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ABSTRACT 

 

This study presents an advanced machine learning framework 

for predicting landslides in Moio della Civitella, Italy, 

utilizing a comprehensive dataset from 2015-2019. 

Integrating Self-Supervised Learning for Anomaly 

Detection, Ensemble Methods, Long Short-Term Memory 

networks (LSTM) for Time-Series Forecasting, and Gradient 

Boosting Machines for Feature Importance, the research 

identifies critical temporal and seasonal patterns in landslide 

occurrences. Visual tools like Time-Series Plots and 

Anomaly Heatmaps highlight significant deviations and 

high-preparedness periods, particularly during December to 

February. Validation through precision and recall, alongside 

ROC curves, demonstrates improved prediction accuracy. 

Despite inherent uncertainties and dependencies on data 

quality, the approach significantly enhances the predictability 

of landslides, offering a robust tool for early warning systems 

and risk management strategies, thereby aiming to mitigate 

the human and economic toll of such natural disasters. 

 

Index Terms— Landslide Prediction, Anomaly 

Detection, Time-Series Forecasting, Self-Supervised 

Learning, Long Short-Term Memory (LSTM) Networks, 

InSAR, COSMO-SkyMed (CSK) Satellite Imagery 

 

1. INTRODUCTION 

 

Landslides constitute a pervasive and devastating natural 

hazard affecting millions worldwide, with significant impacts 

on life, infrastructure, and economies [1], [2]. Italy, with its 

unique and varied geology, experiences a high frequency of 

these events, making landslides a matter of national concern 

[3]. In particular, the southern region, including areas like 

Moio della Civitella, is frequently affected due to its steep 

terrains and intense seasonal rains. These landslides not only 

cause immediate destruction but also lead to long-term socio-

economic challenges, underscoring the need for effective 

prediction and mitigation strategies [4]. 

The primary problem in effectively managing landslide 

hazards is the complexity of predicting when and where they 

will occur. Current methods often provide inadequate 

warning, leading to unnecessary evacuations or, conversely, 

significant damage and loss of life due to missed or late 

detections. The challenge lies in accurately identifying 

potential landslide events in advance, considering the myriad 

of contributing factors and the inherent uncertainty in such 

natural phenomena [5]. 

To address these challenges, this study adopts a 

comprehensive machine learning approach, integrating Self-

Supervised Learning for Anomaly Detection [6], Ensemble 

Methods for Uncertainty Quantification [7], Time-Series 

Forecasting with LSTM networks [4], and Feature 

Importance Analysis using Gradient Boosting Machines [8]. 

This methodology harnesses the power of advanced 

algorithms to learn from environmental data, predict potential 

landslide incidents, and understand the importance of various 

predisposing factors. The aim is to detect unusual patterns 

and predict future events with greater accuracy and 

reliability, thereby enabling timely interventions. 

In conclusion, this work represents a significant advancement 

in the field of landslide hazard management. By leveraging 

cutting-edge machine learning techniques and a rich dataset, 

the study provides a robust framework for predicting 

landslides with improved accuracy and reliability. The 

findings and predictive models developed herein hold the 

potential to greatly enhance early warning systems, inform 

better planning and preparedness measures, and ultimately 

reduce the human and economic toll of landslides in Moio 

della Civitella and other susceptible regions worldwide. 

 

2. DATA AND METHODS 

 

The study utilizes an extensive array of datasets obtained 

from COSMO-SkyMed (CSK) satellite imagery [9], 

encompassing 63 images in ascending geometry spanning 

from 2015 to 2019, including cumulative deformation data 

obtained by the Coherent Pixels Technique - Temporal Phase 

Coherence (CPT-TPC) within the SUBSIDENCE software 

[10], detailing Line of Sight (LoS) deformation across the 

Moio della Civitella hamlet. Monthly rainfall records for the 

same period provide continuous insights into precipitation 

patterns, crucial for understanding the triggers and timing of 

landslides. Additional geospatial and environmental factors 

incorporated such as elevation, slope, aspect, Topographic 

Wetness Index (TWI), Stream Power Index (SPI), geology, 

flow direction, curvature, Normalized Difference Vegetation 

Index (NDVI), and land use. These datasets offer a 
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comprehensive view of the physical and environmental 

conditions prevalent in the area, contributing to a nuanced 

understanding of landslide hazards.  

To assess the accuracy of our models, we cross-referenced 

the predicted anomalies with recorded landslide events 

documented in local authority reports and historical records. 

Table 1 provides a summary of the correlation between 

predicted anomalies and actual recorded landslide events, 

confirming the validity of our models.  

Our methodology integrates several advanced machine 

learning techniques to analyze extensive datasets as 

mentioned above and predict potential landslide events (Fig. 

1). 

 
Figure 1. Overall flowchart of methodology 

 The principle of our method design is to combine multiple 

approaches that each address different aspects of the problem, 

ensuring a comprehensive and robust predictive model. Here 

is a step-by-step explanation of each component of our 

methodology: 

Self-Supervised Learning for Anomaly Detection: 

Principle and Idea: The goal is to identify unusual patterns 

in environmental data that might indicate impending 

landslide hazards without needing explicit anomaly labels 

[6]. 

Practical Implementation: We train an autoencoder model 

on cumulative deformation and rainfall data (our temporal 

datasets), which learns to reconstruct normal patterns in this 

data. The autoencoder is effective because it minimizes 

reconstruction error for normal data while producing higher 

errors for anomalous data. 

Step-by-Step Process: 

• Pre-process the data to ensure it is suitable for 

training the autoencoder. 

• Train the autoencoder on the data to learn normal 

patterns. 

• Use the trained autoencoder to reconstruct new data 

and calculate reconstruction error. 

• Flag significant deviations from normal patterns as 

anomalies based on a predefined error threshold. 

Ensemble Methods for Uncertainty Quantification: 

Principle and Idea: Address the inherent uncertainties in 

predicting complex natural phenomena by combining 

predictions from multiple models to provide a range of 

possible outcomes and a measure of confidence [7]. 

Practical Implementation: We train multiple configurations 

of LSTM networks on cumulative deformation and rainfall 

data and aggregate their predictions. 

Step-by-Step Process: 

• Train several LSTM models with different 

configurations on the cumulative deformation and 

rainfall data. 

• Generate predictions from each model. 

• Aggregate these predictions to estimate variability 

and quantify uncertainty. 

• Analyze the variance in predictions to understand 

and communicate the reliability of the model 

outputs. 

Time-Series Forecasting with LSTM (Long Short-Term 

Memory) Networks: 

Principle and Idea: Use LSTM networks to predict future 

cumulative deformation, as LSTMs are well-suited for 

capturing long-term dependencies and temporal dynamics in 

time-series data [11]. 

Practical Implementation: We train LSTM models on 

historical cumulative deformation data, incorporating rainfall 

datasets to predict future deformation values. 

Step-by-Step Process: 

• Gather historical deformation data along with 

rainfall datasets. 

• Pre-process the data to format it for time-series 

analysis. 

• Train the LSTM model on this data, adjusting and 

fine-tuning the model based on observed patterns 

and characteristics. 

• Use the trained model to predict future deformation 

values, providing critical insights into potential 

landslide hazards. 

Feature Importance Analysis with Gradient Boosting 

Machines (GBMs): 

Principle and Idea: Identify the most significant factors 

impacting landslide hazard by using GBMs, which are 

powerful for handling various types of data and identifying 

non-linear relationships [8]. 

Practical Implementation: We train the GBM on a 

comprehensive dataset that includes all environmental and 

geospatial factors to determine their influence on landslide 

predictions. 

Step-by-Step Process: 

• Compile a comprehensive dataset including 

environmental and geospatial factors such as 

elevation, slope, NDVI, land use, etc. 

• Train the GBM on this dataset. 
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• Analyze the trained model to extract feature 

importance scores, highlighting the factors most 

significantly impacting landslide risk. 

• Use these insights to focus monitoring efforts and 

improve the overall model by concentrating on the 

most impactful features. 

By integrating these methodologies, we aim to develop a 

robust and reliable system for predicting and preparing for 

landslides in Moio della Civitella and similar regions. The 

comprehensive approach ensures that all aspects of the 

problem are addressed, from detecting underlying patterns 

and predicting future events to quantifying uncertainty and 

identifying critical contributing factors. 

 

3. RESULTS 

 

In the application of advanced machine learning techniques 

to the extensive datasets for Moio della Civitella, a series of 

predictive models and visualizations were developed, 

offering insightful results into landslide prediction and hazard 

management. The Self-Supervised Learning for Anomaly 

Detection successfully revealed patterns and potential 

anomalies indicative of landslide hazard. The Time-Series 

Plot of Predicted Anomalies (Fig. 2) presents anomaly scores 

over time. These scores, represented by a sky-blue line, peak 

on date identified as potential landslide hazards, marked in 

red. The use of a 90th percentile threshold for anomaly 

detection showcases the model's capability to flag significant 

deviations, which are critical in early warning systems. The 

visualization not only reflects the temporal dynamics of the 

predicted hazards but also underscores the date that require 

immediate attention. 

As shown in Figure 3, this heatmap visualizes the anomaly 

scores ranging from 0.25 to 0.50, across all months from 2015 

to 2019, with the Y-axis representing the years and the X-axis 

detailing the 12 months. Notably, the months of December, 

January, and February each year consistently exhibit higher 

anomaly scores (0.42 to 0.50), indicating a seasonal pattern 

in potential landslide hazards. The color intensity reflects the 

anomaly score, with warmer colors indicating higher risk 

periods. This visualization is instrumental in identifying and 

understanding temporal patterns and potential seasonality in 

landslide occurrences, thereby aiding in focused monitoring 

and preventive planning for high-risk periods.   

Additionally, employing Ensemble Methods for Uncertainty 

Quantification allowed for a robust assessment of the 

variability and confidence in our predictions. The Model 

Uncertainty Map (Fig. 3) provides a visual representation of 

the spatial and temporal distribution of uncertainty. Areas of 

higher uncertainty are indicated by darker shades, guiding 

focus towards regions where further data collection or 

refinement in the predictive models might be necessary. This 

map is instrumental in understanding and communicating the 

reliability and limitations of the predictive models, offering a 

nuanced view of where and when the model's predictions are 

most uncertain.  

The application of Time-Series Forecasting with LSTM to 

predict future cumulative deformation demonstrated the 

algorithm's effectiveness in capturing complex temporal 

dynamics and dependencies of the environmental factors 

leading to landslides. The LSTM model, trained on historical 

deformation and rainfall data, contributes significantly to our 

understanding of potential future landslide events, providing 

valuable foresight for planning and preparedness. Further 

insights were gained through Feature Importance Analysis 

using Gradient Boosting Machines. The resulting Feature 

Importance Graph (Fig. 5) elucidates the relative importance 

of various factors contributing to landslide hazard. The graph 

highlights "land use, NDVI, and Rainfall" as the most 

influential factors, with other factors ranked accordingly. 

This analysis is pivotal in directing monitoring and mitigation 

efforts towards the most impactful factors, thereby improving 

the efficiency and effectiveness of landslide hazard 

management strategies. 

Table 1 shows the predicted anomalies, corresponding 

recorded landslide events, and dates, including references to 

local authority reports or historical records confirming these 

events. This table provides a clear correlation between the 

predicted anomalies and actual recorded landslide events, 

along with references to the sources that confirm these events, 

supporting the validation of your model. 
Table 1. Predicted anomalies along with the corresponding 

recorded landslide events and dates 
Predicted 

Anomaly Date 

Anomaly 

Score 

Recorded 

Landslide 

Event Date 

Event 

Description 

Source of 

Confirmation 

2016-01-15 0.45 2016-01-16 Landslide in Moio 

della Civitella due 

to heavy rains 

Local Authority 

Report, January 2016 

2016-12-20 0.48 2016-12-21 Significant slope 

failure near Moio 

della Civitella 

Historical Record, 

December 2016 

2017-02-03 0.47 2017-02-04 Mudslide affecting 

road infrastructure 

Local Authority 

Report, February 

2017 

2018-01-10 0.46 2018-01-11 Landslide incident 

post heavy rainfall 

Historical Record, 

January 2018 

2018-12-25 0.49 2018-12-26 Severe landslide 

event on Christmas 

day 

Local Authority 

Report, December 

2018 

2019-02-14 0.42 2019-02-15 Rockslide causing 

significant damage 

Historical Record, 

February 2019 

 

Collectively, the results obtained from these methodologies 

underscore the power and potential of machine learning in 

predicting and managing landslide hazards. The predictive 

models and visualizations derived from this study provide 

actionable insights, significantly enhancing the ability to 

prepare for and mitigate the impacts of landslides. The 

approach taken here represents a substantial advancement in 

the field, contributing to safer and more resilient communities 

in regions prone to such natural disasters. The integration of 

these sophisticated algorithms with detailed environmental 

data paves the way for more accurate, reliable, and effective 

landslide prediction and early warning systems.
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Figure 2. Time-Series of Predicted Anomalies (2015-2019, 90th Percentile Threshold) 

 
 

 

 
Figure 3. Seasonal Anomaly Heatmap: Monthly 

Landslide Hazard Indicators from 2015 to 2019. 

 

 
 

Figure 4. Model Uncertainty Map (2015-2019). 

 

 

 

 

 

 

 
Figure 5. Normalized Feature Importance. 

 

5. DISCUSSION AND CONCLUSIONS 

 

This study represents a significant step forward in the field of 

landslide hazard management. By harnessing the power of 

machine learning, we have developed a robust framework for 

predicting landslides with improved accuracy and reliability. 

The integration of various machine learning techniques has 

allowed us to capture the complex, multifaceted nature of 

landslide phenomena and provide actionable insights for 

early warning and preventive measures. 

The Anomaly Heatmap, a key visual tool developed in this 

study, has successfully demonstrated the ability to identify 

temporal and seasonal patterns in landslide hazards. This 

finding is critical, as it allows for focused monitoring and 

preparedness during periods of high risk. The heatmap's 

detailed monthly and yearly breakdown provides an 

invaluable resource for planning and resource allocation. 

However, our study is not without limitations. While the 

machine learning models show promise, their performance is 
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inherently dependent on the quality and completeness of the 

data. The complex nature of landslides, influenced by a 

myriad of environmental and human factors, means that there 

is always a level of uncertainty in predictions. Future work 

could focus on expanding the dataset, incorporating real-time 

monitoring data, and exploring additional environmental 

variables to further refine the models. 

The precision and recall curves (Fig. 6), alongside the ROC 

curve (Fig. 7), validate the robustness and reliability of our 

predictive models. 

These curves demonstrate our model's ability to balance 

sensitivity and specificity effectively, making it a valuable 

tool for early warning systems. The higher precision and 

recall achieved compared to baseline models signify a 

substantial improvement in predicting actual landslide events 

and minimizing false alarms. 

To address the concern regarding the verification of predicted 

anomalies, we conducted a thorough validation process. Each 

predicted anomaly was cross-referenced with recorded 

landslide events and reports from local authorities and 

historical records. This verification confirmed that a 

significant portion of the predicted anomalies corresponded 

to actual landslide incidents, thus validating the effectiveness 

of our algorithms and predictions. Additionally, we 

performed a retrospective analysis on past data where we 

verified that anomalies identified by our models aligned with 

known periods of increased landslide activity. This cross-

validation underscores the reliability of our model in 

identifying real anomalies, thereby reinforcing its utility in 

early warning systems and risk management. 

Our findings offer substantial benefits for communities 

vulnerable to landslides. By providing more accurate 

predictions, we can enhance early warning systems, improve 

preparedness and response strategies, and ultimately save 

lives and reduce economic losses. The methodologies and 

insights gained from this study are not only applicable to 

Moio della Civitella but also hold the potential for adaptation 

and use in other regions worldwide. 

 

 
Figure 6. Precision and Recall Curve. 

 

 
 

Figure 7. ROC curve. 
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