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Abstract

The aim of the paper is to study the geometry of a Riemannian manifold M, with a special structure
depending on 3 real parameters, a smooth map ¢ into a target Riemannian manifold IV, and a smooth
function f on M itself. We will occasionally let some of the parameters be smooth functions. For
a special value of one of them, the structure is obtained by a conformal deformation of a harmonic-
Einstein manifold. The setting generalizes various previously studied situations; for instance, Ricci
solitons, Ricci harmonic solitons, generalised quasi-Einstein manifolds and so on. One main ingredient
of our analysis is the study of certain modified curvature tensors on M, related to the map ¢, and
to develop a series of results for harmonic-Einstein manifolds that parallel those obtained for Einstein
manifolds both some time ago and in the very recent literature. We then turn to locally characterize,
via a couple of integrability conditions and mild assumptions on f, the manifold M as a warped product
with harmonic-Einstein fibers extending in a very non trivial way a recent result for Ricci solitons. We
then consider rigidity and non existence, both in the compact and non-compact cases. This is done via
integral formulas and, in the non-compact case, via analytical tools previously introduced by the authors.
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1 Introduction

The aim of this paper is to study the geometry of connected, complete, possibly compact, Riemannian

manifolds (M, (, )) with a (gradient) Einstein-type structure, if any, of the form

Ric® + Hess(f) — pdf @ df = A(, ) (11
() = de(V f), '

where
Ric? := Ric — ap™{, )N

for some o € R\ {0}, ¢ : M — (N, (, )n) a smooth map with tension field 7(¢) and f, u, A € C=°(M).
The structure described by (1.1]) generalizes some well known particular cases that have been intensively
studied by researchers in the last decade. Indeed, for 4 = 0, A € R and ¢ constant, (1.1) characterizes

gradient Ricci solitons
Ric 4 Hess(f) = A(, ). (1.2)

In case in we allow A € C*°(M) we obtain the Ricci almost soliton equation introduced in [38]. Note
that when A(x) = a + bS(x) for some constants a,b € R and S(x) the scalar curvature of (M, (, )), the
soliton corresponding to is called a Ricci-Bourguignon soliton after the recent work of G. Catino, L.
Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri [15]. For a “flow”derivation of the gradient Ricci
almost solitons equation in the general case see the work of [21].

In case 4 =0, A € R and a > 0 the system represents Ricci-harmonic solitons introduced by R.
Miiller, [32]. As expected the concept comes from the study of a combination of the Ricci and harmonic
maps flows. We refer to [32] for details and interesting analytic motivations.

For ¢ and p constants with y = %, for some k > 0 and )\ € R, describes quasi-Einstein manifolds

Ric + Hess(f) — %df ®df = A(,) (1.3)

Letting u, A € C>°(M) we obtain the generalized quasi-Einstein condition
Ric + Hess(f) — pdf @ df = A(, ). (1.4)

See, for instance, [14] and [4]. Obviously extends the quasi-Einstein requirement that we shall
later consider.

Ricci solitons and quasi-Einstein manifolds are often seen as a perturbation of Einstein manifolds (indeed,
the choice of a constant potential in and in recovers the case of an Einstein metric). Similarly,
Einstein-type structures can be seen as a perturbation of harmonic-Einstein manifolds. We recall that a
Riemannian manifold (M, (, )) is said to be harmonic-Einstein if it carries a structure of the type

Ric? = A(,)
{T(@) o) 19

We shall see that when m > 3, A in is necessarily a constant. Clearly is obtained from in
case f is constant.

Note that the first equation of can be equivalently rewritten (and we are not using that the metric
is Riemannian) as

G+A(,)=aT, (1.6)
where G is the Einstein tensor of (M, (, )),



is (up to a sign) the energy stress tensor of the smooth map ¢ introduced by Baird and Eells in [5] and

—2
A= mT)\. (1.7)

In case ¢ is harmonic then T is divergence free and thus four dimensional Lorentzian manifolds that satisfy

(L5) with

8rG
ct’

o =

where G is Newton’s gravitational constant and c is the speed of light in vacuum, coincide with solutions of
the Einstein fields equations with source field the wave map ¢ and cosmological constant .

System is a starting point in our investigation in the sense that it justifies, in a geometric contest,
the interest of studying a structure of the type . Indeed, as we show in below, if we
perform a conformal deformation of the metric (, ) of M, then from we obtain a solution of for
m > 3 with p = —ﬁ and viceversa for an appropriate . Thus we can think of the study of as of that
of under conformal deformations of the original metric (, ) of M, up to the freedom of the parameter
.

This parallels what happens in the study of Einstein and conformally Einstein metrics. This observation
suggests to concentrate our study first on the behaviour of Ric?. Since the latter is defined only in terms
of Ric and ¢, we push our analysis as far as possible without coupling ¢ to f, appearing in , via the
condition 7(¢) = dp(V f). The study of Ric? is realized in [Section 2| where we introduce what we have called
p-curvatures and for which we investigate a number of properties similar to those of the usual curvatures
derived from the Riemann tensor and its covariant derivatives. As clearly expected the geometry of the map
 comes into the picture but often not so strongly to deviate the behaviour of the p-curvatures from that of
the corresponding Riemannian counterparts.

Almost all the g-curvatures are formally defined in the way the standard curvatures are introduced using
the @-Ricci tensor instead of the Ricci tensor. More precisely: the ¢p-scalar curvature, denoted by S%, is
defined as the trace of the p-Ricci tensor; the ¢-Schouten tensor is defined as

S

AP =Rie? = 5o s (),

where m > 2 is the dimension of M; the p-Cotton tensor C'¥ represents the obstruction to the commutation
of the covariant derivatives of the ¢-Schouten tensor while the ¢-Weyl tensor is defined so that the decom-
position of the Riemannian curvature tensor holds in analogy with the standard one. The only tensor
whose definition is different from that probably expected is the ¢-Bach tensor B¥. Indeed, its definition is
motivated by geometric considerations, notably the integrability conditions and Theorem below.
When ¢ is a constant map all the p-curvatures reduce to the standard curvature tensors.

The properties of the -curvature tensors parallel those of the Riemannian tensors they generalize. For
instance, the ¢-Weyl tensor W% has the same symmetries of the Riemann tensor and its (1, 3)-version is a
conformal invariant, as it can be easily verified by a tedious computation. A relevant difference is that the
p-Cotton, the ¢o-Weyl and the p-Bach tensor are not, in general, totally traceless. Their traces are related to
the map ¢ and, clearly, they vanish in case ¢ is a constant map. We can say more: the ¢o-Weyl, the @p-Cotton
and the ¢-Bach tensors are totally traceless if and only if, respectively, ¢ is constant, ¢ is conservative (that
is, the energy stress tensor related to the map ¢ is divergence free) and ¢ is harmonic (with the exceptional
case m = 4 where p-Bach is always traceless).

The fact that the above p-curvatures are not, in general, totally traceless has heavy computational conse-
quences but basic facts are still true. For instance if ¢ is conservative we are able to recover a generalization
of Schur’s identity, that relates the divergence of p-Ricci to the gradient of the ¢-scalar curvature. On the
contrary the divergence of ¢-Weyl is not related with the p-Cotton tensor as in the case of their standard
Riemannian counterparts, see equation .



We observe that the special system obtained in we mentioned above, that is,

Ric? + Hess(f) + ﬁdf@df =A(,)

(1.8)
7(p) = dp(V )
has some peculiar features. For instance it satisfies the two integrability conditions
Cln+ WS, =0
(1.9)

m—4
(m_2)BZ‘ + m— QWtfjkftfk =0

where m > 3 is the dimension of M and C¥, W% and B¥ are respectively the ¢-Cotton, the p-Weyl and the
p-Bach tensors. When ¢ is constant the above integrability conditions become the integrability condition
for a conformally Einstein metric, that have been proved to be sufficient, under a further mild assumption,
to guarantee the existence of a conformally Einstein metric on M by R. Gover and P. Nurowski, [22]. We
extend this result to the case of showing, under a corresponding mild additional assumption, that they
are sufficient conditions to generate a conformally harmonic-Einstein structure on M, see|Proposition 2.63|
Observe that in the coefficient pu = fﬁ.

In case ¢ is a constant map and g = 0 a special form of the integrability conditions in (see equations
and for the general case where ¢ is not constant and p # 0) has been used to study the local
geometry of Bach flat gradient Ricci solitons by H.-D. Cao, Q. Chen in [II]. Their results has been extended
by G. Catino, P. Mastrolia, D. Monticelli and M. Rigoli to gradient Einstein-type manifolds in Theorem 1.2
of [I6]. The latter are structure of the type with ¢ a constant map, x4 € R and A(z) = pS(x) + A for
some real constants p and A.

These results suggest to study from the same point of view and in [Section 6] we are able to char-
acterize, when pu # —ﬁ (the equality case pertaining to [Theorem 2.49)), from the adequate integrability
conditions and the properness of the function f, the local geometry of a complete Riemannian manifold with
a gradient Einstein-type structure and ¢-Bach tensor that vanishes along the direction of V f. Note that
for conformally harmonic-Einstein manifolds the latter requirement is always satisfied, as one can immedi-
ately deduce contracting the second equation of against Vf. Our main result, below,
is that, in a neighborhood of every regular level set of f, the manifold (M, (, )) is a warped product with
(m — 1)-dimensional harmonic-Einstein fibers, given by the level sets of f. Precisely, we have:

Theorem 1.10. Let (M, (,)) be a complete, non-compact Riemannian manifold m with an FEinstein-type
structure as in (6.1). Suppose that m > 3, that a > 0, that B#(Vf,-) =0 and p # 1/(2—m) and that f is
proper. Then, in a neighborhood of every regular level set of f, the Riemannian manifold (M, {,)) is locally
a warped product with (m — 1)-dimensional harmonic-Einstein fibers.

We underline that, computationally speaking, this section is a real “tour de force”.

In we consider the traceless p-Ricci tensor 7%. In we prove the basic formula
for A|T%| that we use in the main result of the section; the “gap”property given in that
shows that whenever |T%| is sufficiently small, then (M, (, )) carries a harmonic-Einstein type structure,
if some necessary conditions are satisfied. One of them involves the largest eigenvalue n* of the operator

W¢ 1 S3(M) — S2(M) that we define in (2.61)). We estimate n* form above in [Proposition 3.22| following
*

an idea of G. Huisken [24] The above [Corollary 3.18|also compares with some previous result of ours, [29].
It is well known, from the work of D. S. Kim and Y. H. Kim, [25], that the validity of (1.3) on M yields,
via a non-trivial consequence of the second Bianchi identities, the validity of the equation

Apf — kXA = —Bek/ (1.11)
for some constant 5 € R. Here Ay is the symmetric diffusion operator

Ap=A—(Vf,V).



A consequence of (1.11)), indeed equivalent to (1.11}), is the validity of Hamilton’s type identity
1
St (1= 1) ISP+ (= mn = ek,

where S is the scalar curvature of (M, (, )). Note that we can think of (1.2)) as a “limiting” case of (1.3 as
k — 4o00. However, as we shall see, the equation companion to ([1.11)) corresponding to (|1.2) is

Apf—mA=pB— 2], (1.12)

for some constant 3; however, ([1.12)) is difficult to be interpreted as a “limiting”case of ([1.11)) as k — —+oo.
Observe that (|1.12), coupled with (1.2)), yields Hamilton’s identity for gradient Ricci solitons

S+ V2 +20f = B.
In [Proposition 7.40[ we show that equations (|7.43) and ([7.44]), that correspond to (1.11) and (1.12)), hold

also for , where ) is constant (with the exceptional case y = ———, where A may also be a smooth
function). The interesting fact is that the smooth map ¢ and the constant « do not appear in the equations.

From the literature we know various examples of the special structures we just mentioned above. As
for their non-existence, for instance in case of quasi-Einstein manifolds, we can refer to the non-existence
problem for solutions of equation (|1.11)). In doing so one might wonder about the constant £.

As a matter of fact, the pairing (1.3)), has a precise geometric meaning that enables us the shed light
on the problem. Towards this aim we go back to an old interesting question considered in A. Besse’s book,
[8], on the possibility of constructing examples of Einstein manifolds realized as warped product metrics. It
is well known that, if (M™,(,)) and (P,(, )p) are Riemannian manifolds and we consider on M := M x P
the warped product metric

Y= () +emml ()

for some function f € C*°(M), a computation shows that (, ) is Einstein satisfying

for some A € R, if and only if (P, (, )p) is Einstein with

Ricp = B(, )p

for some § € R, and furthermore the following relations hold between A, 3, f and the Ricci tensor Ric of M:

Ric + Hess(f) — %df@df =A(,)
Apf—mA= —mﬁe%f.

This setting has been analyzed in detail in [13]. In the second part of we shall investigate equations
(7.43)) and on complete, non-compact manifolds mainly with the aid of the weak maximum principle,
see for instance, Chapter 4 in the book [I], obtaining a non-existence result.

In we develop another technical approach to non existence of Einstein-type structures starting
from the following observation: if j # 0, setting « = e™#/ and tracing the first equation in we obtain

Lu := Au+ p(mA — S¥) =0, (1.13)

where S¥ = S — aldp|? is the ¢-scalar curvature. Since u > 0, by a well known result of [19] and [31], the
operator L is stable or, in other words, its spectral radius A} (M) is non-negative. Thus, instability of L
yields a non-existence result for at least in case p is a non-zero constant. Toward this aim we detect
appropriate conditions on the coefficient of the linear term in . This is investigated in [Proposition 4.44]
below.




A further important problem for equations and is that of uniqueness of the solution. In
we produce integral formulas that provide uniqueness in case M is compact. Basically in case of
the only assumptions are an appropriate lower bound on the Ricci tensor of (M, (, )) and a range of
validity for the parameters, see for equation we refer to In the complete,
non-compact case we use an unpublished refinement due to G. Albanese, [2], of a previous result of our,
[42] Theorem 3.1 and Corollary 3.2, to deal with a very weak superlinearity of the type tlogt for t >> 1,
that pops up from equation after an appropriate “change of variables”, see (|7.44]) and the prototype
equation . As a geometric consequence we obtain, for instance, elow that basically
compares two Einstein-type structures with u = 0.

is devoted to some results in the compact case where, together with , we also consider the
more general Einstein-type structure

Ric“"+%ﬁx(, )= uXP ®X° 4 A(,)
7(p) = dp(X),

for some X € X(M) and with X > denoting the 1-form dual to X via the musical isomorphism ”. The compact
case is quite rigid once we require constancy of the ¢-scalar curvature. Indeed, when p # 0, > 0 and
A, f € C°°(M) with f non-constant, a Riemannian manifold with constant p-scalar curvature that supports
an Einstein-type structure as in is always isometric to a Euclidean sphere and ¢ is a constant map,
see When g = 0 the same happens under the same hypothesis for the general structure
, when X is not a Killing vector field, see In proving the mentioned results we extend
the well known fact, due to M. Obata, [33], that a compact Einstein manifold with a non-Killing conformal
vector field is isometric to a Euclidean sphere, see|[Lemma 5.2} Our[Theorem 5.14] and [Theorem 5.22| extend
respectively the results of [6] and [7] to the case when, a priori, ¢ is not constant. ends with
[Theorem 5.47| and [Theorem 5.56| where we guarantee the same conclusion in case the ¢-Schouten tensor is
a Codazzi tensor field (a necessary condition) and one of its normalized k™ order symmetric functions in
its eigenvalues is a positive constant. We shall see that the -scalar curvature is constant if and only the
first symmetric function of the eigenvalues of the ¢-Schouten tensor is constant, hence we can see these two
Theorems as a generalization of [Theorem 5.14] and [Theorem 5.22] In doing so we use a general formula valid
for every 2-times symmetric, covariant Codazzi tensor field 7' on an m-dimensional Riemannian manifold.
Indicating with Py, the k™ Newton operator associated to T and with Sy, the (non-normalized) k" symmetric
function in the eigenvalues of T" we obtain equation below that reads

(1.14)

k
div(Py(Vu)) = Y (—1)"Sp_jtr(t' o hess(u)), (1.15)

=0

for 0 < k < m, where t and hess(u) are the endomorphisms of X(M) associated to T and Hess(u) while ¢
denotes the ¢ times composition of ¢ with itself. In case the function u satisfies a system of the type

Hess(u) = a(, ) + bdu ® du + co*({, Yy —dT
for some functions a, b, ¢,d € C**(M), a computation shows that (1.15)) yields
div(Pp(Vu)) = cx(aoy — dog1) + b(Pe(Vu), Vu) + (P, ¢, )n)- (1.16)

Here ¢, := (m — k)(7) and o}, = (’,?)715'16. We also observe that for the validity of (1.15)), and therefore
that of (1.16]), we can relax the assumption that 7" is Codazzi to the property

CX,Y,2)+C(Z2,Y,X)=0
for every X,Y,Z € X(M), where, in a local orthonormal coframe, C' is the tensor of components

Cijk = Tij e — Tik,5-



Formula (1.16)) can be applied in various circumstances. The following example shows its genesis. Let
M =TI x;, P™ be a warped product with base space the open interval I C R and fiber the m-dimensional
Riemannian manifold (P, (, )p), where h : I — R™ is a smooth function. Then the metric on M is given by

()Y =dt* + B*(, )p

where t is the natural coordinate on I. Given the immersion ¢ : M™ — M we define the function  : M — R

by setting
mop(x)
W)= [
to

where to € I is (arbitrarily) fixed and 7 : M — I is the natural projection on the first factor of the product.
A computation shows that

Hess(n) = (w0 1)(, ) + h(m 0 ¢)(0h, v) (IL,v)

where v is a local unit normal to ¢ and II is the second fundamental tensor of the immersion. Assume that
the immersed hypersurface is one-sided so that the unit normal v can be chosen globally and let T := (I, v).
Then the 2-times covariant, symmetric tensor T is Codazzi provided M has constant sectional curvature
(note that in this case h is explicitly given). Let the Hj’s be the higher order mean curvatures of ¢ and let
0 <k <m—1. Then, in case M is compact, by integration yields

/M [ (0 ) Hy + h(m 0 )00 0) Hyp] = O,

a clear generalization of the Euclidean Hsing-Minkowski’s formulas.

We observe that is given in where, motivated by the results in [Section 2| and [Section]
we introduce the notion of Einstein-type structure. In the same section we collect some other formulas
instrumental to our study in the subsequent paragraphs. It is worth to mention formulas and ,
the first one is used in to prove while the latter is used in the first part of
[7] to obtain another important result: an upper and a lower bound for the (-scalar curvature of a complete,
non-compact Riemannian manifold supporting a gradient Einstein-type structure as in with o, g and A
appropriate constants, see (these estimates generalize some previous results proved for generic
quasi-Einstein manifolds, [13]).

In what follows we shall freely use the “moving frame” formalism and manifolds will always be tacitly
assumed to be connected.

2 p-curvatures, harmonic-Einstein manifolds and first results

The aim of this section is to introduce the ¢-curvatures of a pair (M, (, )) a Riemannian manifold and ¢ :
M — (N, (, )n) a smooth map. We study some properties. We introduce the concept of harmonic-Einstein
manifold and we prove some results. Probably, in a coherent way with our notations, harmonic-Einstein
manifolds should be called ¢-Einstein manifolds. However, the first terminology has already appeared in the
literature so that we have decided to keep it.

Let (M, (, )) and (N, (, )~) be Riemannian manifolds, ¢ : M — (N, (, )n) asmooth map and o € R\{0}.
Indicating with Ric the usual Ricci tensor of (M, (, )) we define the ¢-Ricci tensor by setting

Ric? := Ric — ap™(, )n. (2.1)

The p-Ricci tensor appears in the work of R. Miiller [32] but it was defined and denoted by Ric? firstly by
L. F. Wang in [43]. The @-scalar curvature S¥ is obtained by tracing (2.1]), that is,

S¢ =8 — aldy|?, (2.2)



where S is the usual scalar curvature of (M, (, )) and |dip|? is the square of the Hilbert-Schmidt norm of the
section dy of the vector bundle ¢*T'N. We formally introduce the ¢-Schouten tensor A¥ in analogy with
the standard case
AP = Ric? — — () (2.3)
:=RicY - — .
2(m—1)"" "
where m > 2 is the dimension of M. An immediate computation gives the relation of A¥ with the usual
Schouten tensor A, that is,
ar= o (w- 520 (2.
s /N 2(m_ 1) ) . .
We recall the Kulkarni-Nomizu product of two symmetric 2-covariant tensors, that we shall indicate with
the “parrot”operator ®. It gives rise to a 4-covariant tensor with the same symmetries of Riem, the Rie-
mann curvature tensor. In components, with respect to a local orthonormal coframe, given the 2-covariant
symmetric tensors T' and V' we have

(VOTD)ijue = VieTj — Valjx + Vii'Tik — Vi Ti. (2.5)

Then, for m > 3, the p-Weyl tensor is defined by
1
W¢? := Riem — —— A¥ . 2.6
fom — —— 4°®(,) (26)
From the standard decomposition of the Riemann curvature tensor we know that, for m > 3,
1
Riem =W+ ——A@®(, ),
m — 2

and from the distributivity of (® with respect to sums, together with (2.4)), we deduce the expression of W%

in terms of W: dol?
We =W+ 2 (0 - (1) B )

m— 2

W¢ has been defined as in (2.6 in order to keep the validity of the usual decomposition of the Riemann
tensor also in this “p-case”. We note that W% has the same symmetries of Riem. However in general W¥ is
not totally trace free. Indeed, from (2.7) and the fact that, on the contrary, W' is totally trace free we obtain

Wi = avie = ale™(, )n)ij- (2.8)

The next result, analogous to Schur’s identity, typically shows how the geometry of ¢ enters into the
picture.

Proposition 2.9. In the above setting we have:

1 a a
Rfj,i = isf — QP (2.10)

i

where ¢% are the components of the tension field T(¢) of the map ¢ and R}, are the components of the

p-Ricci tensor.

Proof. From (12.2)) we have
S =S¢ + aldp|*.

Taking its covariant derivative
1 1
355 = 557 T aviel

and by the usual Schur’s identity we obtain

1 a a
Riji = 557 + aglpl. (2.11)



Using and the above we infer

RY ;= Riji — apfof — apf o
Therefore, from the symmetries of Vdy

R} i = Riji — apg;of — apgef

and from (2.11)) we deduce (2.10). O

Remark 2.12. If 7(¢) = 0 then we have an analogous of the usual Schur’s identity

RY . =287,

iji — 9%

The converse holds, that is, the latter implies 7(¢) = 0, in case ¢ is a submersion almost everywhere on M,
see page 6 of [5].

Next definition is analogous to that of an Einstein manifold.

Definition 2.13. A Riemannian manifold (M, (, )) is said to be a harmonic-Einstein manifold if there exist
aeR\{0}, N eC>®(M) and ¢ : M — (N, {, )n) such that

Ric? = A(, )
{T(@) o (2.14)

To have a strict parallelism with the notion of Einstein manifold, in case m = 2 we require A to be
constant. Note that for m > 3 this is automatic because of the following version of Schur’s lemma.

Proposition 2.15. Let (M, (,)) be a Riemannian manifold of dimension m >3, a € R\ {0}, A € C>(M)
and suppose that for some ¢ : M — (N, (, )n)

Ric? = \(, ). (2.16)

Then
(m —2)VA =2a(r(p),dp) N (2.17)

In particular, if T(p) = 0 then X is constant.
Proof. We trace (2.16]) to obtain S¥ = mA and then

ST =m;. (2.18)

On the other hand, taking covariant derivative of (2.16]) we have

R;’}}k = A0ij.
Tracing with respect to ¢ and k
R;’})i =\

We then use (2.10) to obtain
(m —2)X; = 209507

and (2.17)) follows at once. O



We next recall the definition of the curvature operator % acting on S?(¢*TN), the space of symmetric
2-covariant tensor fields on *T'N, for some ¢ : M — (N, {, )n). Let N R,.pq denote the components of the
curvature tensor of N in a local orthonormal coframe {w®}, for 1 < a,b,... < n, where n is the dimension
of N. Let 8 = B,w? @ w® be an element of S%(¢*T'N) and define

m(ﬁ) = NRacdecdwa ® wb~

It is not difficult to see that, introduced in S?(¢*T'N) the natural inner product (, ), induced by (, ), the
operator R : S%(p*TN) — S%(¢*TN) is self-adjoint and thus diagonalizable. We let A(x) to denote its
largest eigenvalue at x € M. We have

Theorem 2.19. Let (M, (, )) be a complete, possibly compact, m-dimensional manifold with m > 2 which
is hamonic-Finstein, that is, such that

S
Ric? = —(,)
m (2.20)
7(p) =0
for some ¢ : M — (N, {, )n) and some constants o € R, o > 0, and S¥ € R. Assume that
A" = sup A(x) < a. (2.21)

reM
Depending on the sign of the constant S¥, we have
i) if S >0, then ¢ is constant and (M, (, )) is Finstein with scalar curvature S = S¥;

ii) if S® <0, then the energy density |dp|* satisfies

S
0 <supld CI L —

M [dee] m(a — A*)
Corollary 2.22. In the assumption of the Theorem suppose that the manifold is flat harmonic-FEinstein,
that is, S® = 0. Then ¢ is constant and (M, (, )) is Ricci flat.

Remark 2.23. Since « > 0, Ric? = 0 immediately implies that Ric > 0 on the complete manifold (M, (, )).
In case the harmonic map ¢ has bounded image and N is simply connected with non-positive sectional
curvature by a Theorem of S. Y. Cheng [I7] we know that ¢ is constant and as a consequence (M, (, )) is
Ricci flat. The setting of is more general and, in any case, different.

Proof. Since ¢ is harmonic the Weitzenbock-Bochner formula reads

*AWIQ |Vdp|? + N Raveaspi 0507 + Rijoi e, (2.24)
where the indices a, b, ... and i, j, . . . refer, respectively, to local orthonormal coframes on N and M. Having
set

B = pipiu? ® W’
we have

Rabcd@?@?@?@f - _(m(5)7ﬂ) Z _A|B|2

Observe that
1B = *(, )/

and, since from (2.20))
1 S¥
* _ = 2.2
2 <7>N o (RIC <a>)a ( 5)

10



using A* < 400 we deduce

* 2
Rabcdwi‘wﬁcpjwf > % Ric — %L ) (2.26)
From - the first equation of (| and ([2.26]) we then have
%AWF > (1 - i) ‘Ric - %(, ) : + %tr <Rlc - %<, >) . (2.27)
From Newton’s inequality and the first equation of -
i~ 22| 2 g
m
Hence yields . ,
%Aa\dgoﬁ > (1 — a) % lde|* + Z—aldp)?
and setting
u = aldpl®
we obtain . AN 2 5
§Au > (1 — a) poee + P (2.28)

where the constant 1 — %* is strictly positive because of (2.21). We now deal with the non-compact case
being the compact case simpler. We observe that the first equation of (2.20) and o > 0 imply

g¢
s 07
Ric > m(,)

where S¥ is constant and therefore completeness of (M, (, }) yields the validity of the Omori-Yau maximum
principle for the Laplace-Beltraml operator A. We then apply Theorem 3.6 of [I] to deduce from (2.28)) and
positivity of 1 —

u* :=supu < +oo.
M

Then, we apply the Omori-Yau maximum principle again to (2.28)) to infer

[(1 - A*) ut + 5@} <0. (2.29)

et m
From ([2.29) and the definition of u we immediately deduce conclusions i) and 7). O

Suppose 0 < a < A*. In the assumptions of with the further request sup |dp|? < +o0,
proceeding in a way analogous to that above we reach the conclusion
S

do|> > — =
sbp\ o" = v —a)

that bears information only in the case S% > 0. In particular we deduce the following gap result:

Theorem 2.30. Let (M, (, )) be a complete, possibly compact, m-dimensional manifold with m > 2 and let
a € R, a > 0. Given a constant X > 0, there is no harmonic-Einstein structure as in (2.20) on M with
S% =% and for which

dol> < — =
S}Zp' ¢l A —a)

11



Note that the case @« = A* can be treated similarly, as we will see below.
Analogously to the standard case we define the ¢-Cotton tensor C'¥ as the obstruction to the commuta-
tivity of the covariant derivative of A¥, that is, in a local orthonormal coframe,

Cfy = AL — A, (2.31)

ik,j"

Using definition ([2.3) of A¥ we compute the indicated covariant derivatives in (2.31)) to obtain C¥ expressed
in terms of the usual Cotton tensor C of (M, (, )). We have

a

Ch = Cigp — @ |0l — ok — —— (Pirdiy — 90 | - (2.32)
Next relations are obtained by computation
Ci; = —Cf and therefore C7; =0, (2.33)
Cfﬂ = el = —Cﬁj, (2.34)
Crp+Chi+Cf; =0. (2.35)

Explicitating (2 in terms of RY: ;k We obtain the commutation relations

C‘P

¥ -
" o m =)

ij zkg

(SF8i; — S6i), (2.36)

that we shall use later (for instance in [Theorem 3.5)). Next we introduce the @-Bach tensor B¥ by setting,
in a local orthonormal coframe and for m > 3,

(m = DB] = e+ RE (W, — avtttn) + a (whohe — plet = —5lr@Pos ). (237

As remarked in the introduction the above definition of B¥ is motivated by the geometric results we shall
obtain with its use. When needed, we shall indicate the term C; ik S div(C%). For the moment we prove

Proposition 2.38. Let m > 3; the w-Bach tensor is symmetric and

tr(B¥) =« 3 IT(0) 2. (2.39)

(m—2)
In order to prove the Proposition we shall need the commutation formulas
Afak = Ay T B AL+ RfjkAfk- (2.40)
To show the validity of (2.40|) we proceed in a general contest as follows.

Proposition 2.41. Let T' be a 2-times covariant tensor of components T;; with respect to an orthonormal
coframe {0}, 1 < ,7,... <m. Then

Tije = Tigune + RiTij + Rip T (2.42)
Proof. We shall use the first and the second structure equations
' = —0, NOF, dfi = -0}, A 0% + O,

where {#}} are the Levi Civita connection forms associated to the orthonormal coframe {6} and
O = SRi, 605 A 0"
J T gkt

12



are the curvature forms of the metric (, ) of M. By definition, the covariant derivative of T has components
T;; % given by
Ty 10" = dTi; — Ty;0; — Tis05. (2.43)

Differentiating the above we have
dT;j 5 N O° + Tij xd0" = —dTy; A0 — Ty;d05 — dT;s N 65 — Tiedb. (2.44)
Next recall that the components of the second covariant derivative of T are
Tj 0" = dTyj ) — Tsj 105 — Tis 107 — Tij, 505
We use this information and (2.43) together with the structure equations into (2.44]) to infer
(Tijnt0" + Tuj o0 — Tiso0; — Tij %) N O™ — Ty 03 A O°
= —(Toj k0" + Ty;0% + Tu16') A O + To05 A OF — T, 05
—(Tis 10" + TisbF + Tir0F) A 05 + Ty505 A OF — T,03.
Hence,
1
Tijke0" NOF = =S (T Riyy + Tis R0 )0 N 0"

Skew symmetrizing we obtain
Tijre — Tijax = =T Ry, — Tis Ry,

that is, . O
Proof (of Proposition 2.38). We rewrite B¥ in the form

(m—-2)B* =V +Z
where:

«
Vij = C?k,k - aRffﬂZ@? — QP Pi s Zij = Rkatfkj + Qg Pk — m7_|7'(<ﬂ)|25ij-

! 2

Since Z is clearly symmetric it remains to show that V' shares the same property. To verify this fact, in
other words that V;; = Vj;, we see that, explicitating both sides of the equality, this is equivalent to show
that

alpi(Rief — Rfj%ﬁ?) + Chri] — PhrjPil = Cﬁm - Cf;k,k = —(Ciﬁ'k - Cﬁk)k-
By using ([2.33)) and (2.35|) we have

» ®
*(Cijk - Cjik i

o = —(Clp + Chide = Cfij s
hence the above equality is equivalent to
Clijr = Alen(R.05 — RE07) + Pari] — Phony i1 (2.45)
It remains to compute Cf}; , to verify (2.45). Using (2.31)) and (2.40) we have
Cliin = Afijn — Al = (AL + Rig AL + Ri AL — (Af) ki + BuiAf + RL AT

Hence, with the aid of (2.3), we deduce

SS(J
leij,k = <sz‘,k - 2(mk_ 1)5ki>j + Rijfi + RﬁjkAft

SW
- <Rfj,k - 2(mk_1>5kj)i — Ry Af; — Ry AL,

13



From (2.10) and the symmetries of Riem we obtain
©

1 S
C? = (=8 —apl ot — — 21 ) 4R, AP 4+ R, A?
kij,k (2 i APREP; 2(m — 1)>j + R Ap; + T Ay

m—1)

K3

1 (%] a a Sf [%2) t %]
- §Sj - OPpEP; — 2(7 - RkiAk;j - RijkAlct

m—2 m—2
= ® a a %) ) o a v
= (2(m—1)5i - ozsﬁkk%)j + Ry A}, — (2(m_1)57 — ag&kkgoj) — Ry A7

(2

Since Hess(S%) is symmetric we deduce
Clijr = @rep})i — aleiepi); + R Ap; — Rii AL
Using once again (2.3) and the symmetry of Vdy

Cliix =P} + i — Phig i — Pney)

@ S¥ © S¥
+ Ry Rki_2(m—1)§ki — Ry Rkj_Q(m—l)(skj

S¥ S¥

=a(Phri¥i — Pk i) + R R, — mRij — Ry RY; + Am—1) 1)Rjz'~

From ([2.1)) we finally conclude

Clijx =] — rnpi) + (BRY; + apppf) RE; — (RY, + apiel ) RE;
=Pk — Pinj i) + apipi RY, — aplpl RY,
=alpinip] — i i + PRRE S — RE 07,

and this proves the validity of (2.45)).
We now compute tr(B%?). From (2.37) we have

m
(m = DBE = Chy 4 WS, - aRfiet +a (110 = et — 2 r(o))
Then with the aid of (2.34) and (2.8)

IT(0)” — apipof

(m = 2) B =a(@iipi)k + aR ot vl — aRf el —

m— 2
gl + (@) — a—|r ()2 — agiipt
ik Fk m — 2 kki¥i
m—4 9
e ROl
which is equivalent to (2.39). O

It is well known that the usual Bach tensor B, defined by
(m —2)Bij = Cijpk + RexWeiny,

identically vanishes on an Einstein manifold. In the present setting the analogous result is given by the
following

Proposition 2.46. Let (M,{,)) be a harmonic-Finstein manifold of dimension m > 3 for some ¢ : M —
(N,{,)~n) and o € R\ {0}. Then B? =0, that is, (M, (,)) is w-Bach flat.

14



Proof. Using definition (2.14)) of a harmonic-Einstein manifold we deduce

i S . m=2
A¥ = Ric _Q(m—1)<’>_2(m—1)S ()

Since m > 3 and ¢ is harmonic, by [Proposition 2.15| S¥ is constant. It follows that A¥ is parallel, hence is
a Codazzi tensor field, and then C% = 0. Using (2.8) and once again (2.14]) we have

a a SSO a a
Rfk(Wtfkj — apipidir) = E(Wékj —ap; @j) =0.

From the above equation, C¥ = 0 and the fact that ¢ is harmonic, we deduce

1,

a, . a a a a a 1
(m — 2)35‘ = C‘?k,k + Rfk(Wtfkj — P} oK) + (%‘j%k — PrkjPi — m_2|7(90)25ij) =0

thus (M, (, )) is p-Bach flat. O

Remark 2.47. It possible to prove that, for every Riemannian manifold (M, (,)) and every ¢ : M —
(N, (, )n) smooth map, the tensor B¥ is a conformally invariant tensor field in case m = 4, where m is the
dimension of M. For a proof of this fact see the doctoral thesis of A. Anselli.

Next result is one of the important motivations for the general structure we shall introduce in
We begin with the following

Definition 2.48. A Riemannian manifold (M, (, )) of dimension m > 3 is said to be conformally harmonic-
Finstein if there exists ¢ € C*°(M), ¢ > 0 on M such that, having defined

the Riemannian manifold (M, </,\/>) is harmonic-Einstein.
We then have

Theorem 2.49. Let (M,{,)) be a Riemannian manifold of dimension m >3, let o : M — (N, (, )n) be a
smooth map and let o € R\ {0}. Then there exist yp € C*°(M), ¥ > 0 on M and A € C®(M) such that,
having defined {, ) = ¥2(, ), we have

{E?:a&% v =A() (2.50)

where @ denotes the map ¢ from (M, (,)) to (N,(, )n), if and only if for some f,\ € C>(M)

Ric — ap™(, )N + Hess(f) + ﬁdf@df =(,)

(2.51)
() = de(V ).
In this case f and 1 are related by
b= e 72 (2.52)
while A and X\ satisfy
Aff+(m—2)A = (m—2)Aem-2/. (2.53)

Here Ay is the symmetric diffusion operator A — (V f, V).

Remark 2.54. Note that, since m > 3, A is constant by [Proposition 2.15]

15



Remark 2.55. We shall see later, see[Remark 6.18] that the system (2.51)) satisfies the integrability conditions

and A
(m - 2)35 + 7_2Wtfjkftfk =0. (2.57)

It is worth to observe that implies that if (M, (, )) is a four dimensional conformally harmonic-Einstein
manifold then it is p-Bach flat. This partly motivates the definition of B¥ given in . Indeed, in this
way the situation parallels that of four dimensional conformally Einstein manifolds that are always Bach
flat.

In order to prove the Theorem we shall need the following formula that relates the Ricci tensors Ric of
(M, (,)) and Ric of (M, (, )) where, for m > 3,

()=eTmI(),
From Theorem 1.159 of [§] we have

— 1 A
Ric = Ric + Hess(f) + ———df @ df + +f2<, ). (2.58)
A second ingredient in the proof is the relation between 7(p) and 7($); from [I8], page 161, we have
7(§) = em=1(r(¢) — dp(V ). (2.59)

Proof (of Thereom 2.49). By (2.59) we deduce that 7(¢) = dp(Vf) if and only if 7($) = 0. Suppose that
(250) holds, for some A € R, where (, ) =%?(, ) with ¢ given by (2.52). Using (2.58) we obtain

Ric — ap™(, >N+Hess(f)—|—$df®df+

that is,
1 2 A
Ric + Hess(f) + mdf @df — o™ (, )N = (em2fA - ff) (),

m—2
that gives (2.51]) once we define A as in (2.53 Conversely suppose that (2.51)) holds for some f, A\ € C>(M).
Define v as in (2.52)) and (, ) = ¢?(, > From and we obtam

ﬁ_a¢*<7>N:A<,>+ﬂ?if2<7>:€’"2—2f(A+ ff2>< >

that is, (2.50) with A given by (2.53). O

We have just seen that for a conformally harmonic-Einstein manifold (M, (, }) we deduce the validity of
the system ([2.51]) on M and of the two integrability conditions (2.56]) and (2.57). Suppose now we are given
fecC>®(M),acR\{0} and a smooth map ¢ : M — N for some Riemannian manifold (N, (, ) x) such that

(2.56) and (2.57)) are satisfied. Does it follow that (M, (, )) is conformally harmonic-Einstein? To answer
the question we need to introduce the next genericity condition.

Definition 2.60. Let (M, (, )) be a Riemannian manifold of dimension m > 3 and denote by SZ(M) the
bundle of the 2-times covariant, symmetric, traceless tensor fields on M. For a smooth map ¢ : M —
(Na <, >N)7 we define

W? . S2(M) — S2(M)
by setting for 8 € S&(M)

o o
W#(B) = [Wtfkj - 580?(80?5@ + ©F0ki) | Bix0" @67, (2.61)

where 8 = ﬁijQi ® 67,
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Note that for ¢ constant W¥ coincides with the endomorphism W : S3(M) — S3(M) defined by W(B) =
Wiikj B0 ® 69 a well known endomorphism in the literature.

It is easy to verify that W¥ is well defined, that is, W¥ () is 2-times covariant, symmetric and traceless
for every B € SZ(M), and that it is self-adjoint with respect to the standard extension of (, ) to SZ(M),
that we denote with the same symbol. Thus W¥ is diagonalizable.

Definition 2.62. We say that the pair ({, ), ¢) is generic if dy is possibly singular only at isolated points
and if W¥ is injective, in other words if all its eigenvalues are non null everywhere on M.

We are now ready to state the following Proposition, that extends a result of A. R. Gover and P. Nurowski
[22], Section 2.4, that deals with the conformally Einstein case and that we can consider as the degenerate
case where ¢ is constant.

Proposition 2.63. Let (M,(,)) be a Riemannian manifold of dimension m > 3, « 6 R \ {0} and ¢ :
M — (N,{, )n). Suppose that ({, ), ) is generic and that the integrability conditions and ([257) are
satisfied for some f € C>°(M). Then, defining

(,)=em2l(,),

the Riemannian manifold (M, <r,v>) is harmonic-FEinstein.

In the proof of the above statement we will use equation ([2.65) proved in the Proposition below. This
formula will also be useful later on (for instance in [Proposition 6.16).

Proposition 2.64. Let (M, (,)) be a Riemannian manifold of dimension m > 3, o € R\{0}, and ¢ : M —
(N, {(,)~n) a smooth map. Then

(6%
Wtﬁjk,t = m— C’ﬁi}] + a(@?m‘i - @?k@?) + mﬂt(@?@k - <PZ5U)- (2.65)

(] . .
Proof. Observe that from (2.7) we can express W, ;1 componentwise in the form

o a, .a a, .a a, .a
Wik = Wik + 5 (PEef0ik — Piekdis + @i il — 075 0um)
|dp?

—a————— (6450 — Oer0is)-

“m—1)(m— 2)( ik = Oukdiy)
Taking covariant derivatives, tracing, using the well known formula (see for instance equation (1.87) of [I])

m—3

Whijk,e = — 5k (2.66)

and (2.32]) we obtain

Wiiis =Whijn,t t— 2 (107 0ik + PFP510ik — P PR0i; — Pt Pkedij)

o 20505
+ 2(%% ik — i — ek T [— = (01500 — Ouki)
m 3 o a a a a a a a a a a
—5 i+ ——5 (05 (50 — P0i3) + 07 (£5:0i5 — Pediz) + 03500 — Pl ]
o 2 a a a
m—9 [_m—l% (‘st(;ik - %k@'j)]
m—3 a

-3 a  _a a a
7_2(%@ + 04 — [%]@k iP5 — %1(%7'5% - @tk@'j)}
o o m—3 o o
t— [@?t(%‘ dike — Pg0iz) + m%’?(%ﬁzj — Qreig) + Pk — %W?]
m

(0%
Tcig + alplek — Piey) + m@fﬁ(@?&k — 905

that is, (2.65]). O
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We are now ready to prove |Proposition 2.63}

Proof (of Proposition 2.63). We trace (2.56]) with respect to ¢ and j and we use (2.8)) and ([2.34]) to obtain,
for each k=1,...,m,

apy (el — @i fi) = 0.
Fix € M. If there exists k such that ¢§(x) # 0 then we have the validity of the following equality at :

() = dp(V ). (2.67)
Otherwise the same holds by continuity. In conclusion (2.67) holds on M. Next, taking the covariant
derivative of (2.56)), using (2.65)) and ( -7 we obtain
Czi’k,k (ft tzyk)
ftk tzgk ft tzgk k
= ftkWtijk - katjik t
a a a a « a a a
=— fuWi. — fx ( Cﬁm + alpler — Piepi) + m%t(%‘ djk — 80k5ij)>
a a a a & a a a
=— fuWi— fk Chi + (=98 froh + 5 frel) + m%t(*% frdik + @5 frdis)

m— a a a a @ a a
=fuW, tzkj m7f Cgm + a(%kfk%' - ‘Pij@kk) + m— 2(|T(<P)‘25ij — 55 fi)-

The last formula enables us to express (m — 2)B:§7 defined in (2.37)), in the form

(m —2)Bf =fuW,; — — fk Fei T (@5 freel — 03 eh) + moi 2(|T(¢)|25ij — 5958 1)

+ RE Wi — aRijso%@? + (w?jwik — PrkjPi — ml_2|7(<p)|25u>

—(RE A+ Ft)Wg — s FuCs P fidt = — gl f; — aRE ot — ol
and using once again

¢ v m—3 o o
(m_2)B (Rtk:+ft’f) t’Lk?j m_kaCjki_ -9

Phel fi — aRLphpd — gl frj el
m— e
=(Rf, + fue) (W, mkj — aprpidje) — mfkcfm - m@?t@?fj‘
Thus the second integrability condition (2.57)) can be expressed as

o a m—3 o m—4
(RE, + fu) (W, mkj — i) — Tfk Gki T 2<Ptt%f] t”kftfk

and using once more and -

a, .a « a 4
=(R{, + fu) (W, tzkj — appide) — fkcfki - mi_@ttgoz i+ tkatfk

-3
-2
-3
=(R}, + fux) (W, mc] — i 0je) — 2fkft t]kl— ‘Ptft%fg m— mkftfk

= (Rfk + fik + ftfk) (W, mk] — i dt)-
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Next we define )
1
Ai= — <S"+Af+vf>,
m

m— 2

so that the 2-times covariant symmetric tensor field
1
B := Ric¥ + Hess(f) + 72df @df —A(,)
m—

is traceless. From the above identity and from (2.8]) we then have

1
m — 2
1
m— 2

(Wiins — apiepidje) Bk =W, — apipidje) (Rfk + fo+ Fife — AM)

=(Wiikj — api#idje) (Rfk + fur + ftfk) — AWy — avie]) =0.

Interchanging the role of 4 and j in the above equation we get
0= (Wi — apieidn)Bu = Wi — apieidin)Bu
Summing up the last two formulas

0 =Wy, — apioidin) Bk + (Wi, — a0t din) Bi
=[2Wik; — a9y (97015 + ¢501i)|Bur

1 a a a
=2 <Wtfkj 5 (¢ 045 + ¢ 5ti)> Btk

Hence,

1 o
W#(B) = <Wtﬁ;€j - Qmﬂf(@?@j + @?%)) Bikd" © 67 = 0.

Thus, since W¥ is injective, 8 = 0, that is,
1
Ric? + Hess(f) + 72df df = X(, ).
m—

The latter together with (2.67) and [Theorem 2.49| show that (M, (, )) is harmonic-Einstein. O

3 A gap result for harmonic-Einstein manifolds

The aim of this section is to prove below when we give a gap result for ||T|| .
Let (M, (, )) be a Riemannian manifold of dimension m, ¢ : M — (N, (, )n) a smooth map, o € R\ {0}
and set T to denote the traceless part of the ¢-Ricci tensor, that is,

T .= Ric? — 22( ). (3.1)
m

Of course when ¢ is constant 7Y = T' the usual traceless Ricci tensor. Let the operator WY be defined as in
([2.61)) and observe that for every B € S3(M)

W?(B), B) = W, B Bij — api o Bik Brj, (3.2)

where 3 = $3;;0° ® 7. We also set

3

div(C¥) = Cfy 10" @ 67 (3.3)
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and ,
tr(C¥) = C,fkiﬁl. (3.4)

Note that, from (2.34]),
tr(C¥)ij = al@rei)i = U PrriP + Prrels)-

Next result is computational but far from trivial.

Theorem 3.5. In the above setting and for m > 3 we have

1 m— 2 m 4
—A|T?|? =|VT?|? tr(T% o H 4 tr[(T9)3] + ——|T%|?
GO =TT 4 g ==t o Hess(5%)) + P (79" 4 2 17) .
+ tr(div(C¥) o T¥) — WP(T¥), T?) — tr(T¥ o Vir(C¥))
Proof. A simple calculation shows the validity of
1
§A|T¢|2 = |VT?]* + E?,kkTi?'
From (3.1),
AS¥
Y  =R? ., — ——6;,,
ij,kk i7,kk m J
and since 1'% is traceless the formula above can be rewritten as
1
§A|T«’\2 = |VT¢|* + RE T (3.7)

Now we want to evaluate Ry} ;. First we derive the following commutation relation, alternative to ([2.36)),

Rf = Rjy ; + Rigjy + a(9f0f — 9505)- (3.8)
To prove it we use the second Bianchi identity and the definition of the p-Ricci tensor
Rﬁjk,t == ngt,j - thj,k = Rij — Rijk
=R{ ; +aleieR); — RE ) — aleief)k
=Rf ; — By, + ale;oh + 0l i) — aleiei + @3 efk)
=Rj, ; — RY o+ alel;oh — o)
To compute the coefficients of ARic¥ we then use , together with , and to get:

(3.8) a a a , .a
Ry e ![Rfk,j + Riy;0 + oof; 08 — o5tk

=R i+ Ripi o + a0 08 + 03500 — G — 05e5k)

= Rj 1+ Ry RE, + R R + Riyj o + (9808 + 0800 — O] — @il

@10 (1
= (2520 - a‘ﬂﬁk‘??) o+ R RS 4 Ry RE + Riyj o + (93508 + 0500 — Ol — €5 ein)
J

21l @ a ., a a a, a
-555 — (Pl Pi + Prrij) + Rfijfk + RY, RS+ aRf opef + ngj,tk
+ a(PiRPr + 05 PhE — PikkP] — PikPir)

1
=555 + Riju R, + RE R, + aRG@1e] + Riga, + o =@liyf + @l — Pl — eliefi)-
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Exploiting the commutation relation (2.36])
Riyjon =R} ). — Rjj.; + (@i — ¢i;00)]k
+12(m — 1)(Sfdij — S}O(sik):| TPl + @ike — Piipek — ek

1 a a a a a a a a
:Cgk,k + 72(771 gy (AS¥6;5 — S:;) + (PP T Pkl — PijkPh — PiiPEE)s
and inserting into the above we obtain
m—2 AS¥
RY,, =——_S¥ + R RY + RY.RY +C7 —0;;
ij,kk 2(7’71 . 1) i + ijktVtk + ki~ Vik + ijk,k + 2(m _ 1) J (39)

+ a(RE. 0105 — Phrj i — £ Phk)-

Indeed,
1 a a a a a a a a a a
R:'pj,kk 2552’} + jokak + Rij'ﬁg + aRf prp] + al(—@h 08 + Olines — i — Pieie)
1 a a a a a a a a
+Clpn Tt 2m—1) (AS?6;; — S5) + @i + Pikeie — Pk — i)

1
2555‘ + R Ry, + RYRY, + aRS 0h05 — ol 07
1

+ O+ 2m =1y A7 = S5 — gl

m—2 AS? a, .a a a a , a
:2(m _ 1)55' + Rﬁijfk + RijZL + C;’;'k,k + 2(m —1) 1)517' + a(RE PR — Pl P — i Pkk)-
Using the decomposition (2.6)), that in components reads
1 S%
we obtain
1
R R, =W R + o (Rf0i — Rf 0y + Rf 0y — REOu) Ry,
S

- m(&fjgik - 6tk5ij)Rfk

1 .
=W R + o 2(Rijfi — [Ric?|?8;; + RiRY, — R[S?)

_ S (e _s%s.
(mfl)(me)( 1] ZJ)
57 (R - 5%6,)
ij

1
e pe © pY P28 Py v
_Wtiijtk + p— 2(2Rij,“. — |Ric?|%d;; RijS“a) m—D)(m—2)""

2 1 )

:Wtf]k‘Rfk + m — 2R;pk‘Rf] - m|Rle|26ij
(5%)? m

0ij — SYR?..

T Dm=2" " m-Dm-2)" ¥

Inserting the last formula in (3.9) we obtain
© M pe pe © ) m
S5+ o 2Rijik + Cline T Wi By, — (m—1)(m—2)

m — 2
RY w = S?RY,
kk 9 (m — 1) ij
+ a(REphe] — Ol et — o)
(5%)? 1 1o
AS? — ——[Ric?[? | 3.
m—Dm=2) " am=p> =T %

(3.10)

+
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Using the fact that T is traceless, from (3.10)), we infer

m—2

© © _ © qp M e pe pe © © e pe
Rij,kkTij _Q(m _ 1)TijSij + m— 2Tinijik + TijCijk,k + WtijkTintk (3 11)
m a a a a a a '
T m—D(m-2) SPTERY + T (RO — P05 — P00
The following relations can be easily deduced from (3.1))
285%
RE,RATS = TETSTS + 25 [,
R?. 0% = T ¢ @T¢+ﬁT¢_ a 0
ik(pkrwg ij ikspk(pj ij m 1] Pi QPJ7
TEREWE = TETEWE. — a2 TP,
itk Vi ij Ltk Vitijk m ijPi Pj-
Using them all in (3.11]) we conclude that
-2 m 1
© o __m © o © e O |2 ©
RE o135 “2(m = 1)TijSij + I 2TijikTij + I 15 IT#1" + T75C ik
+ LT W, + aThoe i T — o (0l i + ¢55%0m)-
Inserting the last formula in (3.7 we finally obtain
1 2 _ 2 m=2 o M e e 1 2 ©
AT =VT¥]" + mTijSij + 5 T T Ti + = ST P + T C
+ E?Ttiwtfjk + aTisﬂ%@?ﬂ? - O‘T;?((pikj@(il + 95 Pkk)s
that is, (3.6)). O

We let 7(z) denote the largest eigenvalue of W% : S3(M) — S3(M) at z € M and we set
n* :=supn.
M

We are now ready to prove the following

Theorem 3.12. Let (M, {,)) be a stochastically complete Riemannian manifold of dimension m > 3 and
let o : M — (N,{,)n) be a smooth map, « € R, a > 0. Assume

i) S? is constant.
i1) @ is harmonic.
iii) div(C?) = 0.

Then, either (M, (,)) is harmonic-Einstein or

—1/ §¢
sup |T%| > m-- ( - 77*) . (3.13)
M m m—1

Remark 3.14. Note that by [Proposition 2.15] |Definition 2.13|and (3.3]), conditions 7), i7) and 4ii) are necessary
for (M, {,)) to be harmonic-Einstein. Furthermore (3.13)) is not empty only if

S% > (m — 1)". (3.15)
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Proof. First of all note that if n* = +oo then (3.13) holds true. Thus we can suppose n* < +oco. In the
assumptions of the Theorem div(C%¥) = 0 and, since ¢ is harmonic, by (3.4) and (2.34)), tr(C¥) = 0. Thus
equation (3.6 becomes
1A\T«’F — |VT#?? + ——te(T%)?] + ﬂm’ﬁ — (W#(T%),T%) (3.16)
2 m — 2 m—1 ’ ' '

Since T'% is traceless, Okumura’s inequality, [34], gives the validity of

(%)} > —— 2

7|T”|3.
m(m — 1)

Furthermore, from the estimates on the largest eigenvalue of W¢¥
(WA(T%), %) < [T

Inserting these informations in (8.16) and setting u := |T%®|?> we deduce the validity of the differential
inequality

iz (- )

m—1 m(m — 1

If u* := supy, u = +oo then (3.13)) is obviously satisfied. Thus let u* < +o00. Since stochastically complete-
ness is equivalent to the validity of the weak maximum principle for the Laplace-Beltrami operator, see [35],

applying the latter to (3.17) we obtain

©
02( s _n*_m@u*.

m—1 m(m —1)
Thus either u* = 0, that is, T¥ = 0 on M and (M, (, )) is harmonic-Einstein or

S% N mu*
-

<0.
m—1-

m—1
The latter inequality implies (3.13]). O
As a consequence we obtain the following “gap”result for |T%]2.

Corollary 3.18. Under the assumptions of|Theorem 3.12 together with (3.15) suppose that

1/ 8¢ 2
sup |72 < 2 —= ( - n*) , (3.19)
M m m—1
then (M, {,)) is harmonic-Einstein.
In particular when ¢ is constant we deduce

Corollary 3.20. Let (M, {,)) be a stochastically complete manifold of dimension m > 3. Assume that the
scalar curvature is constant and divC = 0. If

-1/ S 2
it < ()
M m -

then (M, (,)) is Einstein.

Note that in this case n* = sup,, 7 is the largest eigenvalue of W = W? : S2(M) — S2(M) (see Definition
2.60).
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Remark 3.21. A result in the spirit of Theorem but with different assumptions is given in Theorem A
of [27].

To conclude this Section we provide an estimate for n* in the following

Proposition 3.22. Let (M,(,)) be a Riemannian manifold of dimension m >3, ¢ : M — (N,{(,)n) a
smooth map and o > 0. If

[We|* :=sup |[W?| < 400 and (|dp|*)* := sup |dp|* < +o0,
M M

then
m—2
2(m—1)

*

«
< eI ——(|dp|?)* 2
v < Wl + 2 (del?) (3:23)

Proof. We set: for every 8 € S3(M), 8= f3;;0' @ 67,
W(B) = Wiirj B’ @ 6.

Then W : S3(M) — SZ(M) is well defined and self-adjoint with respect to the standard extension of (, )
to S2(M). Moreover from Huisken’s inequality (see Lemma 2.9 in [24] or also Proposition 8.8 in [1], whose
proof can be extended, with the notation there, to the case where T' € SZ(M))

m — 2
W(B), B)| < mIWP\BIQ- (3.24)
From and the decomposition we get
m @
w#(B),8) = W(B),B) — a5 |de(B)* + m|d@|2|5|2, (3.25)

where, in local coordinates, ‘
dp(B) = ¢ Bij8" @ Eq.

From we deduce
(6%
W#(B),8) < W(B),8) + WWPFW\Z
and using we have
m — 2 o 9 9
(W#(B),B)| < < W\WPJF mﬂ‘ﬂ ) 8]% (3.26)

To obtain (3.23) we need the following relation between |W|? and |[W#|%:

40? 202
(We|? = W]+ TW (In* =

— )|d<p|4. (3.27)

(m—1)(m—2
To prove (3.27) we use (2.7) and the symmetries of W% to get

2
|W¢| :Wtfkj Wtfkj

« a .a a .a a .a a, .a a 2
=Wy |Weikg + —— (91 0idis — @i @foin + i 0 — i eide) = - Dm=2 |dep|*(01x0i5 — Ot;0in)
4o 20
—_TU¥ o » a _a _ 2117 %
—WtikijkJ + m— QWn‘kMt P (m—1)(m — 2) |deo| "W i
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and we conclude using (2.7)), the fact that W is totally trace free and (12.8]). From (3.27) we obtain

W < W g
- (m—=1)(m-2)""""
so that
m— 2 m — 2 m — 2 «
2< 2+ 7d 2) <o WP+ ———|dy|?. 2
m \/ o (gl ) < [ we  aet @25)
Plugging the above mto j we get
W (B).8)] < [ || e iw 8
= 2(m —1) ’
and then (3.23) holds. O

4 The general structure, formulas and a “spectral” non-existence
result

The geometric considerations discussed in Sections [2] and [3 justify the introduction of the following general

structure on a Riemannian manifold. In what follow X(M) will denote the C*°(M)-module of the vector
fields on M.

Definition 4.1. We say that the Riemannian manifold (M, (, )) carries an Einstein-type structure if there
exist X € X(M), ¢ : M — (N, (, )n) for some Riemannian manifold (N, (, )n), and functions a, \, x €
C>°(M) such that

Ric + %cx<, )= uX° @ X* — ag*(, v = A, )
() = dp(X),

where ” : (M) — A'(M) is the musical isomorphism and Lx(, ) denotes the Lie derivative of the metric
along the vector field X.

In case X = Vf for some f € C>°(M) we say that (M, (, )) carries a gradient Einstein-type structure.
In case the Einstein-type structure is gradient takes the form

{Ric+Hess<f) — pdf @ df —ag™(, )n = A(,)

(4.2)

() = dp(V f). (43)

When « is a constant the term Ric — ap*(, )y will be simply written as Ric?, following the notation
introduced in

The following commutation relations, valid for every Y € X(M), are proved in [I], equations (8.9) and
(8.25) respectively ‘ ‘
Y} =Y = Y Ryijy, (4.4)
Yia = Y =Y} Ren + Y/ Rjyy. (4.5)
We shall need them in the proof of the following

Proposition 4.6. Let (M, (,)) be a Riemannian manifold of dimension m with an Finstein-type structure
as in (4.2), with o € R\ {0}, X € X(M), A€ C®(M), p e R and ¢ : M — (N,(, )n). Then in a local
orthonormal coframe the following hold,

RtP

fn— R, + Rup X'+ < (XJ XF)i = plXp X7 — XIXP 4+ XU(X] = XD + Mbij — Njda, (A7)
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. 3 ) ,

(Xi4+XHXt+ §(X,g — XX -~ X}X’“} + (m — 1), (4.8)

(m—-1)u+1
m

1

1 A
57— REX+ 5(XE = X0 = 3

2

582 S? + (1= (TP + alr (o)) + | 5%~ u(m = D] (57 = m)
(4.9)

= (m — I)Agux)\ + gD,

where ‘ A ‘ ‘
D = 2[(Xi — X")X'p + (Xi — XP)X]. (4.10)
Here Ay, for Y € X(M), stands for the operator A — (Y, V ).

Proof. In a local orthonormal coframe (4.2)) is given by

1 . ) oy

P = @?Xi-

(4.11)

The covariant derivative of the first equation in (4.11]) is

RY,

1 : e
ij,k + i(Xjk + ijk) = N(XkXJ + X X]Jc) + )\k(sij.

Inverting the role of j and k£ and subtracting we obtain

1

— RS .+ 5( = Xi+ X3 - XE) = u(X[XT - XIXP + XOX] - XTXF) 4 \edig — Aji

©
R; ik,j

ij,k
Using three times (4.4) and the first Bianchi identity we deduce

1 i i j 1 j
5 (X = Xiy + Xip = X5) = R X' + S (X} = XJ)s.

Plugging into the above we have
1. o ; i
Rf . — R+ Rujp X' + i(X,g = XF)i = p[Xp X7 = XIXP + XU(X] — X)) + Mebij — Ajour,
that is (4.7)). Tracing on ¢ and j in (4.7) we get
N o , :
S{ — R, — R X'+ 5 (Xi - XB)=pXiX - XIXP - XIXE) + (m — D)\
Using ([2.10)), the second equation of (4.11) and the definition (2.1) of Ric¥ we infer
; 1 . 1 )
Rf,, + X' = L7 — agtiof + RuX' = Lsp + R

and inserting into the above we obtain (4.8)).
Tracing the first equation of (4.11)) we deduce

S+ X! = pu| X2 +m, (4.12)

using it together with the first equation of (4.11)) in (4.8) we get

1 o1, . _
5S;;’ —REXT+ 5 (Xi - XE)i =p [(—RE, + pX X¥ + X0i) X'+ (S¥ — p| X[* — mA) X*]

3 )
+pg (X = XDX 4 (m = DA,
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or, equivalently,
1

SO = XY = (L= i REXT + (87 — (m — DNX* + S (K] = XX+ (= Dhe, (413)

1
555 +
Contracting (4.13) with X* we obtain

1 1, . ,
5S,fX’C + 5(X,g — XF)XF = (1 - pREXIXE + u(S? — (m — DA)|X)? + (m — DA XF,
thus

W

(1= WRREXXF = ESEXH 1 L (X] = XE)XF = (87— (m — DVRIXP — (m — Dpd X (4.14)

From (4.5)) easily follows 4
Xpir = Xiki/cv
then taking the divergence of (4.13)) and exploiting the above commutation relation we have
1 ) .
556 =(1 = W) (RS X + REXL) + p(Sf — (m = DARX* + (5% — (m — D)X

3 4 4 3 4 4 (4.15)
+ M§(Xllc — XF)X'+ Mg(Xi — X)) X[+ (m = 1) A

From the first equation of we infer
[Ric?|? + RY, X\ = pR5 X' X" 4+ \S%,

using the definition the above is equivalent to

(57

[T# + 5= + REX| = pRLXTXM + 287,

that is,
_ Se ,
R; X = —|T%)? — — (57 —mA) + pRE X XF,
Using the above formula and (2.10]) we deduce

, , 1 , ,
(1= iR, REXE) = (5= ) SEXT = (L wagtust X' = (1= TP

2
5% ® ¢ yviyk
— ()2 ) (- ) REXX
and from the second equation of (4.11)) and (4.14) it follows
S¥

) ) 1 )
(1= W) (RE X + REX]) =5 SFXT — (1= p)(IT# + alr(@)?) — (1 = ) (57 = m)

+ 500 = XDxP = u(S% = (m = DAuIX [ = (m = Dure X,

Inserting the latter into (4.15)) we obtain

1
2

St =— 5 SPX = (1= p)(IT#P + alr()?) — (1 - p) (8% —ma)

2
+ SO0 = XEXF = (S = (m = DA(=XE + plX[?) = 2(m — DA X*

3, . . 3 .
+ lui(XIZC - X)X+ /j'i(XIZc — XP) X+ (m = 1) Ag,
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that, using (4.12)) can be written as

Lsg =L 2grxt (- (T + alr(o)f?) - [(1—/~L)S+u5“’—u( m](s )

2

M k k k i k k

§(Xk Xi)iX" + g (Xk XX+ pg (Xk XE)X] + (m = 1) (Akk — 2pAX"),
that is,

1 m—1)u+1
iA(qu)Xsw + (1= (T?)? + alr(e)*) + [()

m

SY — pu(m — 1))\} (8% —mA)
= (m = DAa,x A+ S0 = X)ixh +3(X] - X)X +3(X} - XF) X,
We then conclude the validity of (4.9)), since

(X7 — XF).XF 4+ 3(X) — XF)X' + 3} — XB)X} = 2(x] X’“>kx1+3<xk x5 xi

= [( XE)X e + (X5 — XF) X
= O
Remark 4.16. In case u = 0 equation (4.9) can be rewritten as
1 ® 2 ©|2 S? ®
§AXS +a|t()|* + |T¢|* + E(S —m)) = (m—1)A\ (4.17)
Observe that when X = V f, or more generally in case VX is symmetric, equation (4.7) becomes
Ry — R+ Rujife = p(fin f5 — fij fr) + Medij — Ajin (4.18)
and (4.8)) becomes
1
55;5 = R fi = p(finfi — Af fr) + (m — DA, (4.19)

moreover D defined in (4.10) vanishes identically and thus (4.9)) takes the form

(m—-1Dpu+1

- S? — p(m — DA| (82—mA) = (m—1)Ag, ¢ A, (4.20)

1
§A<1+2#)f5“’+(1—u)(lT“”\2+04|T(80)|2)+

that shall be used in [Theorem 7.29| of [Section 7l

Bochner’s type formula (4.22]), contained in the Proposition below, will be used later on in the proof of
[Proposition 7.62]

Proposition 4.21. Let (M, (, )) be an m-dimensional Riemannian manifold with an Finstein-type structure
as in ([A.3) with A\, f € C*(M), a,p € R and ¢ : M — (N, (, Y)n). Then

SOV = [Hess(P +alr(@) + (2uAm — A= 2uS9)|V 2 + (2~ DIV F* — (m — 2)(VA, V). (4:22)
Proof. From Bochner’s formula
%A|Vf|2 — [Hess(f)2 + (VAF, V) + Ric(Vf, V). (4.23)
Using the definition of Ric? and the second equation of we obtain

Ric(Vf,Vf) = Ric?(Vf, Vf) + a|r(p)|?. (4.24)
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Tracing the first equation of (4.3)) we get
Af =—=S¢+ u|Vf?+m, (4.25)

so that,
(VAF,Vf) = —(VS? V) + u(VIVIP, V) +m(VA V).

Contracting with V f we deduce
(VS?,Vf) = 2Ric?(Vf,V f) + 2u[Hess(f)(V, V) = AfIVF*] +2(m — 1)(VA, V)
inserting into the above and observing that
(VIVf[?,Vf) = 2Hess(f)(V,V f), (4.26)

we have

(VAF,Vf) = =2Ric?(V [,V f) + 20l fIV [ = (m = 2)(VA, V, f). (4.27)
We plug (4.27)) and (4.24)) into (4.23)) to infer

%A|Vf|2 = [Hess(f)]” + alr(9)* + 2uAfIVf? = Ric?(Vf, Vf) = (m = 2)(VA, V, f).

Using the first equation of (4.3),(4.25) and (4.26]) we obtain
2uAfIVS? = Ric?(Vf, Vf) =2u(=5% + p|V 1> + mA)|[Vf|? + (Hess(f) — pdf @ df — M, ))(Vf, V)
1
=(2pmA = 2u8? = N[V fI* + (2 = DIVF* + SVIV?, V),

replacing into the above we get (4.22)). O

Next Proposition shall be used in the proof of

Proposition 4.28. Let (M, (,)) and (N, (, )n) be Riemannian manifolds, ¢ : M — N, o € R\ {0}. Let
X be a conformal vector field on M, satisfying

7(p) = dp(X). (4.29)
Setting
1
= —diw(X 4.
n = —din(X), (430)
we have
At L st X+~ (Vr(e),de) = 0 (4.31)
T 1" 2m—1) ’ m_1' A= '

Remark 4.32. In case ¢ is a constant map, so that (4.29)) is automatically satisfied, we get the well known
formula

S 1

A
nE Ty

T (VS, X) =0. (4.33)

Proof. To prove (4.31]) we shall use (4.33)). However, for the sake of completeness we first give a proof of the
latter. Since X is conformal

1
FLx () =mnl,). (4.34)
We rewrite (4.34) in local form with respect to an orthonormal coframe as

X+ X! = 2nd;;. (4.35)
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Observe that, from (4.35)) , 4
Ri]‘X; + RUXz] = 257,

and since Ric is symmetric ‘

Moreover from Schur identity

1
Rji’j = iSZ

Clearly, from (4.30])
1
An = —A(div(X
1= TA@V(X))
using (4.4) we compute
A(div(X)) =(X])j; = (X§;); = (Xj; + Ruiis X*);
=Xjij — (Ri; X");

=(X})ij — Rijj X' — Ri; Xj.

With the aid of (4.35)), (4.37) and (4.36) the latter can be rewritten in the form

. 1 )
= — X} + 200 — 55X — 5.

]
Using (4.5) we obtain
XJ = XxJ

%] ijt

+ Rijij XF + REX) = X

j I+ R XF — Ry X1 = X/

iji i ijio
and inserting into the last equality we infer

A(div(X)) = —(X;)i + 241 - §SiX — Sn.
Using once again (4.4)), (4.35)), (4.37) and (4.36):

, 1 .
A(div(X)) = = (X7, + Riji; X*)i + 240 — 35X = 5n

=— XJ;; — (RiiX"%)i + 2410 — %SZX" — Sy
= — Adiv(X) — Ry i X* — R XF + 241 — %S,-Xi —Sn
= — Adiv(X) — %SiXi — Sn+42An — %SiXi — Sn
= — Adiv(X) — S; X" — 250 + 2An,
that is,
A(div(X)) = An — %SiXi — Sn.
Then replacing in we get

1
An = (An— §<VS,X> —577> ,

1
m

that is, (4.33).
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Next we obtain (4.31]) from (4.33)). Towards this aim we observe that, from (2.2)

S = 5% 4 aldp|?, (4.39)
and then
Si = S7 + 20005
Thus, ' 4 ‘
S X" =87 X"+ 2apf, 08 X". (4.40)
Using the symmetry of Vdy and (4.29)

PriX' = @l X" = (PIX ")k — ol X = @iy, — i X (4.41)
Inserting (4.41) in (4.40) we obtain
SiX" = SEX" + 200000 — 2007 ¢} X (4.42)

Moreover, from (4.35) and the symmetry of *(, )n
o1 X5 = n|del?,

hence putting it in (4.42)) _ '
SiX' = SYX' + 2000505 — 20m|di]?,

that is,

1 1

3(V8,X) = 5(V5%, X) +a(Vr(p), dp) — anldel*. (4.43)
Using (4.43) and (4.39) in (4.33) we finally obtain (4.31)). O

We now present a general non-existence result, based on spectral considerations, for gradient Einstein-
type structures with p # 0.

Proposition 4.44. Let (M, (,)) be a Riemannian manifold of dimension m. For r € R, let

= v0 r) = mA— S¥
0lr) = v0l0B), A= ot [ ma - s%),

where B, is the geodesic ball of radius r centered at o € M. Let z € Liploc(Ra') be a solution of the Cauchy
problem

AV — +
{(vz) +Av=0 onR (4.45)

2(07) =20 >0, (v2/)(07)=0.
Suppose that z admits a first zero Ry € RT. Then there exist no f,A € C*°(M) and o, u € R\ {0}, such that
Ric? 4+ Hess(f) — pdf @ df = A(, ). (4.46)

Proof. By contradiction assume the existence of f, A € C>°(M) and «, u € R\ {0}, such that (4.46) holds.
Since p # 0, the positive function u := e #/ satisfies

H
Hess(f) — pudf @ df = — 220
puu
and (4.46) can be rewritten as
Ric® — Hess(u) L)
pu



Taking the trace of the above we obtain Lu = 0, where
Lu := Au+ q(x)u, q:= p(mi—S%).

Since u > 0, by a well known result of [19] and [31], the operator L is stable or, in other words, its spectral
radius A¥(M) is non-negative.

Now we prove that under our assumptions A} (M) < 0, obtaining the desired contradiction. Observe that
v € LE (RE), v > 0on RT and v~ € L )(RT) by Proposition 1.6 of [I0]. By Proposition 3.2 of [10] the

loc loc

solution of (£.45) is in Lipj.(R7) and its possible zeroes are isolated. Suppose that z admits a first zero
Ry € RT. We define
Yi=zor,

where r is the distance function from the fixed origin o € M. We consider the Rayleigh quotient

Q) == (/B W) I/BR (Vo[ - qv).

0

From the co-area formula and Gauss lemma we get

Q) = ( / " ) : / Pl v,

Integrating by parts and using (4.45)) we obtain
Ro R RO R(J
/ (2')%v = 22'v|,° —/ z2(v2') = Avz?,
0 0 0
so that Q(v)) = 0. Then A\f(Bgr,) < 0 and by monotonicity of the eigenvalues of L we infer \F(M) < 0. O

It remains to determine some sufficient conditions under which a solution z of (4.45)), always existing by
Proposition 3.2 of [10], admits a first zero. From Corollary 5.2 of [I0], if A > 0 on RT, A # 0 and either
gt ¢ L*(+00) or otherwise there exist 7 > R > 0 such that A # 0 on [0, R] and

/Rr(x/ﬁ VXg) > —% <log/OR Av+log/+oo 1) , (4.47)

R g

z has a first zero. Here g € L (R{) is such that ¢! € L2 (RT) and 0 < v < g on R{, while y, is the

loc loc

critical curve relative to g defined by
400 1 -2
o ={20) [

+o0 1
u(mA — S¥) + log/ g) .

R

Note that (4.47) can be rewritten as

/RTNZ—M,) > (1og/B

Observe that the existence of a first zero is “a fortiori” guaranteed by an oscillatory condition. For
instance, from Corollary 2.9 of [26], if for some rq € R

R

w lim (mA — S¥) = +o0o, (4.48)
r—+00 Br\Bro

then every solution of (4.45]) is oscillatory. By way of example, we have
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Proposition 4.49. Suppose S¥ < m\ on M,
v(r) < Crf, (4.50)

for some constants C > 0 and 6 € R and, in case 6 > 1, that for some R € R™ and for some constant D
D2
/ wimA —8%) > —u(r) forr >R, (4.51)
8B, v

with either v <2 ory=2 and D > %. Then a solution z of (4.45)) admits a first zero.

Proof. From (4.50) we can choose
g(r) =Cr?.
Clearly g~ ¢ L!(+00) if and only if § < 1. In case 6 > 1

Xg(r) = (02;1)2-

" 6—1 1 1 R'?
VA — log 7 — 1 1 — %) — Zlog —
/R 5 (logr —log R) > 20g/BRu(m)\ S¥) 2OgC(971)’

Hence (4.47)) can be rewritten as

that is,

/f—9_110gr>llogC-l-}lOg(e_l)_llOg/ p(mA — 5%).
R 2 2 2 2 Br

From (4.51)) and the definition of A we immediately see that

D
A(r)> =  forr=R. (4.52)
rz
Using (4.52)), to obtain the validity of (4.47)) for some r > R it is sufficient that
"ds 60-1 1 1 1
D[ —- 1 —logC + = log(f — 1) — =1 A—S¥
s 5 logr > 5 logC+ o log(6 — 1) 2og/BRu(m )
that is,
-1 1
D (logr —log R) — 5 logr > log(RP\/C(6 — 1)) — 3 log/ u(mA — S%),
Br
or equivalently,
-1 1
Dlogr — 5 logr > Dlog R + log(RP\/C(0 — 1)) — 5 log/ wimh — S%). (4.53)
Br

Since D > 02;1 there exists r large enough such that (4.53)) holds. Then, from the discussion before the
Proposition, we conclude the proof. Observe that A # 0 on [0, R] is guaranteed by the fact that S¥ £ mA
on Bp that, in turns, is guaranteed by (4.51)). O

Remark 4.54. We consider, in case 6 > 1, the limiting case v(r) = Cr?. Inserting this information into (4.51))
we obtain

/ wimA — S%) > CcD*?=7  forr > R.
9B,
An immediate computation and the fact that § — v+ 1 > 0, since v < 2 and 6 > 1, shows that

" CD?
— §¥) > 0—y+1 _ pbO—~v+1
/R/A(m/\ S)_Q—v—i—l(r R )

and therefore the integral diverges as r — +o00. This means that condition (4.48]) is satisfied and the solution
is even oscillatory.
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As another example we give
Proposition 4.55. Suppose S¥ > m\ on M,
v(r) < Aexp{ar®log” r}, (4.56)

for some constants A,a,ac >0 and 5 > 0 and
9 2
/ p(mA — S8%) > %TQ(O‘_U 1og?# =Y r(alogr + B)%v(r) (4.57)
OB,

Then a solution z of (4.45)) admits a first zero.
Proof. The proof is similar to that of [Proposition 4.49] From (4.56]) we can choose

g(r) = A exp{ar®log’ r}.
Clearly g~ ¢ L'(+0c0). We claim that the validity, for some r and R large enough, of

" 1 1 3
/R VA= ar®log?r > ~5 log/B u(mA — S¥) + 3~ ?aRa log” R (4.58)
R

implies the validity of (4.47). Indeed, if we define

o= (%)

v/ Xg(t) ~ 1/ xg(t) fort — +oo,

see (4.4) of [9). In particular, if R is large enough, then for every ¢t > R,

Vot < 2/, 1)

/ VXg < 2/ V' Xg =1logg(r) —log g(R) = ar® logﬁ r—aR® logﬁ R,
R R

then

Then we deduce

so that ; . .
/ VA - / VXg > / VA = ar®log? r + aR*log® R. (4.59)
R R R
Moreover

1 teoq
fflog/ = Yo log?t for t — 400,
2 R v 2

hence for R large enough we have

Og v 1 a Og l{ 1 60
;’Slllg 159 a‘Ild 1'60 ve deduce t}le "a‘lldlt’y Of tlle Cla‘llll'

Clearly (4.56) implies
A(t) > %ta_l log’ ' t(alogt 4 B) = i%a(ta log” t)".
Using the above, the validity of (4.58) is implied by the validity of

1 1
Lpo log” r > —= log/ u(mA —S%) 4+ —. (4.61)
2 275, 2

The right hand side of (4.61)) above is monotone decreasing in R, then it is sufficient that (4.61) holds for
some R = Ry to obtain that it holds also for all R > Ry. Then we may fix R such that A # 0 on [0, R],

clearly for r large enough we obtain the validity of (4.61). Then we can conclude the proof, as in
4.49 O
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5 Some results in the compact case

Our first aim is to extend the well known fact that a compact Einstein manifold that admits a non-Killing
conformal vector field is isometric to a Euclidean sphere. To do so we first recall

Theorem 5.1 (Licherowicz-Obata). Let (M,(,)) be a compact Riemannian manifold of dimension m
satisfying for some k € R
Ric> (m —1)K(, ).

Let u € C*(M) be a non-constant eigenfunction of —A relative to the eigenvalue A € R, that is,
Au+ Au = 0.

Then
A > mk,

equality holding if and only if (M, (,)) is isometric to a Euclidean sphere S™ of R™*! of constant sectional
curvature k£ > 0.

With the aid of formula (4.31) we are able to prove

Lemma 5.2. Let (M,{(,)) be a compact, harmonic-Einstein manifold of dimension m > 2 with o > 0, that
is, for some a € R, a >0 and ¢ : M — (N, (, )n) we have

©
Ric¥ = S—(, )
m (5.3)
7(p) = 0.
If there exists a non-Killing conformal vector field X € X(M) such that
dp(X) =0, (5.4)

then @ is constant and (M, (, )) is isometric to a Euclidean sphere S™ in R™ L of constant sectional curvature

Se

K gy 7 O (5.5)
Furthermore there exists h € C*°(M) satisfying

Hess(h) + kh(, ) =0, (5.6)
and 1

§£X<, ) = Hess(h). (5.7)

Remark 5.8. As expected, for ¢ constant, we obtain the classical result on Einstein manifolds mentioned at
the beginning of the section.

Proof. Let X € X(M) be a non-Killing conformal vector field, that is,

Lx(,)=2n(,), (5.9)
for some n € C*(M), n # 0. Observe that (5.4]) is essential for the coupling condition (4.29) 7(¢) = dp(X)

of [Proposition 4.28[since by the second equation of (5.3]) ¢ is harmonic. Since S¥ is constant, by [Proposition|
2.1 .

15| and ([5.3)) for m > 3 and by assumption for m = 2 and since ¢ is harmonic, formula (4.31]) becomes

©

S
A = 0. 5.10
N+ —— (5.10)
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By integration we obtain

S¥
[ o=
M m—1Jy

and thus S¥ > 0. Suppose by contradiction that S¥ = 0 then 7 is harmonic on the compact Riemannian
manifold (M, (, }), hence it is constant. Taking the trace of (5.9) we get

div(X) = mn

and since 7 is constant, integrating over M we deduce also that n = 0. But since n # 0 we obtain a
contradiction. We have therefore proved that S¥ > 0. From the first equation in (5.3)), @ > 0 and the fact
that (, )n is a Riemannian metric on N we obtain

. S¥

Since X is not Killing, 1 does not vanish identically on M and from and S¥ > 0 we deduce that n
cannot be a constant. The validity of and allows us to apply Lichnerowicz-Obata Theorem (see
Theorem 5.1)) to deduce that (M, (, )) is isometric to a Euclidean sphere S™ of R™*1 of constant sectional
curvature k given by . We now observe that, from the first equation in and the fact that we have
now equality in , because of and the isometry, we have

S . . S
E<7>:RIC@:RIC_O¢§0*<7>N: m<7>_a¢*<a>Na

and since a # 0
©*(, )v =0.
Thus ¢ is constant. To obtain , if X = Vh+Y is the Hodge-de Rham decomposition of X, where
Y € X(M) is a divergence free vector field and h € C°>°(M), we only need to show that Y is Killing. Observe
that can be rewritten as
An+mkn =0,

and, as proved by Obata in [33], this implies the validity of
Hess(n) + kn{, ) = 0. (5.12)

Then, from (5.9))
1 1
§L’Xg = ——Hess(n). (5.13)
K

Using the Hodge-de Rham decomposition of X in ([5.13)) we obtain

1 1
§£yg + Hess(h) = ——Hess(n)
K

and taking the trace, since Y is divergence free, we deduce

1
Ah = —=An.
K
This implies that the function
1
Ci=h+-n
K
is harmonic on M and, since M is compact, is constant. From (5.13))
1
§£Xg = Hess(h),

in particular Y is a Killing vector field. Observe also that, since (5.12]) holds, up to a translation h solves ([5.6)).
Then the claim, since in the Hodge-de Rham decomposition h is determined up to an additive constant. [J
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As an application of the above Lemma we prove two rigidity results, that distinguish between the cases
w=0and p # 0. In case 4 = 0 we are able to study a general Einstein-type structure while for u # 0 we
restrict ourselves to the gradient case.

Theorem 5.14. Let (M, (, )) be a compact Riemannian manifold of dimension m > 2 with an Einstein-type
structure of the form

1
Ric”+§ﬁx<,):)\<,>

T(p) = dp(X),
for some X € X(M), A € C*°(M), « e R\ {0} and ¢ : M — (N, {, )n). Assume that o > 0 and that S¥ is
constant. Then (M, {(, )) is harmonic-FEinstein, more precisely, (5.15)) reduces to
©
Ric¥ = S—(, )
m (5.16)
7(p) = 0.
Suppose also that X is not a Killing vector field. Then ¢ is constant and (M, (,)) is isometric to a Euclidean

sphere S™ in R™TY of constant sectional curvature x given by (5.5)). Furthermore there exists h € C>(M)
such that X = Vh and

(5.15)

Hess(h) + kh(, ) =0. (5.17)
Proof. We recall that for ; = 0 we have the validity of (4.17)), that is,

1 ¥
5AxS? = —alr(e)? - |T¥]* - (57 - m)\)% + (m—1)AX.

Tracing the first equation of ([5.15) we obtain
S¥ —mA = —div(X), (5.18)

thus inserting into the above we get

1 1 S¥
387 = §<X, VS?) —alr(p)? — |T¢)? + =—div(X) + (m — 1)A\.
m
Integrating over M, using the divergence theorem and integrating by parts we infer

m— 2 2 2
W/MQ(,VS% :/qu +alr(p)?).

Since a > 0 and, in case m > 3, S¥ is constant we deduce the validity of

g%
e
Ric —m(,>

7(p) =0,

so that (M, (, )) is harmonic-Einstein. Now recall that S¥ is constant (this is needed for the case m = 2)
and X is not a Killing vector field. Comparing the first equation of ((5.19) with the first equation of (5.15]
we deduce

(5.19)

’CX<a > = E"ﬂ» >a (520)

where

n:=mA\— S%. (5.21)

Thus X is in particular a conformal vector field on M. Comparing the second equation of (5.19) with the
second equation of (5.15) we deduce
dp(X) =0.
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Note that since S¥ is constant we can apply to conclude first that ¢ is constant, that (M, (, ))
is isometric to the Euclidean sphere of constant sectional curvature & given by (5.5) and finally that

%L:X(, ) = Hess(h)

for some h € C*° (M) such that (5.17) holds. O

The next result is the analogous of in case p # 0. However its proof is not based on
equation (4.20)), as probably expected, but on the powerful identity (5.29)) below.

Theorem 5.22. Let (M, (,)) be a compact manifold of dimension m > 2 with a gradient Einstein-type
structure of the form

{Ric‘/’—l—Hess(f)—udf@df:)\(» ) (5.23)

7(p) = dp(V ),

for some f,A€C®(M), «a e R\ {0}, peR and p : M — (N, {, Yn). Assume that S¥ is constant, p # 0
and o > 0. Then the structure (5.23) is harmonic-Einstein, that is, (5.23) reduces to (5.16).

Assume also that f is non-constant. Then ¢ is constant and (M, (, )) is isometric to a Euclidean sphere
S™ in R™*L of constant sectional curvature x given by (5.5)).

Proof. Let
wi=e M (5.24)

and let T% be the traceless ¢-Ricci tensor, defined in (3:1)). We compute div(7%(Vu,-)*). Exploiting the
definition of 7%, in a local orthonormal coframe, we have

©

S

ij,j (]
Using a computation yields
u; = —pufi, wi;=—pu(fi; — pnfif;), (5.26)
so that, using the first equation of ,
uij = pu(R — Adij). (5.27)
Moreover from , the first equation of and the second equation of

1 1 1
R} ju; = §Sfui — ap§ipiu; = §Sfui + puag§of fi = iSfui + puagf; ol (5.28)

Inserting (5.27)) and (5.28)) into (5.25)), since T is traceless, we obtain

(T ui) :isfui T HUCD P55 — ey + uT5 (R — Nij)u

m — 2

ZWSQPW + M(QQOZ"P?]‘ + TZTJ;)’
that is, in global notation
-2
div(T?(Vu,-)) = o=2(v.5%, V) + plalr(@)? + [T¢2)u. (5.29)

2m

Since S¥ is constant for m > 3, integrating over M and using the divergence theorem we deduce

n [ @l + ey =0,
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From p # 0, @« > 0 and u > 0 on M we obtain 7% = 0 and 7(¢) = 0, that is, the equations in (5.16)).
Suppose that S¥ is constant and that f is non-constant. Now from ([5.27)), using the first equation of ([5.16]),
we infer

tss(u) = (-3 ut.),

so that Vu is a conformal vector field. Since f is non-constant then also u is non-constant. From the first
equation of ([5.26)) and the second equation of ([5.16])
do(Vu) = —pudp(V f) = 0.

We now conclude as in the proof of O

Next we present two more rigidity results, again distinguishing between the cases 4 = 0 and p # 0. In
both results we assume that the manifold is ¢-Cotton flat. In we shall produce examples where
this happens. Towards this aim we need to introduce a general formula for a 2-times covariant, symmetric
tensor field T on a Riemannian manifold (M, (, )) of dimension m. For z € M fixed, we set

AL < S A,
to denote the (possibly coinciding) eigenvalues of T at 2 and we consider the elementary symmetric functions

So:=1, S:= > AN, for 1<k <m. (5.30)

1<i1<...<i<m

In other words the Si’s are the coefficients of the polynomial expansion
det(I + AT) = > SiA,
k=0

where [ is the identity. As usual we normalize the Si’s by setting

S, = (7{?) k.

In this way we obtain the validity of Newton’s inequalities in the form
Op—10k41 < op for 1 <k <m-—1. (5.31)

Furthermore, if 0,1 # 0 at x, equality holds in (5.31) if and only if all the eigenvalues of T" at x are equal.
Considering the oy’s as functions on M, from [23], we deduce that if for some k, 1 < k < m, we have o > 0
everywhere on M then, for 1 <i <k, o; >0 on M and furthermore, Garding’s inequalities hold, that is,

>...>0,

1

; (5.32)

T e

>0

N ol
=

o1 >0

with equality at a point z € M at some stage of the chain if and only if 7" has equal eigenvalues at x. The

next Lemma follows directly by (5.32)) and will be used in |Theorem 5.47

Lemma 5.33. In the notations above suppose that o, > 0 on M for some 2 < k < m — 1, where m > 3 is
the dimension of M. Then
010k — 011 >0 (5.34)

with equality holding at a point x € M if and only if T is proportional to the metric at x.
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Proof. Since o > 0 on M, we have the validity of (5.32)). From ox_; > 0 on M and Newton’s inequalities
(5.31)

2
o _0k+10k71< 0L — 0 Ok
k+1 = = =0k .
Ok—1 Ok—1 Ok—1
We claim
Ok
So—la
Ok—1

and since o > 0, from the above we obtain
Okt+1 < 001,

that is (5.34]). Tt remains to prove the claim. We use Garding’s inequalities twice and o1, 0 > 0 to deduce

1 k-1 k—1
op=op0," <o, ook

Since o;_1 > 0 this implies the claim. Observe that the equality holds at a point if and only if T is propor-
tional to the metric at that point since the equality forces Newton’s inequality and Garding’s inequalities to
be equalities at that point. O

Associated with T one considers the Newton endomorphisms
P, =P, (T): X(M) - X(M) for 0 <k <m,

inductively defined by
Py:=1, P,:=51—toP,_; for1<k<m, (5.35)

where ¢ : X(M) — X(M) is the endomorphism induced by T. Note that P,, = 0 on M and, having set

= (m— k) (’Z) (5.36)
we have
tr(Pk) = (m — k‘)Sk = C|0k, tr(t o Pkfl) = kS, = cp_10%. (5.37)

The Newton’s endomorphisms give rise to a family of second order differential operators L defined as follows.
Setting hess(u) for the endomorphism induced by Hess(u), where u € C?(M),

Liu = tr(Py, o hess(u)). (5.38)
A computation shows that L can be written in the form:
Liu = div(P,(Vu)) — (div(Py), Vu). (5.39)

Obviously,
div(Py) = 0 = div(P,,). (5.40)

To compute div(Fy) for the remaining values of k we introduce the 3-times covariant tensor field C' of

components
Ciji = Tijp — Tin - (5.41)

A recursive computation shows that, for 1 <k <m —1
div(Pg); = —div(Py-1):Tij — Cijs(Pr)is- (5.42)

Explicitating (5.42)) one sees that div(Py) =0 for all 1 <k <m — 1 if and only C;;s + Csj; = 0, that is, the
tensor C is skew symmetric in the first and the third entries. In particular when T is a Codazzi tensor field
all the Newton’s endomorphisms are divergence free. Hence in the assumption

C(X,Y,Z)=—-C(Z,Y,X) forall X,Y,Z € X(M), (5.43)
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equation ([5.39)) becomes
tr( Py, o hess(u)) = Liyu = div(Pr(Vu)),

that we can also rewrite in the useful form

k
div(P(Vu)) = Z(—l)iSk,itr(ti o hess(u)). (5.44)

i=0
We remark that, having fixed the 2-times covariant tensor field 7', we can also define an operator
Ly : X(M) — X(M) for 0<k<m,

by setting, for every Z € X(M)
~ 1
Lk(Z) = itr(Pk o lz), (545)

where Iz : X(M) — X(M) is the endomorphism associated to Lz(, ), the Lie derivative of the metric in the
direction of Z. A computation yields a formula analogous to (5.39)), that is,

Lu(2) = div(Pu(2)) - (div(Py), Z),

hence under assumption ([5.43)
E4(2) = div(Pu(2)).

We then obtain the following generalization of ([5.44))

k
. 1 i i
div(Py(2)) = 5 ;(—1) Sp_itr(t! o lz). (5.46)
In the following we will denote by of the normalized k™ symmetric function of the eigenvalues of the
p-Schouten tensor. We begin with the case yu = 0.

Theorem 5.47. Let (M, (, )) be a compact Riemannian manifold of dimension m > 3 with an FEinstein-type
structure of the form with X € X(M), A € C*(M), a € R\ {0} and ¢ : M — (N, {, )n). Suppose
that (M, (, )) is p-Cotton flat, that is,

¥ =0, (5.48)

that X 1is non-Killing and that oy, is a positive constant for some k =2,...,m — 1. Then ¢ is constant and

(M, (,)) is isometric to a Euclidean sphere S™ in R™T1 of constant sectional curvature

_ 2o

Furthermore there exists h € C*°(M) such that X = Vh and (5.17)) holds.

Remark 5.50. If m = 2 then A¥ = T%, hence 0f = 0 and thus, from Newton’s inequality o§ < 0. This
motivates the hypothesis m > 3.

Proof. Since (|5.48)) holds the p-Schouten tensor A? is a Codazzi tensor field. Then ([5.46) holds with Z = X
and T'= A®. Expressing the first equation of (5.15) in terms of A¥ we obtain

$Ex( ) =~ ) = AT AL,
so tha
that ll _(}\ S )[aS” (5.51)
2%~ 2(m — 1) ’ '



where [x and a? denotes the endomorphisms of X(M) induced by Lx(, ) and A¥ respectively. Inserting

(5.51) in (5.46) with Z = X and T' = A%, a computation using ([5.37)) yields, via (5.46]),
. S
le(P]f(X)) = Cg |:()\ — 2(7{11)) O'? - O']f+1:| 5 (552)

where ¢, is defined in (5.36) and P is the k" Newton’s endomorphism associated to A®. Since we are
assuming that o > 0, from we deduce the validity of

ofof —of,, >0, (5.53)

equality holding at a point if and only if at that point A?, and therefore Ric?, is proportional to the metric.
Since M is compact by the Hodge-de Rham decomposition

X =Vh+Y,
for some h € C*°(M) and Y € X(M) with div(Y) = 0. Thus, tracing the first equation of (5.15))

S? + Ah = m),
that can be rewritten as
T T T 2m 1)
Indeed, tracing (2.3)),
tr(A¥) S% S¥
= = — - 5.54
71 m m  2(m—1) (5:54)

Substituting in ((5.52)) we have
s
div(P?)(X) = ¢ <Uf0,f —op,+ kAh) .
m
Integrating on M, since o} is constant, we infer

/ (ofof —of4)=0.
M

By (5.53)) we deduce that the equality holds in (5.53)) on all of M, and A¥ is a trivial Codazzi tensor field.
In particular S¥ is constant and Ric? is proportional to the metric on M. ombining it with Lemma 7?7 we
deduce Since A% is Codazzi, that is, C¥ = 0, we infer that ¢ is harmonic. Indeed, we recall that, from (2.34)),
(trC¥)i = ooy
while from the second of ([5.15]) _
vii = i X"
Thus, inserting into the above yields

(trC?)(X) = (1C¥); X" = aplpl; = alT(e).

Hence, (M, (, )) is harmonic-Einstein with S¥ constant. Now we can conclude as in [Theorem 5.14] Observe
also that, since A¥ is proportional to the metric, using ([5.54) and the constancy of ¢

m— 2 1 ES
Thus we have )
B S _205)?
" m(m—1) m-—2"

as in (|5.49). O
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Remark 5.55. For ¢ constant and X non-Killing[Theorem 5.47| can be considered an extension of the classical
result obtained at the beginning of the Section, that is, [Lemma 5.2 with ¢ constant, to higher order symmetric
functions of the eigenvalues of the Schouten tensor.

In we dealt with the case p = 0 and with a general vector field X. Now we consider the
case p # 0 but we restrict ourselves to the gradient case, X = V f for some f € C*°(M). We have

Theorem 5.56. Let (M, (, )) be a compact Riemannian manifold of dimension m > 3 with an Einstein-type
structure of the form

7(p) = do(V ) (5:57)

with f,A € C*°(M), u,a € R\ {0} and o : M — (N, {, )n). Suppose that (M, (,)) is ¢-Cotton flat, that is
(5.48) holds, that f is non-constant and that o} is a positive constant for some k =2,...,m — 1. Then ¢
is constant and (M, (,)) is isometric to a Euclidean sphere S™ in R™*! of constant sectional curvature x

given by (5.49).
Proof. We set

{Ric“o + Hess(f) — pdf @ df = A(,)

wi=e M.
Then, from (5.57), we deduce

1
i LP - 7H =5 )\ .
Ric " ess(u) (,)

The above is equivalent, using the definition of A%®, to

Then, as 1n lhe pr()()f ()f corenl 5.4 we ()btaln

. af
div(P? (Vu)) = peg {u(a,f_s_1 —o{of) + m’LAu] :

Using constancy of o and integrating on M we obtain
pck/ u(of, , —ofof)=0
M

and since u > 0 and p # 0,
op, —ofof =0, on M.

We now conclude as in observing that Vu cannot be a Killing vector field because u is
non-constant on M. O

Similarly to what expressed in [Remark 5.55| for [I'heorem 5.47| we have

Corollary 5.58. Let (M,(,)) be a compact Riemannian manifold of dimension m > 3 which is a quasi-
Finstein manifold (see equation (1.3)) in the Introduction). Suppose that (M, (,)) is Cotton flat and that the

normalized k-th symmetric function oy of the Schouten tensor A¥ is a positive constant for somek =2,...,m
and that f is non-constant. Then (M, {,)) is isometric to a Euclidean sphere S™ of R™*1 of constant
2(ox) /"

sectional curvature k = peea

Remark 5.59. Observe that, since
-2
p_ M g%
Poom—1)"
Theorem 5.14] and [Theorem 5.22| can be interpreted as the case k = 1 of [lheorem 5.47| and [I’heorem
5.50] respectively. In this case the assumptions of ¢-Cotton flatness and on the sign of the curvature are

unnecessary.

g
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6 Gradient Einstein-type structure with vanishing conditions on
the p-Bach tensor

In this section we shall consider a Riemannian manifold (M, (, )) with an Einstein-type structure of the form

7(p) = dp(V ),

for some o € R\ {0}, p e R, A\, f € C°(M) and p : M — (N, {, )n)-
Our aim is to prove the structure [Theorem 6.66| below, generalizing Theorem 1.2 of [16]. In the following
we shall use (4.18]) and (4.19)), which we report here for the reader’s convenience

R — Ry i = [eRuirg + p(fie f5 — fij fr) + Medij — N, (6.2)

{Ric‘o + Hess(f) — pdf @ df = A(,) (6.1)

1
5520 = R fr + p(frifi — AL fi) + (m — DA (6.3)
We now come to the definition of the tensor D¥ that shall reveal essential in our study.
Definition 6.4. Let m > 3. In a local orthonormal coframe we let the components of D¥ be given by
1

1
D;k = R;P]f]c—Rfk j+F

Se
— 7 fe(B0i5 = Rioi) — —— (fidig — fidin) | - (6.5)

We observe that if ¢ is a constant map then D? coincides with the tensor D defined in [II], with a
different convention. The following properties are easily verified by computation.

Proposition 6.6. In the present setting, with m > 3, the tensor D¥ is skew-symmetric in the last two
indices and it is totally trace free, that is,

Dﬁcj = fD;’;.k, (6.7)
leii = Dﬁm‘ = Dzﬁk =0. (6.8)

An essential feature of D¥ is that it can be expressed purely in terms of the potential function f. Indeed,
we have the following

Proposition 6.9. In the present setting, with m > 3, in a local orthonormal coframe we have

1 1 Af
Dfy = —— |fiwfi = fisfe+ = felfejin = fondig) — —— (fi0ir — frdis) | - (6.10)
Proof. The proof is computational, using (6.1). Indeed tracing (6.1))
S¢ + Af = u|Vf)? +m,
hence using it in the definition (6.5)), together with (6.1), we obtain
1
Df, =3 (= fij + nfifj + Xoij) fio — (= fire + p1fi fic + Air) £5]
1
+ mft[(_ftk + pfefie + Aoek)dij — (= fij + pfefi + Aoej)dik]
—Af 4 p|VFI2+mA
_ Sii — £i0;
(m_1)<m_2) (fk J f] k)
1 1 Af
= | i = fiife £ mft(ftﬁik — fikdij) — m(][jéik — fidij) |
that is (6.10)). O
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Now we prove the first integrability condition of the system (6.1]).

Proposition 6.11. In the present setting, with m > 3, in a local orthonormal coframe we have
ngk + ft tl]k [1 + ( ) ]D;/;k (612)

Remark 6.13. A long and tedious computation shows that the left hand side tensor of components C} okt

Wy ik of (6.12) in the metric (, ), is exactly the ¢-Cotton tensor C¥ of the conformally deformed metric

—_ 27

(,)=e"m72(,).
Indeed,
e m= 2O£k = z’;’k +ftWtfjk
so that .
C? =CF 000" = C*.

With @ we mean the map ¢ : M — (N, (, )n) but where now on M we consider the Riemannian metric (, ).

Proof. Using (6.2)) in (2.36) we obtain

1
Clp+ Am—1) (876i; — Sf&'k) + feRij — w(firfj — fijfr) — Aebij + Ak = 0. (6.14)
We claim the validity of
[
Rijefe = Wi e — Dy — m i T (R{.0i5 — R0k (6.15)

We postpone its proof and we complete the proof of (6.12). Inserting (6.15]) in (6.14) we obtain

0=Cfy + Wife = Dy + (S£6i; — SEoin)

_ 1
2(m —1)
p(firf; = fijfr) — Medij + Njdir — %(Rfkéij — R 6i).

Using (6.3)) we deduce

1

1
2(m — 1) (SKdij = 57 bir) 1 (R fe + p(feefo — Af fi) + (m — 1)Ax)diy

LB+ e~ ATE) + (= DA

met (R}.0i5 — Rfoi) + M%(ftk(;ij — fidir)

A
+p f (fg ik — Jr0ij) + Adij — Ajdik,

and by plugging it into the above identity we infer

0=C7

_U|:fikfj fzjfk"’ f (ftj ik — ftkdij)"’

+ Wi fe — D
A
b 1)
that implies (6.12]), using (6.10]). It remains to prove (6.15). Explicitating (2.3 in (2.6) we obtain
R L0k 0 J £.0. 57 8t0ik — 0110
Riije = Wi = o Ry 0ik — R 0i5 + Rjj0j — RE O — m( tj0ik — Otkdij) |
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then, using (6.5)), we deduce

[

m —

¢
Riijife — Wi [ — |:ft(Rfj§ — Ri05) + R fi — RO fre — —— ( dirfj — 5ijfk):|

I
|
3
—_
[N}
—

f S¥
RE fi = RS+ —== (Rf8; — Rf0u) = —— (8 fs — Oik f;)

1 1
- (1 -— 1) fo(RES:; — RE6a)

t
== Dy — —— (B0i; — Bj0u)
that easily implies (6.15)).

O
The second integrability condition follows by taking the divergence of (6.12)). Indeed we have the following

Proposition 6.16. In the present setting, with m > 3, in a local orthonormal coframe we have

m—4 4
(m - 2)35 m — tzgk:ftfk

. 1 _3 o .. (6.17)
=[1+4 (m —2)y] Dijk,k — tz]kftfk PR ]szk m— ‘Pkk%oi fi -

Proof. We take the divergence of (6.12)) and we use and - together with (| -, to obtain
[1+(m ) ]DZkk _( ij}+ft tzjk)
Cz]k k + -ftk tzgk + ft tzgk k
=Cf T (RO + pfefi + MNow)Whi + Wi

Cjk + R}, Wtfk}j H tijkftfk + )‘Wkijk
m — © a a a ¢ a a a
+ 720]Im + alpjivk — Piel) + m%t(% Sk — Pk6ji) | fu

S, )

=(m —2)Bf, + aR{,pfef —a (w?jwik — Pl Pi —

Wi fefi — adgi o]
m — 3 a a a a < P
o o il aleiivhe — efuel) + @il fi = ehndii)
o o 1, a
=(m —2)Bf, +a (Rfj% + Phrg — MG — i + m—2<pkkfj> v

m —
Wtfjkftfk? + Jlﬂfk

Observe that from (6.1) we deduce the validity of
RE ok + finek = neinfi + A5,
and by plugging it into the above, together with (6.12)), we obtain
a a a 1
[+ (m —2)u]Dgy , =(m —2)Bf + a <fjk80k + e fi + (Prfi); — ot + S%kfg)
+ NWtz]kftfk + 2 J]ﬂfk

=(m — 2)Bf, + —2[1 + (m = 2)pley. fi 01

3

mkftfk _n-e tjlﬂftfk + 72[1 +(m—2)p ]Dfmfkv
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and thus (6.17)) follows. O

Remark 6.18. In case p = —— from ([6.12)) and we respectively obtain (2.56) and (2.57). Further-
more, when ¢ is constant, and (6.17) extend respectively (4-5) and (4-6) of [16], with a = g = 1.
Observe, however, that the normalization a = 8 =1 that we adopt here is inessential.

In what follows we shall assume the following vanishing condition on p-Bach

B?(Vf,-)=0 (6.19)

and the non-degeneracy condition
1
_ 6.20
p# (6.20)

we shall comment on this in Our aim is now to prove the following

Proposition 6.21. In the present setting, with m > 3, assume (6.19) and define the vector field Y € X(M)
of components

Y7 = —Df, fifx- (6.22)
Then, if (6.20) holds, we have

m—2
——|D?J?
D+

Proof. Observe that (6.19) componentwise reads

S IT(@PIVF? = din(Y). (6.23)

Bf fi =0. (6.24)
From (6.17) and the symmetries of W% and D% (see (6.7)), using also (6.1]) we deduce
(m =285 = [+ (= 20l (D~ =51 0P ).
Since (6.20]) holds, then ([6.24]) implies
a
A )
Contracting it with f; we then deduce
Dgy i fifi = —— @IV = 0. (6.25)
To proceed we first prove the identity
2
2 © pe
|D?|? = TDzakR . (6.26)

It can be proved using the definition (6.5)) of D¥ and its properties (6.7) and as follows:

|D?* =D, Df,
_ 1 D¢ @ @ ¢ s ¢ 5 5% 5 5
=5 D | Bifi = R fi + —— (B0 — Rijoi) — —— (fudij — fidin)
1 gv

1
:[ Ce(RE S — Ry, j)+m7_ft(Dﬁkak Df;zR@)—m(kai — /i W)]

m — 2 1
1 1
:m—2 Uk fk_72 zkg fk

2
=g Dik il fre
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To obtain from we observe that, using 7 and
Dfy i fifi G difi)ke = Doy finfi — DYy fifik
Gnfifi)k — Dy fif
cndifi)k + Dy fig fr
)
)

Gndifi)k + D5 (= RE + pfifi + Mij) fr
”kfifj k— Z]/CR e+ #Dzjkfzfjfk + /\D“kfk
1jkf7lfj) ngwaka

and thus we conclude using and (| - O

We are now ready to prove the first important result of this section.

=(D
(D
(D
(D
(D
(D

Theorem 6.27. Let (M, (,)) be a complete, non-compact Riemannian manifold of dimension m with an
Einstein-type structure as in (6.1). Suppose that m > 3, that « > 0, that (6.20) and (6.19) hold and that f
is proper. Then D¥ =0 and ¢ is harmonic.

Proof. Let ¢ be a regular value of f and let ¥, and 2. be its corresponding sublevel hypersurface and set,
that is
Qe={xeM: fz)<c}, Y.:={zeM: f(x)=c}=0Q. (6.28)

Integrating ([6.23)) on M, that holds since we are assuming the validity of (6.19)), and applying the divergence

theorem
—/ D *‘W—/ EIse = [ v,

c

where v is the outward unit normal to ¥, and Y is the vector field with components defined by (6.22)). Since
v is in the direction of V f and since, using (6.7)

<vaf> = kak = kazfjfk =0,

m—2 o
D¥|2 2 2 _
e s [ s

Since c is an arbitrary regular point of f we conclude

—2
m=2 [ pepy @ / @IV = 0
M m—2 [y

we obtain

2

and since o > 0 and, using the second equation in (6.1, the vanishing of |7(¢)|?|V f|? is equivalent to the
harmonicity of ¢, the thesis follows at once. O

Remark 6.29. Note that we can give the vector field Y the following remarkable form:
(m —1)Y = Ric?(Vf, VIV — |[Vf*Ric?(V £, )" (6.30)
Indeed, from the definition (6.5)) of D¥

Dy fi :ﬁ {Rf}fifk — Ry fifi + ﬁft(Rfk i — R fe) - (fkfj fifx)

1 1 1
:m {(1 - m—) R,szfk - <1 - m—) mfzfg]

1
=—— iR S = R f5)-
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Therefore we have 1

Y*=Dffif = —— (B fififu — B, V112,
that is (6.30)).

Remark 6.31. Observe that in the degenerate case where i = ——L- that is, when (M, (, )) is a confor-
mally harmonic-Einstein manifold by [Theorem 2.49] the condition is always satisfied. It follows by
contracting the second integrability condition (2.57) with f;, using the skew symmetry of W% in the first
two indexes. Observe that a sufficient condition to guarantee is that (M, (,)) is p-Bach flat, that
is, B? = 0. In case m # 4 this requirement is quite strong, since from [Proposition 2.38 it implies ¢ is a
harmonic map. On the contrary in case m = 4 it seems a reasonable assumption, since B¥ is traceless.

Our aim is now to analize the consequences of that is, the two simultaneous conditions
i) D¥ =0, i) 7(p)=0,

on the geometry of the level hypersurface ¥, = 09, defined as in (6.28)), for a regular value of f. We fix the
indexes ranges
1<4,j,...<m, 1<a,b,...<m-1, 1<ADB,...<n.

With respect to a local orthonormal coframe on M we have

RE + fij = nfifj + Ny,
v =0=glf; (6.32)
Df, =0.

The following Proposition provides the relation between the norm of D¥ and the curvature of the level
hypersurfaces of f, it uses only the first and the last equation of ([6.32)).

Proposition 6.33. Let (M,(,)) be a Riemannian manifold of dimension m > 3 that satisfies the first
equation of . Let ¢ be a regular value of f and let . be the corresponding level hypersurface. For
p € X, choose a local first order frame along f, that is a local orthonormal frame {e;} such thatey,..., em_1
are tangent to ¥. and

e Vf
"V
Then, at p,
m —
D?2 = |h)!|Vf]? + R“" R? 6.34
2|vf|2| 2 = ||V fI? + — o (6.34)

where h is the traceless part of h, the second fundamental form of X..

Proof. First we compute |D¥|? on M. A long and tedius computation yields the validity, where V f # 0, of
the following

L 1R§GR@ — (R, o
_ 171(5%) — SVJRLP
Let ¢ be a regular value of f, p € ¥. and {e;} a local first order frame along f, then
fa=0, fm=I|V{]. (6.36)
Let h be the second fundamental form of X, then (see proof of Proposition 6.1 of [16])
B = =07 (er) = % (6.37)
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Using the first equation of (6.32), that holds by hypothesis,

1 1
hab = W(be - ,ufafb - )‘aab) = W(be - A(Sab)'

The mean curvature h is defined as

Tracing (6.38]) we deduce the validity of

1 (8¢ - Ry
h= mm .
Vf( m—1 )

We denote by h the traceless part of h, that is,

o

hap := hap — hdgp.

Using (6.38) and ((6.39) we obtain
7 haa 2
P =l = (1) (e )

m—1

m 1

mm

m—1 m—1

_ ! {
V2
By plugging it in (6.35)) we deduce the validity of (6.34).

Remark 6.40. In the assumptions of |[Proposition 6.33] if D¥ = 0 then X, is totally umbilical, that is

o

h =0,

or equivalently

1 S¥Y — R¥
ha: mmi}\ 50.7
’ IVf|< m—1 ) ’

and for every a=1,...,m—1
R®

am

=0.
Then, by plugging (6.41)) in (6.38)) we obtain

1 1 $ _ ©
L (R®, — Aowy) = <S Rm >\> Sub,

V£ VS m—1
that is,
S? — R¥
@ mm
R, = Y Oab-

In the following Proposition also the second equation of ([6.32)) comes into play.

2
[Ric?[* = 2RE, RE, — ———(Rf)" = ——= (8%)° + ——= PR, |-

(6.38)

(6.39)

(6.41)

(6.42)

(6.43)

Proposition 6.44. In the assumptions and the notations above with D¥ =0 on X, that s, all the equations
of are satisfied and c is a regular value of f, the quantities |V f|, h, S¥ and X are constant on each
connected component of X.. In particular ¥, is totally umbilical hypersurface of (M, {,)) with constant
mean curvature. Moreover ¥<S¥ is constant on ., where > S% is the @-scalar curvature of the Riemannian
manifold (X, (, )x.), where (, )x. is the metric induced on ¥, and where we are considering the restriction

c c

of p on Y.
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Proof. We use the notations of [Proposition 6.33] Using the first equation of (6.32)) and the fact that (6.36))
holds in the chosen frame we obtain
V2
2
Using in it once again (6.36]), together with (6.42)) we deduce |V f|2 = 0. Hence |V f] is constant on ¥.. By
Codazzi equation, the definition (2.1]), and (6.42)) and the fact that hep = hdap, we have

fiafi = (=RY, + pfifa + Xoia) fi = —R{, fo = RL.IV I + M.

(m —2)hy = Ry = RY, + ochggo? = ochﬁlgof. (6.45)
Now observe that, using the second equation of ((6.32)) and (6.36])
Pl VE = omfm =i fi — i fa = 0fi = 0. (6.46)

Then, since |V f| is constant on X, using (6.46)

«
(IVFIh)y = [V Flhy = ——— oo V] = 0.

Hence |V f|h is constant on X. and, since |V f] is constant on X, it implies that 3. has constant mean

curvature h. Using (6.3]) with ¢ = b, (6.36), (6.42) and also the first equation of (6.32]) we conclude

%Szf =R}, fr + u(frvfe — Affo) +(m = 1)\
=R%, o+ RE, IV FI + 1 favfa + Frmp|Vf]) + (m = 1)N,
=u(—RE, + p1fomfo + ANomp) [V f| + (m — 1)
=(m — 1))\()

It follows that 1
55’4’ —(m—=1)A (6.47)

is constant on Y.. In particular, if we show that S¥ is constant on 3. we can conclude also that A is constant
on ¥.. To show that S¥ is constant on X, we first observe that (6.39) can be rewritten as

S¥ _ R¢
h=—""2m _ ) 4
Vil = 2, (6.43)

Hence we obtain
1 1
(m—-1)|Vfh=5—-R¢!, —(m—-1)A= (QS“’ —(m— 1))\> + 55“’ —RY,..,
and since both |V fh and (6.47) are constants on ¥, we can conclude that also
1
28%9 _ R
2 mm

is constant on ¥.. Then it is sufficient to show that R, is constant to obtain that S¥ is constant and

conclude the proof. At this purpose, observe that uisng the first equation of (6.32)),(6.43]) and (6.48)

S —R¢
m—1

faa = _Rfa +Mfafa +)\6aa = - ( ) (m_ 1) + (m_ 1)>‘ = (m_ 1)|Vf|h,
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hence using (6.3]) with « = m and (6.36]) we can conclude

%Sﬁ =R} fr + u(femfe — Af frm) + (m — 1)\,

=R?, fa+ RV 4 w(famSa + frm| VI = AFIVE]) + (m = 1)Am
=R2 IV + p(frm — AHIV+ (m = DAy,

=R? V| = pfaal VI + (m = 1A,

=R{ IV f| 4 p(m — DRIV P + (m = 1),

Since h and |V f| are constants on X, we deduce that
1

is constant on X, then, using once again that |V f| and also that (6.47)) are constants on 3,

0= (555~ RlV A1~ (m - DA,

a

1
(57— n-1\) = RS

= - R;’;Lm,a|vf|

Thus RY,,, is constant on X, and the proof of the constancy of S¥ on X. is concluded. Now it remains to

show that *¢S% is constant on .. By Gauss formula, since the immersion is totally umbilical,
Ee§ =8 — 2Rpm + (m — 1)(m — 2)h?,
hence, from the definitions and
8% =FeS —apgen

=S — 2Rm + (m — 1)(m — 2)h? — a|dp|? + ap?ted

=S¥ —2R?  —2api ol + (m —1)(m — 2)h? + ap? o2,

=S5% —2R¥ + (m —1)(m — 2)h? — ap2 o2
Then we have, using :

Yo 8P|V f| = [S¥ = 2RE,, + (m — 1)(m = 2)W]|V f],
and thus we can conclude that < S% is constant. O

Our aim now it to show that X. is harmonic-Einstein with respect the the induced metric and the
restriction of ¢, for a regular value ¢ of f. To show it we need the following result, that has an importance
also on its own.

Proposition 6.49. In the assumptions above, if f is non-constant, then (M, {,)) is @-Cotton flat.

Proof. We want to prove that C¥ = 0. By analiticity it is sufficient to prove the result on {x € M : Vf(z) #
0}. We take a local first order frame {e;} along f. By the first integrability condition (6.12)), since we are
assuming the validity of the third equation of (6.32)) we deduce

C;‘?‘k = fftWtfjk. (6.50)
Hence, by the symmetries of W% and using (6.30)

= facsojk + |Vf|cijk = C?fzjk‘vf"

Q,

0=—fifiWi;, = £iCy,
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Then Cny .. = 0. Since X is totally umbilical with constant mean curvature h is parallel, that is hgp . = 0.

Then, from Codazzi’s equation
Rmabc = 07 (651)

indeed
_Rmabc = hab,c - hac,b =0.

But then, explicitating the decomposition ({2.6)

0= Rpabe = W7 1. + ﬁ R? 04c — R%, 0ab + RE 0t — RY Ome — %(5,@5% — dmedab) |
and since holds we conclude from the above equality:
W .=0. (6.52)
Therefore, from , using and we obtain
Cove = —ftWiape = —faWiape = IV W e = 0-

By the symmetries of C¥ it remains only to prove C? , = 0. First of all observe that

S? —mR¥
© k _ mm om
R L (6.53)

in fact from the definition of covariant derivative, since (6.42)) holds,

0 =dR?,,
:Rfmgs + Rfkeﬁi + Rfm,kek
=R{ 00+ Rimba + RO 00 + REnbin + RE,0°
:R;’;Lmegﬁb + R(fbafn + Rgm,kak
and thus, using also (6.43]) from the above equality we obtain
Rfm,kek = erLmetT - beefn
Y _ RY
=—R?, 0T — Sﬂgab%
m—1
Y _ RY
= Ry - 2 Mg,
m—1
S® R¢
= (~Rp + 2~ T ) g
m—1 m-—1
S —mR¥¢,. .
:70a y
m—1
that is (6.53]). Now we are going to prove
R%,, = 0. (6.54)

Observe that, by taking i = a and j = m in the first equation of (6.32]) we obtain
Rfm + fam = ,ufafm7

and thus, using (6.42)) and (6.36)), we deduce
Jam = 0. (6.55)
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Moreover, taking the covariant derivative of the first equation of we infer
RY o+ fijie = nfinfi + wfifie + Aedi
that for i = m =k and j = a reads as
R+ fmam = Wfmmfa + fm fam.
Then, using and the commutation relation (1.116) of [I], that is
fijk = firj + Rijpfe,

together with (6.51),
R?zam,m = _(Af - fbb)a~ (656)

Indeed
REpm = ~fmam = ~(fuma + fiRinam) = ~(Fmma + foRpam + FmnRinam) = —fouma = —(Af = fob)a-
Since, taking the trace of the first equation of we obtain
S+ Af = u|VF*+m

and since S¥, |V f| and X are constant on ¥, we deduce from the above equality that also A f is constant on
3. Moreover, from the first equation of (6.32)), (6.43) and (6.36))

fab = — REy + ufafo + Aab

© _ Ry
= - SiR{nm‘(sab +)\5ab

m —
1
— Y~ (§P_RY  _ 1
m — 1 (S Rmm (m ))‘)5@5’
that is,
1
fab = 7m(stp — R;’;Lm — (m — 1)>\)§ab. (657)
Tracing (6.57)) we have
faa = _(SW - Rﬁzm - (m - 1))\)7 (658)

and thus also f,, is constant on .. Then we can conclude from ([6.56)) the valdity of (6.54]), since both A f
and fp, are constants on .. Using (6.54]) and (6.53]) we infer

Re, 0 = R?, 0 = 27— "B g
am,b am,k m—1 a

Using (6.37) in the above equality we deduce the validity of

S¥ — mR¥ 1 mR?_—S%
—0 () = — Jab- (6.59)

R? -
Vil m=1

am,b —

m—1

Then we finally obtain, using (2.36)), (6.43]) and (6.59)

Copm :be,m - Ra(pm,b - ﬁsﬁéab
= (T e gy b
- ;z]j%m’m b = 2(m1— ) S lvlfl = ;zn—ﬂf%m Ja
=m5ﬁ5ab R nba b Wl i 57 ;@Tfﬁm Fan.
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Moreover, since ¢ is harmonic, from (2.10)),

S¢ =2RY . =2RY. .+ 2RY

m im,i am,a mm,m"*
By inserting it in the above equality we deduce the validity of

1 1 S¥Y—-mR¢

¥ = ——R%, .
abm m— 1 cme b+|Vf| fb

m—1

Taking the trace of (6.59)) and using (6.58]) we have

e 1 mR¢,, —S°, 1 S¥—mR¢,
ama O fl o om—1 OOV m—1

(S¢ — R?

mm

On the other hand, using (6.57) we obtain

1 S —mR¢,, 1 5% —mR¢,,
Vil m—1 f“b:_\vﬂ (m —1)2 (S¥ — R, — (m — 1)A\)dap.
Using (6.61) and (6.62) in we conclude
1 1 S —mR¥
C¥ —=__ _R¥ Oq mm -0,
abm m—1 cm,c b+|Vf| m— 1 fb

then the proof is completed.

We are now able to prove the following Proposition, as claimed before.

—(m—=1)A).

(6.60)

(6.61)

(6.62)

Proposition 6.63. In the assumptions above, %, is harmonic Finstein with respect the induced metric for

every regular value ¢ of f.

Proof. First of all observe that C¥ = 0 from |Proposition 6.49) hence using also the third equation (6.32) the

first integrability condition (6.12)) implies

0= C;’}k + ftWtfjk = |Vf|W7ﬁijk on X,
thus
Wnﬁijk =0.
From the decomposition ({2.6)), using (6.64)) we obtain
1 S¥
Rmam =——(RY R? 5a - 511 )
b m_2( ab+ mmYab m—1 b)
indeed
1
Rinamp =W7 o+ ———(A%,.0a — AL 6am + AL, — AL, . 0bm)
m—
1 S¥ S¥
=— | R? 0gp — ———0, RY S —
m—2 ( mmOab = 5y % fab 50T ”)
1 S%
m_2<Rab+Rmm b m—1 b)

Using (6.43)) we then have

S¥ — R?
R@ - mm5a7
ab m—1 b
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and by plugging it in the above we obtain

1 S¥Y — R¥ S R?
Rmamb = e 6ab + Ryflm(sab - 6ab = i 6ab~
m—2 m—1 m—1 m—1

By Gauss formula
ECR(IC - Rac - Ramcm + (m - 2)h26acy

then using (2.1)
Tepe _ e A A _ pp 2
RY = *Rye — aplos = RY. — Ramem + (m — 2)h%d,.

By inserting (6.65)) and using (6.43) in the above we obtain
¥ Rf. =Rf. — Ramem + (m — 2)h*6,.

S¥ — R¢ R¢
=g — G+ (m — 2)h%d,.
_[S¥-2Rg,,

ovn2
— + (m — 2)h*| dge-

Thus, denoting by *<Ric?, (, )y, and *<S¥ the @-Ricci curvature, the induced metric and the @-scalar
curvature of . (where we are considering the restriction of ¢ on X.)

e Gp
m—1

ZeRic? =

<a >Ec'

We conclude that (2., (, )x,) is harmonic-Einstein since ¢ : M — (N, (, )n) is harmonic and thus from

c

dp(V f) =0 we see that ¢ : (X, (, )x.) = (N, (, )n) is harmonic too. O
We are now ready to prove the most important result of this section.

Theorem 6.66. Let (M, (,)) be a complete, non-compact Riemannian manifold of dimension m with an
Einstein-type structure as in . Suppose that m > 3, that a > 0, that u # 1/(2 —m) and B¥(Vf, )
hold and that f is proper. Then, in a neighborhood of every regqular level set of f, the Riemannian manifold
(M, (,)) is locally a warped product with (m — 1)-dimensional harmonic-FEinstein fibers.

Proof. Our assumptions permits to apply to deduce that ¢ must be harmonic and D¥ must
vanish on M. Let ¥ be a regular level set of f, that is |[Vf| # 0 on X (it exists by Sard’s theorem, since
f is non-constant). In a neighborhood U of ¥ which does not contain any critical point of f the potential
function f only depends on the signed distance r to the hypersurface ¥. Hence, by a suitable change of
variable, we can express the metric tensor g as

dr @ dr + gapdf® @ db°,

where gup = gap(r,0) and r € (r,,7*) for some maximal r, € [—00,0) and r* € (0,+o00], where 6%, ... 6™
is any local coordinates system on the level surface ¥. Since, as proved in [Proposition 6.44] 3 is totally
umbilical and has constant mean curvature

8gab _ _ _
o —2hap = GGap, ¢(r) = —2h(r).

Thus we deduce the validity of

(r.0) = "5 0.0, o) = [
0
This proves that on U the metric g takes the form of a warped product metric

dr®d7°+w2(, s,

where w is a positive function on (r4,7*) and (, )» is the metric induced on (, ) by g, which is harmonic-
Einstein by |Proposition 6.63| O]
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7 The complete case

In this section we consider a complete Riemannian manifold (M, (, )) with a gradient Einstein-type structure
of the form

Ric® + Hess(f) — pdf @ df = A(, ) (7.1)
() = dp(V ),
where ¢ : M — (N, (, )n) is a smooth map, «, u, A € R with « #£ 0, f € C>(M).
Recall that the validity of a system of the type
1
Ric + Hess(v) — —dv®@dv > —(y+m — 1)G(r)(, ), (7.2)

v

for some v € R™ and some continuous function G : Rar — Rar, implies some restriction on the volume growth
of geodesic balls. The same applies to the simpler system

Ric + Hess(v) > —(v+m — 1)G(r)(, ).

Here r(x) := dista (2, 0) is the geodesic distance of x € M to a fixed origin o € M.
Indeed, in case v > 0, the left hand side of (|7.2) is the generalized Bakry-Emery Ricci tensor Ric] of
(M, {(,)) introduced by Z. Qian in [40], so that we can write (7.2) in the form

Ric] > —(y+m —1)G(r)(, ). (7.3)

Inequality ([7.3)) enables us to estimate from above the weighted volume of geodesic balls

vol, (B;) ::/ e Y,
B

"

via Theorem 2.4 of [2§] whenever G has an appropriate behaviour at infinity (see (7.6))). Of course in the
estimate a role is played by the parameter 7. Indeed, let g be a positive solution (if any) of

"o_ > +
{g Gg>0onR] (7.4)

9(0)=0, ¢'(0)=1.

Then (7.3)), together with completeness of (M, (, )), implies, via Theorem 2.4 of [2§], that for 7 large enough,
vol,(0B,) < Cg"™™ (r) and vol,(B,) < D+ C’/ grtm=1, (7.5)
0

for some constants C, D > 0. Note that, and this is important, the upper bound in (7.5 only depends on G
via g but not on v.
Assuming that G € C!(R{) is positive and satisfies

!
in+f 53 > —00, (7.6)
RG G2

by choosing

g(t) (eD live _ 1) (7.7)

1
ONEQ

for a positive constant D large enough as a solution of ([7.4]), from Proposition 2.3 of [28] we have

Ayr(z) < C/G(r(z)) forr(x) >>1 (7.8)
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for some large enough positive constant C. As a consequence, for o € RT there exists A4, B,C € RT such
that, for every r > r¢

vol, (0B;) < Cln VG
and ,
vol,(B,) < A+ B/ S0Vt
ro
Note that, in case
Ric, > —(m — 1)G(r){, ),

that, for the sake of brevity we shall indicate as the case v = 400, the estimates corresponding to (|7.5)) are
given in Proposition 8.11 of [I], that is,

voly(8B,) < Cr=a+fI (Jim-1)G)dt (7.9)

for some constants £, C > 0 and r > ¢ and, as a consequence,

.,
vol,(B,) < D+ / Ot (JEm=1)G)dt g o (7.10)
0

with C, e as above, D > 0 a constant and r € Rar.
In particular, when G = ¥ for some ¥ € R, that is,

Ric] > —(y+m —1)3(, ) (7.11)

we have: if v > 0 and & > 0, (7.4) admits a positive solution h such that h(r) = eV=" for r >> 1, so that
the second estimate in (7.5 yields

vol,(By) < D+ CeOrtm=DVEr for p 551 (7.12)
and some constants C, D > 0 while, if v = +00 and G = X for some ¥ € R, that is,
Ric, > —(m —1)X(,) (7.13)
from and we respectively obtain the estimates

vol,(0B,) < e =T and vol,(B,) <D —|—/ e
0

(n-1E
2

POt for r>> 1 (7.14)

and some constants C, D > 0.

We point out that for if v > 0 and ¥ < 0, Qian, Theorem 5 in [40], shows that the complete manifold
(M, (,)) satisfying (7.11) has to be compact. For v = 400 and ¥ < 0 a complete Riemannian manifold
(M, (,)) satisfying . is not necessarily compact (to see this it is sufficient to consider the Gaussian
shrinker gradient Ricci soliton structure on Euclidean space). Nevertheless, the following Proposition holds.

Proposition 7.15. Let (M, (,)) be a complete Riemannian manifold such that (7.13)) holds for some v €
C>®(M) and for some constant ¥ < 0. Then (M, (,)) is A,-parabolic.

Recall that (M, (, )) is said to be A,-parabolic if every bounded above A,-subharmonic function on M
is constant.

To prove the above Proposition we observe that Theorem A of [41] can be easily adapted in the weighted
setting, obtaining

Theorem 7.16. Let (M,(,)) be a complete Riemannian manifold, let v € C*°(M) and assume that
vol, (0B,) ™ ¢ L*(+00). (7.17)
Then M is A, -parabolic.
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Proof (of Proposition . Our assumptions imply the validity of the first of (7.14]). Thus, since ¥ < 0 we
deduce the validity of ([7.17]). O

For ¥ > 0 we have

Proposition 7.18. Let (M, (,)) be a complete Riemannian manifold, v € C*(M) and ¥ > 0. Assume
either holds or that the second inequality of holds. Then we have the validity of the weak
mazimum principle at infinity for A,. As a consequence, the L'-Liouville property for A,-subharmonic
functions holds.

Recall that the L!-Liouville property for A,-subharmonic functions holds if every u € Lip;,.(M) solution
of Ayu <0 on M and satisfying 0 < u € L'(M,e™") is constant.

Proof. From Theorem 9 of [39], the validity of the weak maximum principle at infinity for A, is guaranteed

in case
T

TogvoL, (B, ¢ L'(+00). (7.19)

Since v > 0, (7.11)) implies
Ric, > —(y+m —1)X(, ).
Then we can assume the validity of (7.13]) in both cases. As remarked above we get ((7.14]) for some constants

C, D > 0, so that, by a computation we obtain that (7.19) holds. Now the validity of the L!-Liouville property
for A,-subharmonic functions can be deduced from Theorem 24 of [39). O

In the presence of a gradient-Einstein type structure on a complete Riemannian manifold we naturally
have the validity of a system of the type (7.2)), as we now show.

Proposition 7.20. Let (M, (, )) be a complete Riemannian manifold with a gradient Finstein-type structure
as in (7.1) for some f € C*(M), p: M — (N,{, )n), « € R\ {0} and u, A € R. Let o € M be a fized origin
and r(x) := distyr(z,0) the geodesic distance of x € M from o. Let K : R — R{ such that

|dp|* < K (r) if a <0 (7.21)

and F : Ry — RY be such that
IVFP<F(r) if a<0 and pu<0. (7.22)
Then, denoting with ty and t_ the positive and negative part of t € R, using the conventions % = 400,

(+00)+ =0 and
Ricj{oo = Ricy,

Ric}%r 2—((;)++m—1> G(r){(, ), (7.23)
_/\—,u_F—oz_K.
(%)++m—1

Proof. The following inequalities hold, in the sense of quadratic forms,

we have

where
G =

(7.24)

0<@"(,)v <I|del*(,).
Hence using the first equation of (7.1]) we obtain, in case a > 0

Ric + Hess(f) — pdf @ df > \(, )
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while in case a < 0, using ,
Ric + Hess(f) — pdf @ df > (A + oK (1))(, ).
From the above we conclude
Ric + Hess(f) — pdf @ df > (A —a_K(r)){(, ). (7.25)

In case p =0, ([7.25)) gives
Ric;> = Ricy > (A —a_K(r))(, ),

and, in case p > 0, (7.25) gives
> (A —a_K(r))(, )

T

Ric
Moreover

df @ df <[VfI*(,)
and thus, in case p < 0, from (|7.25]), using ([7.22)), we get
Ric > (A — a_K(r) + uF(r))(, )

We then conclude the validity of (7.23]). O

As an application of [Proposition 7.20| we have

Proposition 7.26. Let (M, (, )) be a complete Riemannian manifold with a gradient Finstein-type structure
as in (7.1) for some f € C*(M), p: M — (N,{, )n), « € R\ {0} and p, A € R. In case o < 0 assume

(Idgf*)* == Sup |dp]? < +o00

and in case o, < 0 assume
(IVFI2)* :=sup |[Vf]? < 4o0.
M

Then
s 1
Ricf" > — ((u) +m — 1) 2(,) (7.27)
Jr

with A d 2\ % \V4 2\ *

(l) +m-—1

r 4+

where we are using the convention (+o00)_ = 0. In particular

i) The weak mazimum principle at infinity for Ay and the L'-Liouville property for A f-subharmonic
functions hold;

i) In case >0, if a,A >0 or if a < 0 and X > |a|(|dp|*)* then M is compact.

iii) In case p = 0, if o, A > 0 or if a < 0 and X\ > |o|(|dp|?)* then (M, {,)) is parabolic with respect to
Ay.

w) In case pn <0, if a >0 and X > |u|(|[Vf|*)* orif a <0 and X > |u|(|V f]?)* +|a|(|de|?)* then (M, {, ))
is Ag-parabolic.

Proof. The validity of (7.27)) with ¥ given by (7.28)) follows immediately from [Proposition 7.20| by choosing,
in case a < 0, K = (|dp|?)* and, in case u < 0, F = (|[Vf|?)*. Then i) follows from [Proposition 7.18] 1)
from Theorem 5 of [40] and finally 4i¢) and 4v) follows from [Proposition 7.15| O
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Now we give, as a consequence of (4.20)), a two-sided estimate on Sy := inf,; S¥. Precisely we prove

Theorem 7.29. Let (M, {,)) be a complete Riemannian manifold of dimension m with a gradient Einstein-
type structure as in with « € R\ {0}, p, N € R, f € C®°(M) and ¢ : M — (N, {, )n) a smooth map.
Assume a >0 and 0 < pu < 1. If A <0 assume that f. > —oo or that the smallest eigenvalue of Hess(f) is
bounded from below.

i) If A > 0 then M is compact and

<SP <
[ E— A <SP <mA
If w # 1, then
(m—1)p o
_ < .
1+(m_1)um)\<5* < mA

Furthermore, SY = mM, that is, S?(xo) = m\ for some zg € M, if and only (M,{,)) is harmonic-
FEinstein and f is constant.

it) If A =0 then
S? =0.

*

Moreover, if u # 1, either S¥ >0 on M or otherwise (M, (, )) is harmonic Einstein with S¥ =0 and
f is constant.

1) If A < 0 then

(m—1)p
<8Pl — I8
mA < S? < 1+(m71)um)\

If uw # 1, then S¥(xg) = mA for some xg € M if and only (M,(,)) is harmonic-Einstein and f is
constant.

Proof. Since ) is constant, equation (4.20)) can be written in the form

%A(Hzﬂ)fS*D =(u—1)(a|r(p)? +|T7%) - (m_l$(5”J —mA\) (S"’ — MmA> . (7.30)

We set u := —S5% so that (7.30]) takes the form

—1 1
L m-Dptl
m

%A(l_;'_gu)f’u =1 — p)(alm(p)* + |T%|?) (u+mA) (u + (ml)uum)\> . (7.31)

1+ (m—1)

Since p < 1 we deduce

1 (m—-1)p+1 (m—1)u

on M. We now set

g:=1+2u)f
so that ) ( 0 ) ( 3
m—1)u+ m—1)u
“Agu>-— —_ 32
58gu 2 - (u+m/\)(u+1+(m_1)um>\>, (7.32)
or equivalently, in terms of S%,
1 (m—1p+1 (m—1)u
A SY < X TP (g | S & S . .
5 5% < - (S¥ —m) (S - 1)um)\ (7.33)
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i) If A > 0 then, from [Proposition 7.26|ii), M is compact and since SY¥ = S%(z¢) for some zo € M, from

(7.33]) we deduce

(m—1p
1+ (m—1)
We now show that the first inequality is strict if 4 # 1. Indeed, by contradiction suppose S¥ =

%m. Because of (7.33)) the non-negative function

mA <SP < m.

(m—1)p

. GY _
L ey

mA\

satisfies

1 -1 1 1 -1 1
—Agy<—w (U—m)\>vz—wv2—|—)\v§)\v.
1+ ( It m

2 - m m—1

Since M is compact v attains its minimum and from the minimum principle, see page 35 of [20], we
deduce that v vanishes identically. Hence

S = = ™ (7.34)

From ([7.30)) by integration we then deduce
(1= mw(alr(p)* +|T?*) =0,

so that, since pp < 1 and o > 0, (M, (, )) is a harmonic-Einstein manifold. From the first equation of

(7.1) we infer
S
ST 4 Hess(f) — udf @ df = A ),

that implies, using (|7.34]),

A

Hess(f) — pdf @ df = m

(,)>0.

Since M is compact this gives a contradiction in the point of absolute maximum of f.

Suppose now that SY = m\. Then

Swzgf:m)\zum)\’
1+ (m—1)p

hence from (7.33]) we deduce
1
§A959’ <0.

Since M is compact we infer that S¥ = Sf. Once again from (7.30) we obtain that (M, (,)) is
harmonic-Einstein and from the first equation of (7.1]) we have

Hess(f) — pdf @ df = 0. (7.35)
Tracing (7.35)) gives Af = pu|Vf|?> > 0 and since M is compact and p > 0, f must be constant.

If A <0 we show that the weak maximum principle hold for Ay if f, > —oo or if the smallest eigenvalue of
Hess(f) is bounded from below. Suppose f. > —oo, then vol,(B,) < e~2*/+vol;(B,) and thus

T
I
log vols B, £ L' (+00),
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because of equation ([7.1)) and the estimate (7.14)) valid with v = f and ¥ = 0. From Proposition 3.17 of [36]
we obtain the validity of the weak maximum principle for A,. Now suppose that the smallest eigenvalue of
Hess(f) is bounded from below. The first equation of (7.1)) can be written in terms of g as

B _dgodg =\, )+ 2uHess(f) + ap*(, ),

Ric + HeSS(g) — m

so that, using «, u > 0 and since the smallest eigenvalue of Hess(f) is bounded from below,

(1+2p)

2
Ric; > A(, ), with ~:= > 0.

Then, from [Proposition 7.26 the weak maximum principle for A, also holds in this case. Using Theorem
4.2 of [1], since A <0, from (7.32) we deduce for u* := sup,, u,

,Mm/\ <u* < —m
1+ (m—1)u

of course when u* < 4o00. But this is the case because of Theorem 4.1 of [I], (7.32)) and the conditions on
the parameters. From the above we immediately infer

(m—1)u
<8Pl — I .
mA < S¥ < 1+(m_1)ﬂm)\

ii) Let A = 0, the bounds on S¥ gives SY = 0. In this case gives AyS¥ < 0 so that either S¥ > 0 on
M or §¥ = 0. In the latter case, if 4 # 1, from , we obtain that (M, (, }) is harmonic-Einstein and
thus, from the first equation of , once again we deduce . Then or f is constant or otherwise
the positive function u := e~#f satisfies Hess(u) = 0. This is not possible since by a Cheeger-Gromoll
type argument, see for instance case i1) in the proof of Proposition 8.13 of [I], there are no positive
non-constant affine function.

iii) Let A < 0. The estimates on S{ have been obtained above. If S?(zo) = m\ for some xg € M then,
from (7.33), the non-negative function v := S¥ — mA satifies,

1 -1 1 1 -1 1
e tm=butl (L ) oomo et o,
2 m 1+ (m—1)u m

that is,
Agv+2Xv <0,

so that, since v attains its minimum, from the minimum principle v = 0. Then S¥ = mA and then, as
before, in case p # 1 from ([7.30) we infer that (M, (, )) is harmonic-Einstein. From (7.1)) we deduce
that satisfies (7.35). As in ii) above, we deduce that f is constant. O
Note that in case p = 0 and ¢ is constant (|7.1]) yields the Ricci soliton system

Ric + Hess(f) = A(, ). (7.36)

In this situation we have the well known identity due to Hamilton,
VS = 2Ric(Vf, )" (7.37)

The latter, in turns, gives rise to the celebrated Hamilton identity

S+ |VF*2=2Mf =A, (7.38)
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for some constant A € R. Note that in case A # 0 one can add a constant to f to obtain A = 0. We

shall generalize ((7.37)) and (|7.38]) to the Einstein-type structure ([7.1]). The equation corresponding to (7.37)),
(4.19

with A non-constant, is given in a local orthonormal coframe by (4.19)), which we report here for the sake of
convenience

1
§Sf =R fr — nAf fi + pfifrg + (m = 1A, (7.39)

Observe that for 4 = 0 and for A and ¢ constants (7.39)) reduces to (7.37)). Next we extend ((7.38) in the

following

Proposition 7.40. Let (M, {,)) be a Riemannian manifold with an Finstein-type structure as in (7.1) with
A constant. Then there exists A € R such that, if u # 0:

1 A
S¢ — (n—1)|Vf]?+ ( — m) A= =l (7.41)
H Iz
and if p=0:
S? + |V f|? —20\f = mA — A. (7.42)
As a consequence we have the validity of the following equations, if u # 0:
A A
Arf=2— =, 7.43
= (7.43)
and if p=0:
Arf=A-2)f (7.44)

Remark 7.45. Observe that in (7.43)) and (7.44) the map ¢ : M — (N, (, )n) and the constant o of Ric? do
not appear. This observation enables us to extends many results on quasi-Einstein manifolds to our more
general structure.

Proof. We claim the validity of the following equation
(Af + (m = 2)0); — 2f,(ud s f — ) = 0. (7.46)
Towards this aim we trace the first equation of to obtain
m\ = S? + Af — u|VF|2 (7.47)

Taking the covariant derivative and inserting into ([7.39)) we deduce

1
§Sf = R{ fr — nAffi + pfifrg — Ay + (5P + Af — plV )5,
that is,
1
5530 +(Af); + R fi = pAffj + pfijfi + A5
From the first equation of ([7.1)) we infer
REfi+ figfi = nIVFP i+ Ay,
and replacing into the above yields
1
5530 +(Af); = figfi + WV L + My = pAL 5+ pfisfi + Aj

that is,

SP = <2(Af); + 20+ 1) fisfi — 20V P f; — 2Mf; + 20D f f; + 2. (7.48)
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The covariant derivative of yields
ST+ (Af)j =2ufifij +mA;, (7.49)
and by inserting into we obtain
—2(Af); + 200+ p) fij fi = 2V FPf; = 20Mf5 + 20D f + 205 + (Af); = 2ufifi; + mA;,
that implies . Now, assuming A constant can be rewritten as
(Apf)i = 2fi(pdpf = A) = 0. (7.50)
If p # 0 from we deduce

A A
(Aff— M) o 21 f; <Aff - M) =0.

J

V= (Aff — >\> e =2l
7

It follows that the function

is a constant, say —%, on M. Indeed,

A A
(Aff - u)j —ouf) (Aff - M)] e =

gleFrve that since v = —% we have the validity of (7.43). To deduce (|7.41)) it is sufficient to use (7.47) in
e form

’Uj:

Apf=—89+ (u— 1|V +mA (7.51)
so that inserting it in the definition of v we have

—% =v= (—SW +(u= DIV +mr - 2) e 21l

If =0, (7.50) becomes
(Aff)j +2Mf; =0,

and thus, since A is constant,
(Apf+2Xf);=0.

Then the function
vi=Apf +2A\f

is constant on M. Choosing A such that v = A + m\ we obtain ([7.44)). Using (7.51) in the above gives
A+mA=—5% —|Vf[2+m\+2\f,

that is, (7-42). O

Remark 7.52. In the above proof we use the first equation of (7.1]) except in only one point, precisely when
we use (7.39) at the very beginning of the argument.
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Remark 7.53. It is worth to observe that when m > 3 and

1
m—2
or equivalently when (M, (, )) is conformally harmonic-Einstein, equations and holds for A €

C>®(M), see [Theorem 2.49] This can also be seen directly, in fact from the proof of the Proposition above,
in case (|7.54)) holds, equation ([7.46)) becomes

(@rf+ =23, =26 (- 2587 = A) =0,

w=- (7.54)

that is,
2
(B 4+ (m =20 + 2 [ (AT + (m = 2)X) = 0.
Then, setting
2
= (Asf 4 (m —2)\)em—=7,
it is easy to see that v is constant on M immediately obtaining the validity of (7.41) and (7.43)), without
assuming constancy of A .

In the proof of the Proposition above, in case p # 0 we face the problem of the choice of the constant A.
Considering the case p = % for some positive integer d, it is possible to prove (for a proof see the doctoral
thesis of A. Anselli)

Theorem 7.55. Let (M, (,)) and (F,(, )r) be Riemannian manifolds of dimension m and d respectively.

Let f € C*(M) and ¢ : M — (N, {, )n) be a smooth map. Denote by M the warped product M x.,, F, where

u=e 1, and let ® ;= pomy : M — (N,{,)n). Then (M,{,)) satisfies,

{(Z v =29 (7.56)

for some constant X, if and only if (M, (,)) satisfies

{ch—agp* )N+ Hess(f) — Sdf @ df = X(,)

(
() (Vf)
and (F, (, )r) satisfies
FRic=A(,)r, (7.57)
where A is the constant given by

Apf =d\— dhe*, (7.58)

Note that is exactly with p = %. Observe moreover that 4-dimensional Lorentzian mani-
fold satisfying (|7.56)) are natural examples of static spacetime satisfying the Einstein equation with energy
momentum tensor given by the energy-stress tensor of the wave map (harmonic map) ® and vanishing cos-
mological constant. See the doctoral thesis of A. Anselli for more details.

We now provide some triviality results for gradient Einstein-type structure with potential function f
i
satisfying |V(e™ 7 )| € LP(M) for some 1 < p < +0o0. To prove the next Proposition we shall use

Theorem 7.59 (Theorem 1.1 of [37]). Let (M, (,)) be a complete Riemannian manifold and let f € C°(M).
Assume that u € Lip,,. (M) satisfy
uApu >0 weakly on M. (7.60)

(f . upe ) ¢ L (4e0), (7.61)
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Proposition 7.62. Let (M, (,)) be a complete, non compact Riemannian manifold of dimension m with a
gradient Einstein-type structure as in (7.1) with « € R\ {0}, p, A € R, f € C®(M) and ¢ : M — (N, {, )n)

a smooth map. Suppose \V(ef%ﬂ € LP(M), or equivalently |V f| € LP(M,e~1), for somep € (1,+00), a > 0
and that one the following conditions is satisfied

i) /,(,>%, S¥ < (m—i)/\ on M;
i) p=13%, 5% < (m—1)\ on M;
iii) =0, A\ < 0;
) p<0,S?> (m—ﬁ))\ on M.
Then f is constant and (M, (, )) is harmonic-Finstein.

Proof. Since A € R equation (4.22]) becomes

1

§Af|Vf|2 = [Hess(f)|* + a|7(9)[* + (2urm — X — 2uS?) |V f* + p(2pu — 1|V f|*. (7.63)
Recall that, from Kato’s inequality,

|VIV£||> < |Hess(f)|> weakly on M.

Then we infer
1
§Af\Vf\2 = [VAAV I + VIV I[P < [VFIAfVF] + [Hess(f)]?  weakly on M.

Combining the above with (7.63) and using « > 0, we obtain
VAV = (2umA —218% = N[V + p(2u— D|VF|* weakly on M.

From the above, if anyone of i), i%), #i¢) or iv) holds then it is easy to show the validity of one of the following
inequalities for some positive constant c,

IVAALVS > VP or  [VFA[VS] > e[Vf|* weakly on M, (7.64)

Then we are in position to apply [Theorem 7.59|with the choice of u = |V f|, observing that |V f| € LP(M,e~f)
guarantee the validity of (7.61) and that (7.60) holds. We then conclude that |V f| is constant and therefore

from ([7.64) f is constant. As a consequence of (7.63]) we deduce
alr(@)? =0

and (M, (, )) is harmonic-Einstein. O

Remark 7.65. Consider the assumptions of [Proposition 7.62| but instead of one of 4), i), 4i) or iv), assume

now
1 A
*>71 ar 3
[z 2p 0g<21\>

where f,. :=infy; f and A is the constant appearing in ([7.43)).

v) u>0,A<0, A<0and
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Rewrite (|7.63]) using the trace of the first equation in (7.1)), as
g vy = 1 2 2L VPQUASF — X — |V fI?
5 AV = [Hess(f)I" + alr(p)]” + [V (2uAf uV 1%,
or equivalently,
1
§Af|Vf|2 = [Hess(f)* + alr(@)[* + [V [P @uA s f + u[V 2 = N).

Therefore
IV FIAfVF] = [VF2@udsf+plV 2= A) weakly on M. (7.66)

We use to obtain, from ,
VAV ] > (A =20 + u|VFI?)|VF> weakly on M.
The hypothesis on A, A and f, guarantee the validity of
A —2Ae >0,

hence from the above we get
IVFIAfIVf| = plVfI* weakly on M,

and thus we can conclude, as in the proof of [Proposition 7.62| that f is constant and 7(¢) = 0.

[Proposition 7.40| motivates the study of non-existence results or triviality results on a Riemannian man-
ifold (M, (, )) for solutions of differential inequalities of the form

A,v > p+ Be??, (7.67)
for some constants p, 3,5 € R, possibly coupled with a system of the type
Ric] > —(v+m —1)G(r)(, ) (7.68)
for some v € R* and some function G : R{ — Ry. Here a first result in this direction.

Theorem 7.69. Let (M, (,)) be a complete Riemannian manifold of dimension m and let G € C*(R{) be
a non-decreasing function with G(0) > 0 and % ¢ L'(4+00). Assume v,53,0 > 0. If p > 0 there are no

solutions v of (7.67)) satisfying (7.68)), while if p < 0 there are no solutions of (7.67)) satisfying both (7.68)

and )
v* = S}\l/[pv > 2—510g (—g) .

Proof. We first deal with the non-compact case. We claim the hypothesis on G imply the validity of the
Omori-Yau maximum principle for the operator A,. To prove this we first observe that, as reported at the
beginning of this section, under the milder hypotheses that G € C*(R7), G > 0 on R and

!
inf — > —o0,
Ry G2

choosing g as in (7.7)), g satisfies (7.4) and then, using Proposition 2.3 of [28], we deduce

Ayr(z) < C/G(r(z)) for r(z) >>1

for some positive constant C' large enough. Moreover, since G is non-decreasing,

[Vr| =1<CVG(r),
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again for some constant C' > 0. Then an application of Theorem 3.2 and Remark 3.3 of [I] with the choices
(in the notation of [I]) v(x) = r(z) and G(v) given by /G(r), the present G, gives the validity of the claim.
Let now 3,5 > 0. Choosing f(t) = p + Be?** and F = f on [a,+00), with a = 0 in case p > 0 and

a= 2—16 log (—%) otherwise, we can apply Theorem 3.6 of [1] to deduce v* < +o00 and

p+5625v* S 0

o 1 p
< — -
v _2§1og( /3’)

0<625’U* < _B

Thus, for p < 0 we infer

while for p >0
<0

yielding a contradiction so that, in this case, v cannot exists.
The compact case, since v has to attain a maximum v* on M, follows immediately by the above reasoning.
O

Corollary 7.70. Let (M,{,)) be a complete manifold supporting a gradient Einstein-type structure as in
(7.1) with X\ a non-negative constant, ;1 >0, a > 0. Then f satisfies (7.43|) with A > 0.

Proof. Since o > 0 from the first in ([7.1)) we have Ric}/“ > 0. Proceeding as in the proof of |Theorem 7.69

f* < 400 and
A A

2 et <0.
oo

This yields a contradiction in case A < 0. O

We observe that J. Case, see [12], proves non-existence of non-constant solutions of the equation
Ayv = B, (7.71)
on a complete Riemannian manifold (M, (, )) for 5,6 > 0 and under the assumption
Ric} > 0,

for some v > 0 (as a matter of fact he also considers the case v = +o00, but this case can be dealt similarly
and we skip it for the sake of brevity). His proof is based on a conformal change of metric together with
a gradient estimate (note that for the latter one needs to consider an equation as in instead of a
differential inequality). Our recover Case’s result when 3,6 > 0 and p = 0 even in case of the
differential inequality . However, we can obtain and in fact extend his full result for with the
equality sign with the aid of the following trick.
Consider on M the equation
Av = |Vol* + p + Be*", (7.72)

and suppose that
Ric] > —(y+m —1)A(, ), (7.73)

for some constant A > 0. Referring to (7.3) with G = A we find a solution g of (|7.4]) that for ¢ >> 1 is given
by

In this case, as 7 — +o0
vol,(B,) < D + Ee(rtm=—1VAr (7.74)
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for some constants D, E > 0. Next, we recall Bochner’s formula
1
5A|vu|2 = |Hess(v)|?> + Ric(Vv, V) + (VAwv, Vo). (7.75)

Using equation ([7.72]) we obtain

(VAv, Vo) = (Vo, V|Vu|?) + 266e*°Y|Vu|? = 2Hess(v)(Vo, V) + 263e2° | Vo2,
We insert the above into (7.75)) and we use (7.73) to finally get

1 1
5AU|VU|2 > [Hess(v)|? + [268e2°Y — (y +m — 1)N\]|Vv|? + ;|Vv|4. (7.76)
We are now ready to prove the following

Theorem 7.77. Let (M, (,)) be a complete, possibly compact Riemannian manifold. Let v € C2(M) and
suppose that for some ~v > 0 the modified Bakry-Emery Ricci tensor satisfy

Ric] > 0. (7.78)
Let the product 68 > 0 and p € R. If v is a solution of (7.72) then v is constant.

Proof. First we analyse the non-compact case. Fix any A > 0, then (7.78]) implies the validity of (7.73).
Next set u := |Vuv|2. Then, since by hypothesis §3 > 0, from (7.76) we deduce the validity of the following
differential inequality

From (7.74) we infer

Applying Theorem 4.2 of [I] we deduce
u* ;= supu < +oo.
M

Then Theorem 4.1 of [I] yields the validity of the inequality
* 1 *
u' |—ut = (y+m—1)A| <0,
v
so that

0<u" <y(y+m-—1)\

Since A > 0 was arbitrary we infer ©* = 0 completing the proof.
From the above reasoning we see that the compact case is immediate. O

Now we give a consequence of [Iheorem 7.77

Corollary 7.79. Let (M, {,)) and (P, (, )p) be complete manifolds such that M x P has an Einstein warped
product structure of the type L )
(=) e 2 ),

where u € C*°(M) and m,d are respectively the dimensions of M and P. If (M x P, (,)) has non-negative
scalar curvature, then (P, (, )p) is Einstein with non-negative scalar curvature.
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Proof. Since (M x P,(,)) is Einstein with non-negative scalar curvature we have Ric = A(, ) for some
constant A > 0. It is well known that (P, (, )p) must be Einstein, that is

RiClP = C< ) >1Pu
for some ¢ € R and also that the following system holds

1
Ric? = Ric + Hess(u) — adu ®du=A(,)
d EX7)
Thus

d
Ricﬁ >0 and Ayu=———_ea".
m-+d

It follows that if P has negative scalar curvature, that is, if ¢ < 0 gives a contradiction. Indeed
if u is constant then d

_ 2y
= —— e7d% > (. O]
¢ erale =

Remark 7.80. The above Corollary gives a partial answer to a question posed by A. Besse [§].
Next we consider the differential inequality (7.67)) not paired with (7.2). Note that (7.67) (that is justified
by the geometric setting of equation (7.43))) immediately yields the validity of the differential inequality
Av > p+Be®  on M. (7.81)

The advantage of over is that the former can be treated with the aid of the weak maximum
principle for the Laplace Beltrami operator. More precisely with Theorem 4.2 of [I] we prove that a solution
v of satisfies v* < 400 and then, with Theorem 4.1 of [I], we arrive to prove non-existence for 3,6 > 0
and p > 0.

Explicitly we have

Theorem 7.82. Let (M, {,)) be a complete, possibly compact Riemannian manifold satisfying
1 (B,
lim inf Ong()

r—+00 r
and let p, 3,0 € R with 5,6 > 0. If p > 0 then (7.81) has no solutions, while if p < 0 there are no solutions
of (7.81) satisfying
1
v* :=supv > — log (_p) .

M 26 B

Remark 7.84. By using Theorem 3.7 and Theorem 3.8 of [3] we see that the conclusions of [Theorem 7.82
remain valid when M has a non-empty boundary M by adding to (7.81)) the boundary condition:

d,v <0 on M,

< 400, (7.83)

where v is the outward unit normal to OM. Observe that completeness of (M, (, )) in this case has to be
intended in the Cauchy sense. The same observation applies to below. Observe that operating
the substitution

U = e_f,
in case p = 0 equation ([7.44)) becomes
Au+ Au + 2 ulogu = 0, (7.85)
while in case p # 0 equation ([7.43) becomes
A
Au+ =y — Aut~ = 0. (7.86)
o

In case m > 3 and (7.54)) holds, ([7.85)) and (7.86]) are valid also in case A is non-constant.
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Now we analyse the differential inequality
Au + pu+ Bul=2° >0, (7.87)

Recall that in the geometric case we have equalities in (7.86]). Non-existence for (7.87]) can be obtained with
the parameters satisfying 5 > 0,0 < 0 and p < 0. Indeed, with the techniques used above we prove the
validity of the following Theorem.

Theorem 7.88. Let (M,{,)) be a complete, possibly compact Riemannian manifold satisfying (7.83)) and
let p, 8,6 € R with 8 >0 and 6 < 0. If p > 0 the differential inequality (7.87) has no solutions u satisfying

u* :=supu > 0,
M

while if p < 0 there are no solutions u satisfying

1
" P\*
uw < (—= .
(5)
As a consequence of Theorems [7.82] and [7.88| we deduce the following

Corollary 7.89. Let (M, {,)) be a complete, possibly compact Riemannian manifold satisfying (7.83). Then
(M, {,)) has no Einstein-type structure as in (7.1)) for some constants «,p and X\ with > 0, A > 0 and
A < 0. Here A is the constant of [Proposition 7.40.

We conclude this section by considering the non-existence of solutions of ([7.72)) by means of the spectral
properties of the operator L := A — 2Jp. We set

and we switch to the equation

2
Au — 26pu — 26Bu® = 1+i |Vl 7
20 u

equivalent to ((7.72). Since u > 0 the above is, in turn, equivalent to
1
ulAu — 26pu’* — 20Bu’ = (1 + 26) |Vu|?. (7.90)

We let AF(M) to denote the spectral radius of L and we observe that, by Rayleigh variational characterization,

vec= () Lo 02

= 26p + A} (M), (7.91)

with the obvious meaning of the notation. We next recall Theorem 3.3 of [30] taking the opportunity to
correct some typos there.

Theorem 7.92. Let (M, (,)) be a complete manifold, a(z),b(x) € C°(M) and suppose b(z) > 0. Let H > 0,
K > —1 and A € R be constants satisfying:

A<HK+1) -1 (7.93)
Assume that there exists 1 € C*(M), 1 > 0, solution of the differential inequality

A¢+Ha(x)w<—K|v$|2 on M.
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Then for any constant o > —1 the differential inequality
ulu + a(z)u? — b(x)u’ > —A|Vu|?
has no non-negative solutions u € C*>(M) satisfying
suppuN{x € M : b(z) > 0} # 2,

and

-1
( s (2_p)up(T+1)> ¢ L' (+00) (7.94)
a8,
for some constants p > 1 and T > —1 such that
A<rt<HMK+1) -1
We are now ready to prove

Theorem 7.95. Let (M, {,)) be a complete, non-compact manifold and p, 5,5 € R constants such that

68 > 0 and either 26 < —1 or 26 > 0.

Suppose that

AR (M) > —26p. (7.96)
Then there exists no solution v of equation on M satisfying
e’ e LY (M), (7.97)
for some constant v > 0 with
—% <~y<2

Proof. From ([7.96) and (7.91)) it follows that A\ (M) > 0, where L = A — 26p as above. By a result of
Fischer-Colbrie and Schoen in [I9] there exists a smooth solution ¢ > 0 on M of

—~

Ly = 0.

Setting u := ¢?” we have the validity of (7.90) and we apply [Theorem 7.92 with the choices
1

a(x) = —26p, blx) =206 >0, A:—(l—&—%), K=0, H=1 p=2 7=

The requests on d and 8 in the statement show that the chosen parameter satisfy the required inequalities

of [Theorem 7.92[ and that (7.97)) implies the validity of the corresponding (7.94]). Since 285 > 0 then

{x € M :b(x) >0} = M, but u > 0 and thus the conclusion follows at once. O
Remark 7.98. We note that in case 20 < —1 equation (7.90) yields
Au < 26pu. (7.99)

By Barta’s theorem

. Au
/\1A(M) = 111\1} <_u> = —20p,

so that, in this case, assumption (7.96|) is automatically satisfied.
As a geometric application of [Theorem 7.95| using [Remark 7.98] we get
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Corollary 7.100. Let (M, (,)) be a complete, non-compact manifold. Then (M, (,)) has no Einstein-type
structure as in (7.1]) for some constants o, u, A in case A < 0, A the constant appearing in (7.41), and either

one of the following conditions hold

i) p satisfies

< 1
=73
and (7.97) holds for some constant v such that
1
—— <7<y
"

i) p> 0, AP (M) > —2X and (7.97) holds for for some constant y such that

0<y <2

We end the section with the following

Proposition 7.101. Let (M, (,)) be a complete, non-compact manifold satisfying
vol(0B,) < Ce®",

for some constants C >0 and a > 0. Let 26 < —1, 8 > 0 and suppose that

a’ +85p < 0.

Then equation (7.72]) has no solutions on M.

(7.102)

(7.103)

Proof. Let v be a solution of (7.72) so that u := €2V is a solution of (7.90). The choice of the parameter &
yields the validity of (7.99) on M and therefore of (7.96). On the other hand by Theorem 6.8 of [I0] and

(7-102) we have

2
) < 2

Putting together the latter and ((7.96]) we obtain
a? > —86p,

contradicting (|7.103|).

8 Some uniqueness results

We first prove a uniqueness result in the compact case for the equation
A’UU =p+ 6626va

where p, 3,6 € R. It is clear that when —% > 0 the constant function

v :=log (—Z) v

is a solution of (8.1)).
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Theorem 8.3. Let (M, (,)) be a compact Riemannian manifold of dimension m > 2 and let v € C*(M) be
a solution of (8.1) on M for some constants p,d and 8 # 0. Assume

m—1
c>2— A4
Rie > 2™~ Lps( ) (8.4)
and if m = 2:
0< = (8.5)
while if m > 3 either
) 1 .. 2
i) > 5 or 1) 0 < et (8.6)

Then —% > 0 and v is given by (8.2).

Proof. We fix 7 € R\ {0} and we perform the change of variable

v

u=er
to obtain from (R.1)) the validity on M of
\V4 2
Au = 5' +g(u), (8.7)
with 1
C=147, gu):= ;(pu + Bult?mo)y, (8.8)
For o € R we define the vector field
1 A -1
V=u (=V|Vu - 22vu) - (2 + 2 ) w1 Va2 Va.
2 m 2 m

After a long computation, using Bochner’s formula and we obtain

divV =u? [|Hess(u)2 — (ATZ)T + u?Ric(Vu, Vu)
u0—2
~ 5 [2(m — 1)¢* 4 3mo( + ma (o — 1)]|Vul*
— e {lm + 2)o + 2(m — 1)Cg(u) — 2 — Vg () [Vul

Next we insert the expression of g(u), ¢’(u) and the value of ¢ given by ({8.8)) into the above to obtain

A 2 o—2 o+218
(Auw)7) “Q—A\Vur1 ~ Y BIVu]

+ ;—m[QmRic(Vu, Vu) + D|Vul?],

divV = u? ||Hess(u)|? —

where the coefficients A, B, D are given by

A:=mo? + (37 +2)mo +2(m — 1)(1 +7)?
B

T

B:=[m+2)o+2(m—1)r(1—29)]

D:=-2(m—-1)1+ (m+ 2)0}?.

75



We integrate on M and using the divergence theorem we infer

2
0 :/ 2mu’ [|Hess(u)|2 - (Au)] —A/ u” 2| Vaul* — B/ u’ 20| V|2
M m M M

(8.10)
—|—/ u’ [2mRic(Vu, Vu) + D|Vul?].
M

We need to find values of the parameters o, 7 such that A < 0, B < 0 and minimize D on these values to
impose the condition on the Ricci curvature tensor to obtain

2mRic(Vu, Vu) + D|Vul> > 0. (8.11)

Towards this aim we let

S 1Q

1
y=1+= yi=-
T

Note that y # 1 and it is well defined since 7 # 0. Rewriting A, B and D in terms of y and v we see that

1
A<0 ifandonlyif 2292 —2yy+ 42 — 4 <0
m

mo (8.12)
B <0 if and only if ZBm(l —20) < By
and is implied by
%Ric >p (2% - v) (;)- (8.13)
Since
|Hess(u)|? — (Bu)? S
m

by Newton’s inequality, to deduce from (8.10)) that u (and therefore v) is constant it is enough to have one
strict inequality in one of the two inequalities of (8.12)). Next we choose
m—1
=2— (1 —29). 8.14
1= 21— 29) (814)
With this choice the second inequality of (8.12) is always satisfied, independently of 8, with the equality
sign. Furthermore (8.13]) becomes exactly assumption (8.4). With « as in (8.14)), A < 0 if and only if we can
choose y # 1 such that

(m + 2)y* — 2m(1 + 20)y + mLH(l —28)[2(m — 1)(1 — 26) —m — 2] < 0.

This is the case if the discriminant of polynomial expression in y is positive. Setting x := 1 — 24§ this amounts
to show that

zm +2— (m —2)z] > 0,
a fact guaranteed by the requirements in (8.5)) if m = 2 and by if m > 3. Since v is constant from (|8.1)
we obtain the conclusion of the Theorem. O

Going back to the geometric origins of equation (8.1)), see equation (|7.41]) of [Proposition 7.40} we deduce
the next

Corollary 8.15. Let (M, (,)) be a compact manifold of dimension m > 2 with a gradient Einstein type
structure of the form

Ric? + Hess(f) — pdf @ df = X(, )
7(¢) = dp(V ),
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for some a, u, A € R, oo # 0. Assume that A # 0, where A is the constant appearing on (7.41)), that

1
Ric> 2" "2 A(,)
m

and that, for m = 2

1
< 3
while for m > 3 either
. 2 y 1
z)u<7m or zz),u>§.

Then f is constant so that S¥ = mA # 0 and
Ric® = A(,)
{T(g@) =0.
In particular (M, (, )) is harmonic-Einstein.
Next we prove a uniqueness result in the compact case for the equation
Ayv = -2\,
where A\, 8 € R. It is clear that when A # 0 the constant function

B

U::ﬁ

is a solution of (8.17).

(8.16)

(8.17)

(8.18)

Theorem 8.19. Let (M, (,)) be a compact Riemannian manifold of dimension m > 2 and let v € C*(M)
be a solution of (8.17)) on M for some constants A and 8 # 0. Assume that (8.16) holds. Then X\ # 0 and v

is given by (8.18).

The proof of the Theorem is postponed. Before, we add a couple of observations.

Remark 8.20. The case A = 0 is simpler, with the only restriction u # 0. Indeed for A = 0, mu # 0, equation

(7.43) becomes Ay f = A\/u. Hence the function u = e~/ > 0 solves

Au = ——u.
I

Compactness of M implies that u and therefore f is constant. Since u > 0, we must have A = 0 and

{Ric“’ =0
7(p) = 0.

In particular (M, (, )) is harmonic-Einstein.

Putting together |[Corollary 8.15| with [Remark 8.20| we obtain a result independent of the constant A.

Precisely we have

Corollary 8.21. Let (M,(,)) be a compact manifold of dimension m > 3 with a gradient Einstein-type

structure of the form

Ric? + Hess(f) — pdf @ df = A(, )
() = deo(V)
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for some a, u, A € R, a # 0. Assume that

Ric > 27— 1A
m

and
1
n>y
Then f is constant and o is harmonic, so that
{Ric"’ =X(,)
7(¢) = 0.

In particular (M, (, )) is harmonic-Einstein.

of Theorem 8.19. We fix 7 € R\ {0} and we perform the change of variable

R

u=e
to obtain from ([8.17)) the validity on M of
2
Au = c@ +g(u), (8.22)
with 1
C:=1471, gu):=—=(fu—2 rulogu). (8.23)
T

For o € R we define the vector field

1 A 1
V=u (2VVu|2 - “w) - (" + mmg> w2V

m 2

As in the proof of [Theorem 8.3] using Bochner’s formula and (8.22)), we obtain

divV =u? [|Hess(u)2 - (ATZ)T + u?Ric(Vu, Vu)
u0—2
~ 5 [2(m — 1)¢* 4 3mo( + mao (o — 1)]|Vul*
— e {{lm + 2)o + 2(m — 1)lg(u) — 2 — Vg ()} [Vu?

Next we insert the expression of g(u), ¢’(u) and the value of ¢ given by (8.23)) into the above to obtain

A 2 o—2 o
Qo)) w7 g+ (2)\logu - ﬁ) B|Vul?
m 2m 2m T

+ u” [Ric(Vu, Vu) — D|Vul?],

divV = u? ||Hess(u)|? —

where
A=mo* + (37 +2)mo +2(m — 1)(1 4+ 7)2
B:=(m+2)c+2(m—1)r
p=2" "1y
m
By choosing
2(m—1)T

= 8.24
o —— (8.24)
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we obtain B = 0 and thus the above can be rewritten as

(Auw)?

m

o—2

] - u2—mA|Vu|4 + u” [Ric(Vu, Vu) — D|Vul?], (8.25)

divV = u? [|Hess(u)|2 -

We integrate (8.25)) on M and using the divergence theorem we infer

0= /M w [|Hess(u)|2 _ (ATZ)Q} A4 /M w2Vl + /M W [Ric(Vau, Vi) — D|Vul?]. (8.26)

2m
We need to find values of the parameter 7 such that A < 0. Towards this aim we let

1 o

=14+ v:i=—

T T

Note that y # 1 and it is well defined since 7 # 0. Rewriting A in terms of y, as in the proof of [Theorem]
above, we have

-1
A<0 if and only if 2m7y2 — 2y 442 —y <0. (8.27)
Since A2
|Hess(u)|? — (Au) >0
m

by Newton’s inequality and
Ric(Vu, Vu) — D|Vul> > 0

by (8.16]), to deduce from (8.26]) that u (and therefore v) is constant, it is enough to have a strict inequality
in (8.27). Observe that, with the choice of o given by (8.24),

m—1
=2—.
K m + 2

With this choice A < 0 if and only if we can choose y # 1 such that

m(m —4)
2y? —2 —= < 0.
(m+2)y" = 2my + — -

This is the case since the discriminant of the polynomial expression in y is given by 4m and it is positive.
Observe that since 8 # 0 and v is constant then A # 0 and thus v is given by (8.1)). O

Going back to the geometric origins of equation (8.17)), see equation ([7.42]) of [Proposition 7.40} we deduce
the next

Corollary 8.28. Let (M,{,)) be a compact manifold of dimension m > 2 with a gradient Einstein type
structure of the form

r(¢) = dp(V f), (8:29)

for some a, A € R, a #£ 0. Assume that A # 0, where A is the constant appearing on (7.42)) and that (8.16)
holds. Then f is constant so that S¥ = mA # 0 and

{Rz’c“" =(,)
7(¢) = 0.

{Rz’c“’ + Hess(f) = A(,)

In particular (M, {,)) is harmonic-FEinstein.
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Remark 8.30. Observe that if A # 0 then the request A # 0 is not a restriction because one can add a
constant to f to obtain A # 0. However, observe that if A = 0 and A = 0 then (7.42) becomes A;f = 0.
Thus the function u = e~/ > 0 is harmonic on M. Compactness of M implies that u is constant. So is f,

and we reach the same conclusion of with A = 0.
Putting together [Corollary 8.28| and [Remark 8.30| we have the validity of

Corollary 8.31. Let (M,(,)) be a compact manifold of dimension m > 2 with a gradient Einstein-type
structure of the form for some a, A € R, a # 0, and such that holds. Then f is constant and
© s harmonic, so that

{Ric” =(,)

T(p) = 0.
In particular, (M, (, )) is harmonic-Einstein.

Remark 8.32. In case A > 0 then (8.16|) implies via Myers’ Theorem the compactness of M. Observe also
that (8.16) is equivalent to

ag™(, ) > Hess(f) + " 2A(,).

We now come to analyze the uniqueness of the second geometric equation in [Proposition 7.40 that is,
(7.44)). It is worth to consider it in the form (7.85)). We begin with the prototype equation, for u > 0

Au+ pu— Bulogu=0 on M. (8.33)

Note that the positive constant e is a solution of (8.33), when 8 # 0. To show uniqueness we shall use
an unpublished comparison result due to G. Albanese in [2]. It extends some previous work in [42] to the
case of a very weak superlinearity uf(u) including the case of f(u) = logu as in (8.33). For f € C}(RT) we
require

D lm f() = oo

i) liminft'*°f'(£) > 0 for every e > 0

t——+oo

iii)  f' is positive and (-decreasing on R (8.34)

i) )

1m =
t——+o0 t2f'(t)

9

where (-decreasing on RT means that the constant ¢ satisfies 0 < ¢ <1 and for every t € R™

inf f'(s) > Cf'(b).
uf S (s) = ¢f'(t)
Theorem 8.35 ([2]). Let (M, {,),e™") be a complete, non-compact weighted manifold, ¢ € R, 7 > 0 and
w € [0,1] satisfying the condition

24+ ¢+Tp>0.
Let a(x),b(z) € C°(M), suppose that b(z) > 0 on M, that there exists a constant C > 0 such that for
r(z) >>1

b(z) > Cr(x)

and finally that
a_(x)

sup r(z)" M < 400,

zeM b({E)

where a_ is the negative part of a. Let f € CH(R™Y) satisfy (8.34) and let u,v € C2(M) be positive solutions
on M of X .
Apu+ a(z)u — b(x)uf(u) >0 > Apv + a(x)v — b(z)vf(v)
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such that for some constant B > 1 and for r(z) >> 1

1
v(x) > Er(m)T, u(z) < Br(z)".
Assume ) 1 (B
lim nf 2820 Br)

r—+too  p2tH(+TR
Then v <wv on M.

Note that the function R
f(t) :=logt,t € RT

satisfies (8.34)). From [Theorem 8.35| and the latter observation we deduce the following

Proposition 8.36. Let (M, (,)) be a complete, non-compact, manifold and let 8 > 0 and p > 0. Assume
that for some constant T > 0

log volB, (8.37)

lim inf
r—+00 7’2+T

Then equation (8.33|) has at most one positive solution u satisfying, for some constant B > 1 and for r >> 1

1

ET(Z)T < u(x) < Br(z)". (8.38)
Note that, in case T = 0 the assumption p > 0 can be relaxed to p € R. In particular in this setting the only
bounded and bounded away from zero positive solution u of (8.33)) isu=-e?.

Suppose now that on the complete, non-compact Riemannian manifold (M, (, )) we have an Einstein-type
structure of the form

{Ric —ap*(, )n +Hess(f) = A(,) (8.39)

() = do(V )
for some a, A € R and ¢ : M — (N, {, )n). Assume A # 0. Then, by adding a constant to f we can always
suppose that equation (|7.44]) has the form
Arf+2X0f=0.
Thus (7.85) for u = e=f becomes
Au+ 2 ulogu = 0. (8.40)

Observe also that the constant @ and the smooth map ¢ do not appear into (8.40). Thus if we have a second
Einstein-type structure

7(p) = do(Vy)
for some @ € R and ¢ : M — (N, (, )§), up to adding a constant to g the function v := e~9 satisfies (8.40)
again. From |Proposition 8.36| we then deduce the next

Corollary 8.42. Let (M,(,)) be a complete, non-compact, manifold, a, & € R, o: M — (N,{,)n) and
@: M — (N,{(,)xy) smooth maps and f,g € C>°(M) potential functions on M realizing the two Einstein-type
structures (8.39)) and (8.41) with A < 0. Suppose that, for some constants B > 1 and 7 > 0, for r(x) >> 1

—log B —tlogr(z) < f(z),g9(z) <log B— T7logr(x).
If

then

for some constant C € R.
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It remains to analyze the geometric equation ([7.43) that we consider in the form ([7.86). Thus, the
prototype equation is
Au A+ pu — Bul 72, u>0 (8.43)

with 11, p, 3 € R. Note that the non-linearity can be written in the form wf(u) with f(¢) = t~2*. Thus the

requests appearing in (8.34]) are satisfied if and only if u < 0. Applying [Theorem 8.35| we have

Theorem 8.44. Let (M, (,)) be a complete, non-compact manifold. Let p <0, 8> 0 and 7 > 0. Assume

that (8.37)) holds. Then equation (8.43)) has at most one positive solution u satisfying (8.38)) for some constant
B > 1 and r(z) >> 1. In particular, if p > 0 the only bounded and bounded away from zero positive solution

u of (BA3) is

:(P)
B

Geometric conclusions similar to those contained in are left to the interested reader.

References

[1] L. J. Alfas, P. Mastrolia, M. Rigoli - Mazimum Principles and Geometric Applications, Springer Mono-
graphs in Mathematics. Springer, Cham, 2016. xvii+570 pp. ISBN: 978-3-319-24335-1; 978-3-319-24337-5.

[2] G. Albanese - Semilinear elliptic equations on complete manifolds with boundary with some applications
to Geometry and General Relativity, Master Thesis, 2015.

[3] G. Albanese, M. Rigoli - A Schwarz-type lemma for noncompact manifolds with boundary and geometric
applications, Communications in Analysis and Geometry, Volume 25 (2017), Number 4, Pages: 719-749.

[4] S. Altay Demirbag, S. Giiler - Rigidity of (m, p)-quasi Einstein manifolds, Math. Nachr. 290 (2017), no.
14-15, 2100-2110.

[5] P. Baird, J. Eells -A conservation law for harmonic maps, Geometry Symposium Utrecht 1980, Lecture
Note in Math, vol. 894, Springer-Verlag, 1981, pp. 1-25.

[6] A. Barros, R. Batista, E. Jr. Ribeiro - Compact almost Ricci solitons with constant scalar curvature are
gradient, Monatsh. Math. 174 (2014), no. 1, 29-39.

[7] A. Barros, J. N. V. Gomes - A compact gradient generalized quasi-Einstein metric with constant scalar
curvature, J. Math. Anal. Appl. 401 (2013) 702-705.

[8] A. Besse - Finstein manifolds, Springer Berlin (1987).

[9] B. Bianchini, L. Mari, M. Rigoli - Spectral radius, index estimates for Schriodinger operators and geometric
applications, Journal of Functional Analysis 256 (2009) 1769-1820.

[10] B. Bianchini, L. Mari, M. Rigoli - On some aspects of oscillation theory and geometry. Mem. Amer.
Math. Soc. 225 (2013), no. 1056, vi+195 pp.

[11] H.-D. Cao, Q. Chen - On Bach-flat gradient shrinking Ricci solitons, Duke Math. J. 162 (2013), no. 6,
1149-1169.

[12] J. Case - The nonexistence of quasi-FEinstein metrics, Pacific Journal of Mathematics, Vol. 248 (2010),
No. 2, 277-284.

[13] J. Case, Y. J. Shu, G. Wei - Rigidity of quasi-Einstein metrics, Differential Geom. Appl. 29 (2011), no.
1, 93-100.

82



[14] G. Catino - Generalized quasi-Einstein manifolds with harmonic Weyl tensor, Math. Z. 271 (2012), no.
3-4, 751-756.

[15] G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, L. Mazzieri - The Ricci-Bourguignon flow, Pacific
J. Math. 287 (2017), no. 2, 337-370.

[16] G. Catino, P. Mastrolia, D. Monticelli, M. Rigoli - On the geometry of gradient Einstein-type manifolds,
Pacific Journal of Mathematics, Vol. 286 (2017), no. 1, 39-67.

[17] S. Y. Cheng - Liouwville theorem for harmonic maps, Proc. Sympos. Pure Math., XXXVI, Amer. Math.
Soc., Providence, R.I., 1980, 147-151.

[18] J. Eells and M. J. Ferreira - On representing homotopy classes by harmonic maps, Bull. London Math.
Soc. 23 (1991), 160-162.

[19] D. Fischer-Colbrie, R. Schoen - The structure of complete stable minimal surfaces in 3-manifolds of non-
negative scalar curvature, Communications on Pure and Applied Mathematics, Volume XXXIII, Issue2,
(1980), 199-211.

[20] D. Gilbarg and N. S. Trudinger - Elliptic partial differential equations of second order, 2nd ed.,
Grundlehren der Mathematischen Wissenschaften 224, Springer, Berlin, 1983.

[21] J. N. Gomes, Q. Wang, C. Xia - On the h-almost Ricci soliton, J. Geom. Phys. 114 (2017), 216-222.

[22] R. Gover, P. Nurowski - Obstructions to conformally Finstein metrics in n dimensions, Journal of
Geometry and Physics 56 (2006), 450-484.

[23] J. Hounie, M. L. Leite - The mazimum principle for hypersurfaces with vanishing curvature functions,
J. Differential Geom. 41 (1995), no. 2, 247-258.

[24] G. Huisken - Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom. 21 (1)
(1985), 47-62.

[25] D. S. Kim, Y. H. Kim - Compact Einstein warped product spaces with. nonpositive scalar curvature,
Proc. Am. Math. Soc, 131 (2003), no. 8, 2573-2576.

[26] L. Mari, P. Mastrolia, M. Rigoli - A note on Killing fields and CMC hypersurfaces, J. Math. Anal. Appl.
431 (2015), 919-934.

[27] L. Marini, M. Rigoli - On the geometry of p-curvatures, preprint available on ResearchGate, doi:
10.13140/RG.2.2.21079.83367,, 18 pp.

[28] L. Mari, M. Rigoli, A. G. Setti - Keller-Osserman conditions for diffusion-type operators on Riemannian
manifolds, Journal of Functional Analysis 258 (2010), 665-712.

[29] P. Mastrolia, D. D. Monticelli, M. Rigoli - A note on curvature of Riemannian manifolds, J. Math.
Anal. Appl. 399 (2013), 505-513.

[30] P. Mastrolia, M. Rigoli, A. G. Setti - Yamabe-type Equations on Complete, Noncompact Manifolds,
Birkhauser-Basel 2012.

[31] W. F. Moss, J. Piepenbrink - Positive solutions of elliptic equations, Pacific J. Math. 75 (1978), no. 1,
219-226.

[32] R. Miiller - Ricci flow coupled with harmonic map flow, Ann. Sci. Ec. Norm. Supér. (4) 45 (2012), no.
1, 101-142.

[33] M. Obata - Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc.
Japan 14, No. 3, (1962), 333-340.

83


https://www.researchgate.net/publication/335464787_ON_THE_GEOMETRY_OF_ph-CURVATURES

[34] M. Okumura - Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math.
96 (1974), 207-213.

[35] S. Pigola, M. Rigoli, A. G. Setti - A remark on the maximum principle and stochastic completeness,
Proc. Amer. Math. Soc. 131 (2003), 1283-1288.

[36] S. Pigola, M. Rigoli, A. G. Setti - Mazimum principles on Riemannian manifolds and appplications,
Memoirs AMS 822 (2005), volume 174.

[37] S. Pigola, M. Rigoli, A. G. Setti - Vanishing theorems on Riemannian manifolds, and geometric appli-
cations, J. Funct. Anal. 229, (2005), 424-461.

[38] S. Pigola, M. Rigoli, M. Rimoldi, A. G. Setti - Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl.
Sci. (5) 10 (2011), no. 4, 757-799.

[39] S. Pigola, M. Rimoldi, A. G. Setti - Remarks on non-compact gradient Ricci solitons, Math. Z. (2011)
268, 777-790.

[40] Z. Qian - Estimates for weighted volumes and applications. Quart. J. Math. Oxford Ser. (2) 48 (1997),
no. 190, 235-242.

[41] M. Rigoli, A. G. Setti - Liouwville type theorems for @-subharmonic functions, Rev. Mat. Iberoam, 17,
(2001), 471-520.

[42] M. Rigoli, S. Zamperlin - "A priori” estimates, uniqueness and existence of positive solutions of Yamabe
type equations on complete manifolds, J. Funct. Anal. 245 (2007), no. 1, 144-176.

[43] L. F. Wang - On Ricci-harmonics metrics, Annales Academia Scientiarum Fennicee Mathematica 41,
(2016), 417-437.

Andrea Anselli — andrea.anselli@unimi.it
Dipartimento di Matematica, Universita degli Studi di Milano, Via C. Saldini 50, 1-20133 Milano, Italy

Giulio Colombo — giulio.colombo@unimi.it
Dipartimento di Matematica, Universita degli Studi di Milano, Via C. Saldini 50, I-20133 Milano, Italy

Marco Rigoli — marco.rigolib5@gmail.com
Dipartimento di Matematica, Universita degli Studi di Milano, Via C. Saldini 50, I-20133 Milano, Italy

84



	Introduction
	-curvatures, harmonic-Einstein manifolds and first results
	A gap result for harmonic-Einstein manifolds
	The general structure, formulas and a ``spectral'' non-existence result
	Some results in the compact case
	Gradient Einstein-type structure with vanishing conditions on the -Bach tensor
	The complete case
	Some uniqueness results

