera-Salinas et al. observed 
that long-term use of this antibiotic favours differences in 
lung colonization by bacterial pathogens. Before therapy, M. 
catarrhalis and H. influenzae were the most frequently iso-
lated species during both stable phases and exacerbations. 
However, when azithromycin treatment was initiated, H. 
influenzae, P. aeruginosa, S. maltophilia and, in particular, 
H. parainfluenzae became the most frequently isolated bac-
teria [39].

Lung Dysbiosis in Asthma

Asthma is a heterogeneous and multi-factorial airway dis-
ease characterized by inflammation, lung-associated smooth 
muscle hyperplasia, and intermittent wheezing [40]. Asthma 
affects around 300 million people in the world and, despite 
the causes not being entirely clear, evidence suggests an 
important role for lung microbiome alteration as a causative 
agent. This disease affects mainly children but can progress 
to chronic forms in adults, potentially leading to chronic 
obstructive pulmonary disease (COPD). Asthma patients 
exhibit two main phenotypes; T2 high (allergic or non-aller-
gic) and T2-low (mainly neutrophilic or paucigranulocytic) 
[41]. The association between asthma and the environment 
is important; several studies have described that exposure to 

an environment with a heavy bacterial load reduces asthma 
manifestations. This is described as the ‘’farm effect’’ and 
it is probably caused by the interaction between bacteria 
and the immune system. In fact, bacterial colonization dur-
ing the first years of life is fundamental in educating the 
immune system to maintain the balance between innate and 
adaptive responses leading to proper tolerance and avoiding 
immune overreactions [42, 44]. Although viral infections 
cause seasonal exacerbation of asthma, bacterial infections 
have an additional effect. Healthy neonates with the upper 
respiratory tract colonized by Streptococcus pneumonia, 
Haemophilus influenzae or Moraxella catarrhalis show an 
increased risk of developing recurrent wheezing and asthma. 
In children, the bacterial community depends also on the 
delivery mode of birth; in fact, during vaginal delivery, neo-
nates are colonized by maternal vaginal and colon micro-
biota, whereas after C-section a prevalence of epidermal 
bacteria colonizes the neonate, usually with a lower bacterial 
diversity [9, 45]. Several studies showed that children with a 
high presence of Corynebaterium and Dolosigranulum have 
a lower risk to develop loss of asthma control, compared 
to children with pathogen dominance such as Staphylococ-
cus, Streptococcus, and Moraxella. Furthermore, the relative 
abundance of Corynebaterium has been inversely correlated 
with the development of severe exacerbations; this bacterial 
genus is the most abundant in the upper airways of healthy 
adults, as described in Human Microbiome Project, whilst is 
less represented in asthmatic adults, suggesting its possible 
protective role [46]. It is generally believed that a possible 
protective role of commensal bacteria is due to their com-
petition with pathogens for the colonization of lung niches. 
Genera such as Corynebaterium and Dolosigranulun could 
inhibit colonization and spread of Streptococcus probably 
through the release of inhibitory bacterial metabolites [47]. 
Generally, bacterial or viral colonization alters airway epi-
thelium leading to the activation of innate signalling recep-
tors. The activation of these receptors induces the airway 
epithelial secretion of chemokines triggering the recruitment 
of immature Dendritic cells (DCs) to the mucosal epithe-
lium. The DCs respond to stress signals through pattern 
recognition receptors (PRRs) that promote the maturation 
into competent antigen-presenting myeloid-type DCs. The 
activated DCs can drive T cell differentiation and migra-
tion to local lymph nodes and in turn, activated T cells, 
interact with naïve T cells through T cell receptors, major 
histocompatibility complex (MHC) II, and co-stimulatory 
molecules. The naïve T cells differentiate into TH2-type 
T cells that secrete several pro-allergic cytokines such as 
IL-3, IL-4, IL-5, IL-9, IL-13, and granulocyte–macrophage 
colony-stimulating factor (GM-CSF), leading to the produc-
tion of IgE, mast cells and eosinophilic response, typical 
of asthma [48, 49]. Altogether, these observations suggest 
that microbiome dysbiosis causes colonization of pathogenic 
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bacteria, compromising the maintenance of healthy airways, 
whilst the switch from high levels of Corynebaterium and 
Dolosigranulun to Moraxella or Streptococcus is associated 
with a higher risk to loss of control of asthma and exacerba-
tion [50]. In addition, Moraxella genus forms biofilms that 
protect bacteria from antibacterial drugs and promotes the 
colonization of other pathogens such as S. pneumoniae and 
H. influenzae [47]. Lastly, the influence of chronic inhaled 
treatment with corticosteroids on lung microbiota should be 
considered. Denner et co. demonstrated significant differ-
ences based on corticosteroid treatment, particularly when 
ICSs were combined with oral CSs; this leads to altered α- 
and β-diversity, with an increased abundance of Proteobac-
teria and the genus Pseudomonas, and decreased abundance 
of Bacteroidetes, Fusobacteria, and Prevotella species [51].

Lung Dysbiosis in Bronchiectasis

Bronchiectasis (BC) is a common chronic respiratory dis-
ease affecting the lower airways that ultimately results in an 
abnormal dilatation and distortion of bronchi and consequent 
airway destruction. This disorder is mainly associated with 
chronic inflammation, cough, and sputum production with 
structural damage to the airways. The prevalence in Europe 
and North America ranges from 67 to 566 per 100,000 
inhabitants [52–54]. Pathogenesis and progression of the 
disease are still not clear: indeed, it can be caused by several 
mechanisms such as post-infection damages [55], obstruc-
tion, as a consequence of genetic disorders like cystic fibro-
sis (CF), autoimmune disease, and abnormal host response 
[53]. Although different causes have been identified, it is 
well recognized that infections and consequent lung micro-
biome dysbiosis is pivotal in its pathogenesis. Studies have 
shown that individuals with bronchiectasis have a distinct 
lung microbiome compared to healthy individuals, with an 
excess of certain bacteria and a reduction in the diversity of 
the overall microbiome. The alteration of the microbiome 
can contribute to chronic inflammation and airway destruc-
tion observed in bronchiectasis [56]. The high bacterial 
load establishes a vicious cycle in which the airway epi-
thelium release antimicrobial peptide and pro-inflammatory 
cytokines and chemokines. Chemokines such as IL-8 are 
released in the sub-mucosa of airway epithelium initiating 
the inflammation and the recruitment of phagocyte popu-
lation such as neutrophils, monocytes, macrophages, DCs, 
and lymphocytes. In bronchiectasis neutrophil-dominant 
inflammation is predominant, indeed these cells aggregate 
in the airway epithelium releasing a variety of enzymes, host 
defence protein and signalling protein that mediate bacterial 
elimination. The excessive neutrophilic degranulation and 
action of cytolytic enzymes are implicated in host tissue 
damage. Furthermore, to facilitate bacterial elimination, 

neutrophils release Reactive oxygen species (ROS) although 
an uncontrolled ROS release contributes to damage to the 
surrounding tissue, worsening the lung disease process [57, 
58]. Bacterial proteins are also recognized by Toll-Like 
receptors (TLRs), a cell surface protein expressed on T-cells, 
involved in either innate or adaptive immune responses. 
TLRs are able to recognize peptidoglycan, lipoprotein, and 
lipopolysaccharide (LPS) and activate innate host defence 
mediating the release of pro-inflammatory cytokines. For 
instance, the LPS of P.aeruginosa or Haemophilus, the 
prevalent pathogens in bronchiectasis, triggers the lung 
inflammation [59–62]. Patients culture-negative for these 
pathogens showed a milder disease, whilst the presence 
of Pseudomonas spp. and Haemophilus correlates with a 
severe form of the disease [63]. Bronchiectasis exacerba-
tions are commonly defined as a deterioration of respiratory 
symptoms amongst which are an increase in cough, fatigue, 
breathlessness, and sputum purulence that lasts more than 
48 h [64]; they are thought to be associated with the presence 
of or increase in a particular bacterial species [60]. Unfortu-
nately, although a clear difference has been described in lung 
microbiome composition between healthy and bronchiecta-
sis patients, the causes of exacerbations in these patients are 
still not associated with the presence or increase of a certain 
type of bacteria. Cox et al. demonstrated that there was no 
difference in terms of bacteria load and diversity between 
baseline and exacerbation of bronchiectasis [65]. However, 
they suggest that the microbiome can still be implicated in 
the exacerbations and that other unidentified bacteria may 
be involved in this process. On the other hand, another study 
demonstrated that the presence or increase in Pseudomonas 
spp. correlates with the high-frequency bronchiectasis 
exacerbation group; however, the authors speculate that the 
exacerbation phenotype is caused mostly by a network of 
positive and negative interactions of pathogens and other 
bacteria and/or fungi such as Aspergillus, Haemophilus, 
Streptococcus, Prevotella, Veillonella, and Neisseria [66]. 
This hypothesis can also explain why the use of antibiotic 
therapy with amoxicillin or macrolides, which do not target 
the predominant pathogen Pseudomonas spp., improves the 
clinical outcomes by reducing exacerbation risk [67]. With 
respect to gut-lung axis, Narayana et al. have lately identified 
two potential cluster of patients, according to composition of 
gut and lung microbiome. Interestingly, authors reported that 
subjects with high gut-lung interaction, characterized by gut 
Bacteroides and Saccharomyces and lung Pseudomonas have 
significantly more severe radiologically bronchiectasis as 
well as increased exacerbation when compared with patients 
with low gut-lung interaction, characterized by an overrep-
resentation of lung commensals, including Prevotella, Fuso-
bacterium, and Porphyromonas with gut Candida [68, 69]. 
How manipulation of both gut microbiome and gut-lung axis 
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may play a significant role in the therapeutic management of 
patients with bronchiectasis urges to be clarified.

Furthermore, a relevant percentage of patients with 
bronchiectasis has been reported to complain acid regur-
gitation, one of the main symptoms of GERD. In a cohort 
of 58 patients with nodular bronchiectasis due to nontu-
berculous mycobacteria (NTM), it has been reported that 
subjects with GERD were more likely to have a positive 
sputum smear for acid-fast bacilli, higher risk of bronchi-
olitis and bronchiectasis in more lobe when compared with 
patients without GERD [70]. Therefore, PPIs have been 
investigated in patients with coexisting bronchiectasis and 
GERD. Although no impact of PPIs has been demonstrated 
in terms of lung function improvement in this cohort, signifi-
cant improvement of both FEV1 and FVC has been reported 
amongst patients with GERD and high BMI, supporting a 
potential role in this subgroup of patients [71]. Lung-gut 
axis in bronchiectasis patients could be also modulated 
from maintenance treatments. Current recommendations 
suggest the long-term antibiotic use for patients with 3 or 
more exacerbations per year in absence of P. aeruginosa 
from cultures. In the multicentre BAT (Bronchiectasis and 
Long-term Azithromycin Treatment) trial, patients received 
either oral azithromycin (250 mg once per day) or placebo 
for 1 year. The microbiological profile of sputum samples 
didn’t differ significantly between azithromycin-treated and 
placebo-treated patients at baseline and after 1 year of treat-
ment [72]. However, concerns about microbiota diversity as 
reported in COPD paragraph remains.

Lung Dysbiosis in Cystic Fibrosis

Cystic fibrosis is a genetic disorder caused by a dysfunc-
tional cystic fibrosis transmembrane conductance regula-
tor (CFTR) channel, commonly due to an F508del muta-
tion in CFTR gene, but more than 2,000 mutations have 
been described so far [73, 74]. Although CF is a systemic 
disease, the main morbidity and mortality are caused by 
lung infections. Indeed, pathogens and opportunistic infec-
tions and chronic colonization in the lungs of CF patients 
are frequent and are caused by the impaired secretion of 
chloride ions that induces an accumulation of mucus result-
ing in an ideal environment for bacterial colonization [75]. 
Furthermore, the impaired function of the CFTR channel 
reduces the bicarbonate production in the airway lumen 
resulting in acidification and altered salt composition of 
the airway surface. The altered environment of the airway 
surface decreases the action of cationic antimicrobial pep-
tides (AMPs), small proteins secreted by leukocytes with 
broad-spectrum antimicrobial activity, leading to a loss of 
immunomodulatory function [73, 76, 77]. Amongst these, 
the antimicrobial activity of beta-defensins is impaired by 

the altered salt concentration [78] Furthermore, in the air-
way of CF patients, there is enhanced production of pro-
inflammatory modulators that can be assessed in sputum 
and saliva [79] and relates to the severity of the disease [80]. 
Such cytokines trigger the recruitment of inflammatory cells 
like neutrophils, which release multiple products such as 
proteases that can degrade AMPs and components of the 
complement system contributing to bacterial infections [76]. 
However, the pathogenesis of respiratory infections is more 
complex and heterogeneous amongst patients with CF, and 
factors such as the variable activity of immunity peptides 
encoded by polymorphic modifier genes of CF phenotype 
like beta-defensin [81], mannose-binding lectin [82], and 
taste receptor T2R38 [83] are involved. In physiological con-
ditions, the lung bacterial population is abundant in anaero-
bic bacteria such as Prevotella, Fusobacterium, Veillonella, 
and Porphyromonas and the upper and lower airway micro-
biomes show similarity [75]. Conversely, in CF patients 
upper and lower airways show pivotal differences, and 
analysis of sputum and bronchoalveolar lavage (BAL) dis-
closes a complex and variable microbial community [84–86] 
with a deep variation from physiological conditions with the 
colonization of taxa such as Streptococcus, Rothia, Actino-
myces, Gemella, Granulicatella, Neisseria, and Atopobium 
[87–89]. During childhood, patients affected by CF show a 
high microbiome diversity; however, in adulthood, diversity 
is lost and colonization by Pseudomonas aeruginosa, the 
major pathogen of CF patients, becomes predominant [90]. 
The main cause of biodiversity loss in adulthood is the mas-
sive antibiotic treatment and it could be considered a marker 
of lung function. In fact, the maintenance of microbiome 
diversity correlates with less severe lung affection, whilst, 
the colonization of P. aeruginosa often as biofilm, corre-
lates with decreased lung function [91, 92]. Furthermore, 
the spread of P. aeruginosa was associated with the colo-
nization of bacteria such as Staphylococcus, Haemophilus, 
and Burkolderia [93]. Despite the interactions between the 
pathogens bacteria being complex, it is known that the major 
causes of exacerbation are (i) increase of a specific family 
of pathogens, (ii) variation in the metabolic activity of spe-
cific bacteria, and (iii) transition of ‘’friendly’’ bacteria into 
pathogens (including the appearance of bacterial biofilms) 
under altered environment conditions including antibiotic 
treatment which selects multi-resistant strains [94]. Further-
more, although CFTR modulators are now available for CF 
patients, antibiotic treatments are still considered a neces-
sary therapeutic intervention to control pathogens coloniza-
tion [91, 95]. In patients with CF, the lung microbiota may 
be used as a biomarker to predict patient responsiveness to 
therapy; in fact patients with higher abundance of Staphy-
lococcus and anaerobic organisms including Prevotella and 
Fusobacterium were less likely to respond to CF therapy. In 
addition, similarly to other chronic respiratory conditions, 
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CF treatments may potentially alter lung microbiome though 
no significant changes in alpha diversity was reported in CF 
patients with P. aeruginosa infection treated with Aztreonam 
lysine for inhalation (AZLI) [96].

Lung Microbiome and Lung Cancer

Lung cancer is the first cause of cancer-related death 
worldwide. At molecular levels, lung cancer is caused by 
a wide range of genetic mutations and environmental fac-
tors, highlighting the heterogeneity of this disease [97, 
98]. Small cell lung cancer (SCLC) represents 10–15% 
of lung cancer cases, whilst non-small cell lung cancer 
(NSCLC) is the most common type affecting up to 85% of 

lung cancer patients [99]. Lung cancer is a multi-factorial 
disease caused mainly by both genetic and environmen-
tal factors such as mutations in tumour-suppressor genes 
and cigarette smoking. In the last 10 years, it has also 
become clear that microbiome dysbiosis may have a cen-
tral role in initiating or the proliferation of lung cancer 
[100]. Recent studies emphasized the tight relationship 
between lung microbiome dysbiosis and the development 
or worsening of lung cancer [3, 101, 102]. Although in 
patients with lung cancer bacterial infections are com-
mon, the interaction between certain bacteria and can-
cer development and progression remains unclear. Some 
studies described a role for microbiome dysbiosis in lung 
cancer initiation and progression through processes that 
can (i) promote an unbalanced adaptive immune response 

Fig. 2   Mechanisms of microbiome induced lung damage. Genetic 
predisposition, or environmental insults such as air pollution or ciga-
rette smoking can alter the normal mechanisms of defence allowing 
pathogen colonization and proliferation, resulting in lung microbiome 
dysbiosis. Pathogens and their metabolites/toxins can activate TLRs, 
NLRs, and RAGE receptors promoting a series of downstream events 
that culminate in the transcription of chemokines and cytokines 
inducing an inflammatory state. Production of inflammatory mol-
ecules induce the activation and recruitment of immune cells such as 
Neutrophils, Eosinophils, Basophils and Monocytes. Whilst immune 
cells recruitment is essential for host defence, an excessive infiltra-
tion of activated immune cells can cause tissue damage worsening 

lung function resulting in the development of lung pathologies such 
as COPD, Asthma, and Bronchiectasis or inducing exacerbation of an 
existing lung condition. Furthermore, pathogens and their cytotoxic 
molecules can induce DNA damage directly or by increasing oxida-
tive stress inhibiting apoptosis and promoting proliferation that cou-
pled with a compromised immune response can lead to carcinogene-
sis. EMT epithelial to mesenchymal transition, TLR toll-like receptor, 
NLR NOD-like receptor, RAGE receptor for advanced glycation end-
products, IL17 interleukin 17, DC dendritic cell, Nf-kB nuclear factor 
kappa-light-chain-enhancer of activated B cells, TNFα tumour necro-
sis factor alpha, T3SS type III secretion system, STAT3 signal trans-
ducer and activator of transcription 3
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by dysregulating cytotoxic CD8-T cells activation which 
stimulates tumour escape and progression [103, 104], (ii) 
produce metabolites that directly induce DNA damage of 
host cells or indirect activation of the innate immune sys-
tem resulting in downstream inflammatory mediators to 
trigger downstream signalling pathways [105], (iii) acti-
vate proliferation (Fig. 2). The altered lung microbiome 
modulates specific oncogenic pathways, inducing cancer 
initiation and production of several bacterial metabolites 
in the tumour microenvironment that could modify can-
cer metabolism promoting oncogenic signalling. In addi-
tion, metabolites can produce direct DNA damage and, 
in turn, DNA damage and genomic instability lead to the 
production of reactive oxygen species promoting prolif-
eration, angiogenesis, and tumour development [106]. It 
is important to underline that bacterial metabolites can 
up-regulate the expression of genes involved in the PI3K 
and ERK1/2 pathways. Upregulation of PI3K and ERK1/2 
promotes transcriptomic changes that were observed only 
in lung cancer patients linking the process of tumouri-
genesis with disruption of the lung microbiome [107]. 
Another characteristic aspect of the interaction between 
lung cancer and the microbiome is the association between 
specific lung microbes and different histological types of 
lung cancer. For instance, Yu et al., and Dickoson et al., 
described bacteria populations in the lung of patients 
affected by squamous cell carcinoma tumours are different 
from the bacteria found in patients with adenocarcinoma 
[108–110]. For example, in patients affected by squamous 

cell carcinoma cancer with TP53 mutation an abundance 
of Acidovorax is described whilst, in small cell carcinoma, 
the main genera were Klebsiella, Comamonas, Acidovorax, 
Polarmonas, and Rhodoferax and this association is not 
found in adenocarcinoma [111]. These observations are 
interesting because they suggest the possibility of using 
specific genera as biomarkers to predict the type of lung 
cancer. This possibility needs to be further investigated. 
For this reason, it is extremely relevant to establish uni-
fied standard sampling methodologies because different 
bacterial species are found in lung tissue, sputum, BAL, 
or bronchoscopic samples, and further large-scale studies 
are required to identify and validate microbial biomarkers 
associated with specific lung tumour types [112].

Discussion

In this review, we extensively explore links between chronic 
airway inflammation, immune system dysregulation, 
changes in genetic sequence, and lung microbiome dysbio-
sis. It is being increasingly acknowledged that alteration in 
composition of lung microbiome may be associated with 
predisposition, development, progression, and exacerbation 
of lung disorders such as Asthma, COPD, bronchiectasis, 
Lung cancer [4, 7, 11]. Whilst microorganisms such as 
Streptococcus, Pseudomonas, and Haemophylus, are recog-
nized pathogens affecting the course and severity of diseases 
like Bronchiectasis, Asthma, COPD, lung cancer, the extent 

Table 1   Lung microbiome and 
their association with chronic 
lung disease and lung cancer

The table reported the main bacteria taxa associated with bronchiectasis (BE), asthma, chronic obstructive 
pulmonary disease (COPD), cystic fibrosis (CF) and lung cancer (LC). For each bacterial taxa are indicated 
the type and metabolism

Types Bacterial taxa BE Asthma COPD CF LC

Gram− Aerobes Pseudomonas ۷ – – ۷ ۷
Gram + Anaerobes facultative Streptococcus ۷ ۷ ۷ ۷ ۷
Gram−Anaerobes Prevotella ۷ – – ۷ ۷
Gram−Anaerobes Fusobacterium – – – ۷ –
Gram−Anaerobes Veillonella ۷ – – ۷ ۷
Gram−Anaerobes Porphyromonas – – – ۷ –
Gram−Anaerobes Neisseria – – – ۷ ۷
Gram−Anaerobes Facultative Haemophilus ۷ ۷ ۷ ۷ –
Gram−Aerobes Sphinogomonas – – – – ۷
Gram−Aerobes Acinetobacter – – – – –
Gram + Anaerobes Facultative Staphylococcus – ۷ – – ۷
Gram−Anaerobes or Aerobes Corynebacterium – ۷ – – –
Gram−Aerobes Moraxella – ۷ ۷ – –
Gram−
Anaerobes or Aerobes

Actinobacillus – – – – –

Gram + Anaerobes Facultative Propionibacterium – – – ۷ –
Gram−Aerobic or Anaerobic Megasphaera – – – – ۷
Gram−Aerobes Acidovorax – – – – ۷
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to which non-pathogenic bacteria may contribute to disease 
processes by modifying their metabolism needs to be estab-
lished (Table 1). In addition, not only bacterial pathogens 
colonization but also lung microbiome disequilibrium in 
terms of abundance or diversity could be implicated in dis-
ease progression, exacerbation, and response to treatments 
[113]. There is now evidence to support the concept that in 
lung microbiome “more diversity leads to less pathology”. It 
would be also interesting to establish whether a specific lung 
microbiome composition may predispose to respiratory tract 
viral infection including Sars-CoV-2 [114]. To date, there is 
still a lack of consistent and homogeneous data to define the 
direct correlation between lung dysbiosis and chronic lung 
disease or lung cancer [5, 99]. Dysbiosis may be caused by 
several mechanisms which include: (i) destruction of lung 
barriers that are involved in the elimination of bacteria, as in 
CF, (ii) modality of birth delivery [115], (iii) ‘’farm effect’’ 
[43, 44], (iv) lifestyle [11], (v) frequent use of antibiotics 
[65], and (vi) gut microbiome modification [101]. Dysbio-
sis may contribute to stimulation and overreaction of the 
immune system leading to an inflammatory state priming 
disease development, progression, and exacerbation. Exten-
sive studies are required to better understand the relation-
ship between lung microbiome-host interactions which may 
lead to therapeutic breakthroughs in terms of modulation of 
microbiome in pulmonary diseases.
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