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Abstract

Let X be a compact, complex surface of general type whose cotangent
bundle ΩX is strongly semi-ample. We study the pluri-cotangent maps of
X , namely the morphisms ψn : P(ΩX) −→ P(H0(X, SnΩX)) defined by
the vector space of global sections H0(X, SnΩX).

0 Introduction

Let X be a complex surface of general type and assume that its cotangent bun-
dle ΩX is strongly semi-ample. This means that for some integer n ≥ 1 the
symmetric power SnΩX is globally generated, namely, the evaluation map

H0(X, SnΩX)⊗OX −→ SnΩX (1)

is surjective (this condition implies in particular that X is minimal and KX is
ample). Recalling that we have a natural identification between H0(X, SnΩX)
andH0(P(ΩX), OP(ΩX)(n)), from the surjectivity of (1) we infer that the induced
evaluation map

H0(X, SnΩX)⊗OP(ΩX) −→ OP(ΩX)(n)

is also surjective, and so it defines a morphism

ψn : P(ΩX) −→ P(H0(X, SnΩX)),

that we call the nth pluri-cotangent map of X . The case n = 1 was studied by the
second author in [Rou09]: it turns out that, as soon as ΩX is globally generated
and q(X) > 3, the cotangent map ψ1 : P(ΩX) −→ P(H0(X, ΩX)) ≃ Pq(X)−1 is a
generically finite morphism onto its image.

In the present note we generalize this result to the case n ≥ 2. Let us remark
that, if ΩX is strongly semi-ample, then ψn is a generically finite morphism
onto its image for n sufficiently large if and only if the second Segre number
c1(X)2 − c2(X) is strictly positive, see Proposition 2.2. Our aim is to give effec-
tive versions of this statement. The first result we show is
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Theorem A (see Theorem 2.19). Let n ≥ 2 be such that SnΩX is globally generated.
If h0(X, SnΩX) > 1

2(n + 1)(n + 2) then ψn is generically finite onto its image. In
this case, the exceptional locus exc(ψn) is a Zariski-closed, possibly empty subset of
P(H0(X, SnΩX)) of dimension at most 1.

The proof of Theorem A is obtained by generalizing the geometrical argu-
ments used in [Rou09]. We also exploit some results contained in the recent
paper [MU19] by Mistretta and Urbinati, allowing us to prove the finiteness of
the nth Gauss map ofX (Proposition 2.9), together with the classical description
of surfaces 2-covered by curves of degree n, first obtained by Bompiani [Bom21]
and later rediscovered by Pirio and Russo [PR13], see Proposition 2.17.

Furthermore, we are also able to provide explicit bounds for the generic
finiteness of the pluri-cotangent maps.

Theorem B (see Theorem 3.3). Let n ≥ 3 be an integer such that SnΩX is globally
generated. If

c21 >

(
1 +

6n− 2

2n2 − 2n+ 1

)
c2 +

6n+ 12

2n2 − 2n+ 1
(2)

then the nth pluri-cotangent map ψn is generically finite onto its image.

The proof of Theorem B uses the explicit computation of χ(X, SnΩX), see
Lemma 3.1, together with Bogomolov’s cohomological vanishing (Proposition
1.3), in order to show that (2) implies the lower bound h0(X, SnΩX) >

1
2(n +

1)(n+ 2). Then the claim follows from Theorem A. As a consequence, we get

Corollary C (see Corollary 3.4). Let X be a minimal surface of general type with
c21 − c2 > 0 and such that SmΩX is globally generated. Then the nth pluri-cotangent
map ψn is generically finite onto its image for all multiples n of m such that

n >
β +

√
β2 − αγ

α
,

where
α := 2(c21 − c2), β := c21 + 2c2 + 3, γ := c21 + c2 − 12.

Corollary C is proved by rewriting (2) as a quadratic inequality in n with
strictly positive leading coefficient, namely

2(c21 − c2)n
2 − 2(c21 + 2c2 + 3)n+ (c21 + c2 − 12) > 0.

Section 4 deals with some examples and counterexamples. In Subsections
4.1 and 4.2 we consider the following two constructions giving surfaces X such
that ΩX is neither ample nor globally generated:

(1) X is a suitable symmetric complete intersection in an abelian fourfold of
the form A×E, where A is an abelian threefold and E is an elliptic curve;

(2) X is of the form X = (C ×F )/G, where C is a smooth hyperelliptic curve
of genus 3, F is a smooth curve of odd genus and G = Z2 acts with four
fixed points on C, freely on F and diagonally on the product.
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In both situations, the vector bundle S2ΩX turns out to be globally generated,
hence ΩX is strongly semi-ample, and moreover the pluri-cotangent map ψn is
generically finite onto its image for all even n (see Propositions 4.1, 4.2, 4.5, 4.6).

In Subsection 4.3 we exhibit some counterexamples to Corollary C when
c21 − c2 = 0, namely, smooth ample divisors in abelian threefolds. In fact, if X is
such a divisor, for all n ≥ 1 we have

H0(X, SnΩX) = SnH0(X, ΩX) ≃ C
(n+1)(n+2)

2 ,

and the imageXn of ψn : P(ΩX) −→ P(H0(X, SnΩX)) is projectively equivalent

to the nth Veronese surface νn(P2) ⊂ P
n(n+3)

2 . Thus, no pluri-cotangent map of
X is generically finite onto its image. Under the additional assumption that the
image of the Albanese map is smooth, we also show that these counterexamples
are the only ones up to finite, étale covers (Proposition 4.10).

By using finite cyclic covers of a surface X as above, we are also able to
construct surfaces of general type all of whose Gauss maps have arbitrarily
large degree, see Remark 4.11.

Finally, in the last section of the paper we state a couple of open problems.
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bers of the équipe Analyse, Géométrie et Topologie for the invitation and the
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MO397682, MO412306, MO412888, MO413988, MO414382, MO414452,
MO417972, MO418607, MO430933, MO431327.

Both authors are grateful to Erwan Rousseau for providing useful references
and to Antonio Rapagnetta and Igor Reider for suggestions and remarks.

Notation and conventions. We work over the field C of complex num-
bers. By surface we mean a smooth, compact complex surface X , and for such a
surface ΩX denotes the holomorphic cotangent bundle, TX the holomorphic
tangent bundle, ωX = OX(KX) the canonical bundle, pg(X) = h0(X, KX)
is the geometric genus, q(X) = h1(X, KX) is the irregularity and χ(OX) =
1− q(X) + pg(X) is the holomorphic Euler-Poincaré characteristic. We also set
c1 := c1(TX) = −c1(ΩX) and c2 := c2(TX) = c2(ΩX). The second Segre number
of X is the integer c21 − c2.

For projective spaces and projective bundles we use the same conventions
as in [Laz04, Chapter 6]. More specifically, if V is a vector space, P(V ) stands by
the projective space of 1-dimensional quotients of V ; we denote by G(n, P(V ))
the Grassmannian of n-dimensional subspaces of P(V ), and by G(P(V ), n) the
Grassmannian of n-dimensional quotients of P(V ). Moreover, we write νn : P(V ) −→
P(SnV ) for the nth Veronese embedding of P(V ), and we call its image νn(P(V ))
the nth Veronese variety of P(V ).
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If E is a vector bundle on X and x ∈ E , we write E (x) for the fibre of E
over x. Furthermore, we denote by π : P(E ) −→ X the projective bundle of
1-dimensional quotients of E , so that π∗OP(E )(n) = SnE for all n ≥ 1.

1 Pluri-cotangent maps and Gauss maps

Let X be a compact, complex surface of general type. We say that its cotangent
bundle ΩX is strongly semi-ample if the nth symmetric power SnΩX is globally
generated for some n ≥ 1, namely, if the evaluation map

H0(X, SnΩX)⊗OX −→ SnΩX (3)

is surjective. Note that this implies

h0(X, SnΩX) ≥ rank SnΩX = n+ 1 (4)

and if equality holds then SnΩX ≃ On+1
X . In particular, since we are assuming

that X is of general type, the strict inequality holds in (4). Moreover, the strong
semi-ampleness of ΩX implies that OP(ΩX)(1) is semi-ample, see [MU19, Section
3.1], and so ΩX is nef.

Lemma 1.1. If ΩX is strongly semi-ample, then X does not contain any smooth ratio-
nal curve. In particular, X is minimal and KX is ample.

Proof. If C is a smooth curve contained in X , then ΩC is a quotient of the re-
stricted bundle ΩX |C . Since passing to the nth symmetric product preserves
epimorphisms, it follows that SnΩC is a quotient of SnΩX |C . This implies that
ΩC is strongly semi-ample, hence g(C) ≥ 1.

Remark 1.2. It is not hard to construct examples where KX is ample and ΩX is
not strongly semi-ample. For instance, take a smooth quintic surface X ⊂ P3

containing a line L. Since L is a smooth rational curve (with L2 = −3) we see
that ΩX is not strongly semi-ample. On the other hand, by using adjunction
formula we can check that there are no (−1)-curves or (−2)-curves on X , so X
is a minimal model and KX is ample.

Lemma 1.1 allows us to apply to our situation the next result, based on Bo-
gomolov’s work [Bog78], see [Kob80, Corollary A.1] and [RouRous13, p. 1341].

Proposition 1.3. Let X be a surface of general type with ample canonical class. Then
for all n ≥ 1 the vector bundle SnΩX is semi-stable with respect to the polarization
KX , and moreover

H0(X, SnTX ⊗ ωkX) = 0 for n− 2k > 0. (5)

Setting k = 1 in (5) and applying Serre duality, we get Bogomolov’s vanish-
ing

H2(X, SnΩX) = 0 for n ≥ 3. (6)
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Corollary 1.4. Let X be a surface of general type with ample canonical class. Then for
all n ≥ 3 we have h0(X, SnΩX) ≥ χ(X, SnΩX).

Proof. Immediate consequence of (6).

Remark 1.5. The extremal case n = 2, k = 1 in Proposition 1.3 is characterized
as follows, cf. [Kob80, Theorem B and Corollaries B.1 and B.2]. IfX is a minimal
surface of general type with ample canonical bundle, then we have

H0(X, S2TX ⊗ ωX) = H0(X, S2ΩX ⊗ ω−1
X ) = 0

if and only if ΩX is an indecomposable rank 2 vector bundle. One direction is
clear: if ΩX = L1 ⊕ L2 is the direct sum of two line bundles, then a straight-
forward computation shows that S2ΩX ⊗ ω−1

X has a direct summand isomor-
phic to OX , hence H0(X, S2ΩX ⊗ ω−1

X ) ̸= 0. Conversely, let us assume that
S2ΩX ⊗ ω−1

X has a non-zero global section and let us show that ΩX is decom-
posable; to this pourpose, we will use the following argument suggested to us
by Igor Reider. Identifying S2ΩX ⊗ ω−1

X with the sheaf End0(ΩX) of trace-zero
endomorphisms of ΩX , 1 a non-zero global section corresponds to an endomor-
phism f : ΩX −→ ΩX whose trace is zero at every point. Now we have two
cases:

(i) There is a point x ∈ X such that fx : ΩX(x) −→ ΩX(x) has two non-zero
eigenvalues ±λ; then

ΩX = ker(f − λ I)⊕ ker(f + λ I)

is the desired splitting. 2

1This is a consequence of the following linear algebra facts. Consider a rank 2 vector space
V over a field K of characteristic different from 2. Since every square matrix can be written in
a unique way as the sum of a symmetric matrix and a skew-symmetric one, we have the direct
sum decomposition V ⊗ V = S2 V ⊕ ∧2V . Taking the tensor product with ∧2V ∗, and using
the identification V ⊗∧2V ∗ = V ∗ (coming from the bilinear pairing on V induced by the wedge
product, namely v⊗w 7→ v∧w), we get an identification V ∗⊗V = (S2 V⊗∧2V ∗)⊕K. On the other
hand, V ∗⊗V = Hom(V, V ), so we get a further identification Hom(V, V ) = (S2 V ⊗∧2V ∗)⊕K.
Under this identification, an endomorphism f : V −→ V satisfies Trace(f) = 0 if and only if
it lies in the first summand S2 V ⊗ ∧2V ∗. This is a straightforward computation based on the
interpretation of the trace as the functional V ∗ ⊗ V −→ K given by the natural evaluation on
decomposable tensors, namely Trace(f⊗v) = f(v). Therefore S2 V ⊗∧2V ∗ is naturally identified
with the vector space Hom0(V, V ) of trace-zero endomorphisms of V .

2If we have an endomorphism g : E −→ E of a vector bundle E, then its determinant
det g : detE −→ detE is a scalar multiple of the identity and so, if it vanishes at one point,
it vanishes everywhere. Taking E = ΩX and g = f − λI , g = f + λI , we get

ΩX(x) = ker(f − λI)(x)⊕ ker(f + λI)(x)

for all x ∈ X .
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(ii) The endomorphism f : ΩX −→ ΩX is nilpotent everywhere, hence f2 = 0.
We will rule out this case, by exploiting the ampleness of KX . In fact, by
the nilpotency condition, the sheaf im(f) injects into ker(f); then, setting

c1(ker(f)) = L, c1(im(f)) = L′

the divisor L−L′ is effective. The semi-stability of ΩX with respect to the
polarization KX now gives

KXL = µ(L) ≤ µ(ΩX) = K2
X/2, KXL

′ = µ(L′) ≥ µ(ΩX) = K2
X/2,

and so
0 ≤ KX(L− L′) ≤ K2

X/2−K2
X/2 = 0,

that implies L = L′. Thus KX = c1(ΩX) = 2L, hence L is ample. But this
is impossible because, by a result of Bogomolov, ΩX cannot have ample
subsheaves of rank 1, see [Reid77, Theorem 2].

Recalling that we have a natural identification between H0(X, SnΩX) and
H0(P(ΩX), OP(ΩX)(n)), from the surjectivity of (3) we infer that the induced
evaluation map

H0(X, SnΩX)⊗OP(ΩX) −→ OP(ΩX)(n)

is also surjective, and so defines a morphism

ψn : P(ΩX) −→ P(H0(X, SnΩX)).

Definition 1.6. We call ψn the nth cotangent map of X , and we denote its image by
Xn := ψn(P(ΩX)) ⊂ P(H0(X, SnΩX)).

By [Laz04, Appendix A] there is a relative nth Veronese embedding
νn : P(ΩX) −→ P(SnΩX) such that, for every x ∈ X , the fibre P(ΩX(x)) of
P(ΩX) over x is sent to a rational normal curve of degree n inside the n-
dimensional projective space P(SnΩX(x)). Moreover, passing to projective
bundles in the evaluation map (3), we get a morphism en : P(SnΩX) −→
P(H0(X, SnΩX)) and a factorization of ψn of the form

P(ΩX) P(H0(X, SnΩX))

P(SnΩX)

ψn

νn en
(7)

Let us now consider two important examples: the case where ΩX is ample
and the case where ΩX is globally generated.

Example 1.7. The case where ΩX is ample. If ΩX is ample, then it is automati-
cally strongly semi-ample, see [Laz04, Theorem 6.1.10], and the Chern numbers
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of X satisfy the inequality c21 − c2 > 0, see [Kl69]. Furthermore, by [Laz04, Ex-
ample 6.1.5 and Theorem 6.1.15], the ampleness of ΩX is equivalent to the fact
that en is finite onto its image. Summing up, we can state what follows:

Assume that SnΩX is globally generated. Then the nth cotangent map ψn is a finite
morphism onto its image Xn if and only if ΩX is ample.

For the sake of completeness, let us shortly explain how to construct sur-
faces for which ΩX is strongly semi-ample but not ample. Let A be an abelian
3-fold containing an elliptic curve E, and let X ⊂ A be a sufficiently positive,
smooth divisor containing E. Then X is a surface of general type whose Al-
banese morphism aX : X −→ Alb(X) coincides with the inclusion X −→ A.
Since A contains no rational curves, the same is true for X , which is there-
fore a minimal model with ample KX . Furthermore, since ΩX is a quotient of
ΩA|X = O⊕3

X , it follows that ΩX is globally generated, hence strongly semi-
ample. However, ΩX is not ample: in fact, varieties with ample cotangent bun-
dle are Kobayashi hyperbolic ( [Laz04, Theorem 6.3.26]), in particular, they do
not contain any elliptic curves. For a detailed analysis of a similar construction
in codimension 2, see Subsection 4.1.

Example 1.8. The case where ΩX itself is globally generated. Since the evalu-
ation map (3) for n = 1 is the co-differential of the Albanese morphism

aX : X −→ Alb(X),

the cotangent bundle ΩX is globally generated if and only if aX is a local im-
mersion. In this case, SnΩX is globally generated for all n ≥ 1, and we have a
natural symmetrization homomorphism σn : S

nH0(X, ΩX) −→ H0(X, SnΩX),
that fits into a commutative diagram

P(ΩX)

ψ1

��

ψn // P(H0(X, SnΩX))

P(σn)
��

P(H0(X, ΩX))
νn // P(SnH0(X, ΩX)).

(8)

Here νn stands for nth Veronese embedding and the rational map P(σn) is an
embedding of projective spaces if σn is surjective, and a linear projection oth-
erwise. 3 By [Rou09, Proposition 2.14] it follows that if q(X) = h0(X, ΩX) > 3
then ψ1 is generically finite, hence we can draw the following conclusion.

Assume that ΩX is globally generated and q(X) > 3. Then the nth cotangent map
ψn is generically finite onto its image for all n ≥ 1.

Again for the sake of completeness, let us provide examples where ΩX is
strongly semi-ample but not globally generated. IfX is a a fake projective plane
(see [PY07]), then ΩX is ample (this is true for every smooth compact complex

3According to our understanding, not much is known about the behaviour of σn in general. A
result in this direction would provide a higher-dimensional generalization of the celebrated Max
Noether’s Theorem for curves, see [ACGH85, p. 117] and the MathOverflow thread [MO273557].
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variety uniformized by the ball Bn ⊂ Cn, see [Laz04, Construction 6.3.36]) and
thus strongly semi-ample. However, h0(X,ΩX) = h1(X, OX) = 0, namely, ΩX
has no global sections at all.

2 Finiteness of the Gauss map and dimension of the
pluri-cotangent image

Assumption 2.1. From now on, X will denote a surface of general type with
strongly semi-ample cotangent bundle ΩX . Note that we are neither assuming
that ΩX is ample nor that ΩX is globally generated, having already analyzed
these cases before.

Proposition 2.2. Let X be a surface that satisfies Assumption 2.1. Then ψn is generi-
cally finite onto its image Xn for n sufficiently large if and only if c21 − c2 > 0. In this
case, we have degXn = n3(c21 − c2)/degψn.

Proof. Assume n ≥ 3. Using the asymptotic form of Riemann-Roch theorem for
vector bundles together with the vanishing (6), we get

h0(X, SnΩX) ≥ χ(X, SnΩX) =
n3

6
(c21 − c2) +O(n2).

Thus, the positivity of the second Segre number c21 − c2 implies that ΩX is
big, hence ψn is generically finite onto its image for n sufficiently large. Con-
versely, suppose that ψn is generically finite onto Xn for some n. Then, if
ξ ∈ |OP(ΩX)(1)|, the same argument used in the proof of [Rou09, Proposition
2.15] shows that

0 < degXn · degψn = (nξ)3 = n3(c21 − c2). (9)

Remark 2.3. In Section 3 we will provide a quantitative version of Proposition
2.2, see in particular Corollary 3.4.

Remark 2.4. The statement of Proposition 2.2 boils down to the fact that, if we
assume that the line bundle OP(ΩX)(1) is nef, then it is big if and only if its top
self-intersection is strictly positive.

Remark 2.5. Subsection 4.3 contains a detailed analysis of some examples
where ΩX is globally generated, c21 − c2 = 0 and dimXn = 2 for all n ≥ 1. This
shows that the assumption about the positivity of the second Segre number in
Proposition 2.2 cannot be removed.

Remark 2.6. There exist examples of surfaces X of general type with big cotan-
gent bundle and c21 − c2 ≤ 0, see [RouRous13]. They are obtained by taking
the minimal resolution of some singular models with rational double points,
hence they contain smooth rational curves and so ΩX is not strongly semi-
ample (Lemma 1.1). However, the bigness of ΩX implies that ψn is a birational
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map onto its image for n large enough. This shows that the “only if” part in the
statement of Proposition 2.2 does not hold if one drops strongly semi-ampleness
in Assumption 2.1.

In this paper we focus on finding explicit lower bounds on n such that ψn
is generically finite onto its image. Our arguments are geometric in nature,
and generalize the ones used in [Rou09, Section 2]; furthermore, we use in an
essential way some results from [PR13] and [MU19].

Let π : P(ΩX) −→ X be the structure projection and let us look at the re-
striction of ψn to the fibre π−1(x) over a point x ∈ X . Such a fibre is the
curve P(ΩX(x)) ≃ P1, and the restriction of |OP(ΩX)(n)| to it is the complete
linear system |OP1(n)|, that embeds π−1(x) as a rational normal curve Cx of de-
gree n in P(H0(X, SnΩX)). There is a unique n-dimensional linear subspace
Lx ⊂ P(H0(X, SnΩX)) containing Cx, so we have a morphism

gn : X −→ G(n, P(H0(X, SnΩX))), x 7→ Lx.

Definition 2.7. We call gn the nth Gauss map of X , and we denote its image by
Yn := gn(X) ⊂ G(n, P(H0(X, SnΩX))).

Let us now provide an alternative description of the Gauss map. Being ΩX
globally generated, for every point x ∈ X there is a surjection

H0(X, SnΩX) −→ SnΩX(x) −→ 0.

Since the fibre SnΩ(x) of SnΩ over x is a vector space of dimension n+ 1, after
passing to projective spaces and dualizing we obtain a quotient of dimension n
of P(H0(X, SnΩX))

∗, hence an element

sx ∈ G(n, P(H0(X, SnΩX))) ≃ G(P(H0(X, SnΩX))
∗, n).

Thus, we get a morphism

kn : X −→ G(n, P(H0(X, SnΩX))), x 7→ sx.

Following [MU19, p. 2230] we call kn the nth Kodaira map of X .

Proposition 2.8. The two morphisms gn and kn do actually coincide.

Proof. Diagram (7) shows that the n-dimensional linear space Lx containing Cx
coincides with the image of P(SnΩX(x)) via the map en. By construction, this
image is precisely sx.

Proposition 2.9. The nth Gauss map gn is a finite morphism onto its image Yn. In
particular, we have dimYn = 2 for all n ≥ 1.

Proof. By Proposition 2.8, it is equivalent to prove the result for the Kodaira
map kn. Let Ỹn −→ Yn be the normalization map of Yn, and let k̃n : X −→ Ỹn be
the corresponding lifting of kn (which exists since X is smooth, hence normal).
If the result is true for k̃n then it is true for kn as well, because the normalization
is a finite map. Thus, we may assume that Yn is normal.

9



Next, the assumption that SnΩX is globally generated implies that StnΩX is
globally generated for all positive integers t; according to [MU19, Lemma 3.3],
we have a factorization

X Yn

Ytn

kn

ktn u

where u : Ytn −→ Yn is a finite map. Furthermore, by [MU19, Theorem 3.4],
there exists a diagram

X Y∞

YG

kdet

kG v

where kdet is the Iitaka fibration induced by KX = detΩX and v is a finite map,
such that for t ≫ 0 we have Ytn = YG and ktn = kG. So, for t sufficiently large,
we get

kn = u ◦ ktn = u ◦ v ◦ kdet.

Since KX is ample (Lemma 1.1), it follows that kdet is an isomorphism onto its
image; therefore kn is a composition of finite maps, and the proof is complete.

Lemma 2.10. For all p ∈ Xn (the image of ψn in P(H0(X, SnΩX))), the restriction
of π : P(ΩX) −→ X to ψ−1

n (p) is injective.

Proof. Given x ∈ X , the intersection π−1(x)∩ψ−1
n (p) is either empty or consists

of a single point, because the restriction ψn : π−1(x) −→ Cx ⊂ P(H0(X, SnΩX))
is an embedding.

Remark 2.11. The degree of the Gauss map divides the degree of the pluri-
cotangent map. Denoting by Un the universal vector bundle over the affine
Grassmannian of (n+1)-dimensional subspaces ofH0(X, SnΩX) and by P(Un)
the corresponding projectivization, we have a commutative diagram

P(ΩX)

ψn

**

π

��

ψ̃n // P(Un)

π2
��

π1 // P(H0(X, SnΩX))

X
gn // G(n, P(H0(X, SnΩX))),

where π1, π2 are the natural projections and ψ̃n is such that π1 ◦ ψ̃n = ψn. Since
the restriction of ψn to the fibres of π is an embedding, it follows that ψ̃n is a
finite map onto its image, whose degree is the same as the degree of the Gauss
map gn. So, assuming that the pluricotangent map ψn is generically finite onto
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its image Xn, and denoting by degψn the degree of ψn : P(ΩX) −→ Xn, we
obtain

degψn = deg gn · deg π′1,

where π′1 is the restriction of π1 to the image of ψ̃n. As a consequence, if ψn is
generically finite onto its image, then deg gn divides degψn.

If p ∈ Xn, let us denote by D′
p the subvariety π(ψ−1

n (p)) ⊂ X . By Lemma
2.10, we have

dimD′
p = dimψ−1

n (p). (10)

Proposition 2.12. Let x ∈ X . Then x ∈ D′
p if and only if p ∈ Cx.

Proof. If x ∈ D′
p then x = π(z), with z ∈ ψ−1

n (p). Thus z ∈ π−1(x) and so
p = ψn(z) ∈ ψn(π

−1(x)) = Cx. Conversely, if p ∈ Cx then p = ψn(w), with
w ∈ π−1(x). Then x = π(w) ∈ π(ψ−1

n (p)) = D′
p.

Proposition 2.13. For all p ∈ Xn, the subvariety ψ−1
n (p) ⊂ P(ΩX) has dimension at

most 1. Hence D′
p ⊂ X has dimension at most 1, too.

Proof. Write Z := ψ−1
n (p) and N := h0(X, SnΩX). Since ψn is not a constant

map, we have dimZ ≤ 2. By contradiction, assume dimZ = 2. Then the
restriction π|Z : Z −→ X is a bijective morphism by Lemma 2.10 and so, since
X is normal, it is an isomorphism by Zariski’s Main Theorem, see [Mum99,
Chapter III]. Thus we get a regular section t : X −→ P(ΩX) of the projective
bundle π : P(ΩX) −→ X , that in turn corresponds to a rank 1 quotient ΩX −→
L, where L = t∗OP(ΩX)(1), see [Ha77, Chapter II, Proposition 7.12]. Since ψn ◦ t
contracts X to the point p ∈ P(H0(X, SnΩX)) ≃ PN−1, it follows that (ψn ◦
t)∗OPN−1(1) is the trivial line bundle on X , and so

Ln = t∗OP(ΩX)(n) = t∗ψ∗
nOPN−1(1) = OX .

So, taking the nth symmetric product of ΩX −→ L, we get a quotient SnΩX −→
OX , contradicting the semi-stability of SnΩX with respect to KX , see Propo-
sition 1.3. Hence the only possibility is dimZ ≤ 1, and this proves the first
statement. The second statement follows from (10).

Definition 2.14. A point p ∈ Xn is called exceptional for ψn if the fibre ψ−1
n (p) has

dimension 1. The set of such exceptional points will be denoted by exc(ψn).

Let p be an exceptional point for ψn, so that dimD′
p = 1, and let Dp ⊆ D′

p be
an irreducible component of dimension 1. If we set Σ := ψn(π

−1(Dp)), then we
have

Σ =
⋃
x∈Dp

Cx. (11)

Proposition 2.15. The variety Σ is a surface in P(H0(X, SnΩX)) containing a 1-
dimensional family of rational normal curves of degree n passing through p. More
precisely, for every point q ∈ Σ, different from p, there exists a rational normal curve of
degree n contained in Σ and joining p and q.

11



Proof. The fact that Σ has dimension at least 1 is an immediate consequence of
(11). By contradiction, assume dimΣ = 1; then there is a rational normal curve
C of degree n such that Cx = C for all x ∈ Dp. This in turn implies that the
n-plane Lx ⊂ P(H0(X, SnΩX)) is constant on Dp, and so the nth Gauss map
gn : X −→ G(n, P(H0(X, SnΩX)) contracts Dp to a point, against Proposition
2.9. It follows that Σ ⊂ P(H0(X, SnΩX)) is a surface. If q ∈ Σ, then q ∈ Cx
for some x ∈ Dp; thus we have p ∈ Cx by Proposition 2.12, hence the rational
normal curve Cx joins p and q.

Definition 2.16. Let N > 3 be a positive integer. An irreducible variety V ⊂ PN−1

is said to be 2-covered by curves of degree n if a general pair of points of V can be
joined by an irreducible curve of degree n.

The case of surfaces 2-covered by curves was classically considered in
[Bom21]; a modern treatment can be found in [PR13, pp. 718-722], see also
[Ion05, Theorem 2.8] and [PT13, Théorème 1.5]. It turns out that those max-
imizing the dimension of the ambient space PN−1 are precisely the Veronese
embeddings of P2:

Proposition 2.17. If Σ ⊂ PN−1 is a non-degenerate surface which is 2-covered by
curves of degree n, then N ≤ 1

2(n+ 1)(n+ 2). Moreover, equality holds if and only if
Σ is projectively equivalent to the nth Veronese surface νn(P2) and, in this case, every
curve in the 2-covering family is a rational normal curve of degree n and there exists a
unique such a curve passing through two distinct points of Σ.

Proof. See [PR13, Theorem 2.2].

Let us study now the image of the nth cotangent map and the geometry the
locus exc(ψn); this generalizes the analysis of the case n = 1 that was carried
out in [Rou09, Proposition 2.14].

Proposition 2.18. If n ≥ 2 and the map ψn : P(ΩX) −→ P(H0(X, SnΩX)) is not
generically finite, then its imageXn ⊂ P(H0(X, SnΩX)) is a non-degenerate, linearly
normal surface 2-covered by rational normal curves of degree n. Therefore, by the last
result, it is projectively equivalent to νn(P2).

Proof. By Proposition 2.13 we have 2 ≤ dimXn ≤ 3. If dimXn = 2 then every
fibre of ψn : P(ΩX) −→ Xn has dimension 1, i.e. every point p ∈ Xn is an
exceptional point for ψn. HenceDp has dimension 1, whereas Σ = ψn(π

−1(Dp))
has dimension 2 and is contained in the irreducible surface Xn. Therefore Σ =
Xn and so, by using Proposition 2.15 and the fact that p ∈ Xn is arbitrary, we
infer that Xn is 2-covered by curves of degree n. Finally, Xn is non-degenerate
and linearly normal, being the image of the morphism induced by a complete
linear system in P(ΩX).

Theorem 2.19. Let n ≥ 2 be an integer such that SnΩX is globally generated. If
h0(X, SnΩX) >

1
2(n+1)(n+2) then ψn is generically finite onto its image, namely,

dimXn = 3, and we have

degψn ≤ n3(c21 − c2)

h0(X, SnΩX)− 3
. (12)

12



In this case, exc(ψn) is a Zariski-closed, possibly empty subset of P(H0(X, SnΩX)) of
dimension at most 1.

Proof. The first statement immediately follows from Propositions 2.17 and
2.18, setting N = h0(X, SnΩX). Since Xn is a non-degenerate threefold in
P(H0(X, SnΩX)), we have degXn ≥ h0(X, SnΩX) − 3 and so (12) is a con-
sequence of (9). Regarding the last statement, if ψn is generically finite onto its
image then we have dimψ−1

n (exc(ψn)) ≤ 2, hence the exceptional locus exc(ψn)
has dimension at most 1. Such a locus is a (possibly empty) Zariski-closed sub-
set of P(H0(X, SnΩX)) because ψn is a proper morphism, see [EGAIV, Corol-
laire 13.1.4].

Note that, as explained in Example 1.7, the exceptional locus exc(ψn) is
empty if and only if ΩX is ample.

3 An explicit bound for the generic finiteness of the
pluri-cotangent maps

We start this section by a straightforward calculation, whose details are in-
cluded because we could not find a suitable reference.

Lemma 3.1. Let X be a compact, complex surface. We have

χ(X, SnΩX) =
1

12
(n+ 1)

(
(2n2 − 2n+ 1)c21 − (2n2 + 4n− 1)c2

)
. (13)

Proof. This is a standard application of the splitting principle, as stated in
[Fried98, p. 28]: every universal formula on Chern classes which holds for
direct sum of line bundles holds in general. Let E = L1⊕L2 be a decomposable
rank 2 vector bundle on X ; then

c1(E ) = c1(L1) + c1(L2), c2(E ) = c1(L1)c1(L2). (14)

We can compute c1(SnE ) as follows:

c1(S
nE ) = c1 (S

n(L1 ⊕ L2)) = c1

(
n⊕
i=0

Li1 ⊗ Ln−i2

)

=

n∑
i=0

(ic1(L1) + (n− i)c1(L2)) =
n(n+ 1)

2
(c1(L1) + c1(L2))

=
n(n+ 1)

2
c1(E ).

(15)
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Let us now compute c2(SnE ). We have

c2(S
nE ) = c2 (S

n(L1 ⊕ L2)) = c2

(
n⊕
i=0

Li1 ⊗ Ln−i2

)
=

∑
0≤i<j≤n

c1(L
i
1 ⊗ Ln−i2 )c1(L

j
1 ⊗ Ln−j2 )

=
∑

0≤i<j≤n
(ic1(L1) + (n− i)c1(L2)) (jc1(L1) + (n− j)c1(L2))

= Ac1(L1)
2 +Bc1(L1)c1(L2) + Cc1(L2)

2,

(16)

where

A =
∑

0≤i<j≤n
ij,

B =
∑

0≤i<j≤n
(i(n− j) + (n− i)j) ,

C =
∑

0≤i<j≤n
(n− i)(n− j).

(17)

The quantities in (17) can be calculated by means of the standard formulas for
the sum of integers and squares, obtaining

A = C =
1

24
(n− 1)n(n+ 1)(3n+ 2)

B =
1

12
n(n+ 1)(3n2 + n+ 2).

(18)

Plugging (18) into (16), and taking into account (14), we get

c2(S
nE ) =

1

24
(n− 1)n(n+ 1)(3n+ 2)c1(E )2 +

1

6
n(n+ 1)(n+ 2)c2(E ). (19)

Now, the Riemann-Roch theorem for vector bundles on surfaces, see [Fried98,
p. 31], implies

χ(X, SnE ) =
c1(S

nE )(c1(S
nE )−KX)

2
− c2(S

nE ) + (n+ 1)
c21 + c2
12

. (20)

Setting E = ΩX in (20) and using (15) and (19), by standard computations we
obtain (13).

Corollary 3.2. Let X be surface of general type with ample canonical class. Then for
all n ≥ 3 we have

h0(X, SnΩX) ≥
1

12
(n+ 1)

(
(2n2 − 2n+ 1)c21 − (2n2 + 4n− 1)c2

)
.

Proof. Combine Lemma 3.1 with Corollary 1.4.
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Theorem 3.3. Let X be a surface of general type satisfying Assumption 2.1 and let
n ≥ 3 be an integer such that SnΩX is globally generated. If

c21 >

(
1 +

6n− 2

2n2 − 2n+ 1

)
c2 +

6n+ 12

2n2 − 2n+ 1
(21)

then the nth pluri-cotangent map ψn is generically finite onto its image Xn.

Proof. Using (13) one checks that (21) is equivalent to χ(X, SnΩX) >
1
2(n +

1)(n + 2). Using Corollary 1.4 we infer h0(X, SnΩX) > 1
2(n + 1)(n + 2), so the

claim follows from Theorem 2.19.

We can now state the following quantitative version of Proposition 2.2.

Corollary 3.4. Let X be a minimal surface of general type with c21 − c2 > 0 and such
that SmΩX is globally generated. Then the nth pluri-cotangent map ψn is generically
finite onto its image for all multiples n of m such that

n >
β +

√
β2 − αγ

α
,

where
α := 2(c21 − c2), β := c21 + 2c2 + 3, γ := c21 + c2 − 12.

Proof. We can rewrite (21) as a quadratic inequality in n with strictly positive
leading coefficient, namely

Q(n) = 2(c21 − c2)n
2 − 2(c21 + 2c2 + 3)n+ (c21 + c2 − 12) > 0.

Let us define u = c21/c2 > 1. By the Bogomolov-Miyaoka-Yau inequality, one
has u ≤ 3. The reduced discriminant δ = β2 − αγ of Q(n) is

δ = (−u2 + 4u+ 6)c22 + (30u− 12)c2 + 9.

We see δ as a quadratic function of c2, depending on the parameter u ∈ (1, 3].
The reduced discriminant of δ is the function

δ̄(u) = 18(u− 1)(13u+ 1),

which satisfies δ̄(u) > 0 for u ∈ (1, 3]. Since all the coefficients of δ are posi-
tive for u ∈ (1, 3], it follows that both zeros of δ are real and negative for u in
the same range. As a consequence, δ is positive for all c2 > 0 and u ∈ (1, 3].
Summing up, when n is greater than the root β+

√
δ

α of Q(n), one has Q(n) > 0.
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4 Examples and counterexamples

4.1 Example: symmetric complete intersections in abelian fourfolds
of product type

Let us consider an abelian fourfold of the form A × E, where A is an abelian
threefold and E is an elliptic curve. Let M be a polarization on A × E and let
x ∈ A be a point which is not 2-torsion. Up to replacing the polarization M
on A × E with a suitable positive multiple, by using parameter counting and
Bertini-type arguments we can find two smooth hypersurfaces Y1, Y2 ∈ |M |
such that

• Y1 and Y2 are both symmetric, i.e. invariant with respect to the involution
−1: A× E −→ A× E;

• Y1 and Y2 both contain the elliptic curve {x} × E;

• Y1 and Y2 do not contain any 2-torsion points of A× E;

• the intersection Y = Y1 ∩ Y2 is smooth.

The conditions above imply that Y is a smooth surface on which −1 acts freely;
then the quotient f : Y −→ X provide a smooth surface X , containing an ellip-
tic curve E′ isomorphic to E.

Proposition 4.1. The surface X is of general type with

c1(X)2 = 2M4, c2(X) =
3

2
M4, (22)

hence c1(X)2 − c2(X) = 1
2M

4 > 0. Moreover H0(X, ΩX) = 0, in particular ΩX is
not globally generated. Finally, SnΩX is globally generated for all even n, hence ΩX is
strongly semi-ample; however, ΩX is not ample.

Proof. Using the short exact sequence of tangent bundles

0 −→ TY −→ TA×E |Y −→ NY −→ 0,

and recalling that TA×E = O⊕4
A×E and NY = OY (M)⊕2, we get the equality of

total Chern classes
c(TY ) = c(OY (M))−2

that in turn yields c1(Y ) = OY (−2M) and c2(Y ) = 3M4. Since f : Y −→ X is an
étale double cover, we deduce (22). Moreover, we have ΩY = f∗ΩX , hence the
vector space H0(X, ΩX) is isomorphic to the involution-invariant subspace of
H0(Y, ΩY ). Now, by Lefschetz theorem for Hodge groups, see [Laz04, Example
3.1.24], the global holomorphic 1-forms on Y are precisely the restrictions of
those on A × E, so none of them is invariant and we get H0(X, ΩX) = 0. On
the other hand, if n is even then all global sections of SnΩA×E are invariant and
thus, when restricted to Y , they descend toX . These sections generate SnΩA×E ,
hence they also generate SnΩY and SnΩX . Finally, ΩX is not ample because X
contains the elliptic curve E′, cf. Example 1.7.
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Proposition 4.2. Let X be a surface as above. Then the pluri-cotangent map
ψn : P(ΩX) −→ H0(X, SnΩX) is generically finite onto its image for all even n ≥ 2.

Proof. From ΩY = f∗ΩX we infer SnΩY = f∗(SnΩX) for all n ≥ 1. This
implies that H0(X,SnΩX) is isomorphic to the involution-invariant subspace
H0(Y, SnΩY )

+ ⊆ H0(Y, SnΩY ). On the other hand, [Deb05, Proposition 13]
implies that the restriction map

H0(A× E, SnΩA×E) −→ H0(Y, SnΩY )

is injective for all n; moreover, if n is even then every global section of SnΩA×E
is invariant, and so its restriction belongs to H0(Y, SnΩY )

+. Summing up, for
all even n ≥ 2 we have

h0(X, SnΩX) = dimH0(Y, SnΩY )
+ ≥ dimH0(A× E, SnΩA×E)

=
1

6
(n+ 1)(n+ 2)(n+ 3) >

1

2
(n+ 1)(n+ 2).

The claim now follows from Theorem 2.19.

4.2 Example: some product-quotient surfaces

We start by considering a hyperelliptic curve C of genus 3, endowed with an
action of the cyclic group G = Z2 as follows. The curve C has affine equation of
the form

y2 = a8x
8 + a6x

6 + a4x
4 + a2x

2 + a0,

where the coefficients ai are such that the zeros of the polynomial at the right
side are distinct. If g is the generator of G, we define the action of G on C as

g(x, y) = (−x, y).

One checks that g has the four fixed points

(0,
√
a0), (0, −

√
a0), (∞,

√
a8), (∞, −

√
a8),

hence the quotient map C −→ C/G is branched at four points and, by the
Hurwitz formula, the curve C/G has genus 1.

Lemma 4.3. Let H0(C, ωC) = V +⊕V − be the decomposition of H0(C, ωC) into the
G-invariant subspace V + and the G-antiinvariant subspace V −. Then there exists a
basis {ξ1, ξ2, ξ3} of H0(C, ωC) such that

V + = ⟨ξ1⟩, V − = ⟨ξ2, ξ3⟩

and the three canonical divisors div(ξ1), div(ξ2), div(ξ3) have pairwise disjoint sup-
ports.
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Proof. The vector space H0(C, ωC) is generated by the holomorphic 1-forms
which, in affine coordinates, can be written as

ω1 :=
dx

y
, ω2 := x

dx

y
, ω3 := x2

dx

y
.

Note that ω2 is G-invariant, whereas ω1 and ω3 are G-antiinvariant. Now set
ξ1 := ω2 and take as ξ2 and ξ3 two general elements in the G-antiinvariant
subspace ⟨ω1, ω3⟩.

Let us consider now another curve F with a G-action.

Lemma 4.4. Let g = 2k + 1 ≥ 5 be an odd integer. Then there exists a curve F
of genus g, endowed with a free G-action having the following property. Denoting
by H0(F, ωF ) = W+ ⊕W− the decomposition of H0(F, ωF ) into G-invariant and
G-antiinvariant subspace, we can find a basis {τ1, . . . , τg} of H0(F, ωF ) such that

W+ = ⟨τ1, . . . , τk+1⟩, W− = ⟨τk+2, . . . , τg⟩

and the g canonical divisors div(τ1), . . . ,div(τg) have pairwise disjoint supports.

Proof. Let D be a curve of genus k + 1 and let L be a non-trivial line bundle
on D such that L 2 = OD. Then there exists an étale double cover f : F −→ D,
with F of genus 2k + 1 and f∗OF = OD ⊕ L −1; the curve F comes with a free
G-action, corresponding to the automorphism exchanging the two sheets of the
cover. Furthermore, since f∗ωF = ωD ⊕ (ωD ⊗ L ), we deduce

W+ = f∗H0(D, ωD), W− = f∗H0(D, ωD ⊗ L ).

Therefore the desired result follows if both ωD and ωD ⊗ L are globally gen-
erated. In fact, for a base-point free line bundle, a general section avoids any
given finite set of points, so we can choose recursively a basis where each sec-
tion avoids the base loci of the previous ones; moreover, this property is pre-
served by étale pullbacks. It is well known that ωD is base-point free, see for
instance [Ha77, Lemma 5.1 p. 341]. Regarding ωD ⊗ L , a point p is in its base
locus if and only if

H0(D, ωD ⊗ L (−p)) = H0(D, ωD ⊗ L ),

namely, if and only if h1(D, ωD ⊗ L (−p)) = 1. By Serre duality, this is equiva-
lent to the fact that there exists q ∈ D such that the divisor class of L is of the
form q− p. But then OD(2q− 2p) = OD, hence the linear system spanned by 2p
and 2q is a g12 on D and so D is hyperelliptic. Summing up, ωD ⊗ L is globally
generated if and only if one of these conditions (both implying g(D) ≥ 3, and
so g = g(F ) ≥ 5) hold:

• D is non-hyperelliptic;

• D is hyperelliptic and the divisor class of L is not the difference of two
Weierstrass points.
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This concludes the proof.

TakingC and F as above, for all k ≥ 2 we can now define a product-quotient
surface X = (C×F )/G, where G acts diagonally on the product. Such action is
free (because the action of G on F is so), hence X is a smooth surface of general
type, whose invariants are

pg(X) = 3k + 1, q(X) = k + 2, K2
X = 16k.

Thus h0(X, ΩX) = k + 2 and c1(X)2 − c2(X) = 8k > 0. The natural projec-
tions of C × F induce two isotrivial fibrations X −→ F/G and X −→ C/G,
whose general fibres are isomorphic to C and F , respectively. In particular, the
cotangent bundle ΩX is not ample, see [Rou09, Corollaire 3.8].

Let us now show that ΩX is not globally generated, either, but that it is
nevertheless strongly semi-ample.

Proposition 4.5. Let C and F be curves with a G-action as above, and X = (C ×
F )/G. Then ΩX is not globally generated, whereas its second symmetric power S2ΩX
is globally generated (and so SnΩX is globally generated for all even n).

Proof. Denoting by πC : C × F −→ C, πF : C × F −→ F the two natural projec-
tions, we have

ΩC×F = L⊕M,

where L = π∗CωC , M = π∗FωF . Moreover, the covering map C × F −→ X being
étale, for all n ≥ 1 we have H0(X, SnΩX) = H0(C ×F, SnΩC×F )

G. Thus, since
the action of G on C × F does not exchange the two factors, in order to show
that SnΩX is globally generated it suffices to show that it is possible to generate
every summand Lk ⊗Mn−k of SnΩC×F by using G-invariant global sections.

In the case n = 1, the space of invariant global sections of ΩC×F is

V + ⊕W+ = ⟨ξ1⟩ ⊕ ⟨τ1, . . . , τk+1⟩.

This shows that ΩX is not globally generated, since V + is 1-dimensional and
so it is not possible to generate the summand L by means of G-invariant global
sections.

In the case n = 2, we have

S2ΩC×F = L2 ⊕ (L⊗M)⊕M2.

We recall that div(ξi) are pairwise disjoint divisors, and the same is true for
div(τj), see Lemmas 4.3 and 4.4; thus, using the notation α ⊠ β for π∗Cα ⊗ π∗Fβ,
we can say that

• the G-invariant sections (ξ1)2, (ξ2)2 generate L2;

• the G-invariant sections ξ1 ⊠ τ1, ξ2 ⊠ τk+2, ξ3 ⊠ τk+3 generate L⊗M ;

• the G-invariant sections (τ1)2, (τ2)2 generate M2.

This shows that S2ΩX is globally generated.
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Proposition 4.6. Let k ≥ 2 and X be the surface constructed above. Then the pluri-
cotangent map ψn : P(ΩX) −→ H0(X, SnΩX) is generically finite onto its image for
all even n.

Proof. We first analyze the case n = 2. Using the G-invariant global sections of
S2ΩX produced of at the end of the proof of Proposition 4.5, we get

h0(X, S2ΩX) = dim
[
H0(X, L2)G ⊕H0(X, L⊗M)G ⊕H0(X, M2)G

]
≥ 2 + 3 + 2 = 7.

Thus, for all k ≥ 2 we obtain h0(X, S2ΩX) > 6, hence ψ2 is generically finite
onto its image by Theorem 2.19. Now, let us consider the general case. We have
c1(X)2 = 16k and c2(X) = 8k and so, by Corollary 3.4, the nth pluricotangent
map ψn is generically finite onto its image for all even n such that

n >
32k + 3 +

√
640k2 + 384k + 9

16k
.

Straightforward calculations show that function h(k) = 32k+3+
√
640k2+384k+9
16k is

strictly decreasing in the interval [2, +∞) and that h(2) ≃ 3.9. Thus, for k in
the same interval, we have n > h(k) as soon as n ≥ 4, and this completes the
proof.

4.3 Counterexamples to the generic finiteness of ψn: smooth ample
divisors in abelian threefolds

We will now show that the assumption h0(X, SnΩX) >
1
2(n + 1)(n + 2) in

Theorem 2.19 cannot be dropped. In fact, we will provide examples of surfaces
X of general type, with ΩX globally generated, such that h0(X, SnΩX) = 1

2(n+
1)(n + 2) and Xn is the nth Veronese surface for all n ≥ 1. Thus, no pluri-
cotangent map ofX is generically finite onto its image. All these surfaces satisfy
c21 − c2 = 0.

Let (A, M) be a polarized abelian threefold, with polarization M of type
(d1, d2, d3), such that there exists a smooth element X ∈ |M |. By the Riemann-
Roch Theorem and the ampleness of M , we have

h0(A, M) = χ(A, M) =
1

6
M3 = d1d2d3,

see [BL04, Chapter 3]. Moreover, by adjunction we get ωX = OX(X) and so

K2
X =M3 = 6h0(A, M).

From the short exact sequence

0 −→ OA −→ OA(X) −→ ωX −→ 0

we infer
pg(X) = h0(A, M) + 2, q(X) = 3,
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hence χ(OX) = h0(A, M). Summing up, X is a minimal surface of general
type with K2

X = 6χ(OX), namely c1(X)2 − c2(X) = 0; moreover the canonical
bundle ΩX is globally generated (cf. Example 1.8) and so KX is ample (Lemma
1.1).

Proposition 4.7. For all n ≥ 1, we have

H0(X, SnΩX) = SnH0(X, ΩX) ≃ C
(n+1)(n+2)

2 . (23)

Furthermore, the image Xn of ψn : P(ΩX) −→ P(H0(X, SnΩX)) is projectively
equivalent to the nth Veronese surface νn(P2) ⊂ P

n(n+3)
2 .

Proof. Since ΩX is globally generated and h0(X, ΩX) = 3, we have a short exact
sequence

0 −→ OX(−KX) −→ H0(X, ΩX)⊗OX −→ ΩX −→ 0. (24)

From [Eis94, p. 577] it follows that (24) gives rise to a short exact sequence

0 −→ Sn−1H0(X, ΩX)⊗OX(−KX) −→ SnH0(X, ΩX)⊗OX −→ SnΩX −→ 0,
(25)

where the exactness on the left follows by comparing ranks. The canonical di-
visor KX is effective and ample, so h0(X, −KX) = h1(X, −KX) = 0; taking
cohomology in (25), we obtain (23). As a consequence, the map P(σn) in dia-
gram (8) is an isomorphism for all n. Since the 1-cotangent map ψ1 : P(ΩX) −→
P(H0(X, ΩX)) ≃ P2 is surjective, the image of ψn must coincide, up to a projec-
tive transformation, with the image of νn.

Remark 4.8. Another way to state (23) is saying that the restriction map

H0(A, SnΩA) −→ H0(X, SnΩX)

is an isomorphism for all n ≥ 1, cf. [Deb05, Proposition 13].

Remark 4.9. When M is a principal polarization, namely (d1, d2, d3) =
(1, 1, 1), the surface X is a smooth theta divisor of A and we get pg(X) =
q(X) = 3, K2

X = 6. In this case, X is isomorphic to the second symmet-
ric product Sym2C, where C is a smooth, non-hyperelliptic curve of genus 3,
see [CaCiML98, p. 304].

The next result shows that, if one assumes that the Albanese image is
smooth, then the previous counterexamples are the only ones up to finite étale
covers. Recall that an abelian cover is a Galois cover with abelian Galois group.

Proposition 4.10. If Y is a smooth surface of general type with smooth Albanese im-
age, then the following are equivalent.

(1) ΩY is globally generated and the pluri-cotangent image Yn has dimension 2 for
all n ≥ 1.
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(2) ΩY is globally generated and the 1-cotangent image Y1 has dimension 2.

(3) Y is a finite, étale cover of a smooth, ample divisor in an abelian threefold.

(4) Y is a finite, étale abelian cover of a smooth, ample divisor in an abelian threefold.

Proof. (1) =⇒ (2) Obvious.

(2) =⇒ (3) If (2) holds, then by [Rou09, Proposition 2.14] we have q(Y ) = 3,
hence A := Alb(Y ) is an abelian threefold and the Albanese map aY : Y −→ A
is a local immersion onto its smooth image X ⊂ A. This implies that Y −→ X
is a local bihomomorphism between compact complex manifolds, hence an
unramified analytic cover ( [Lee11, Problem 11-9 p. 303]), which is actually an
algebraic cover by GAGA. By adjunction, the surface X satisfies 0 < K2

X = X3,
so the divisor X is ample in A by [BL04, Proposition 4.5.2].

(3) =⇒ (4) Let X ⊂ A be a smooth, ample divisor in an abelian three-
fold and let f : Y −→ X be a finite, étale cover. By Lefschetz hyperplane
theorem [Laz04, Theorem 3.1.21] it follows π1(X) = π1(A) = Z6; thus, since
the fundamental group of X is abelian, the cover f : Y −→ X is Galois, with
abelian Galois group.

(4) =⇒ (1) Let X ⊂ A be a smooth ample divisor in an abelian three-
fold and let f : Y −→ X be a finite, étale abelian cover. By [Par91, p. 200], there
exist non-trivial torsion divisors L1, . . . , Ls ∈ Pic0(X) such that

f∗OY = OX ⊕ L1 ⊕ · · · ⊕ Ls.

Since the cover is étale, we have SnΩY = f∗(SnΩX) for all n ≥ 1. Thus SnΩY is
globally generated (because SnΩX is) and, by projection formula, we get

f∗S
nΩY = SnΩX ⊕ (SnΩX ⊗ L1)⊕ · · · ⊕ (SnΩX ⊗ Ls). (26)

Since the divisor Lj is not effective and KX − Lj is ample, we get

H0(X, Lj) = H1(X,−KX + Lj) = 0.

Thus, tensoring (25) with Lj and passing to cohomology, we deduce
H0(X, SnΩX ⊗ Lj) = 0 for all j ∈ {1, . . . , s}. Hence (26) yields H0(Y, SnΩY ) =
f∗H0(X, SnΩX), which in turn implies Yn = Xn. By Proposition 4.7 it follows
that Yn has dimension 2 for all n ≥ 1.

Remark 4.11. The argument in the last part of the proof of Proposition 4.10 can
be also used in order to construct examples of surfaces of general type having
Gauss maps of arbitrarily large degree. For the sake of simplicity, let us just
consider finite, étale cyclic covers. Let X ⊂ A be a smooth ample divisor in an
abelian threefold and let L be a non-trivial element of order k in Pic0(X). These
data define an étale Zk-cover f : Y −→ X , where

f∗OY = OX ⊕ L⊕ · · · ⊕ Lk−1.
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As before, we get H0(Y, SnΩY ) = f∗H0(X, SnΩX), which in turn implies

G(n, P(H0(Y, SnΩY ))) = G(n, P(H0(X, SnΩX))).

This shows that, for all n ≥ 1, the nth Gauss map of Y factors through the
degree k cover f : Y −→ X , and so its degree is a multiple of k. Since k is
arbitrary, this construction provides smooth, minimal surfaces of general type
Y , all of whose Gauss maps have arbitrarily large degree.

5 Open problems

We end the paper with a couple of open problems.

Open Problem 1. Are there any examples of minimal surfaces of general type such
that SnΩX is globally generated for some n and h0(X, SnΩX) < 1

2(n + 1)(n + 2)
holds? If such examples exist, what is the behaviour of the pluri-cotangent map ψn?

This question what asked by the first Author in the MathOverflow thread
MO430570, without any answer so far. It is motivated by the fact that, in all
the examples that we are able to compute, if SnΩX is globally generated then
h0(X, SnΩX) ≥ 1

2(n+ 1)(n+ 2). The equality is attained, for instance, by finite
étale covers of smooth ample divisors in abelian threefolds, see Subsection 4.3.

Open Problem 2. How should one modify Proposition 4. 10 if one removes the
smoothness assumption for the Albanese image of Y ? Are there new examples with
non-generically finite pluricotangent maps that appear?
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