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Abstract

The aim of the paper is to study the geometry of a Riemannian manifold M , with a special structure
depending on 3 real parameters, a smooth map ϕ into a target Riemannian manifold N , and a smooth
function f on M itself. We will occasionally let some of the parameters be smooth functions. For
a special value of one of them, the structure is obtained by a conformal deformation of a harmonic-
Einstein manifold. The setting generalizes various previously studied situations; for instance, Ricci
solitons, Ricci harmonic solitons, generalised quasi-Einstein manifolds and so on. One main ingredient
of our analysis is the study of certain modified curvature tensors on M , related to the map ϕ, and
to develop a series of results for harmonic-Einstein manifolds that parallel those obtained for Einstein
manifolds both some time ago and in the very recent literature. We then turn to locally characterize,
via a couple of integrability conditions and mild assumptions on f , the manifold M as a warped product
with harmonic-Einstein fibers extending in a very non trivial way a recent result for Ricci solitons. We
then consider rigidity and non existence, both in the compact and non-compact cases. This is done via
integral formulas and, in the non-compact case, via analytical tools previously introduced by the authors.
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1 Introduction

The aim of this paper is to study the geometry of connected, complete, possibly compact, Riemannian
manifolds (M, 〈 , 〉) with a (gradient) Einstein-type structure, if any, of the form{

Ricϕ + Hess(f)− µdf ⊗ df = λ〈 , 〉
τ(ϕ) = dϕ(∇f),

(1.1)

where
Ricϕ := Ric− αϕ∗〈 , 〉N

for some α ∈ R \ {0}, ϕ : M → (N, 〈 , 〉N ) a smooth map with tension field τ(ϕ) and f, µ, λ ∈ C∞(M).
The structure described by (1.1) generalizes some well known particular cases that have been intensively

studied by researchers in the last decade. Indeed, for µ ≡ 0, λ ∈ R and ϕ constant, (1.1) characterizes
gradient Ricci solitons

Ric + Hess(f) = λ〈 , 〉. (1.2)

In case in (1.2) we allow λ ∈ C∞(M) we obtain the Ricci almost soliton equation introduced in [38]. Note
that when λ(x) = a + bS(x) for some constants a, b ∈ R and S(x) the scalar curvature of (M, 〈 , 〉), the
soliton corresponding to (1.2) is called a Ricci-Bourguignon soliton after the recent work of G. Catino, L.
Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri [15]. For a “flow”derivation of the gradient Ricci
almost solitons equation in the general case see the work of [21].

In case µ ≡ 0, λ ∈ R and α > 0 the system (1.1) represents Ricci-harmonic solitons introduced by R.
Müller, [32]. As expected the concept comes from the study of a combination of the Ricci and harmonic
maps flows. We refer to [32] for details and interesting analytic motivations.

For ϕ and µ constants with µ = 1
k , for some k > 0 and λ ∈ R, (1.1) describes quasi-Einstein manifolds

Ric + Hess(f)− 1

k
df ⊗ df = λ〈 , 〉 (1.3)

Letting µ, λ ∈ C∞(M) we obtain the generalized quasi-Einstein condition

Ric + Hess(f)− µdf ⊗ df = λ〈 , 〉. (1.4)

See, for instance, [14] and [4]. Obviously (1.4) extends the quasi-Einstein requirement (1.3) that we shall
later consider.

Ricci solitons and quasi-Einstein manifolds are often seen as a perturbation of Einstein manifolds (indeed,
the choice of a constant potential in (1.2) and in (1.3) recovers the case of an Einstein metric). Similarly,
Einstein-type structures can be seen as a perturbation of harmonic-Einstein manifolds. We recall that a
Riemannian manifold (M, 〈 , 〉) is said to be harmonic-Einstein if it carries a structure of the type{

Ricϕ = λ〈 , 〉
τ(ϕ) = 0,

(1.5)

We shall see that when m ≥ 3, λ in (1.5) is necessarily a constant. Clearly (1.5) is obtained from (1.1) in
case f is constant.

Note that the first equation of (1.5) can be equivalently rewritten (and we are not using that the metric
is Riemannian) as

G+ Λ〈 , 〉 = αT, (1.6)

where G is the Einstein tensor of (M, 〈 , 〉),

T = ϕ∗〈 , 〉N −
|dϕ|2

m
〈 , 〉
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is (up to a sign) the energy stress tensor of the smooth map ϕ introduced by Baird and Eells in [5] and

Λ =
m− 2

2
λ. (1.7)

In case ϕ is harmonic then T is divergence free and thus four dimensional Lorentzian manifolds that satisfy
(1.5) with

α =
8πĜ

c4
,

where Ĝ is Newton’s gravitational constant and c is the speed of light in vacuum, coincide with solutions of
the Einstein fields equations (1.6) with source field the wave map ϕ and cosmological constant (1.7).

System (1.5) is a starting point in our investigation in the sense that it justifies, in a geometric contest,
the interest of studying a structure of the type (1.1). Indeed, as we show in Theorem 2.49 below, if we
perform a conformal deformation of the metric 〈 , 〉 of M , then from (1.5) we obtain a solution of (1.1) for
m ≥ 3 with µ = − 1

m−2 and viceversa for an appropriate λ. Thus we can think of the study of (1.1) as of that
of (1.5) under conformal deformations of the original metric 〈 , 〉 of M , up to the freedom of the parameter
µ.

This parallels what happens in the study of Einstein and conformally Einstein metrics. This observation
suggests to concentrate our study first on the behaviour of Ricϕ. Since the latter is defined only in terms
of Ric and ϕ, we push our analysis as far as possible without coupling ϕ to f , appearing in (1.1), via the
condition τ(ϕ) = dϕ(∇f). The study of Ricϕ is realized in Section 2 where we introduce what we have called
ϕ-curvatures and for which we investigate a number of properties similar to those of the usual curvatures
derived from the Riemann tensor and its covariant derivatives. As clearly expected the geometry of the map
ϕ comes into the picture but often not so strongly to deviate the behaviour of the ϕ-curvatures from that of
the corresponding Riemannian counterparts.

Almost all the ϕ-curvatures are formally defined in the way the standard curvatures are introduced using
the ϕ-Ricci tensor instead of the Ricci tensor. More precisely: the ϕ-scalar curvature, denoted by Sϕ, is
defined as the trace of the ϕ-Ricci tensor; the ϕ-Schouten tensor is defined as

Aϕ = Ricϕ − Sϕ

2(m− 1)
〈 , 〉,

where m ≥ 2 is the dimension of M ; the ϕ-Cotton tensor Cϕ represents the obstruction to the commutation
of the covariant derivatives of the ϕ-Schouten tensor while the ϕ-Weyl tensor is defined so that the decom-
position (2.6) of the Riemannian curvature tensor holds in analogy with the standard one. The only tensor
whose definition is different from that probably expected is the ϕ-Bach tensor Bϕ. Indeed, its definition is
motivated by geometric considerations, notably the integrability conditions (1.9) and Theorem 6.66 below.
When ϕ is a constant map all the ϕ-curvatures reduce to the standard curvature tensors.

The properties of the ϕ-curvature tensors parallel those of the Riemannian tensors they generalize. For
instance, the ϕ-Weyl tensor Wϕ has the same symmetries of the Riemann tensor and its (1, 3)-version is a
conformal invariant, as it can be easily verified by a tedious computation. A relevant difference is that the
ϕ-Cotton, the ϕ-Weyl and the ϕ-Bach tensor are not, in general, totally traceless. Their traces are related to
the map ϕ and, clearly, they vanish in case ϕ is a constant map. We can say more: the ϕ-Weyl, the ϕ-Cotton
and the ϕ-Bach tensors are totally traceless if and only if, respectively, ϕ is constant, ϕ is conservative (that
is, the energy stress tensor related to the map ϕ is divergence free) and ϕ is harmonic (with the exceptional
case m = 4 where ϕ-Bach is always traceless).

The fact that the above ϕ-curvatures are not, in general, totally traceless has heavy computational conse-
quences but basic facts are still true. For instance if ϕ is conservative we are able to recover a generalization
of Schur’s identity, that relates the divergence of ϕ-Ricci to the gradient of the ϕ-scalar curvature. On the
contrary the divergence of ϕ-Weyl is not related with the ϕ-Cotton tensor as in the case of their standard
Riemannian counterparts, see equation (2.65).
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We observe that the special system obtained in Theorem 2.49 we mentioned above, that is,Ricϕ + Hess(f) +
1

m− 2
df ⊗ df = λ〈 , 〉

τ(ϕ) = dϕ(∇f)
(1.8)

has some peculiar features. For instance it satisfies the two integrability conditions
Cϕijk + ftW

ϕ
tijk = 0

(m− 2)Bϕij +
m− 4

m− 2
Wϕ
tijkftfk = 0

(1.9)

where m ≥ 3 is the dimension of M and Cϕ, Wϕ and Bϕ are respectively the ϕ-Cotton, the ϕ-Weyl and the
ϕ-Bach tensors. When ϕ is constant the above integrability conditions become the integrability condition
for a conformally Einstein metric, that have been proved to be sufficient, under a further mild assumption,
to guarantee the existence of a conformally Einstein metric on M by R. Gover and P. Nurowski, [22]. We
extend this result to the case of (1.9) showing, under a corresponding mild additional assumption, that they
are sufficient conditions to generate a conformally harmonic-Einstein structure on M , see Proposition 2.63.
Observe that in (1.8) the coefficient µ = − 1

m−2 .
In case ϕ is a constant map and µ = 0 a special form of the integrability conditions in (1.9) (see equations

(6.12) and (6.17) for the general case where ϕ is not constant and µ 6= 0) has been used to study the local
geometry of Bach flat gradient Ricci solitons by H.-D. Cao, Q. Chen in [11]. Their results has been extended
by G. Catino, P. Mastrolia, D. Monticelli and M. Rigoli to gradient Einstein-type manifolds in Theorem 1.2
of [16]. The latter are structure of the type (1.1) with ϕ a constant map, µ ∈ R and λ(x) = ρS(x) + λ for
some real constants ρ and λ.

These results suggest to study (1.1) from the same point of view and in Section 6 we are able to char-
acterize, when µ 6= − 1

m−2 (the equality case pertaining to Theorem 2.49), from the adequate integrability
conditions and the properness of the function f , the local geometry of a complete Riemannian manifold with
a gradient Einstein-type structure and ϕ-Bach tensor that vanishes along the direction of ∇f . Note that
for conformally harmonic-Einstein manifolds the latter requirement is always satisfied, as one can immedi-
ately deduce contracting the second equation of (1.9) against ∇f . Our main result, Theorem 6.66 below,
is that, in a neighborhood of every regular level set of f , the manifold (M, 〈 , 〉) is a warped product with
(m− 1)-dimensional harmonic-Einstein fibers, given by the level sets of f . Precisely, we have:

Theorem 1.10. Let (M, 〈 , 〉) be a complete, non-compact Riemannian manifold m with an Einstein-type
structure as in (6.1). Suppose that m ≥ 3, that α > 0, that Bϕ(∇f, · ) = 0 and µ 6= 1/(2−m) and that f is
proper. Then, in a neighborhood of every regular level set of f , the Riemannian manifold (M, 〈 , 〉) is locally
a warped product with (m− 1)-dimensional harmonic-Einstein fibers.

We underline that, computationally speaking, this section is a real “tour de force”.
In Section 3 we consider the traceless ϕ-Ricci tensor Tϕ. In Theorem 3.5 we prove the basic formula

(3.6) for ∆|Tϕ| that we use in the main result of the section; the “gap”property given in Corollary 3.18 that
shows that whenever |Tϕ| is sufficiently small, then (M, 〈 , 〉) carries a harmonic-Einstein type structure,
if some necessary conditions are satisfied. One of them involves the largest eigenvalue η∗ of the operator
Wϕ : S2

0(M) → S2
0(M) that we define in (2.61). We estimate η∗ form above in Proposition 3.22 following

an idea of G. Huisken [24] The above Corollary 3.18 also compares with some previous result of ours, [29].
It is well known, from the work of D. S. Kim and Y. H. Kim, [25], that the validity of (1.3) on M yields,

via a non-trivial consequence of the second Bianchi identities, the validity of the equation

∆ff − kλ = −βe 2
k f (1.11)

for some constant β ∈ R. Here ∆f is the symmetric diffusion operator

∆f = ∆− 〈∇f,∇〉.

4



A consequence of (1.11), indeed equivalent to (1.11), is the validity of Hamilton’s type identity

S +

(
1− 1

k

)
|∇f |2 + (k −m)λ = βe

2
k f ,

where S is the scalar curvature of (M, 〈 , 〉). Note that we can think of (1.2) as a “limiting”case of (1.3) as
k → +∞. However, as we shall see, the equation companion to (1.11) corresponding to (1.2) is

∆ff −mλ = β − 2λf, (1.12)

for some constant β; however, (1.12) is difficult to be interpreted as a “limiting”case of (1.11) as k → +∞.
Observe that (1.12), coupled with (1.2), yields Hamilton’s identity for gradient Ricci solitons

S + |∇f |2 + 2λf = β.

In Proposition 7.40 we show that equations (7.43) and (7.44), that correspond to (1.11) and (1.12), hold
also for (1.1), where λ is constant (with the exceptional case µ = − 1

m−2 , where λ may also be a smooth
function). The interesting fact is that the smooth map ϕ and the constant α do not appear in the equations.

From the literature we know various examples of the special structures we just mentioned above. As
for their non-existence, for instance in case of quasi-Einstein manifolds, we can refer to the non-existence
problem for solutions of equation (1.11). In doing so one might wonder about the constant β.

As a matter of fact, the pairing (1.3), (1.11) has a precise geometric meaning that enables us the shed light
on the problem. Towards this aim we go back to an old interesting question considered in A. Besse’s book,
[8], on the possibility of constructing examples of Einstein manifolds realized as warped product metrics. It
is well known that, if (Mm, 〈 , 〉) and (P, 〈 , 〉P) are Riemannian manifolds and we consider on M̄ := M × P
the warped product metric

〈 , 〉 := 〈 , 〉+ e−
2
m f 〈 , 〉P

for some function f ∈ C∞(M), a computation shows that 〈 , 〉 is Einstein satisfying

Ric = λ〈 , 〉

for some λ ∈ R, if and only if (P, 〈 , 〉P) is Einstein with

RicP = β〈 , 〉P

for some β ∈ R, and furthermore the following relations hold between λ, β, f and the Ricci tensor Ric of M :Ric + Hess(f)− 1

m
df ⊗ df = λ〈 , 〉

∆ff −mλ = −mβe 2
m f .

This setting has been analyzed in detail in [13]. In the second part of Section 7 we shall investigate equations
(7.43) and (7.44) on complete, non-compact manifolds mainly with the aid of the weak maximum principle,
see for instance, Chapter 4 in the book [1], obtaining a non-existence result.

In Section 4 we develop another technical approach to non existence of Einstein-type structures starting
from the following observation: if µ 6= 0, setting u = e−µf and tracing the first equation in (1.1) we obtain

Lu := ∆u+ µ(mλ− Sϕ) = 0, (1.13)

where Sϕ = S − α|dϕ|2 is the ϕ-scalar curvature. Since u > 0, by a well known result of [19] and [31], the
operator L is stable or, in other words, its spectral radius λ1

L(M) is non-negative. Thus, instability of L
yields a non-existence result for (1.1) at least in case µ is a non-zero constant. Toward this aim we detect
appropriate conditions on the coefficient of the linear term in (1.13). This is investigated in Proposition 4.44
below.
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A further important problem for equations (7.43) and (7.44) is that of uniqueness of the solution. In
Section 8 we produce integral formulas that provide uniqueness in case M is compact. Basically in case of
(7.43) the only assumptions are an appropriate lower bound on the Ricci tensor of (M, 〈 , 〉) and a range of
validity for the parameters, see Theorem 8.3, for equation (7.44) we refer to Theorem 8.19. In the complete,
non-compact case we use an unpublished refinement due to G. Albanese, [2], of a previous result of our,
[42] Theorem 3.1 and Corollary 3.2, to deal with a very weak superlinearity of the type t log t for t >> 1,
that pops up from equation (7.44) after an appropriate “change of variables”, see (7.44) and the prototype
equation (8.33). As a geometric consequence we obtain, for instance, Corollary 8.42 below that basically
compares two Einstein-type structures with µ = 0.

Section 5 is devoted to some results in the compact case where, together with (1.1), we also consider the
more general Einstein-type structureRicϕ +

1

2
LX〈 , 〉 = µX[ ⊗X[ + λ〈 , 〉

τ(ϕ) = dϕ(X),
(1.14)

for some X ∈ X(M) and with X[ denoting the 1-form dual to X via the musical isomorphism [. The compact
case is quite rigid once we require constancy of the ϕ-scalar curvature. Indeed, when µ 6= 0, α > 0 and
λ, f ∈ C∞(M) with f non-constant, a Riemannian manifold with constant ϕ-scalar curvature that supports
an Einstein-type structure as in (1.1) is always isometric to a Euclidean sphere and ϕ is a constant map,
see Theorem 5.22. When µ = 0 the same happens under the same hypothesis for the general structure
(1.14), when X is not a Killing vector field, see Theorem 5.14. In proving the mentioned results we extend
the well known fact, due to M. Obata, [33], that a compact Einstein manifold with a non-Killing conformal
vector field is isometric to a Euclidean sphere, see Lemma 5.2. Our Theorem 5.14 and Theorem 5.22 extend
respectively the results of [6] and [7] to the case when, a priori, ϕ is not constant. Section 5 ends with
Theorem 5.47 and Theorem 5.56 where we guarantee the same conclusion in case the ϕ-Schouten tensor is
a Codazzi tensor field (a necessary condition) and one of its normalized kth order symmetric functions in
its eigenvalues is a positive constant. We shall see that the ϕ-scalar curvature is constant if and only the
first symmetric function of the eigenvalues of the ϕ-Schouten tensor is constant, hence we can see these two
Theorems as a generalization of Theorem 5.14 and Theorem 5.22. In doing so we use a general formula valid
for every 2-times symmetric, covariant Codazzi tensor field T on an m-dimensional Riemannian manifold.
Indicating with Pk the kth Newton operator associated to T and with Sk the (non-normalized) kth symmetric
function in the eigenvalues of T we obtain equation (5.44) below that reads

div(Pk(∇u)) =

k∑
i=0

(−1)iSk−itr(t
i ◦ hess(u)), (1.15)

for 0 ≤ k ≤ m, where t and hess(u) are the endomorphisms of X(M) associated to T and Hess(u) while ti

denotes the i times composition of t with itself. In case the function u satisfies a system of the type

Hess(u) = a〈 , 〉+ bdu⊗ du+ cϕ∗〈 , 〉N − dT

for some functions a, b, c, d ∈ C∞(M), a computation shows that (1.15) yields

div(Pk(∇u)) = ck(aσk − dσk+1) + b〈Pk(∇u),∇u〉+ c〈Pk, ϕ∗〈 , 〉N 〉. (1.16)

Here ck := (m − k)
(
m
k

)
and σk =

(
m
k

)−1
Sk. We also observe that for the validity of (1.15), and therefore

that of (1.16), we can relax the assumption that T is Codazzi to the property

C(X,Y, Z) + C(Z, Y,X) = 0

for every X,Y, Z ∈ X(M), where, in a local orthonormal coframe, C is the tensor of components

Cijk = Tij,k − Tik,j .
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Formula (1.16) can be applied in various circumstances. The following example shows its genesis. Let
M = I ×h Pm be a warped product with base space the open interval I ⊆ R and fiber the m-dimensional
Riemannian manifold (P, 〈 , 〉P), where h : I → R+ is a smooth function. Then the metric on M is given by

〈 , 〉 = dt2 + h2〈 , 〉P

where t is the natural coordinate on I. Given the immersion ψ : Mm →M we define the function η : M → R
by setting

η(x) :=

� π◦ψ(x)

t0

h,

where t0 ∈ I is (arbitrarily) fixed and π : M → I is the natural projection on the first factor of the product.
A computation shows that

Hess(η) = h′(π ◦ ψ)〈 , 〉+ h(π ◦ ψ)〈∂t, ν〉 〈Π, ν〉

where ν is a local unit normal to ψ and Π is the second fundamental tensor of the immersion. Assume that
the immersed hypersurface is one-sided so that the unit normal ν can be chosen globally and let T := 〈Π, ν〉.
Then the 2-times covariant, symmetric tensor T is Codazzi provided M has constant sectional curvature
(note that in this case h is explicitly given). Let the Hk’s be the higher order mean curvatures of ψ and let
0 ≤ k ≤ m− 1. Then, in case M is compact, by integration (1.16) yields

�
M

[h′(π ◦ ψ)Hk + h(π ◦ ψ)〈∂t, ν〉Hk+1] = 0,

a clear generalization of the Euclidean Hsing-Minkowski’s formulas.
We observe that (1.15) is given in Section 4 where, motivated by the results in Section 2 and Section

3, we introduce the notion of Einstein-type structure. In the same section we collect some other formulas
instrumental to our study in the subsequent paragraphs. It is worth to mention formulas (4.17) and (4.20),
the first one is used in Section 5 to prove Theorem 5.14 while the latter is used in the first part of Section
7 to obtain another important result: an upper and a lower bound for the ϕ-scalar curvature of a complete,
non-compact Riemannian manifold supporting a gradient Einstein-type structure as in (1.1) with α, µ and λ
appropriate constants, see Theorem 7.29 (these estimates generalize some previous results proved for generic
quasi-Einstein manifolds, [13]).

In what follows we shall freely use the “moving frame” formalism and manifolds will always be tacitly
assumed to be connected.

2 ϕ-curvatures, harmonic-Einstein manifolds and first results

The aim of this section is to introduce the ϕ-curvatures of a pair (M, 〈 , 〉) a Riemannian manifold and ϕ :
M → (N, 〈 , 〉N ) a smooth map. We study some properties. We introduce the concept of harmonic-Einstein
manifold and we prove some results. Probably, in a coherent way with our notations, harmonic-Einstein
manifolds should be called ϕ-Einstein manifolds. However, the first terminology has already appeared in the
literature so that we have decided to keep it.

Let (M, 〈 , 〉) and (N, 〈 , 〉N ) be Riemannian manifolds, ϕ : M → (N, 〈 , 〉N ) a smooth map and α ∈ R\{0}.
Indicating with Ric the usual Ricci tensor of (M, 〈 , 〉) we define the ϕ-Ricci tensor by setting

Ricϕ := Ric− αϕ∗〈 , 〉N . (2.1)

The ϕ-Ricci tensor appears in the work of R. Müller [32] but it was defined and denoted by Ricϕ firstly by
L. F. Wang in [43]. The ϕ-scalar curvature Sϕ is obtained by tracing (2.1), that is,

Sϕ := S − α|dϕ|2, (2.2)
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where S is the usual scalar curvature of (M, 〈 , 〉) and |dϕ|2 is the square of the Hilbert-Schmidt norm of the
section dϕ of the vector bundle ϕ∗TN . We formally introduce the ϕ-Schouten tensor Aϕ in analogy with
the standard case

Aϕ := Ricϕ − Sϕ

2(m− 1)
〈 , 〉, (2.3)

where m ≥ 2 is the dimension of M . An immediate computation gives the relation of Aϕ with the usual
Schouten tensor A, that is,

Aϕ = A− α
(
ϕ∗〈 , 〉N −

|dϕ|2

2(m− 1)
〈 , 〉
)
. (2.4)

We recall the Kulkarni-Nomizu product of two symmetric 2-covariant tensors, that we shall indicate with
the “parrot”operator ∧ . It gives rise to a 4-covariant tensor with the same symmetries of Riem, the Rie-
mann curvature tensor. In components, with respect to a local orthonormal coframe, given the 2-covariant
symmetric tensors T and V we have

(V ∧ T )ijkt := VikTjt − VitTjk + VjtTik − VjkTit. (2.5)

Then, for m ≥ 3, the ϕ-Weyl tensor is defined by

Wϕ := Riem− 1

m− 2
Aϕ ∧ 〈 , 〉. (2.6)

From the standard decomposition of the Riemann curvature tensor we know that, for m ≥ 3,

Riem = W +
1

m− 2
A ∧ 〈 , 〉,

and from the distributivity of ∧ with respect to sums, together with (2.4), we deduce the expression of Wϕ

in terms of W :

Wϕ = W +
α

m− 2

(
ϕ∗〈 , 〉N −

|dϕ|2

2(m− 1)
〈 , 〉
)
∧ 〈 , 〉. (2.7)

Wϕ has been defined as in (2.6) in order to keep the validity of the usual decomposition of the Riemann
tensor also in this “ϕ-case”. We note that Wϕ has the same symmetries of Riem. However in general Wϕ is
not totally trace free. Indeed, from (2.7) and the fact that, on the contrary, W is totally trace free we obtain

Wϕ
kikj = αϕai ϕ

a
j = α(ϕ∗〈 , 〉N )ij . (2.8)

The next result, analogous to Schur’s identity, typically shows how the geometry of ϕ enters into the
picture.

Proposition 2.9. In the above setting we have:

Rϕij,i =
1

2
Sϕj − αϕ

a
iiϕ

a
j , (2.10)

where ϕaii are the components of the tension field τ(ϕ) of the map ϕ and Rϕij are the components of the
ϕ-Ricci tensor.

Proof. From (2.2) we have
S = Sϕ + α|dϕ|2.

Taking its covariant derivative
1

2
Sj =

1

2
Sϕj + αϕaijϕ

a
i

and by the usual Schur’s identity we obtain

Rij,i =
1

2
Sϕj + αϕaijϕ

a
i . (2.11)
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Using (2.1) and the above we infer

Rϕij,i = Rij,i − αϕaiiϕaj − αϕai ϕaji.

Therefore, from the symmetries of ∇dϕ

Rϕij,i = Rij,i − αϕaijϕai − αϕaiiϕaj

and from (2.11) we deduce (2.10).

Remark 2.12. If τ(ϕ) = 0 then we have an analogous of the usual Schur’s identity

Rϕij,i =
1

2
Sϕj .

The converse holds, that is, the latter implies τ(ϕ) = 0, in case ϕ is a submersion almost everywhere on M ,
see page 6 of [5].

Next definition is analogous to that of an Einstein manifold.

Definition 2.13. A Riemannian manifold (M, 〈 , 〉) is said to be a harmonic-Einstein manifold if there exist
α ∈ R \ {0}, λ ∈ C∞(M) and ϕ : M → (N, 〈 , 〉N ) such that{

Ricϕ = λ〈 , 〉
τ(ϕ) = 0.

(2.14)

To have a strict parallelism with the notion of Einstein manifold, in case m = 2 we require λ to be
constant. Note that for m ≥ 3 this is automatic because of the following version of Schur’s lemma.

Proposition 2.15. Let (M, 〈 , 〉) be a Riemannian manifold of dimension m ≥ 3, α ∈ R \ {0}, λ ∈ C∞(M)
and suppose that for some ϕ : M → (N, 〈 , 〉N )

Ricϕ = λ〈 , 〉. (2.16)

Then
(m− 2)∇λ = 2α〈τ(ϕ), dϕ〉N . (2.17)

In particular, if τ(ϕ) = 0 then λ is constant.

Proof. We trace (2.16) to obtain Sϕ = mλ and then

Sϕj = mλj . (2.18)

On the other hand, taking covariant derivative of (2.16) we have

Rϕij,k = λkδij .

Tracing with respect to i and k
Rϕij,i = λj .

We then use (2.10) to obtain
(m− 2)λj = 2αϕaiiϕ

a
j

and (2.17) follows at once.
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We next recall the definition of the curvature operator R acting on S2(ϕ∗TN), the space of symmetric
2-covariant tensor fields on ϕ∗TN , for some ϕ : M → (N, 〈 , 〉N ). Let NRacbd denote the components of the
curvature tensor of N in a local orthonormal coframe {ωa}, for 1 ≤ a, b, . . . ≤ n, where n is the dimension
of N . Let β = βabω

a ⊗ ωb be an element of S2(ϕ∗TN) and define

R(β) := NRacbdβcdω
a ⊗ ωb.

It is not difficult to see that, introduced in S2(ϕ∗TN) the natural inner product ( , ), induced by 〈 , 〉N , the
operator R : S2(ϕ∗TN) → S2(ϕ∗TN) is self-adjoint and thus diagonalizable. We let Λ(x) to denote its
largest eigenvalue at x ∈M . We have

Theorem 2.19. Let (M, 〈 , 〉) be a complete, possibly compact, m-dimensional manifold with m ≥ 2 which
is hamonic-Einstein, that is, such that Ricϕ =

Sϕ

m
〈 , 〉

τ(ϕ) = 0
(2.20)

for some ϕ : M → (N, 〈 , 〉N ) and some constants α ∈ R, α > 0, and Sϕ ∈ R. Assume that

Λ∗ := sup
x∈M

Λ(x) < α. (2.21)

Depending on the sign of the constant Sϕ, we have

i) if Sϕ ≥ 0, then ϕ is constant and (M, 〈 , 〉) is Einstein with scalar curvature S = Sϕ;

ii) if Sϕ < 0, then the energy density |dϕ|2 satisfies

0 ≤ sup
M
|dϕ|2 ≤ − Sϕ

m(α− Λ∗)
.

Corollary 2.22. In the assumption of the Theorem suppose that the manifold is flat harmonic-Einstein,
that is, Sϕ = 0. Then ϕ is constant and (M, 〈 , 〉) is Ricci flat.

Remark 2.23. Since α > 0, Ricϕ = 0 immediately implies that Ric ≥ 0 on the complete manifold (M, 〈 , 〉).
In case the harmonic map ϕ has bounded image and N is simply connected with non-positive sectional
curvature by a Theorem of S. Y. Cheng [17] we know that ϕ is constant and as a consequence (M, 〈 , 〉) is
Ricci flat. The setting of Corollary 2.22 is more general and, in any case, different.

Proof. Since ϕ is harmonic the Weitzenböck-Bochner formula reads

1

2
∆|dϕ|2 = |∇dϕ|2 + NRabcdϕ

a
i ϕ

b
jϕ

c
jϕ

d
i +Rijϕ

a
i ϕ

a
j , (2.24)

where the indices a, b, . . . and i, j, . . . refer, respectively, to local orthonormal coframes on N and M . Having
set

β := ϕai ϕ
b
iω

a ⊗ ωb,

we have
NRabcdϕ

a
i ϕ

b
jϕ

c
jϕ

d
i = −(R(β), β) ≥ −Λ|β|2.

Observe that
|β|2 = |ϕ∗〈 , 〉N |2

and, since from (2.20)

ϕ∗〈 , 〉N =
1

α

(
Ric− Sϕ

m
〈 , 〉
)
, (2.25)
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using Λ∗ < +∞ we deduce

NRabcdϕ
a
i ϕ

b
jϕ

c
jϕ

d
i ≥ −

Λ∗

α2

∣∣∣∣Ric− Sϕ

m
〈 , 〉
∣∣∣∣2 . (2.26)

From (2.24), (2.25), the first equation of (2.20) and (2.26) we then have

α

2
∆|dϕ|2 ≥

(
1− Λ∗

α

) ∣∣∣∣Ric− Sϕ

m
〈 , 〉
∣∣∣∣2 +

Sϕ

m
tr

(
Ric− Sϕ

m
〈 , 〉
)
. (2.27)

From Newton’s inequality and the first equation of (2.20)∣∣∣∣Ric− Sϕ

m
〈 , 〉
∣∣∣∣2 ≥ α2

m
|dϕ|4.

Hence (2.27) yields
1

2
∆α|dϕ|2 ≥

(
1− Λ∗

α

)
α2

m
|dϕ|4 +

Sϕ

m
α|dϕ|2

and setting
u := α|dϕ|2

we obtain
1

2
∆u ≥

(
1− Λ∗

α

)
u2

m
+
Sϕ

m
u (2.28)

where the constant 1 − Λ∗

α is strictly positive because of (2.21). We now deal with the non-compact case
being the compact case simpler. We observe that the first equation of (2.20) and α > 0 imply

Ric ≥ Sϕ

m
〈 , 〉

where Sϕ is constant and therefore completeness of (M, 〈 , 〉) yields the validity of the Omori-Yau maximum
principle for the Laplace-Beltrami operator ∆. We then apply Theorem 3.6 of [1] to deduce from (2.28) and
positivity of 1− Λ∗

α ,
u∗ := sup

M
u < +∞.

Then, we apply the Omori-Yau maximum principle again to (2.28) to infer

u∗
[(

1− Λ∗

α

)
u∗ +

Sϕ

m

]
≤ 0. (2.29)

From (2.29) and the definition of u we immediately deduce conclusions i) and ii).

Suppose 0 < α < Λ∗. In the assumptions of Theorem 2.19 with the further request sup |dϕ|2 < +∞,
proceeding in a way analogous to that above we reach the conclusion

sup
M
|dϕ|2 ≥ Sϕ

m(Λ∗ − α)

that bears information only in the case Sϕ > 0. In particular we deduce the following gap result:

Theorem 2.30. Let (M, 〈 , 〉) be a complete, possibly compact, m-dimensional manifold with m ≥ 2 and let
α ∈ R, α > 0. Given a constant Σ > 0, there is no harmonic-Einstein structure as in (2.20) on M with
Sϕ = Σ and for which

sup
M
|dϕ|2 < Σ

m(Λ∗ − α)
.
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Note that the case α = Λ∗ can be treated similarly, as we will see below.
Analogously to the standard case we define the ϕ-Cotton tensor Cϕ as the obstruction to the commuta-

tivity of the covariant derivative of Aϕ, that is, in a local orthonormal coframe,

Cϕijk := Aϕij,k −A
ϕ
ik,j . (2.31)

Using definition (2.3) of Aϕ we compute the indicated covariant derivatives in (2.31) to obtain Cϕ expressed
in terms of the usual Cotton tensor C of (M, 〈 , 〉). We have

Cϕijk = Cijk − α
[
ϕaikϕ

a
j − ϕaijϕak −

ϕat
m− 1

(ϕatkδij − ϕatjδik)

]
. (2.32)

Next relations are obtained by computation

Cϕikj = −Cϕijk and therefore Cϕijj = 0, (2.33)

Cϕjji = αϕajjϕ
a
i = −Cϕjij , (2.34)

Cϕijk + Cϕjki + Cϕkij = 0. (2.35)

Explicitating (2.31) in terms of Rϕij,k we obtain the commutation relations

Rϕij,k = Rϕik,j + Cϕijk +
1

2(m− 1)
(Sϕk δij − S

ϕ
j δik), (2.36)

that we shall use later (for instance in Theorem 3.5). Next we introduce the ϕ-Bach tensor Bϕ by setting,
in a local orthonormal coframe and for m ≥ 3,

(m− 2)Bϕij = Cϕijk,k +Rϕtk(Wϕ
tikj − αϕ

a
tϕ

a
i δjk) + α

(
ϕaijϕ

a
kk − ϕakkjϕai −

1

m− 2
|τ(ϕ)|2δij

)
. (2.37)

As remarked in the introduction the above definition of Bϕ is motivated by the geometric results we shall
obtain with its use. When needed, we shall indicate the term Cϕijk,k as div(Cϕ). For the moment we prove

Proposition 2.38. Let m ≥ 3; the ϕ-Bach tensor is symmetric and

tr(Bϕ) = α
m− 4

(m− 2)2
|τ(ϕ)|2. (2.39)

In order to prove the Proposition we shall need the commutation formulas

Aϕik,jk = Aϕki,kj +RkjA
ϕ
ki +RtijkA

ϕ
tk. (2.40)

To show the validity of (2.40) we proceed in a general contest as follows.

Proposition 2.41. Let T be a 2-times covariant tensor of components Tij with respect to an orthonormal
coframe {θi}, 1 ≤ i, j, . . . ≤ m. Then

Tij,kt = Tij,tk +RliktTlj +RljktTil. (2.42)

Proof. We shall use the first and the second structure equations

dθi = −θik ∧ θk, dθij = −θik ∧ θkj + Θi
j ,

where {θij} are the Levi Civita connection forms associated to the orthonormal coframe {θi} and

Θi
j =

1

2
Rijktθ

k ∧ θt

12



are the curvature forms of the metric 〈 , 〉 of M . By definition, the covariant derivative of T has components
Tij,k given by

Tij,kθ
k = dTij − Tsjθsi − Tisθsj . (2.43)

Differentiating the above we have

dTij,k ∧ θk + Tij,kdθ
k = −dTsj ∧ θsi − Tsjdθsi − dTis ∧ θsj − Tisdθsj . (2.44)

Next recall that the components of the second covariant derivative of T are

Tij,ktθ
t = dTij,k − Tsj,kθsi − Tis,kθsj − Tij,sθsk.

We use this information and (2.43) together with the structure equations into (2.44) to infer

(Tij,ktθ
t + Tsj,kθ

s
i − Tis,kθsj − Tij,sθsk) ∧ θk − Tij,kθks ∧ θs

= −(Tsj,kθ
k + Tljθ

l
s + Tslθ

l
j) ∧ θsi + Tsjθ

s
k ∧ θki − TsjΘs

i

−(Tis,kθ
k + Tksθ

k
i + Tikθ

k
s ) ∧ θsj + Tisθ

s
k ∧ θkj − TisΘs

j .

Hence,

Tij,ktθ
t ∧ θk = −1

2
(TsjR

s
itk + TisR

s
jtk)θt ∧ θk.

Skew symmetrizing we obtain
Tij,kt − Tij,tk = −TsjRsitk − TisRsjtk,

that is, (2.42).

Proof (of Proposition 2.38). We rewrite Bϕ in the form

(m− 2)Bϕ = V + Z

where:

Vij := Cϕijk,k − αR
ϕ
kjϕ

a
kϕ

a
i − αϕakkjϕai , Zij := RϕtkW

ϕ
tikj + αϕaijϕ

a
kk −

α

m− 2
|τ(ϕ)|2δij .

Since Z is clearly symmetric it remains to show that V shares the same property. To verify this fact, in
other words that Vij = Vji, we see that, explicitating both sides of the equality, this is equivalent to show
that

α[ϕak(Rϕikϕ
a
i −R

ϕ
kjϕ

a
i ) + ϕakkiϕ

a
j − ϕakkjϕai ] = Cϕjik,k − C

ϕ
ijk,k = −(Cϕijk − C

ϕ
jik)k.

By using (2.33) and (2.35) we have

−(Cϕijk − C
ϕ
jik)k = −(Cϕijk + Cϕjki)k = Cϕkij,k,

hence the above equality is equivalent to

Cϕkij,k = α[ϕak(Rϕikϕ
a
j −R

ϕ
kjϕ

a
i ) + ϕakkiϕ

a
j − ϕakkjϕai ]. (2.45)

It remains to compute Cϕkij,k to verify (2.45). Using (2.31) and (2.40) we have

Cϕkij,k = Aϕki,jk −A
ϕ
kj,ik = (Aϕki,kj +RkjA

ϕ
ki +RtijkA

ϕ
kt)− (Aϕkj,ki +RkiA

ϕ
kj +RtjikA

ϕ
kt).

Hence, with the aid of (2.3), we deduce

Cϕkij,k =

(
Rϕki,k −

Sϕk
2(m− 1)

δki

)
j

+RkjA
ϕ
ki +RtijkA

ϕ
kt

−
(
Rϕkj,k −

Sϕk
2(m− 1)

δkj

)
i

−RkiAϕkj −R
t
jikA

ϕ
kt.
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From (2.10) and the symmetries of Riem we obtain

Cϕkij,k =

(
1

2
Sϕi − αϕ

a
kkϕ

a
i −

Sϕi
2(m− 1)

)
j

+RkjA
ϕ
ki +RtijkA

ϕ
kt

−

(
1

2
Sϕj − αϕ

a
kkϕ

a
j −

Sϕj
2(m− 1)

)
i

−RkiAϕkj −R
t
ijkA

ϕ
kt

=

(
m− 2

2(m− 1)
Sϕi − αϕ

a
kkϕ

a
i

)
j

+RkjA
ϕ
ki −

(
m− 2

2(m− 1)
Sϕj − αϕ

a
kkϕ

a
j

)
i

−RkiAϕkj .

Since Hess(Sϕ) is symmetric we deduce

Cϕkij,k = α(ϕakkϕ
a
j )i − α(ϕakkϕ

a
i )j +RkjA

ϕ
ki −RkiA

ϕ
kj .

Using once again (2.3) and the symmetry of ∇dϕ

Cϕkij,k =α(ϕakkiϕ
a
j + ϕakkϕ

a
ji − ϕakkjϕai − ϕakkϕaij)

+Rkj

(
Rϕki −

Sϕ

2(m− 1)
δki

)
−Rki

(
Rϕkj −

Sϕ

2(m− 1)
δkj

)
=α(ϕakkiϕ

a
j − ϕakkjϕai ) +RkjR

ϕ
ki −

Sϕ

2(m− 1)
Rij −RkiRϕkj +

Sϕ

2(m− 1)
Rji.

From (2.1) we finally conclude

Cϕkij,k =α(ϕakkiϕ
a
j − ϕakkjϕai ) + (Rϕkj + αϕakϕ

a
j )Rϕki − (Rϕki + αϕakϕ

a
i )Rϕkj

=α(ϕakkiϕ
a
j − ϕakkjϕai ) + αϕakϕ

a
jR

ϕ
ki − αϕ

a
kϕ

a
iR

ϕ
kj

=α[ϕakkiϕ
a
j − ϕakkjϕai + ϕak(Rϕkiϕ

a
j −R

ϕ
kjϕ

a
i )],

and this proves the validity of (2.45).
We now compute tr(Bϕ). From (2.37) we have

(m− 2)Bϕii = Cϕiik,k +RϕtkW
ϕ
tiki − αR

ϕ
ikϕ

a
kϕ

a
i + α

(
|τ(ϕ)|2 − ϕakkiϕai −

m

m− 2
|τ(ϕ)|2

)
.

Then with the aid of (2.34) and (2.8)

(m− 2)Bϕii =α(ϕaiiϕ
a
k)k + αRϕtkϕ

a
tϕ

a
k − αR

ϕ
ikϕ

a
kϕ

a
i − α

2

m− 2
|τ(ϕ)|2 − αϕakkiϕai

=ϕaiikϕ
a
k + |τ(ϕ)|2 − α 2

m− 2
|τ(ϕ)|2 − αϕakkiϕai

=
m− 4

m− 2
|τ(ϕ)|2,

which is equivalent to (2.39).

It is well known that the usual Bach tensor B, defined by

(m− 2)Bij = Cijk,k +RtkWtikj ,

identically vanishes on an Einstein manifold. In the present setting the analogous result is given by the
following

Proposition 2.46. Let (M, 〈 , 〉) be a harmonic-Einstein manifold of dimension m ≥ 3 for some ϕ : M →
(N, 〈 , 〉N ) and α ∈ R \ {0}. Then Bϕ = 0, that is, (M, 〈 , 〉) is ϕ-Bach flat.
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Proof. Using definition (2.14) of a harmonic-Einstein manifold we deduce

Aϕ = Ricϕ − Sϕ

2(m− 1)
〈 , 〉 =

m− 2

2(m− 1)
Sϕ〈 , 〉.

Since m ≥ 3 and ϕ is harmonic, by Proposition 2.15 Sϕ is constant. It follows that Aϕ is parallel, hence is
a Codazzi tensor field, and then Cϕ = 0. Using (2.8) and once again (2.14) we have

Rϕtk(Wϕ
tikj − αϕ

a
i ϕ

a
t δjk) =

Sϕ

m
(Wϕ

kikj − αϕ
a
i ϕ

a
j ) = 0.

From the above equation, Cϕ = 0 and the fact that ϕ is harmonic, we deduce

(m− 2)Bϕij = Cϕijk,k +Rϕtk(Wϕ
tikj − αϕ

a
tϕ

a
i δjk) + α

(
ϕaijϕ

a
kk − ϕakkjϕai −

1

m− 2
|τ(ϕ)|2δij

)
= 0

thus (M, 〈 , 〉) is ϕ-Bach flat.

Remark 2.47. It possible to prove that, for every Riemannian manifold (M, 〈 , 〉) and every ϕ : M →
(N, 〈 , 〉N ) smooth map, the tensor Bϕ is a conformally invariant tensor field in case m = 4, where m is the
dimension of M . For a proof of this fact see the doctoral thesis of A. Anselli.

Next result is one of the important motivations for the general structure we shall introduce in Section 4.
We begin with the following

Definition 2.48. A Riemannian manifold (M, 〈 , 〉) of dimension m ≥ 3 is said to be conformally harmonic-
Einstein if there exists ψ ∈ C∞(M), ψ > 0 on M such that, having defined

〈̃ , 〉 := ψ2〈 , 〉,

the Riemannian manifold (M, 〈̃ , 〉) is harmonic-Einstein.

We then have

Theorem 2.49. Let (M, 〈 , 〉) be a Riemannian manifold of dimension m ≥ 3, let ϕ : M → (N, 〈 , 〉N ) be a
smooth map and let α ∈ R \ {0}. Then there exist ψ ∈ C∞(M), ψ > 0 on M and Λ ∈ C∞(M) such that,

having defined 〈̃ , 〉 := ψ2〈 , 〉, we have {
R̃ic− αϕ̃∗〈 , 〉N = Λ〈̃ , 〉
τ(ϕ̃) = 0,

(2.50)

where ϕ̃ denotes the map ϕ from (M, 〈̃ , 〉) to (N, 〈 , 〉N ), if and only if for some f, λ ∈ C∞(M)Ric− αϕ∗〈 , 〉N + Hess(f) +
1

m− 2
df ⊗ df = λ〈 , 〉

τ(ϕ) = dϕ(∇f).
(2.51)

In this case f and ψ are related by

ψ = e−
f

m−2 (2.52)

while Λ and λ satisfy

∆ff + (m− 2)λ = (m− 2)Λe
−2
m−2 f . (2.53)

Here ∆f is the symmetric diffusion operator ∆− 〈∇f,∇〉.

Remark 2.54. Note that, since m ≥ 3, Λ is constant by Proposition 2.15.
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Remark 2.55. We shall see later, see Remark 6.18, that the system (2.51) satisfies the integrability conditions

Cϕijk + ftW
ϕ
tijk = 0 (2.56)

and

(m− 2)Bϕij +
m− 4

m− 2
Wϕ
tijkftfk = 0. (2.57)

It is worth to observe that (2.57) implies that if (M, 〈 , 〉) is a four dimensional conformally harmonic-Einstein
manifold then it is ϕ-Bach flat. This partly motivates the definition of Bϕ given in (2.37). Indeed, in this
way the situation parallels that of four dimensional conformally Einstein manifolds that are always Bach
flat.

In order to prove the Theorem we shall need the following formula that relates the Ricci tensors R̃ic of

(M, 〈̃ , 〉) and Ric of (M, 〈 , 〉) where, for m ≥ 3,

〈̃ , 〉 = e−
2

m−2 f 〈 , 〉,

From Theorem 1.159 of [8] we have

R̃ic = Ric + Hess(f) +
1

m− 2
df ⊗ df +

∆ff

m− 2
〈 , 〉. (2.58)

A second ingredient in the proof is the relation between τ(ϕ) and τ(ϕ̃); from [18], page 161, we have

τ(ϕ̃) = e
2

m−2 f (τ(ϕ)− dϕ(∇f)). (2.59)

Proof (of Thereom 2.49). By (2.59) we deduce that τ(ϕ) = dϕ(∇f) if and only if τ(ϕ̃) = 0. Suppose that

(2.50) holds, for some Λ ∈ R, where 〈̃ , 〉 = ψ2〈 , 〉 with ψ given by (2.52). Using (2.58) we obtain

Ric− αϕ∗〈 , 〉N + Hess(f) +
1

m− 2
df ⊗ df +

∆ff

m− 2
〈 , 〉 = Λ〈̃ , 〉,

that is,

Ric + Hess(f) +
1

m− 2
df ⊗ df − αϕ∗〈 , 〉N =

(
e−

2
m−2 fΛ− ∆ff

m− 2

)
〈 , 〉,

that gives (2.51) once we define λ as in (2.53). Conversely suppose that (2.51) holds for some f, λ ∈ C∞(M).

Define ψ as in (2.52) and 〈̃ , 〉 = ψ2〈 , 〉. From (2.58) and (2.51) we obtain

R̃ic− αϕ∗〈 , 〉N = λ〈 , 〉+
∆ff

m− 2
〈 , 〉 = e

2
m−2 f

(
λ+

∆ff

m− 2

)
〈̃ , 〉,

that is, (2.50) with Λ given by (2.53).

We have just seen that for a conformally harmonic-Einstein manifold (M, 〈 , 〉) we deduce the validity of
the system (2.51) on M and of the two integrability conditions (2.56) and (2.57). Suppose now we are given
f ∈ C∞(M), α ∈ R \ {0} and a smooth map ϕ : M → N for some Riemannian manifold (N, 〈 , 〉N ) such that
(2.56) and (2.57) are satisfied. Does it follow that (M, 〈 , 〉) is conformally harmonic-Einstein? To answer
the question we need to introduce the next genericity condition.

Definition 2.60. Let (M, 〈 , 〉) be a Riemannian manifold of dimension m ≥ 3 and denote by S2
0(M) the

bundle of the 2-times covariant, symmetric, traceless tensor fields on M . For a smooth map ϕ : M →
(N, 〈 , 〉N ), we define

Wϕ : S2
0(M)→ S2

0(M)

by setting for β ∈ S2
0(M)

Wϕ(β) =
[
Wϕ
tikj −

α

2
ϕat (ϕai δkj + ϕaj δki)

]
βtkθ

i ⊗ θj , (2.61)

where β = βijθ
i ⊗ θj .
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Note that for ϕ constantWϕ coincides with the endomorphismW : S2
0(M)→ S2

0(M) defined byW(β) =
Wtikjβtkθ

i ⊗ θj ; a well known endomorphism in the literature.
It is easy to verify that Wϕ is well defined, that is, Wϕ(β) is 2-times covariant, symmetric and traceless

for every β ∈ S2
0(M), and that it is self-adjoint with respect to the standard extension of 〈 , 〉 to S2

0(M),
that we denote with the same symbol. Thus Wϕ is diagonalizable.

Definition 2.62. We say that the pair (〈 , 〉, ϕ) is generic if dϕ is possibly singular only at isolated points
and if Wϕ is injective, in other words if all its eigenvalues are non null everywhere on M .

We are now ready to state the following Proposition, that extends a result of A. R. Gover and P. Nurowski
[22], Section 2.4, that deals with the conformally Einstein case and that we can consider as the degenerate
case where ϕ is constant.

Proposition 2.63. Let (M, 〈 , 〉) be a Riemannian manifold of dimension m ≥ 3, α ∈ R \ {0} and ϕ :
M → (N, 〈 , 〉N ). Suppose that (〈 , 〉, ϕ) is generic and that the integrability conditions (2.56) and (2.57) are
satisfied for some f ∈ C∞(M). Then, defining

〈̃ , 〉 := e−
2

m−2 f 〈 , 〉,

the Riemannian manifold (M, 〈̃ , 〉) is harmonic-Einstein.

In the proof of the above statement we will use equation (2.65) proved in the Proposition below. This
formula will also be useful later on (for instance in Proposition 6.16).

Proposition 2.64. Let (M, 〈 , 〉) be a Riemannian manifold of dimension m ≥ 3, α ∈ R\{0}, and ϕ : M →
(N, 〈 , 〉N ) a smooth map. Then

Wϕ
tijk,t =

m− 3

m− 2
Cϕikj + α(ϕaijϕ

a
k − ϕaikϕaj ) +

α

m− 2
ϕatt(ϕ

a
j δik − ϕakδij). (2.65)

Proof. Observe that from (2.7) we can express Wϕ
tijk componentwise in the form

Wϕ
tijk = Wtijk +

α

m− 2
(ϕatϕ

a
j δik − ϕatϕakδij + ϕai ϕ

a
kδtj − ϕai ϕaj δtk)

−α |dϕ|2

(m− 1)(m− 2)
(δtjδik − δtkδij).

Taking covariant derivatives, tracing, using the well known formula (see for instance equation (1.87) of [1])

Wtijk,t = −m− 3

m− 2
Cijk, (2.66)

and (2.32) we obtain

Wϕ
tijk,t =Wtijk,t +

α

m− 2
(ϕattϕ

a
j δik + ϕatϕ

a
jtδik − ϕattϕakδij − ϕatϕaktδij)

+
α

m− 2
(ϕaijϕ

a
k + ϕai ϕ

a
kj − ϕaikϕaj − ϕai ϕajk) +

α

m− 2

[
−2ϕasϕ

a
st

m− 1
(δtjδik − δtkδij)

]
=
m− 3

m− 2
Cikj +

α

m− 2

[
ϕatt(ϕ

a
j δik − ϕakδij) + ϕat (ϕajtδij − ϕaktδij) + ϕaijϕ

a
k − ϕaikϕaj

]
+

α

m− 2

[
− 2

m− 1
ϕas(ϕasjδik − ϕaskδij)

]
=
m− 3

m− 2
Cϕikj + α

m− 3

m− 2

[
ϕaijϕ

a
k − ϕaikϕaj −

ϕat
m− 1

(ϕatjδik − ϕatkδij)
]

+
α

m− 2

[
ϕatt(ϕ

a
j δik − ϕakδij) +

m− 3

m− 1
ϕat (ϕajtδij − ϕaktδij) + ϕaijϕ

a
k − ϕaikϕaj

]
=
m− 3

m− 2
Cϕikj + α(ϕaijϕ

a
k − ϕaikϕaj ) +

α

m− 2
ϕatt(ϕ

a
j δik − ϕakδij),

that is, (2.65).
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We are now ready to prove Proposition 2.63.

Proof (of Proposition 2.63). We trace (2.56) with respect to i and j and we use (2.8) and (2.34) to obtain,
for each k = 1, . . . ,m,

αϕak(ϕaii − ϕai fi) = 0.

Fix x ∈M . If there exists k such that ϕak(x) 6= 0 then we have the validity of the following equality at x:

τ(ϕ) = dϕ(∇f). (2.67)

Otherwise the same holds by continuity. In conclusion (2.67) holds on M . Next, taking the covariant
derivative of (2.56), using (2.65) and (2.67), we obtain

Cϕijk,k =− (ftW
ϕ
tijk)k

=− ftkWϕ
tijk − ftW

ϕ
tijk,k

=− ftkWϕ
tijk − fkW

ϕ
tjik,t

=− ftkWϕ
tijk − fk

(
m− 3

m− 2
Cϕjki + α(ϕaijϕ

a
k − ϕajkϕai ) +

α

m− 2
ϕatt(ϕ

a
i δjk − ϕakδij)

)
=− ftkWϕ

tijk − fk
m− 3

m− 2
Cϕjki + α(−ϕaijfkϕak + ϕajkfkϕ

a
i ) +

α

m− 2
ϕatt(−ϕai fkδjk + ϕakfkδij)

=ftkW
ϕ
tikj −

m− 3

m− 2
fkC

ϕ
jki + α(ϕajkfkϕ

a
i − ϕaijϕakk) +

α

m− 2
(|τ(ϕ)|2δij − ϕattϕai fj).

The last formula enables us to express (m− 2)Bϕij , defined in (2.37), in the form

(m− 2)Bϕij =ftkW
ϕ
tikj −

m− 3

m− 2
fkC

ϕ
jki + α(ϕajkfkϕ

a
i − ϕaijϕakk) +

α

m− 2
(|τ(ϕ)|2δij − ϕattϕai fj)

+RϕtkW
ϕ
tikj − αR

ϕ
kjϕ

a
kϕ

a
i + α

(
ϕaijϕ

a
kk − ϕakkjϕai −

1

m− 2
|τ(ϕ)|2δij

)
=(Rϕtk + ftk)Wϕ

tikj −
m− 3

m− 2
fkC

ϕ
jki + αϕajkfkϕ

a
i −

α

m− 2
ϕattϕ

a
i fj − αR

ϕ
kjϕ

a
kϕ

a
i − αϕakkjϕai ,

and using once again (2.67)

(m− 2)Bϕij =(Rϕtk + ftk)Wϕ
tikj −

m− 3

m− 2
fkC

ϕ
jki −

α

m− 2
ϕattϕ

a
i fj − αR

ϕ
kjϕ

a
kϕ

a
i − αϕakfkjϕai

=(Rϕtk + ftk)(Wϕ
tikj − αϕ

a
kϕ

a
i δjt)−

m− 3

m− 2
fkC

ϕ
jki −

α

m− 2
ϕattϕ

a
i fj .

Thus the second integrability condition (2.57) can be expressed as

(Rϕtk + ftk)(Wϕ
tikj − αϕ

a
kϕ

a
i δjt)−

m− 3

m− 2
fkC

ϕ
jki −

α

m− 2
ϕattϕ

a
i fj +

m− 4

m− 2
Wϕ
tijkftfk = 0,

and using once more (2.67) and (2.56)

0 =(Rϕtk + ftk)(Wϕ
tikj − αϕ

a
kϕ

a
i δjt)−

m− 3

m− 2
fkC

ϕ
jki −

α

m− 2
ϕattϕ

a
i fj +

m− 4

m− 2
Wϕ
tijkftfk

=(Rϕtk + ftk)(Wϕ
tikj − αϕ

a
kϕ

a
i δjt)−

m− 3

m− 2
fkftW

ϕ
tjki −

α

m− 2
ϕat ftϕ

a
i fj +

m− 4

m− 2
Wϕ
tijkftfk

=

(
Rϕtk + ftk +

1

m− 2
ftfk

)
(Wϕ

tikj − αϕ
a
kϕ

a
i δjt).
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Next we define

λ :=
1

m

(
Sϕ + ∆f +

|∇f |2

m− 2

)
,

so that the 2-times covariant symmetric tensor field

β := Ricϕ + Hess(f) +
1

m− 2
df ⊗ df − λ〈 , 〉

is traceless. From the above identity and from (2.8) we then have

(Wϕ
tikj − αϕ

a
kϕ

a
i δjt)βtk =(Wϕ

tikj − αϕ
a
kϕ

a
i δjt)

(
Rϕtk + ftk +

1

m− 2
ftfk − λδtk

)
=(Wϕ

tikj − αϕ
a
kϕ

a
i δjt)

(
Rϕtk + ftk +

1

m− 2
ftfk

)
− λ(Wϕ

kikj − αϕ
a
i ϕ

a
j ) = 0.

Interchanging the role of i and j in the above equation we get

0 = (Wϕ
tjki − αϕ

a
jϕ

a
t δik)βtk = (Wϕ

tikj − αϕ
a
jϕ

a
t δik)βtk.

Summing up the last two formulas

0 =(Wϕ
tikj − αϕ

a
i ϕ

a
t δjk)βtk + (Wϕ

tikj − αϕ
a
jϕ

a
t δik)βtk

=[2Wϕ
tikj − αϕ

a
t (ϕai δtj + ϕaj δti)]βtk

=2

(
Wϕ
tikj −

1

2
αϕat (ϕai δtj + ϕaj δti)

)
βtk.

Hence,

Wϕ(β) =

(
Wϕ
tikj −

1

2
αϕat (ϕai δtj + ϕaj δti)

)
βtkθ

i ⊗ θj = 0.

Thus, since Wϕ is injective, β = 0, that is,

Ricϕ + Hess(f) +
1

m− 2
df ⊗ df = λ〈 , 〉.

The latter together with (2.67) and Theorem 2.49 show that (M, 〈̃ , 〉) is harmonic-Einstein.

3 A gap result for harmonic-Einstein manifolds

The aim of this section is to prove Theorem 3.12 below when we give a gap result for ||T ||L∞ .
Let (M, 〈 , 〉) be a Riemannian manifold of dimension m, ϕ : M → (N, 〈 , 〉N ) a smooth map, α ∈ R \ {0}

and set Tϕ to denote the traceless part of the ϕ-Ricci tensor, that is,

Tϕ := Ricϕ − Sϕ

m
〈 , 〉. (3.1)

Of course when ϕ is constant Tϕ ≡ T the usual traceless Ricci tensor. Let the operator Wϕ be defined as in
(2.61) and observe that for every β ∈ S2

0(M)

〈Wϕ(β), β〉 = Wϕ
tikjβtkβij − αϕ

a
i ϕ

a
jβikβkj , (3.2)

where β = βijθ
i ⊗ θj . We also set

div(Cϕ) := Cϕijk,kθ
i ⊗ θj . (3.3)
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and
tr(Cϕ) = Cϕkkiθ

i. (3.4)

Note that, from (2.34),
tr(Cϕ)i,j = α(ϕakkϕ

a
i )j = α(ϕakkiϕ

a
j + ϕakkϕ

a
ij).

Next result is computational but far from trivial.

Theorem 3.5. In the above setting and for m ≥ 3 we have

1

2
∆|Tϕ|2 =|∇Tϕ|2 +

m− 2

2(m− 1)
tr(Tϕ ◦Hess(Sϕ)) +

m

m− 2
tr[(Tϕ)3] +

Sϕ

m− 1
|Tϕ|2

+ tr(div(Cϕ) ◦ Tϕ)− 〈Wϕ(Tϕ), Tϕ〉 − tr(Tϕ ◦ ∇tr(Cϕ))

(3.6)

Proof. A simple calculation shows the validity of

1

2
∆|Tϕ|2 = |∇Tϕ|2 + Tϕij,kkT

ϕ
ij .

From (3.1),

Tϕij,kk =Rϕij,kk −
∆Sϕ

m
δij ,

and since Tϕ is traceless the formula above can be rewritten as

1

2
∆|Tϕ|2 = |∇Tϕ|2 +Rϕij,kkT

ϕ
ij . (3.7)

Now we want to evaluate Rϕij,kk. First we derive the following commutation relation, alternative to (2.36),

Rϕij,k = Rϕik,j +Rtikj,t + α(ϕaijϕ
a
k − ϕaikϕaj ). (3.8)

To prove it we use the second Bianchi identity and the definition (2.1) of the ϕ-Ricci tensor

Rtijk,t =−Rtikt,j −Rtitj,k = Rik,j −Rij,k
=Rϕik,j + α(ϕai ϕ

a
k)j −Rϕij,k − α(ϕai ϕ

a
j )k

=Rϕik,j −R
ϕ
ij,k + α(ϕaijϕ

a
k + ϕai ϕ

a
kj)− α(ϕaikϕ

a
j + ϕai ϕ

a
jk)

=Rϕik,j −R
ϕ
ij,k + α(ϕaijϕ

a
k − ϕaikϕaj ).

To compute the coefficients of ∆Ricϕ we then use (3.8), together with (2.42), (2.10) and (2.1) to get:

Rϕij,kk
(3.8)
= [Rϕik,j +Rtikj,t + α(ϕaijϕ

a
k − ϕaikϕaj )]k

=Rϕik,jk +Rtikj,tk + α(ϕaijkϕ
a
k + ϕaijϕ

a
kk − ϕaikkϕaj − ϕaikϕajk)

(2.42)
= Rϕik,kj +RtijkR

ϕ
tk +RtkjkR

ϕ
it +Rtikj,tk + α(ϕaijkϕ

a
k + ϕaijϕ

a
kk − ϕaikkϕaj − ϕaikϕajk)

(2.10)
=

(
1

2
Sϕi − αϕ

a
kkϕ

a
i

)
j

+RtijkR
ϕ
tk +RtjR

ϕ
it +Rtikj,tk + α(ϕaijkϕ

a
k + ϕaijϕ

a
kk − ϕaikkϕaj − ϕaikϕajk)

(2.1)
=

1

2
Sϕij − α(ϕakkjϕ

a
i + ϕakkϕ

a
ij) +RtijkR

ϕ
tk +RϕkjR

ϕ
ik + αRϕikϕ

a
kϕ

a
j +Rtikj,tk

+ α(ϕaijkϕ
a
k + ϕaijϕ

a
kk − ϕaikkϕaj − ϕaikϕajk)

=
1

2
Sϕij +RtijkR

ϕ
tk +RϕkjR

ϕ
ik + αRϕikϕ

a
kϕ

a
j +Rtikj,tk + α(−ϕakkjϕai + ϕaijkϕ

a
k − ϕaikkϕaj − ϕaikϕajk).
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Exploiting the commutation relation (2.36)

Rtikj,tk =[Rϕij,k −R
ϕ
ik,j + α(ϕaikϕ

a
j − ϕaijϕak)]k

=
[
Cϕijk + 12(m− 1)(Sϕk δij − S

ϕ
j δik)

]
k

+ α(ϕaikkϕ
a
j + ϕaikϕ

a
jk − ϕaijkϕak − ϕaijϕakk)

=Cϕijk,k +
1

2(m− 1)
(∆Sϕδij − Sϕij) + α(ϕaikkϕ

a
j + ϕaikϕ

a
jk − ϕaijkϕak − ϕaijϕakk),

and inserting into the above we obtain

Rϕij,kk =
m− 2

2(m− 1)
Sϕij +RtijkR

ϕ
tk +RϕkjR

ϕ
ik + Cϕijk,k +

∆Sϕ

2(m− 1)
δij

+ α(Rϕikϕ
a
kϕ

a
j − ϕakkjϕai − ϕaijϕakk).

(3.9)

Indeed,

Rϕij,kk =
1

2
Sϕij +RtijkR

ϕ
tk +RϕkjR

ϕ
ik + αRϕikϕ

a
kϕ

a
j + α(−ϕakkjϕai + ϕaijkϕ

a
k − ϕaikkϕaj − ϕaikϕajk)

+ Cϕijk,k +
1

2(m− 1)
(∆Sϕδij − Sϕij) + α(ϕaikkϕ

a
j + ϕaikϕ

a
jk − ϕaijkϕak − ϕaijϕakk)

=
1

2
Sϕij +RtijkR

ϕ
tk +RϕkjR

ϕ
ik + αRϕikϕ

a
kϕ

a
j − αϕakkjϕai

+ Cϕijk,k +
1

2(m− 1)
(∆Sϕδij − Sϕij)− αϕ

a
ijϕ

a
kk

=
m− 2

2(m− 1)
Sϕij +RtijkR

ϕ
tk +RϕkjR

ϕ
ik + Cϕijk,k +

∆Sϕ

2(m− 1)
δij + α(Rϕikϕ

a
kϕ

a
j − ϕakkjϕai − ϕaijϕakk).

Using the decomposition (2.6), that in components reads

Rtijk = Wϕ
tijk +

1

m− 2
(Rϕtjδik −R

ϕ
tkδij +Rϕikδtj −R

ϕ
ijδtk)− Sϕ

(m− 1)(m− 2)
(δtjδik − δtkδij),

we obtain

RtijkR
ϕ
tk =Wϕ

tijkR
ϕ
tk +

1

m− 2
(Rϕtjδik −R

ϕ
tkδij +Rϕikδtj −R

ϕ
ijδtk)Rϕtk

− Sϕ

(m− 1)(m− 2)
(δtjδik − δtkδij)Rϕtk

=Wϕ
tijkR

ϕ
tk +

1

m− 2
(RϕtjR

ϕ
ti − |Ricϕ|2δij +RϕikR

ϕ
jk −R

ϕ
ijS

ϕ)

− Sϕ

(m− 1)(m− 2)
(Rϕij − S

ϕδij)

=Wϕ
tijkR

ϕ
tk +

1

m− 2
(2RϕkjR

ϕ
ki − |Ricϕ|2δij −RϕijS

ϕ)− Sϕ

(m− 1)(m− 2)
(Rϕij − S

ϕδij)

=Wϕ
tijkR

ϕ
tk +

2

m− 2
RϕikR

ϕ
kj −

1

m− 2
|Ricϕ|2δij

+
(Sϕ)2

(m− 1)(m− 2)
δij −

m

(m− 1)(m− 2)
SϕRϕij .

Inserting the last formula in (3.9) we obtain

Rϕij,kk =
m− 2

2(m− 1)
Sϕij +

m

m− 2
RϕkjR

ϕ
ik + Cϕijk,k +Wϕ

tijkR
ϕ
tk −

m

(m− 1)(m− 2)
SϕRϕij

+ α(Rϕikϕ
a
kϕ

a
j − ϕakkjϕai − ϕaijϕakk)

+

[
(Sϕ)2

(m− 1)(m− 2)
+

1

2(m− 1)
∆Sϕ − 1

m− 2
|Ricϕ|2

]
δij .

(3.10)
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Using the fact that Tϕ is traceless, from (3.10), we infer

Rϕij,kkT
ϕ
ij =

m− 2

2(m− 1)
TϕijS

ϕ
ij +

m

m− 2
TϕijR

ϕ
kjR

ϕ
ik + TϕijC

ϕ
ijk,k +Wϕ

tijkT
ϕ
ijR

ϕ
tk

− m

(m− 1)(m− 2)
SϕTϕijR

ϕ
ij + αTϕij(R

ϕ
ikϕ

a
kϕ

a
j − ϕakkjϕai − ϕaijϕakk).

(3.11)

The following relations can be easily deduced from (3.1)

RϕkjR
ϕ
ikT

ϕ
ij = TϕkjT

ϕ
ikT

ϕ
ij +

2Sϕ

m
|Tϕ|2,

Rϕikϕ
a
kϕ

a
jT

ϕ
ij = Tϕikϕ

a
kϕ

a
jT

ϕ
ij +

Sϕ

m
Tϕijϕ

a
i ϕ

a
j ,

TϕijR
ϕ
tkW

ϕ
tijk = TϕijT

ϕ
tkW

ϕ
tijk − α

Sϕ

m
Tϕijϕ

a
i ϕ

a
j .

Using them all in (3.11) we conclude that

Rϕij,kkT
ϕ
ij =

m− 2

2(m− 1)
TϕijS

ϕ
ij +

m

m− 2
TϕkjT

ϕ
ikT

ϕ
ij +

1

m− 1
Sϕ|Tϕ|2 + TϕijC

ϕ
ijk,k

+ TϕijT
ϕ
tkW

ϕ
tijk + αTϕikϕ

a
kϕ

a
jT

ϕ
ij − αT

ϕ
ij(ϕ

a
kkjϕ

a
i + ϕaijϕ

a
kk).

Inserting the last formula in (3.7) we finally obtain

1

2
∆|Tϕ|2 =|∇Tϕ|2 +

m− 2

2(m− 1)
TϕijS

ϕ
ij +

m

m− 2
TϕkjT

ϕ
ikT

ϕ
ij +

1

m− 1
Sϕ|Tϕ|2 + TϕijC

ϕ
ijk,k

+ TϕijT
ϕ
tkW

ϕ
tijk + αTϕikϕ

a
kϕ

a
jT

ϕ
ij − αT

ϕ
ij(ϕ

a
kkjϕ

a
i + ϕaijϕ

a
kk),

that is, (3.6).

We let η(x) denote the largest eigenvalue of Wϕ : S2
0(M)→ S2

0(M) at x ∈M and we set

η∗ := sup
M

η.

We are now ready to prove the following

Theorem 3.12. Let (M, 〈 , 〉) be a stochastically complete Riemannian manifold of dimension m ≥ 3 and
let ϕ : M → (N, 〈 , 〉N ) be a smooth map, α ∈ R, α > 0. Assume

i) Sϕ is constant.

ii) ϕ is harmonic.

iii) div(Cϕ) = 0.

Then, either (M, 〈 , 〉) is harmonic-Einstein or

sup
M
|Tϕ| ≥

√
m− 1

m

(
Sϕ

m− 1
− η∗

)
. (3.13)

Remark 3.14. Note that by Proposition 2.15, Definition 2.13 and (3.3), conditions i), ii) and iii) are necessary
for (M, 〈 , 〉) to be harmonic-Einstein. Furthermore (3.13) is not empty only if

Sϕ > (m− 1)η∗. (3.15)
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Proof. First of all note that if η∗ = +∞ then (3.13) holds true. Thus we can suppose η∗ < +∞. In the
assumptions of the Theorem div(Cϕ) = 0 and, since ϕ is harmonic, by (3.4) and (2.34), tr(Cϕ) = 0. Thus
equation (3.6) becomes

1

2
∆|Tϕ|2 = |∇Tϕ|2 +

m

m− 2
tr[(Tϕ)3] +

Sϕ

m− 1
|Tϕ|2 − 〈Wϕ(Tϕ), Tϕ〉. (3.16)

Since Tϕ is traceless, Okumura’s inequality, [34], gives the validity of

tr[(Tϕ)3] ≥ − m− 2√
m(m− 1)

|Tϕ|3.

Furthermore, from the estimates on the largest eigenvalue of Wϕ

〈Wϕ(Tϕ), Tϕ〉 ≤ η∗|Tϕ|2.

Inserting these informations in (3.16) and setting u := |Tϕ|2 we deduce the validity of the differential
inequality

1

2
∆u ≥

(
Sϕ

m− 1
− η∗ − m√

m(m− 1)

√
u

)
u. (3.17)

If u∗ := supM u = +∞ then (3.13) is obviously satisfied. Thus let u∗ < +∞. Since stochastically complete-
ness is equivalent to the validity of the weak maximum principle for the Laplace-Beltrami operator, see [35],
applying the latter to (3.17) we obtain

0 ≥

(
Sϕ

m− 1
− η∗ − m√

m(m− 1)

√
u∗

)
u∗.

Thus either u∗ = 0, that is, Tϕ = 0 on M and (M, 〈 , 〉) is harmonic-Einstein or

Sϕ

m− 1
− η∗ −

√
mu∗

m− 1
≤ 0.

The latter inequality implies (3.13).

As a consequence we obtain the following “gap”result for |Tϕ|2.

Corollary 3.18. Under the assumptions of Theorem 3.12 together with (3.15) suppose that

sup
M
|Tϕ|2 < m− 1

m

(
Sϕ

m− 1
− η∗

)2

, (3.19)

then (M, 〈 , 〉) is harmonic-Einstein.

In particular when ϕ is constant we deduce

Corollary 3.20. Let (M, 〈 , 〉) be a stochastically complete manifold of dimension m ≥ 3. Assume that the
scalar curvature is constant and divC = 0. If

sup
M
|T |2 < m− 1

m

(
S

m− 1
− η∗

)2

then (M, 〈 , 〉) is Einstein.

Note that in this case η∗ = supM η is the largest eigenvalue ofW =Wϕ : S2
0(M)→ S2

0(M) (see Definition
2.60).
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Remark 3.21. A result in the spirit of Theorem 3.12 but with different assumptions is given in Theorem A
of [27].

To conclude this Section we provide an estimate for η∗ in the following

Proposition 3.22. Let (M, 〈 , 〉) be a Riemannian manifold of dimension m ≥ 3, ϕ : M → (N, 〈 , 〉N ) a
smooth map and α > 0. If

|Wϕ|∗ := sup
M
|Wϕ| < +∞ and (|dϕ|2)∗ := sup

M
|dϕ|2 < +∞,

then

η∗ ≤

√
m− 2

2(m− 1)
|Wϕ|∗ +

α

m− 2
(|dϕ|2)∗ (3.23)

Proof. We set: for every β ∈ S2
0(M), β = βijθ

i ⊗ θj ,

W(β) := Wtikjβtkθ
i ⊗ θj .

Then W : S2
0(M) → S2

0(M) is well defined and self-adjoint with respect to the standard extension of 〈 , 〉
to S2

0(M). Moreover from Huisken’s inequality (see Lemma 2.9 in [24] or also Proposition 8.8 in [1], whose
proof can be extended, with the notation there, to the case where T ∈ S2

0(M))

|〈W(β), β〉| ≤

√
m− 2

2(m− 1)
|W |2|β|2. (3.24)

From (3.2) and the decomposition (2.7) we get

〈Wϕ(β), β〉 = 〈W(β), β〉 − α m

m− 2
|dϕ(β)|2 +

α

(m− 1)(m− 2)
|dϕ|2|β|2, (3.25)

where, in local coordinates,
dϕ(β) = ϕajβijθ

i ⊗ Ea.

From (3.25) we deduce

〈Wϕ(β), β〉 ≤ 〈W(β), β〉+
α

(m− 1)(m− 2)
|dϕ|2|β|2

and using (3.24) we have

|〈Wϕ(β), β〉| ≤

(√
m− 2

2(m− 1)
|W |2 +

α

(m− 1)(m− 2)
|dϕ|2

)
|β|2. (3.26)

To obtain (3.23) we need the following relation between |W |2 and |Wϕ|2:

|Wϕ|2 = |W |2 +
4α2

m− 2
|ϕ∗〈 , 〉N |2 −

2α2

(m− 1)(m− 2)
|dϕ|4. (3.27)

To prove (3.27) we use (2.7) and the symmetries of Wϕ to get

|Wϕ|2 =Wϕ
tikjW

ϕ
tikj

=Wϕ
tikj

[
Wtikj +

α

m− 2
(ϕatϕ

a
kδij − ϕatϕaj δik + ϕai ϕ

a
j δtk − ϕai ϕakδtj)−

α

(m− 1)(m− 2)
|dϕ|2(δtkδij − δtjδik)

]
=Wϕ

tikjWtikj +
4α

m− 2
Wϕ
tikiϕ

a
tϕ

a
k −

2α

(m− 1)(m− 2)
|dϕ|2Wϕ

kiki,
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and we conclude using (2.7), the fact that W is totally trace free and (2.8). From (3.27) we obtain

|W |2 ≤ |Wϕ|2 +
2α2

(m− 1)(m− 2)
|dϕ|4,

so that√
m− 2

2(m− 1)
|W |2 ≤

√
m− 2

2(m− 1)
|Wϕ|2 +

(
α

m− 1
|dϕ|2

)2

≤

√
m− 2

2(m− 1)
|Wϕ|+ α

m− 1
|dϕ|2. (3.28)

Plugging the above into (3.26) we get

|〈Wϕ(β), β〉| ≤

(√
m− 2

2(m− 1)
|Wϕ|+ α

m− 2
|dϕ|2

)
|β|2,

and then (3.23) holds.

4 The general structure, formulas and a “spectral” non-existence
result

The geometric considerations discussed in Sections 2 and 3 justify the introduction of the following general
structure on a Riemannian manifold. In what follow X(M) will denote the C∞(M)-module of the vector
fields on M .

Definition 4.1. We say that the Riemannian manifold (M, 〈 , 〉) carries an Einstein-type structure if there
exist X ∈ X(M), ϕ : M → (N, 〈 , 〉N ) for some Riemannian manifold (N, 〈 , 〉N ), and functions α, λ, µ ∈
C∞(M) such that Ric +

1

2
LX〈 , 〉 − µX[ ⊗X[ − αϕ∗〈 , 〉N = λ〈 , 〉

τ(ϕ) = dϕ(X),
(4.2)

where [ : X(M) →
∧1

(M) is the musical isomorphism and LX〈 , 〉 denotes the Lie derivative of the metric
along the vector field X.

In case X = ∇f for some f ∈ C∞(M) we say that (M, 〈 , 〉) carries a gradient Einstein-type structure.
In case the Einstein-type structure is gradient (4.2) takes the form{

Ric + Hess(f)− µdf ⊗ df − αϕ∗〈 , 〉N = λ〈 , 〉
τ(ϕ) = dϕ(∇f).

(4.3)

When α is a constant the term Ric − αϕ∗〈 , 〉N will be simply written as Ricϕ, following the notation
introduced in Section 2.

The following commutation relations, valid for every Y ∈ X(M), are proved in [1], equations (8.9) and
(8.25) respectively

Y ijk − Y ikj = Y tRtijk, (4.4)

Y ijkl − Y ijlk = Y tj Rtikl + Y it R
t
jkl. (4.5)

We shall need them in the proof of the following

Proposition 4.6. Let (M, 〈 , 〉) be a Riemannian manifold of dimension m with an Einstein-type structure
as in (4.2), with α ∈ R \ {0}, X ∈ X(M), λ ∈ C∞(M), µ ∈ R and ϕ : M → (N, 〈 , 〉N ). Then in a local
orthonormal coframe the following hold,

Rϕij,k −R
ϕ
ik,j +RtijkX

t +
1

2
(Xj

k −X
k
j )i = µ[Xi

kX
j −Xi

jX
k +Xi(Xj

k −X
k
j )] + λkδij − λjδik, (4.7)
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1

2
Sϕk −R

ϕ
ikX

i +
1

2
(Xi

k −Xk
i )i = µ

[
1

2
(Xi

k +Xk
i )Xi +

3

2
(Xi

k −Xk
i )Xi −Xi

iX
k

]
+ (m− 1)λk, (4.8)

1

2
∆(1+2µ)XS

ϕ + (1− µ)(|Tϕ|2 + α|τ(ϕ)|2) +

[
(m− 1)µ+ 1

m
Sϕ − µ(m− 1)λ

]
(Sϕ −mλ)

= (m− 1)∆2µXλ+
µ

2
D,

(4.9)

where
D := 2[(Xi

k −Xk
i )Xi]k + (Xi

k −Xk
i )Xi

k. (4.10)

Here ∆Y , for Y ∈ X(M), stands for the operator ∆− 〈Y,∇ 〉.

Proof. In a local orthonormal coframe (4.2) is given byR
ϕ
ij +

1

2
(Xi

j +Xj
i ) = µXiXj + λδij

ϕaii = ϕaiX
i.

(4.11)

The covariant derivative of the first equation in (4.11) is

Rϕij,k +
1

2
(Xi

jk +Xj
ik) = µ(Xi

kX
j +XiXj

k) + λkδij .

Inverting the role of j and k and subtracting we obtain

Rϕij,k −R
ϕ
ik,j +

1

2
(Xi

jk −Xi
kj +Xj

ik −X
k
ij) = µ(Xi

kX
j −Xi

jX
k +XiXj

k −X
iXk

j ) + λkδij − λjδik.

Using three times (4.4) and the first Bianchi identity we deduce

1

2
(Xi

jk −Xi
kj +Xj

ik −X
k
ij) = RtijkX

t +
1

2
(Xj

k −X
k
j )i.

Plugging into the above we have

Rϕij,k −R
ϕ
ik,j +RtijkX

t +
1

2
(Xj

k −X
k
j )i = µ[Xi

kX
j −Xi

jX
k +Xi(Xj

k −X
k
j )] + λkδij − λjδik,

that is (4.7). Tracing on i and j in (4.7) we get

Sϕk −R
ϕ
ik,i −RikX

i +
1

2
(Xi

k −Xk
i )i = µ(2Xi

kX
i −Xi

iX
k −XiXk

i ) + (m− 1)λk.

Using (2.10), the second equation of (4.11) and the definition (2.1) of Ricϕ we infer

Rϕik,i +RikX
i =

1

2
Sϕk − αϕ

a
iiϕ

a
k +RikX

i =
1

2
Sϕk +RϕikX

i

and inserting into the above we obtain (4.8).
Tracing the first equation of (4.11) we deduce

Sϕ +Xi
i = µ|X|2 +mλ, (4.12)

using it together with the first equation of (4.11) in (4.8) we get

1

2
Sϕk −R

ϕ
ikX

i +
1

2
(Xi

k −Xk
i )i =µ

[
(−Rϕik + µXiXk + λδik)Xi + (Sϕ − µ|X|2 −mλ)Xk

]
+ µ

3

2
(Xi

k −Xk
i )Xi + (m− 1)λk,
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or, equivalently,

1

2
Sϕk +

1

2
(Xi

k −Xk
i )i = (1− µ)RϕikX

i + µ(Sϕ − (m− 1)λ)Xk + µ
3

2
(Xi

k −Xk
i )Xi + (m− 1)λk, (4.13)

Contracting (4.13) with Xk we obtain

1

2
SϕkX

k +
1

2
(Xi

k −Xk
i )iX

k = (1− µ)RϕikX
iXk + µ(Sϕ − (m− 1)λ)|X|2 + (m− 1)λkX

k,

thus

(1− µ)µRϕikX
iXk =

µ

2
SϕkX

k +
µ

2
(Xi

k −Xk
i )iX

k − µ(Sϕ − (m− 1)λ)µ|X|2 − (m− 1)µλkX
k. (4.14)

From (4.5) easily follows
Xi
kik = Xk

iik,

then taking the divergence of (4.13) and exploiting the above commutation relation we have

1

2
Sϕkk =(1− µ)(Rϕik,kX

i +RϕikX
i
k) + µ(Sϕk − (m− 1)λk)Xk + µ(Sϕ − (m− 1)λ)Xk

k

+ µ
3

2
(Xi

k −Xk
i )kX

i + µ
3

2
(Xi

k −Xk
i )Xi

k + (m− 1)λkk.

(4.15)

From the first equation of (4.11) we infer

|Ricϕ|2 +RϕikX
i
k = µRϕikX

iXk + λSϕ,

using the definition (3.1) the above is equivalent to

|Tϕ|2 +
(Sϕ)2

m
+RϕikX

i
k = µRϕikX

iXk + λSϕ,

that is,

RϕikX
i
k = −|Tϕ|2 − Sϕ

m
(Sϕ −mλ) + µRϕikX

iXk.

Using the above formula and (2.10) we deduce

(1− µ)(Rϕik,kX
i +RϕikX

i
k) =

(
1

2
− µ

2

)
Sϕi X

i − (1− µ)αϕakkϕ
a
iX

i − (1− µ)|Tϕ|2

− (1− µ)
Sϕ

m
(Sϕ −mλ) + µ(1− µ)RϕikX

iXk

and from the second equation of (4.11) and (4.14) it follows

(1− µ)(Rϕik,kX
i +RϕikX

i
k) =

1

2
Sϕi X

i − (1− µ)(|Tϕ|2 + α|τ(ϕ)|2)− (1− µ)
Sϕ

m
(Sϕ −mλ)

+
µ

2
(Xi

k −Xk
i )iX

k − µ(Sϕ − (m− 1)λ)µ|X|2 − (m− 1)µλkX
k.

Inserting the latter into (4.15) we obtain

1

2
Sϕkk =

1 + 2µ

2
Sϕi X

i − (1− µ)(|Tϕ|2 + α|τ(ϕ)|2)− (1− µ)
Sϕ

m
(Sϕ −mλ)

+
µ

2
(Xi

k −Xk
i )iX

k − µ(Sϕ − (m− 1)λ)(−Xk
k + µ|X|2)− 2(m− 1)µλkX

k

+ µ
3

2
(Xi

k −Xk
i )kX

i + µ
3

2
(Xi

k −Xk
i )Xi

k + (m− 1)λkk,
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that, using (4.12) can be written as

1

2
Sϕkk =

1 + 2µ

2
Sϕi X

i − (1− µ)(|Tϕ|2 + α|τ(ϕ)|2)−
[
(1− µ)

Sϕ

m
+ µSϕ − µ(m− 1)λ

]
(Sϕ −mλ)

+
µ

2
(Xi

k −Xk
i )iX

k + µ
3

2
(Xi

k −Xk
i )kX

i + µ
3

2
(Xi

k −Xk
i )Xi

k + (m− 1)(λkk − 2µλkX
k),

that is,

1

2
∆(1+2µ)XS

ϕ + (1− µ)(|Tϕ|2 + α|τ(ϕ)|2) +

[
(m− 1)µ+ 1

m
Sϕ − µ(m− 1)λ

]
(Sϕ −mλ)

= (m− 1)∆2µXλ+
µ

2
[(Xi

k −Xk
i )iX

k + 3(Xi
k −Xk

i )kX
i + 3(Xi

k −Xk
i )Xi

k].

We then conclude the validity of (4.9), since

(Xi
k −Xk

i )iX
k + 3(Xi

k −Xk
i )kX

i + 3(Xi
k −Xk

i )Xi
k = 2(Xi

k −Xk
i )kX

i + 3(Xi
k −Xk

i )Xi
k

= 2[(Xi
k −Xk

i )Xi]k + (Xi
k −Xk

i )Xi
k

= D.

Remark 4.16. In case µ = 0 equation (4.9) can be rewritten as

1

2
∆XS

ϕ + α|τ(ϕ)|2 + |Tϕ|2 +
Sϕ

m
(Sϕ −mλ) = (m− 1)∆λ. (4.17)

Observe that when X = ∇f , or more generally in case ∇X is symmetric, equation (4.7) becomes

Rϕij,k −R
ϕ
ik,j +Rtijkft = µ(fikfj − fijfk) + λkδij − λjδik (4.18)

and (4.8) becomes
1

2
Sϕk −R

ϕ
ikfi = µ(fikfi −∆ffk) + (m− 1)λk, (4.19)

moreover D defined in (4.10) vanishes identically and thus (4.9) takes the form

1

2
∆(1+2µ)fS

ϕ+(1−µ)(|Tϕ|2+α|τ(ϕ)|2)+

[
(m− 1)µ+ 1

m
Sϕ − µ(m− 1)λ

]
(Sϕ−mλ) = (m−1)∆2µfλ, (4.20)

that shall be used in Theorem 7.29 of Section 7.

Bochner’s type formula (4.22), contained in the Proposition below, will be used later on in the proof of
Proposition 7.62.

Proposition 4.21. Let (M, 〈 , 〉) be an m-dimensional Riemannian manifold with an Einstein-type structure
as in (4.3) with λ, f ∈ C∞(M), α, µ ∈ R and ϕ : M → (N, 〈 , 〉N ). Then

1

2
∆f |∇f |2 = |Hess(f)|2 +α|τ(ϕ)|2 + (2µλm−λ− 2µSϕ)|∇f |2 +µ(2µ− 1)|∇f |4− (m− 2)〈∇λ,∇f〉. (4.22)

Proof. From Bochner’s formula

1

2
∆|∇f |2 = |Hess(f)|2 + 〈∇∆f,∇f〉+ Ric(∇f,∇f). (4.23)

Using the definition (2.1) of Ricϕ and the second equation of (4.3) we obtain

Ric(∇f,∇f) = Ricϕ(∇f,∇f) + α|τ(ϕ)|2. (4.24)
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Tracing the first equation of (4.3) we get

∆f = −Sϕ + µ|∇f |2 +mλ, (4.25)

so that,
〈∇∆f,∇f〉 = −〈∇Sϕ,∇f〉+ µ〈∇|∇f |2,∇f〉+m〈∇λ,∇f〉.

Contracting (4.19) with ∇f we deduce

〈∇Sϕ,∇f〉 = 2Ricϕ(∇f,∇f) + 2µ[Hess(f)(∇f,∇f)−∆f |∇f |2] + 2(m− 1)〈∇λ,∇f〉

inserting into the above and observing that

〈∇|∇f |2,∇f〉 = 2Hess(f)(∇f,∇f), (4.26)

we have
〈∇∆f,∇f〉 = −2Ricϕ(∇f,∇f) + 2µ∆f |∇f |2 − (m− 2)〈∇λ,∇, f〉. (4.27)

We plug (4.27) and (4.24) into (4.23) to infer

1

2
∆|∇f |2 = |Hess(f)|2 + α|τ(ϕ)|2 + 2µ∆f |∇f |2 − Ricϕ(∇f,∇f)− (m− 2)〈∇λ,∇, f〉.

Using the first equation of (4.3),(4.25) and (4.26) we obtain

2µ∆f |∇f |2 − Ricϕ(∇f,∇f) =2µ(−Sϕ + µ|∇f |2 +mλ)|∇f |2 + (Hess(f)− µdf ⊗ df − λ〈 , 〉)(∇f,∇f)

=(2µmλ− 2µSϕ − λ)|∇f |2 + µ(2µ− 1)|∇f |4 +
1

2
〈∇|∇f |2,∇f〉,

replacing into the above we get (4.22).

Next Proposition shall be used in the proof of Lemma 5.2.

Proposition 4.28. Let (M, 〈 , 〉) and (N, 〈 , 〉N ) be Riemannian manifolds, ϕ : M → N , α ∈ R \ {0}. Let
X be a conformal vector field on M , satisfying

τ(ϕ) = dϕ(X). (4.29)

Setting

η :=
1

m
div(X), (4.30)

we have

∆η +
Sϕ

m− 1
η +

1

2(m− 1)
〈∇Sϕ, X〉+

α

m− 1
〈∇τ(ϕ), dϕ〉 = 0. (4.31)

Remark 4.32. In case ϕ is a constant map, so that (4.29) is automatically satisfied, we get the well known
formula

∆η +
S

m− 1
η +

1

2(m− 1)
〈∇S,X〉 = 0. (4.33)

Proof. To prove (4.31) we shall use (4.33). However, for the sake of completeness we first give a proof of the
latter. Since X is conformal

1

2
LX〈 , 〉 = η〈 , 〉. (4.34)

We rewrite (4.34) in local form with respect to an orthonormal coframe as

Xi
j +Xj

i = 2ηδij . (4.35)
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Observe that, from (4.35)
RijX

i
j +RijX

j
i = 2Sη,

and since Ric is symmetric
RijX

i
j = ηS. (4.36)

Moreover from Schur identity

Rji,j =
1

2
Si. (4.37)

Clearly, from (4.30)

∆η =
1

m
∆(div(X)), (4.38)

using (4.4) we compute

∆(div(X)) =(Xi
i )jj = (Xi

ij)j = (Xi
ji +RkiijX

k)j

=Xi
jij − (RijX

i)j

=(Xi
j)ij −Rij,jXi −RijXi

j .

With the aid of (4.35), (4.37) and (4.36) the latter can be rewritten in the form

∆(div(X)) =(−Xj
i + 2ηδij)ij −

1

2
SiX

i − Sη

=−Xj
iij + 2∆η − 1

2
SiX

i − Sη.

Using (4.5) we obtain

Xj
iij = Xj

iji +RkjijX
k
i +RkiijX

j
k = Xj

iji +RkiX
k
i −RkjX

j
k = Xj

iji,

and inserting into the last equality we infer

∆(div(X)) = −(Xj
ij)i + 2∆η − 1

2
SiX

i − Sη.

Using once again (4.4), (4.35), (4.37) and (4.36):

∆(div(X)) =− (Xj
ji +RkjijX

k)i + 2∆η − 1

2
SiX

i − Sη

=−Xj
jii − (RkiX

k)i + 2∆η − 1

2
SiX

i − Sη

=−∆div(X)−Rki,iXk −RkiXk
i + 2∆η − 1

2
SiX

i − Sη

=−∆div(X)− 1

2
SiX

i − Sη + 2∆η − 1

2
SiX

i − Sη

=−∆div(X)− SiXi − 2Sη + 2∆η,

that is,

∆(div(X)) = ∆η − 1

2
SiX

i − Sη.

Then replacing in (4.38) we get

∆η =
1

m

(
∆η − 1

2
〈∇S,X〉 − Sη

)
,

that is, (4.33).
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Next we obtain (4.31) from (4.33). Towards this aim we observe that, from (2.2)

S = Sϕ + α|dϕ|2, (4.39)

and then
Si = Sϕi + 2αϕakiϕ

a
k.

Thus,
SiX

i = Sϕi X
i + 2αϕakiϕ

a
kX

i. (4.40)

Using the symmetry of ∇dϕ and (4.29)

ϕakiX
i = ϕaikX

i = (ϕaiX
i)k − ϕaiXi

k = ϕaiik − ϕaiXi
k. (4.41)

Inserting (4.41) in (4.40) we obtain

SiX
i = Sϕi X

i + 2αϕaiikϕ
a
k − 2αϕai ϕ

a
kX

i
k. (4.42)

Moreover, from (4.35) and the symmetry of ϕ∗〈 , 〉N

ϕai ϕ
a
jX

i
j = η|dϕ|2,

hence putting it in (4.42)
SiX

i = Sϕi X
i + 2αϕaiikϕ

a
k − 2αη|dϕ|2,

that is,
1

2
〈∇S,X〉 =

1

2
〈∇Sϕ, X〉+ α〈∇τ(ϕ), dϕ〉 − αη|dϕ|2. (4.43)

Using (4.43) and (4.39) in (4.33) we finally obtain (4.31).

We now present a general non-existence result, based on spectral considerations, for gradient Einstein-
type structures with µ 6= 0.

Proposition 4.44. Let (M, 〈 , 〉) be a Riemannian manifold of dimension m. For r ∈ R+, let

v(r) := vol(∂Br), A(r) :=
µ

v(r)

�
∂Br

(mλ− Sϕ),

where Br is the geodesic ball of radius r centered at o ∈M . Let z ∈ Liploc(R+
0 ) be a solution of the Cauchy

problem {
(vz′)′ +Av = 0 on R+

z(0+) = z0 > 0, (vz′)(0+) = 0.
(4.45)

Suppose that z admits a first zero R0 ∈ R+. Then there exist no f, λ ∈ C∞(M) and α, µ ∈ R \ {0}, such that

Ricϕ + Hess(f)− µdf ⊗ df = λ〈 , 〉. (4.46)

Proof. By contradiction assume the existence of f, λ ∈ C∞(M) and α, µ ∈ R \ {0}, such that (4.46) holds.
Since µ 6= 0, the positive function u := e−µf satisfies

Hess(f)− µdf ⊗ df = −Hess(u)

µu
,

and (4.46) can be rewritten as

Ricϕ − Hess(u)

µu
= λ〈 , 〉.
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Taking the trace of the above we obtain Lu = 0, where

Lu := ∆u+ q(x)u, q := µ(mλ− Sϕ).

Since u > 0, by a well known result of [19] and [31], the operator L is stable or, in other words, its spectral
radius λL1 (M) is non-negative.

Now we prove that under our assumptions λ1
L(M) < 0, obtaining the desired contradiction. Observe that

v ∈ L∞loc(R
+
0 ), v > 0 on R+ and v−1 ∈ L∞loc)(R+) by Proposition 1.6 of [10]. By Proposition 3.2 of [10] the

solution of (4.45) is in Liploc(R+
0 ) and its possible zeroes are isolated. Suppose that z admits a first zero

R0 ∈ R+. We define
ψ := z ◦ r,

where r is the distance function from the fixed origin o ∈M . We consider the Rayleigh quotient

Q(ψ) :=

(�
BR0

ψ2

)−1 �
BR0

(|∇ψ|2 − qψ2).

From the co-area formula and Gauss lemma we get

Q(ψ) =

(� R0

0

z2v

)−1 � R0

0

[(z′)2v −Avz2].

Integrating by parts and using (4.45) we obtain

� R0

0

(z′)2v = zz′v|R0

0 −
� R0

0

z(vz′) =

� R0

0

Avz2,

so that Q(ψ) = 0. Then λL1 (BR0
) ≤ 0 and by monotonicity of the eigenvalues of L we infer λL1 (M) < 0.

It remains to determine some sufficient conditions under which a solution z of (4.45), always existing by
Proposition 3.2 of [10], admits a first zero. From Corollary 5.2 of [10], if A ≥ 0 on R+, A 6≡ 0 and either
g−1 /∈ L1(+∞) or otherwise there exist r > R > 0 such that A 6≡ 0 on [0, R] and

� r

R

(
√
A−√χg) > −

1

2

(
log

� R

0

Av + log

� +∞

R

1

g

)
, (4.47)

z has a first zero. Here g ∈ L∞loc(R
+
0 ) is such that g−1 ∈ L∞loc(R+) and 0 ≤ v ≤ g on R+

0 , while χg is the
critical curve relative to g defined by

χg(r) =

{
2g(r)

� +∞

r

1

g

}−2

.

Note that (4.47) can be rewritten as

� r

R

(
√
A−√χg) > −

1

2

(
log

�
BR

µ(mλ− Sϕ) + log

� +∞

R

1

g

)
.

Observe that the existence of a first zero is “a fortiori” guaranteed by an oscillatory condition. For
instance, from Corollary 2.9 of [26], if for some r0 ∈ R+

µ lim
r→+∞

�
Br\Br0

(mλ− Sϕ) = +∞, (4.48)

then every solution of (4.45) is oscillatory. By way of example, we have
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Proposition 4.49. Suppose Sϕ ≤ mλ on M ,

v(r) ≤ Crθ, (4.50)

for some constants C > 0 and θ ∈ R and, in case θ > 1, that for some R ∈ R+ and for some constant D�
∂Br

µ(mλ− Sϕ) ≥ D2

rγ
v(r) for r ≥ R, (4.51)

with either γ < 2 or γ = 2 and D > θ−1
2 . Then a solution z of (4.45) admits a first zero.

Proof. From (4.50) we can choose
g(r) = Crθ.

Clearly g−1 /∈ L1(+∞) if and only if θ ≤ 1. In case θ > 1

χg(r) =

(
θ − 1

2r

)2

.

Hence (4.47) can be rewritten as
� r

R

√
A− θ − 1

2
(log r − logR) > −1

2
log

�
BR

µ(mλ− Sϕ)− 1

2
log

R1−θ

C(θ − 1)
,

that is, � r

R

√
A− θ − 1

2
log r >

1

2
logC +

1

2
log(θ − 1)− 1

2
log

�
BR

µ(mλ− Sϕ).

From (4.51) and the definition of A we immediately see that√
A(r) ≥ D

r
γ
2

for r≥R. (4.52)

Using (4.52), to obtain the validity of (4.47) for some r ≥ R it is sufficient that

D

� r

R

ds

s
− θ − 1

2
log r >

1

2
logC +

1

2
log(θ − 1)− 1

2
log

�
BR

µ(mλ− Sϕ),

that is,

D (log r − logR)− θ − 1

2
log r > log(RD

√
C(θ − 1))− 1

2
log

�
BR

µ(mλ− Sϕ),

or equivalently,

D log r − θ − 1

2
log r > D logR+ log(RD

√
C(θ − 1))− 1

2
log

�
BR

µ(mλ− Sϕ). (4.53)

Since D > θ−1
2 there exists r large enough such that (4.53) holds. Then, from the discussion before the

Proposition, we conclude the proof. Observe that A 6≡ 0 on [0, R] is guaranteed by the fact that Sϕ 6≡ mλ
on BR that, in turns, is guaranteed by (4.51).

Remark 4.54. We consider, in case θ > 1, the limiting case v(r) = Crθ. Inserting this information into (4.51)
we obtain �

∂Br

µ(mλ− Sϕ) ≥ CD2rθ−γ for r ≥ R.

An immediate computation and the fact that θ − γ + 1 > 0, since γ ≤ 2 and θ > 1, shows that� r

R

µ(mλ− Sϕ) ≥ CD2

θ − γ + 1
(rθ−γ+1 −Rθ−γ+1)

and therefore the integral diverges as r → +∞. This means that condition (4.48) is satisfied and the solution
is even oscillatory.
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As another example we give

Proposition 4.55. Suppose Sϕ ≥ mλ on M ,

v(r) ≤ Λ exp{arα logβ r}, (4.56)

for some constants Λ, a, α > 0 and β ≥ 0 and�
∂Br

µ(mλ− Sϕ) ≥ 9a2

4
r2(α−1) log2(β−1) r(α log r + β)2v(r) (4.57)

Then a solution z of (4.45) admits a first zero.

Proof. The proof is similar to that of Proposition 4.49. From (4.56) we can choose

g(r) = Λ exp{arα logβ r}.

Clearly g−1 /∈ L1(+∞). We claim that the validity, for some r and R large enough, of� r

R

√
A− arα logβ r > −1

2
log

�
BR

µ(mλ− Sϕ) +
1

2
− 3a

2
Rα logβ R (4.58)

implies the validity of (4.47). Indeed, if we define

χ̃g(t) :=

(
g′(t)

2g(t)

)2

,

then √
χ̃g(t) ∼

√
χg(t) for t→ +∞,

see (4.4) of [9]. In particular, if R is large enough, then for every t ≥ R,√
χg(t) < 2

√
χ̃g(t).

Then we deduce � r

R

√
χg < 2

� r

R

√
χ̂g = log g(r)− log g(R) = arα logβ r − aRα logβ R,

so that � r

R

√
A−

� r

R

√
χg >

� r

R

√
A− arα logβ r + aRα logβ R. (4.59)

Moreover

−1

2
log

� +∞

R

1

v
∼ a

2
tα logβ t for t→ +∞,

hence for R large enough we have

− 1

2
log

� +∞

R

1

v
<

1

2
(1− aRα logβ R). (4.60)

Using (4.59) and (4.60) we deduce the validity of the claim.
Clearly (4.56) implies √

A(t) ≥ 3a

2
tα−1 logβ−1 t(α log t+ β) =

3a

2
(tα logβ t)′.

Using the above, the validity of (4.58) is implied by the validity of

a

2
rα logβ r > −1

2
log

�
BR

µ(mλ− Sϕ) +
1

2
. (4.61)

The right hand side of (4.61) above is monotone decreasing in R, then it is sufficient that (4.61) holds for
some R = R0 to obtain that it holds also for all R ≥ R0. Then we may fix R such that A 6≡ 0 on [0, R],
clearly for r large enough we obtain the validity of (4.61). Then we can conclude the proof, as in Proposition
4.49.
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5 Some results in the compact case

Our first aim is to extend the well known fact that a compact Einstein manifold that admits a non-Killing
conformal vector field is isometric to a Euclidean sphere. To do so we first recall

Theorem 5.1 (Licherowicz-Obata). Let (M, 〈 , 〉) be a compact Riemannian manifold of dimension m
satisfying for some κ ∈ R

Ric ≥ (m− 1)κ〈 , 〉.

Let u ∈ C∞(M) be a non-constant eigenfunction of −∆ relative to the eigenvalue λ ∈ R, that is,

∆u+ λu = 0.

Then
λ ≥ mκ,

equality holding if and only if (M, 〈 , 〉) is isometric to a Euclidean sphere Sm of Rm+1 of constant sectional
curvature κ > 0.

With the aid of formula (4.31) we are able to prove

Lemma 5.2. Let (M, 〈 , 〉) be a compact, harmonic-Einstein manifold of dimension m ≥ 2 with α > 0, that
is, for some α ∈ R, α > 0 and ϕ : M → (N, 〈 , 〉N ) we haveRicϕ =

Sϕ

m
〈 , 〉

τ(ϕ) = 0.
(5.3)

If there exists a non-Killing conformal vector field X ∈ X(M) such that

dϕ(X) = 0, (5.4)

then ϕ is constant and (M, 〈 , 〉) is isometric to a Euclidean sphere Sm in Rm+1 of constant sectional curvature

κ :=
Sϕ

m(m− 1)
> 0. (5.5)

Furthermore there exists h ∈ C∞(M) satisfying

Hess(h) + κh〈 , 〉 = 0, (5.6)

and
1

2
LX〈 , 〉 = Hess(h). (5.7)

Remark 5.8. As expected, for ϕ constant, we obtain the classical result on Einstein manifolds mentioned at
the beginning of the section.

Proof. Let X ∈ X(M) be a non-Killing conformal vector field, that is,

LX〈 , 〉 = 2η〈 , 〉, (5.9)

for some η ∈ C∞(M), η 6≡ 0. Observe that (5.4) is essential for the coupling condition (4.29) τ(ϕ) = dϕ(X)
of Proposition 4.28 since by the second equation of (5.3) ϕ is harmonic. Since Sϕ is constant, by Proposition
2.15 and (5.3) for m ≥ 3 and by assumption for m = 2 and since ϕ is harmonic, formula (4.31) becomes

∆η +
Sϕ

m− 1
η = 0. (5.10)
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By integration we obtain �
M

|∇η|2 =
Sϕ

m− 1

�
M

η2,

and thus Sϕ ≥ 0. Suppose by contradiction that Sϕ = 0 then η is harmonic on the compact Riemannian
manifold (M, 〈 , 〉), hence it is constant. Taking the trace of (5.9) we get

div(X) = mη

and since η is constant, integrating over M we deduce also that η = 0. But since η 6≡ 0 we obtain a
contradiction. We have therefore proved that Sϕ > 0. From the first equation in (5.3), α > 0 and the fact
that 〈 , 〉N is a Riemannian metric on N we obtain

Ric ≥ Sϕ

m
〈 , 〉. (5.11)

Since X is not Killing, η does not vanish identically on M and from (5.10) and Sϕ > 0 we deduce that η
cannot be a constant. The validity of (5.10) and (5.11) allows us to apply Lichnerowicz-Obata Theorem (see
Theorem 5.1) to deduce that (M, 〈 , 〉) is isometric to a Euclidean sphere Sm of Rm+1 of constant sectional
curvature κ given by (5.5). We now observe that, from the first equation in (5.3) and the fact that we have
now equality in (5.11), because of (5.5) and the isometry, we have

Sϕ

m
〈 , 〉 = Ricϕ = Ric− αϕ∗〈 , 〉N =

Sϕ

m
〈 , 〉 − αϕ∗〈 , 〉N ,

and since α 6= 0
ϕ∗〈 , 〉N = 0.

Thus ϕ is constant. To obtain (5.7), if X = ∇h + Y is the Hodge-de Rham decomposition of X, where
Y ∈ X(M) is a divergence free vector field and h ∈ C∞(M), we only need to show that Y is Killing. Observe
that (5.10) can be rewritten as

∆η +mκη = 0,

and, as proved by Obata in [33], this implies the validity of

Hess(η) + κη〈 , 〉 = 0. (5.12)

Then, from (5.9)
1

2
LXg = − 1

κ
Hess(η). (5.13)

Using the Hodge-de Rham decomposition of X in (5.13) we obtain

1

2
LY g + Hess(h) = − 1

κ
Hess(η)

and taking the trace, since Y is divergence free, we deduce

∆h = − 1

κ
∆η.

This implies that the function

ζ := h+
1

κ
η

is harmonic on M and, since M is compact, is constant. From (5.13)

1

2
LXg = Hess(h),

in particular Y is a Killing vector field. Observe also that, since (5.12) holds, up to a translation h solves (5.6).
Then the claim, since in the Hodge-de Rham decomposition h is determined up to an additive constant.
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As an application of the above Lemma we prove two rigidity results, that distinguish between the cases
µ = 0 and µ 6= 0. In case µ = 0 we are able to study a general Einstein-type structure while for µ 6= 0 we
restrict ourselves to the gradient case.

Theorem 5.14. Let (M, 〈 , 〉) be a compact Riemannian manifold of dimension m ≥ 2 with an Einstein-type
structure of the form Ricϕ +

1

2
LX〈 , 〉 = λ〈 , 〉

τ(ϕ) = dϕ(X),
(5.15)

for some X ∈ X(M), λ ∈ C∞(M), α ∈ R \ {0} and ϕ : M → (N, 〈 , 〉N ). Assume that α > 0 and that Sϕ is
constant. Then (M, 〈 , 〉) is harmonic-Einstein, more precisely, (5.15) reduces toRicϕ =

Sϕ

m
〈 , 〉

τ(ϕ) = 0.
(5.16)

Suppose also that X is not a Killing vector field. Then ϕ is constant and (M, 〈 , 〉) is isometric to a Euclidean
sphere Sm in Rm+1 of constant sectional curvature κ given by (5.5). Furthermore there exists h ∈ C∞(M)
such that X = ∇h and

Hess(h) + κh〈 , 〉 = 0. (5.17)

Proof. We recall that for µ = 0 we have the validity of (4.17), that is,

1

2
∆XS

ϕ = −α|τ(ϕ)|2 − |Tϕ|2 − (Sϕ −mλ)
Sϕ

m
+ (m− 1)∆λ.

Tracing the first equation of (5.15) we obtain

Sϕ −mλ = −div(X), (5.18)

thus inserting into the above we get

1

2
∆Sϕ =

1

2
〈X,∇Sϕ〉 − α|τ(ϕ)|2 − |Tϕ|2 +

Sϕ

m
div(X) + (m− 1)∆λ.

Integrating over M , using the divergence theorem and integrating by parts we infer

m− 2

2m

�
M

〈X,∇Sϕ〉 =

�
M

(|Tϕ|2 + α|τ(ϕ)|2).

Since α > 0 and, in case m ≥ 3, Sϕ is constant we deduce the validity ofRicϕ =
Sϕ

m
〈 , 〉

τ(ϕ) = 0,
(5.19)

so that (M, 〈 , 〉) is harmonic-Einstein. Now recall that Sϕ is constant (this is needed for the case m = 2)
and X is not a Killing vector field. Comparing the first equation of (5.19) with the first equation of (5.15)
we deduce

LX〈 , 〉 =
2

m
η〈 , 〉, (5.20)

where
η := mλ− Sϕ. (5.21)

Thus X is in particular a conformal vector field on M . Comparing the second equation of (5.19) with the
second equation of (5.15) we deduce

dϕ(X) = 0.
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Note that since Sϕ is constant we can apply Lemma 5.2 to conclude first that ϕ is constant, that (M, 〈 , 〉)
is isometric to the Euclidean sphere of constant sectional curvature κ given by (5.5) and finally that

1

2
LX〈 , 〉 = Hess(h)

for some h ∈ C∞(M) such that (5.17) holds.

The next result is the analogous of Theorem 5.14 in case µ 6= 0. However its proof is not based on
equation (4.20), as probably expected, but on the powerful identity (5.29) below.

Theorem 5.22. Let (M, 〈 , 〉) be a compact manifold of dimension m ≥ 2 with a gradient Einstein-type
structure of the form {

Ricϕ + Hess(f)− µdf ⊗ df = λ〈 , 〉
τ(ϕ) = dϕ(∇f),

(5.23)

for some f, λ ∈ C∞(M), α ∈ R \ {0}, µ ∈ R and ϕ : M → (N, 〈 , 〉N ). Assume that Sϕ is constant, µ 6= 0
and α > 0. Then the structure (5.23) is harmonic-Einstein, that is, (5.23) reduces to (5.16).

Assume also that f is non-constant. Then ϕ is constant and (M, 〈 , 〉) is isometric to a Euclidean sphere
Sm in Rm+1 of constant sectional curvature κ given by (5.5).

Proof. Let
u := e−µf (5.24)

and let Tϕ be the traceless ϕ-Ricci tensor, defined in (3.1). We compute div(Tϕ(∇u, ·)]). Exploiting the
definition of Tϕ, in a local orthonormal coframe, we have

(Tϕijui)j = Tϕij,jui + Tϕijuij = Rϕij,jui −
Sϕi
m
ui + Tϕijuij . (5.25)

Using (5.24) a computation yields

ui = −µufi, uij = −µu(fij − µfifj), (5.26)

so that, using the first equation of (5.23),

uij = µu(Rϕij − λδij). (5.27)

Moreover from (2.10), the first equation of (5.26) and the second equation of (5.23)

Rϕij,jui =
1

2
Sϕi ui − αϕ

a
jjϕ

a
i ui =

1

2
Sϕi ui + µuαϕajjϕ

a
i fi =

1

2
Sϕi ui + µuαϕaiiϕ

a
jj . (5.28)

Inserting (5.27) and (5.28) into (5.25), since Tϕ is traceless, we obtain

(Tϕijui)j =
1

2
Sϕi ui + µuαϕaiiϕ

a
jj −

Sϕi
m

+ µTϕij(R
ϕ
ij − λδij)u

=
m− 2

2m
Sϕi ui + µ(αϕaiiϕ

a
jj + TϕijT

ϕ
ij),

that is, in global notation

div(Tϕ(∇u, ·)]) =
m− 2

2m
〈∇Sϕ,∇u〉+ µ(α|τ(ϕ)|2 + |Tϕ|2)u. (5.29)

Since Sϕ is constant for m ≥ 3, integrating over M and using the divergence theorem we deduce

µ

�
M

(α|τ(ϕ)|2 + |Tϕ|2)u = 0.
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From µ 6= 0, α > 0 and u > 0 on M we obtain Tϕ = 0 and τ(ϕ) = 0, that is, the equations in (5.16).
Suppose that Sϕ is constant and that f is non-constant. Now from (5.27), using the first equation of (5.16),
we infer

Hess(u) = µ

(
Sϕ

m
− λ
)
u〈 , 〉,

so that ∇u is a conformal vector field. Since f is non-constant then also u is non-constant. From the first
equation of (5.26) and the second equation of (5.16)

dϕ(∇u) = −µudϕ(∇f) = 0.

We now conclude as in the proof of Theorem 5.14.

Next we present two more rigidity results, again distinguishing between the cases µ = 0 and µ 6= 0. In
both results we assume that the manifold is ϕ-Cotton flat. In Section 6 we shall produce examples where
this happens. Towards this aim we need to introduce a general formula for a 2-times covariant, symmetric
tensor field T on a Riemannian manifold (M, 〈 , 〉) of dimension m. For x ∈M fixed, we set

λ1 ≤ . . . ≤ λm,

to denote the (possibly coinciding) eigenvalues of T at x and we consider the elementary symmetric functions

S0 := 1, Sk :=
∑

1≤i1<...<ik≤m

λi1 . . . λik for 1 ≤ k ≤ m. (5.30)

In other words the Sk’s are the coefficients of the polynomial expansion

det(I + λT ) =

m∑
k=0

Skλ
k,

where I is the identity. As usual we normalize the Sk’s by setting

Sk =

(
m

k

)
σk.

In this way we obtain the validity of Newton’s inequalities in the form

σk−1σk+1 ≤ σ2
k for 1 ≤ k ≤ m− 1. (5.31)

Furthermore, if σk−1 6= 0 at x, equality holds in (5.31) if and only if all the eigenvalues of T at x are equal.
Considering the σk’s as functions on M , from [23], we deduce that if for some k, 1 ≤ k ≤ m, we have σk > 0
everywhere on M then, for 1 ≤ i ≤ k, σi > 0 on M and furthermore, G̊arding’s inequalities hold, that is,

σ1 ≥ σ
1
2
2 ≥ . . . ≥ σ

1
k−1

k−1 ≥ σ
1
k

k , (5.32)

with equality at a point x ∈ M at some stage of the chain if and only if T has equal eigenvalues at x. The
next Lemma follows directly by (5.32) and will be used in Theorem 5.47.

Lemma 5.33. In the notations above suppose that σk > 0 on M for some 2 ≤ k ≤ m− 1, where m ≥ 3 is
the dimension of M . Then

σ1σk − σk+1 ≥ 0 (5.34)

with equality holding at a point x ∈M if and only if T is proportional to the metric at x.
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Proof. Since σk > 0 on M , we have the validity of (5.32). From σk−1 > 0 on M and Newton’s inequalities
(5.31)

σk+1 =
σk+1σk−1

σk−1
≤ σ2

k

σk−1
= σk

σk
σk−1

.

We claim
σk
σk−1

≤ σ1,

and since σk > 0, from the above we obtain

σk+1 ≤ σkσ1,

that is (5.34). It remains to prove the claim. We use G̊arding’s inequalities twice and σ1, σk > 0 to deduce

σk = σ
1
k

k σ
k−1
k

k ≤ σ1σ
k−1
k

k ≤ σ1σk−1.

Since σk−1 > 0 this implies the claim. Observe that the equality holds at a point if and only if T is propor-
tional to the metric at that point since the equality forces Newton’s inequality and G̊arding’s inequalities to
be equalities at that point.

Associated with T one considers the Newton endomorphisms

Pk = Pk(T ) : X(M)→ X(M) for 0 ≤ k ≤ m,

inductively defined by
P0 := I, Pk := SkI − t ◦ Pk−1 for 1 ≤ k ≤ m, (5.35)

where t : X(M)→ X(M) is the endomorphism induced by T . Note that Pm = 0 on M and, having set

ck := (m− k)

(
m

k

)
, (5.36)

we have
tr(Pk) = (m− k)Sk = ckσk, tr(t ◦ Pk−1) = kSk = ck−1σk. (5.37)

The Newton’s endomorphisms give rise to a family of second order differential operators Lk defined as follows.
Setting hess(u) for the endomorphism induced by Hess(u), where u ∈ C2(M),

Lku := tr(Pk ◦ hess(u)). (5.38)

A computation shows that Lk can be written in the form:

Lku = div(Pk(∇u))− 〈div(Pk),∇u〉. (5.39)

Obviously,
div(P0) = 0 = div(Pm). (5.40)

To compute div(Pk) for the remaining values of k we introduce the 3-times covariant tensor field C of
components

Cijk := Tij,k − Tik,j . (5.41)

A recursive computation shows that, for 1 ≤ k ≤ m− 1

div(Pk)j = −div(Pk−1)iTij − Cijs(Pk)is. (5.42)

Explicitating (5.42) one sees that div(Pk) = 0 for all 1 ≤ k ≤ m− 1 if and only Cijs +Csji = 0, that is, the
tensor C is skew symmetric in the first and the third entries. In particular when T is a Codazzi tensor field
all the Newton’s endomorphisms are divergence free. Hence in the assumption

C(X,Y, Z) = −C(Z, Y,X) for all X,Y, Z ∈ X(M), (5.43)
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equation (5.39) becomes
tr(Pk ◦ hess(u)) = Lku = div(Pk(∇u)),

that we can also rewrite in the useful form

div(Pk(∇u)) =

k∑
i=0

(−1)iSk−itr(t
i ◦ hess(u)). (5.44)

We remark that, having fixed the 2-times covariant tensor field T , we can also define an operator

L̃k : X(M)→ X(M) for 0 ≤ k ≤ m,

by setting, for every Z ∈ X(M)

L̃k(Z) :=
1

2
tr(Pk ◦ lZ), (5.45)

where lZ : X(M)→ X(M) is the endomorphism associated to LZ〈 , 〉, the Lie derivative of the metric in the
direction of Z. A computation yields a formula analogous to (5.39), that is,

L̃k(Z) = div(Pk(Z))− 〈div(Pk), Z〉,

hence under assumption (5.43)

L̃k(Z) = div(Pk(Z)).

We then obtain the following generalization of (5.44)

div(Pk(Z)) =
1

2

k∑
i=0

(−1)iSk−itr(t
i ◦ lZ). (5.46)

In the following we will denote by σϕk the normalized kth symmetric function of the eigenvalues of the
ϕ-Schouten tensor. We begin with the case µ = 0.

Theorem 5.47. Let (M, 〈 , 〉) be a compact Riemannian manifold of dimension m ≥ 3 with an Einstein-type
structure of the form (5.15) with X ∈ X(M), λ ∈ C∞(M), α ∈ R \ {0} and ϕ : M → (N, 〈 , 〉N ). Suppose
that (M, 〈 , 〉) is ϕ-Cotton flat, that is,

Cϕ = 0, (5.48)

that X is non-Killing and that σk is a positive constant for some k = 2, . . . ,m− 1. Then ϕ is constant and
(M, 〈 , 〉) is isometric to a Euclidean sphere Sm in Rm+1 of constant sectional curvature

κ =
2(σϕk )

1
k

m− 2
. (5.49)

Furthermore there exists h ∈ C∞(M) such that X = ∇h and (5.17) holds.

Remark 5.50. If m = 2 then Aϕ = Tϕ, hence σϕ1 = 0 and thus, from Newton’s inequality σϕ2 ≤ 0. This
motivates the hypothesis m ≥ 3.

Proof. Since (5.48) holds the ϕ-Schouten tensor Aϕ is a Codazzi tensor field. Then (5.46) holds with Z = X
and T = Aϕ. Expressing the first equation of (5.15) in terms of Aϕ we obtain

1

2
LX〈 , 〉 = − Sϕ

2(m− 1)
〈 , 〉 −Aϕ + λ〈 , 〉,

so that
1

2
lX =

(
λ− Sϕ

2(m− 1)

)
I − aϕ, (5.51)
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where lX and aϕ denotes the endomorphisms of X(M) induced by LX〈 , 〉 and Aϕ respectively. Inserting
(5.51) in (5.46) with Z = X and T = Aϕ, a computation using (5.37) yields, via (5.46),

div(Pϕk (X)) = ck

[(
λ− Sϕ

2(m− 1)

)
σϕk − σ

ϕ
k+1

]
, (5.52)

where ck is defined in (5.36) and Pϕk is the kth Newton’s endomorphism associated to Aϕ. Since we are
assuming that σk > 0, from Lemma 5.33 we deduce the validity of

σϕ1 σ
ϕ
k − σ

ϕ
k+1 ≥ 0, (5.53)

equality holding at a point if and only if at that point Aϕ, and therefore Ricϕ, is proportional to the metric.
Since M is compact by the Hodge-de Rham decomposition

X = ∇h+ Y,

for some h ∈ C∞(M) and Y ∈ X(M) with div(Y ) = 0. Thus, tracing the first equation of (5.15)

Sϕ + ∆h = mλ,

that can be rewritten as

σϕ1 +
∆h

m
= λ− Sϕ

2(m− 1)
.

Indeed, tracing (2.3),

σϕ1 =
tr(Aϕ)

m
=
Sϕ

m
− Sϕ

2(m− 1)
. (5.54)

Substituting in (5.52) we have

div(Pϕk )(X) = ck

(
σϕ1 σ

ϕ
k − σ

ϕ
k+1 +

σϕk
m

∆h

)
.

Integrating on M , since σϕk is constant, we infer
�
M

(σϕ1 σ
ϕ
k − σ

ϕ
k+1) = 0.

By (5.53) we deduce that the equality holds in (5.53) on all of M , and Aϕ is a trivial Codazzi tensor field.
In particular Sϕ is constant and Ricϕ is proportional to the metric on M . ombining it with Lemma ?? we
deduce Since Aϕ is Codazzi, that is, Cϕ ≡ 0, we infer that ϕ is harmonic. Indeed, we recall that, from (2.34),

(trCϕ)i = αϕakkϕ
a
i

while from the second of (5.15)
ϕaii = ϕaiX

i.

Thus, inserting into the above yields

(trCϕ)(X) = (trCϕ)iX
i = αϕakkϕ

a
ii = α|τ(ϕ)|2.

Hence, (M, 〈 , 〉) is harmonic-Einstein with Sϕ constant. Now we can conclude as in Theorem 5.14. Observe
also that, since Aϕ is proportional to the metric, using (5.54) and the constancy of ϕ

m− 2

2m(m− 1)
S = σϕ1 = (σϕ2 )

1
2 = . . . = (σϕm)

1
m .

Thus we have

κ =
S

m(m− 1)
=

2(σϕk )
1
k

m− 2
,

as in (5.49).
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Remark 5.55. For ϕ constant and X non-Killing Theorem 5.47 can be considered an extension of the classical
result obtained at the beginning of the Section, that is, Lemma 5.2 with ϕ constant, to higher order symmetric
functions of the eigenvalues of the Schouten tensor.

In Theorem 5.47 we dealt with the case µ = 0 and with a general vector field X. Now we consider the
case µ 6= 0 but we restrict ourselves to the gradient case, X = ∇f for some f ∈ C∞(M). We have

Theorem 5.56. Let (M, 〈 , 〉) be a compact Riemannian manifold of dimension m ≥ 3 with an Einstein-type
structure of the form {

Ricϕ + Hess(f)− µdf ⊗ df = λ〈 , 〉
τ(ϕ) = dϕ(∇f)

(5.57)

with f, λ ∈ C∞(M), µ, α ∈ R \ {0} and ϕ : M → (N, 〈 , 〉N ). Suppose that (M, 〈 , 〉) is ϕ-Cotton flat, that is
(5.48) holds, that f is non-constant and that σϕk is a positive constant for some k = 2, . . . ,m − 1. Then ϕ
is constant and (M, 〈 , 〉) is isometric to a Euclidean sphere Sm in Rm+1 of constant sectional curvature κ
given by (5.49).

Proof. We set
u := e−µf .

Then, from (5.57), we deduce

Ricϕ − 1

µu
Hess(u) = λ〈 , 〉.

The above is equivalent, using the definition of Aϕ, to

Hess(u) = µu

[
Aϕ −

(
λ− Sϕ

2(m− 1)

)
〈 , 〉
]
.

Then, as in the proof of Theorem 5.47, we obtain

div(Pϕk (∇u)) = µck

[
u(σϕk+1 − σ

ϕ
1 σ

ϕ
k ) +

σϕk
mµ

∆u

]
.

Using constancy of σk and integrating on M we obtain

µck

�
M

u(σϕk+1 − σ
ϕ
1 σ

ϕ
k ) = 0

and since u > 0 and µ 6= 0,
σϕk+1 − σ

ϕ
1 σ

ϕ
k = 0, on M.

We now conclude as in Theorem 5.47, observing that ∇u cannot be a Killing vector field because u is
non-constant on M .

Similarly to what expressed in Remark 5.55 for Theorem 5.47 we have

Corollary 5.58. Let (M, 〈 , 〉) be a compact Riemannian manifold of dimension m ≥ 3 which is a quasi-
Einstein manifold (see equation (1.3) in the Introduction). Suppose that (M, 〈 , 〉) is Cotton flat and that the
normalized k-th symmetric function σk of the Schouten tensor Aϕ is a positive constant for some k = 2, . . . ,m
and that f is non-constant. Then (M, 〈 , 〉) is isometric to a Euclidean sphere Sm of Rm+1 of constant

sectional curvature κ = 2(σk)1/k

m−2 .

Remark 5.59. Observe that, since

σϕ1 =
m− 2

2(m− 1)
Sϕ,

Theorem 5.14 and Theorem 5.22 can be interpreted as the case k = 1 of Theorem 5.47 and Theorem
5.56, respectively. In this case the assumptions of ϕ-Cotton flatness and on the sign of the curvature are
unnecessary.
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6 Gradient Einstein-type structure with vanishing conditions on
the ϕ-Bach tensor

In this section we shall consider a Riemannian manifold (M, 〈 , 〉) with an Einstein-type structure of the form{
Ricϕ + Hess(f)− µdf ⊗ df = λ〈 , 〉
τ(ϕ) = dϕ(∇f),

(6.1)

for some α ∈ R \ {0}, µ ∈ R, λ, f ∈ C∞(M) and ϕ : M → (N, 〈 , 〉N ).
Our aim is to prove the structure Theorem 6.66 below, generalizing Theorem 1.2 of [16]. In the following

we shall use (4.18) and (4.19), which we report here for the reader’s convenience

Rϕij,k −R
ϕ
ik,j = ftRtikj + µ(fikfj − fijfk) + λkδij − λjδik, (6.2)

1

2
Sϕi = Rϕkifk + µ(fkifk −∆ffi) + (m− 1)λi. (6.3)

We now come to the definition of the tensor Dϕ that shall reveal essential in our study.

Definition 6.4. Let m ≥ 3. In a local orthonormal coframe we let the components of Dϕ be given by

Dϕ
ijk :=

1

m− 2

[
Rϕijfk −R

ϕ
ikfj +

1

m− 1
ft(R

ϕ
tkδij −R

ϕ
tjδik)− Sϕ

m− 1
(fkδij − fjδik)

]
. (6.5)

We observe that if ϕ is a constant map then Dϕ coincides with the tensor D defined in [11], with a
different convention. The following properties are easily verified by computation.

Proposition 6.6. In the present setting, with m ≥ 3, the tensor Dϕ is skew-symmetric in the last two
indices and it is totally trace free, that is,

Dϕ
ikj = −Dϕ

ijk, (6.7)

Dϕ
kii = Dϕ

iki = Dϕ
iik = 0. (6.8)

An essential feature of Dϕ is that it can be expressed purely in terms of the potential function f . Indeed,
we have the following

Proposition 6.9. In the present setting, with m ≥ 3, in a local orthonormal coframe we have

Dϕ
ijk =

1

m− 2

[
fikfj − fijfk +

1

m− 1
ft(ftjδik − ftkδij)−

∆f

m− 1
(fjδik − fkδij)

]
. (6.10)

Proof. The proof is computational, using (6.1). Indeed tracing (6.1)

Sϕ + ∆f = µ|∇f |2 +mλ,

hence using it in the definition (6.5), together with (6.1), we obtain

Dϕ
ijk =

1

m− 2
[(−fij + µfifj + λδij)fk − (−fik + µfifk + λδik)fj ]

+
1

(m− 1)(m− 2)
ft[(−ftk + µftfk + λδtk)δij − (−ftj + µftfj + λδtj)δik]

− −∆f + µ|∇f |2 +mλ

(m− 1)(m− 2)
(fkδij − fjδik)

=
1

m− 2

[
fikfj − fijfk +

1

m− 1
ft(ftjδik − ftkδij)−

∆f

m− 1
(fjδik − fkδij)

]
,

that is (6.10).
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Now we prove the first integrability condition of the system (6.1).

Proposition 6.11. In the present setting, with m ≥ 3, in a local orthonormal coframe we have

Cϕijk + ftW
ϕ
tijk = [1 + (m− 2)µ]Dϕ

ijk. (6.12)

Remark 6.13. A long and tedious computation shows that the left hand side tensor of components Cϕijk +

ftW
ϕ
tijk of (6.12) in the metric 〈 , 〉, is exactly the ϕ-Cotton tensor C̃ϕ of the conformally deformed metric

〈̃ , 〉 = e−
2f
m−2 〈 , 〉.

Indeed,

e−
3f
m−2 C̃ϕ̃ijk = Cϕijk + ftW

ϕ
tijk

so that
C̃ϕ̃ = C̃ϕ̃ijkθ̃

iθ̃j θ̃k = Cϕ.

With ϕ̃ we mean the map ϕ : M → (N, 〈 , 〉N ) but where now on M we consider the Riemannian metric 〈̃ , 〉.

Proof. Using (6.2) in (2.36) we obtain

Cϕijk +
1

2(m− 1)

(
Sϕk δij − S

ϕ
j δik

)
+ ftR

t
ijk − µ(fikfj − fijfk)− λkδij + λjδik = 0. (6.14)

We claim the validity of

Rtijkft = Wϕ
tijkft −D

ϕ
ijk −

ft
m− 1

(Rϕtkδij −R
ϕ
tjδik). (6.15)

We postpone its proof and we complete the proof of (6.12). Inserting (6.15) in (6.14) we obtain

0 =Cϕijk +Wϕ
tijkft −D

ϕ
ijk +

1

2(m− 1)
(Sϕk δij − S

ϕ
j δik)

− µ(fikfj − fijfk)− λkδij + λjδik −
ft

m− 1
(Rϕtkδij −R

ϕ
tjδik).

Using (6.3) we deduce

1

2(m− 1)
(Sϕk δij − S

ϕ
j δik) =

1

m− 1
(Rϕtkft + µ(ftkft −∆ffk) + (m− 1)λk)δij

− 1

m− 1
(Rϕtjft + µ(ftjft −∆ffj) + (m− 1)λj)δik

=
ft

m− 1
(Rϕtkδij −R

ϕ
tjδik) + µ

ft
m− 1

(ftkδij − ftjδik)

+ µ
∆f

m− 1
(fjδik − fkδij) + λkδij − λjδik,

and by plugging it into the above identity we infer

0 =Cϕijk +Wϕ
tijkft −D

ϕ
ijk

− µ
[
fikfj − fijfk +

ft
m− 1

(ftjδik − ftkδij) +
∆f

m− 1
(fkδij − fjδik)

]
,

that implies (6.12), using (6.10). It remains to prove (6.15). Explicitating (2.3) in (2.6) we obtain

Rtijk −Wϕ
tijk =

1

m− 2

[
Rϕtjδik −R

ϕ
tkδij +Rϕikδtj −R

ϕ
ijδtk −

Sϕ

m− 1
(δtjδik − δtkδij)

]
,
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then, using (6.5), we deduce

Rtijkft −Wϕ
tijkft =

1

m− 2

[
ft(R

ϕ
tjδik −R

ϕ
tkδij) +Rϕikfj −R

ϕ
ijfk −

Sϕ

m− 1
(δikfj − δijfk)

]
=− 1

m− 2

[
Rϕijfk −R

ϕ
ikfj +

ft
m− 1

(Rϕtkδij −R
ϕ
tjδik)− Sϕ

m− 1
(δijfk − δikfj)

]
− 1

m− 2

(
1− 1

m− 1

)
ft(R

ϕ
tkδij −R

ϕ
tjδik)

=−Dϕ
ijk −

ft
m− 1

(Rϕtkδij −R
ϕ
tjδik)

that easily implies (6.15).

The second integrability condition follows by taking the divergence of (6.12). Indeed we have the following

Proposition 6.16. In the present setting, with m ≥ 3, in a local orthonormal coframe we have

(m− 2)Bϕij +
m− 4

m− 2
Wϕ
tijkftfk

= [1 + (m− 2)µ]

(
Dϕ
ijk,k −

1

m− 2
Wϕ
tijkftfk −

m− 3

m− 2
Dϕ
jkifk −

α

m− 2
ϕakkϕ

a
i fj

)
.

(6.17)

Proof. We take the divergence of (6.12) and we use (6.1) and (2.65), together with (2.37), to obtain

[1 + (m− 2)µ]Dϕ
ijk,k =(Cϕijk + ftW

ϕ
tijk)k

=Cϕijk,k + ftkW
ϕ
tijk + ftW

ϕ
tijk,k

=Cϕijk,k + (−Rϕtk + µftfk + λδtk)Wϕ
tijk + fkW

ϕ
tjik,t

=Cϕijk +RϕtkW
ϕ
tikj + µWϕ

tijkftfk + λWϕ
kijk

+

[
m− 3

m− 2
Cϕjki + α(ϕjiϕ

a
k − ϕajkϕai ) +

α

m− 2
ϕatt(ϕ

a
i δjk − ϕakδji)

]
fk

=(m− 2)Bϕij + αRϕkjϕ
a
kϕ

a
i − α

(
ϕaijϕ

a
kk − ϕakkjϕai −

1

m− 2
|τ(ϕ)|2δij

)
+ µWϕ

tijkftfk − αλϕ
a
i ϕ

a
j

+
m− 3

m− 2
Cϕjkifk + α(ϕjiϕ

a
kk − ϕajkfkϕai ) +

α

m− 2
ϕatt(ϕ

a
i fj − ϕakkδji)

=(m− 2)Bϕij + α

(
Rϕkjϕ

a
k + ϕakkj − λϕaj − ϕajkfk +

1

m− 2
ϕakkfj

)
ϕai

+ µWϕ
tijkftfk +

m− 3

m− 2
Cϕjkifk.

Observe that from (6.1) we deduce the validity of

Rϕjkϕ
a
k + fjkϕ

a
k = µϕakkfj + λϕaj ,

and by plugging it into the above, together with (6.12), we obtain

[1 + (m− 2)µ]Dϕ
ijk,k =(m− 2)Bϕij + α

(
−fjkϕak + µϕakkfj + (ϕakfk)j − ϕajkfk +

1

m− 2
ϕakkfj

)
ϕai

+ µWϕ
tijkftfk +

m− 3

m− 2
Cϕjkifk

=(m− 2)Bϕij +
α

m− 2
[1 + (m− 2)µ]ϕakkfjϕ

a
i

+ µWϕ
tijkftfk −

m− 3

m− 2
Wϕ
tjkiftfk +

m− 3

m− 2
[1 + (m− 2)µ]Dϕ

jkifk,
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and thus (6.17) follows.

Remark 6.18. In case µ = − 1
m−2 from (6.12) and (6.17) we respectively obtain (2.56) and (2.57). Further-

more, when ϕ is constant, (6.12) and (6.17) extend respectively (4-5) and (4-6) of [16], with α = β = 1.
Observe, however, that the normalization α = β = 1 that we adopt here is inessential.

In what follows we shall assume the following vanishing condition on ϕ-Bach

Bϕ(∇f, ·) = 0 (6.19)

and the non-degeneracy condition

µ 6= − 1

m− 2
, (6.20)

we shall comment on this in Remark 6.31. Our aim is now to prove the following

Proposition 6.21. In the present setting, with m ≥ 3, assume (6.19) and define the vector field Y ∈ X(M)
of components

Y j := −Dϕ
ijkfifk. (6.22)

Then, if (6.20) holds, we have

m− 2

2
|Dϕ|2 +

α

m− 2
|τ(ϕ)|2|∇f |2 = div(Y ). (6.23)

Proof. Observe that (6.19) componentwise reads

Bϕijfi = 0. (6.24)

From (6.17) and the symmetries of Wϕ and Dϕ (see (6.7)), using also (6.1) we deduce

(m− 2)Bϕijfi = [1 + (m− 2)µ]

(
Dϕ
ijk,kfi −

α

m− 2
|τ(ϕ)|2fj

)
.

Since (6.20) holds, then (6.24) implies

Dϕ
ijk,kfi −

α

m− 2
|τ(ϕ)|2fj = 0.

Contracting it with fj we then deduce

Dϕ
ijk,kfifj −

α

m− 2
|τ(ϕ)|2|∇f |2 = 0. (6.25)

To proceed we first prove the identity

|Dϕ|2 =
2

m− 2
Dϕ
ijkR

ϕ
ijfk. (6.26)

It can be proved using the definition (6.5) of Dϕ and its properties (6.7) and (6.8) as follows:

|Dϕ|2 =Dϕ
ijkD

ϕ
ijk

=
1

m− 2
Dϕ
ijk

[
Rϕijfk −R

ϕ
ikfj +

1

m− 1
ft(R

ϕ
tkδij −R

ϕ
tjδik)− Sϕ

m− 1
(fkδij − fjδik)

]
=

1

m− 2

[
Dϕ
ijk(Rϕijfk −R

ϕ
ikfj) +

1

m− 1
ft(D

ϕ
iikR

ϕ
tk −D

ϕ
ijiR

ϕ
tj)−

Sϕ

m− 1
(fkD

ϕ
iik − fjD

ϕ
iji)

]
=

1

m− 2
Dϕ
ijkR

ϕ
ijfk −

1

m− 2
Dϕ
ikjR

ϕ
ijfk

=
2

m− 2
Dϕ
ijkR

ϕ
ijfk.

47



To obtain (6.23) from (6.25) we observe that, using (6.7), (6.1) and (6.8)

Dϕ
ijk,kfifj =(Dϕ

ijkfifj)k −D
ϕ
ijkfikfj −D

ϕ
ijkfifjk

=(Dϕ
ijkfifj)k −D

ϕ
ijkfikfj

=(Dϕ
ijkfifj)k +Dϕ

ijkfijfk

=(Dϕ
ijkfifj)k +Dϕ

ijk(−Rϕij + µfifj + λδij)fk

=(Dϕ
ijkfifj)k −D

ϕ
ijkR

ϕ
ijfk + µDϕ

ijkfifjfk + λDϕ
iikfk

=(Dϕ
ijkfifj)k −D

ϕ
ijkR

ϕ
ijfk,

and thus we conclude using (6.22) and (6.26).

We are now ready to prove the first important result of this section.

Theorem 6.27. Let (M, 〈 , 〉) be a complete, non-compact Riemannian manifold of dimension m with an
Einstein-type structure as in (6.1). Suppose that m ≥ 3, that α > 0, that (6.20) and (6.19) hold and that f
is proper. Then Dϕ = 0 and ϕ is harmonic.

Proof. Let c be a regular value of f and let Σc and Ωc be its corresponding sublevel hypersurface and set,
that is

Ωc := {x ∈M : f(x) ≤ c}, Σc := {x ∈M : f(x) = c} = ∂Ωc. (6.28)

Integrating (6.23) on M , that holds since we are assuming the validity of (6.19), and applying the divergence
theorem

m− 2

2

�
Ωc

|Dϕ|2 +
α

m− 2

�
Ωc

|τ(ϕ)|2|∇f |2 =

�
Σc

〈Y, ν〉,

where ν is the outward unit normal to Σc and Y is the vector field with components defined by (6.22). Since
ν is in the direction of ∇f and since, using (6.7)

〈Y,∇f〉 = Y kfk = Dϕ
ijkfifjfk = 0,

we obtain
m− 2

2

�
Ωc

|Dϕ|2 +
α

m− 2

�
Ωc

|τ(ϕ)|2|∇f |2 = 0.

Since c is an arbitrary regular point of f we conclude

m− 2

2

�
M

|Dϕ|2 +
α

m− 2

�
M

|τ(ϕ)|2|∇f |2 = 0.

and since α > 0 and, using the second equation in (6.1), the vanishing of |τ(ϕ)|2|∇f |2 is equivalent to the
harmonicity of ϕ, the thesis follows at once.

Remark 6.29. Note that we can give the vector field Y the following remarkable form:

(m− 1)Y = Ricϕ(∇f,∇f)∇f − |∇f |2Ricϕ(∇f, ·)]. (6.30)

Indeed, from the definition (6.5) of Dϕ

Dϕ
ijkfi =

1

m− 2

[
Rϕijfifk −R

ϕ
ikfifj +

1

m− 1
ft(R

ϕ
tkfj −R

ϕ
tjfk)− Sϕ

m− 1
(fkfj − fjfk)

]
=

1

m− 2

[(
1− 1

m− 1

)
Rϕijfifk −

(
1− 1

m− 1

)
Rϕikfifj

]
=

1

m− 1
fi(R

ϕ
ijfk −R

ϕ
ikfj).
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Therefore we have

Y k = Dϕ
ijkfifj =

1

m− 1
(Rϕijfifjfk −R

ϕ
ikfi|∇f |

2),

that is (6.30).

Remark 6.31. Observe that in the degenerate case where µ = − 1
m−2 , that is, when (M, 〈 , 〉) is a confor-

mally harmonic-Einstein manifold by Theorem 2.49, the condition (6.19) is always satisfied. It follows by
contracting the second integrability condition (2.57) with fi, using the skew symmetry of Wϕ in the first
two indexes. Observe that a sufficient condition to guarantee (6.19) is that (M, 〈 , 〉) is ϕ-Bach flat, that
is, Bϕ = 0. In case m 6= 4 this requirement is quite strong, since from Proposition 2.38 it implies ϕ is a
harmonic map. On the contrary in case m = 4 it seems a reasonable assumption, since Bϕ is traceless.

Our aim is now to analize the consequences of Theorem 6.27, that is, the two simultaneous conditions

i) Dϕ = 0, ii) τ(ϕ) = 0,

on the geometry of the level hypersurface Σc = ∂Ωc, defined as in (6.28), for a regular value of f . We fix the
indexes ranges

1 ≤ i, j, . . . ≤ m, 1 ≤ a, b, . . . ≤ m− 1, 1 ≤ A,B, . . . ≤ n.

With respect to a local orthonormal coframe on M we have
Rϕij + fij = µfifj + λδij ,

ϕAii = 0 = ϕAi fi,

Dϕ
ijk = 0.

(6.32)

The following Proposition provides the relation between the norm of Dϕ and the curvature of the level
hypersurfaces of f , it uses only the first and the last equation of (6.32).

Proposition 6.33. Let (M, 〈 , 〉) be a Riemannian manifold of dimension m ≥ 3 that satisfies the first
equation of (6.32). Let c be a regular value of f and let Σc be the corresponding level hypersurface. For
p ∈ Σc choose a local first order frame along f , that is a local orthonormal frame {ei} such that e1, . . . , em−1

are tangent to Σc and

em =
∇f
|∇f |

.

Then, at p,
m− 2

2|∇f |2
|Dϕ|2 = |̊h|2|∇f |2 +

m− 2

m− 1
RϕamR

ϕ
am, (6.34)

where h̊ is the traceless part of h, the second fundamental form of Σc.

Proof. First we compute |Dϕ|2 on M . A long and tedius computation yields the validity, where ∇f 6= 0, of
the following

m− 2

2|∇f |2
|Dϕ|2 =|Ricϕ|2 − m

m− 1
RϕmaR

ϕ
ma −

m

m− 1
(Rϕmm)2

− 1

m− 1
(Sϕ)2 +

2

m− 1
SϕRϕmm.

(6.35)

Let c be a regular value of f , p ∈ Σc and {ei} a local first order frame along f , then

fa = 0, fm = |∇f |. (6.36)

Let h be the second fundamental form of Σc, then (see proof of Proposition 6.1 of [16])

hab = −θma (eb) = − fab
|∇f |

. (6.37)
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Using the first equation of (6.32), that holds by hypothesis,

hab =
1

|∇f |
(Rϕab − µfafb − λδab) =

1

|∇f |
(Rϕab − λδab). (6.38)

The mean curvature h is defined as

h :=
haa
m− 1

.

Tracing (6.38) we deduce the validity of

h =
1

|∇f |

(
Sϕ −Rϕmm
m− 1

− λ
)
. (6.39)

We denote by h̊ the traceless part of h, that is,

h̊ab := hab − hδab.

Using (6.38) and (6.39) we obtain

|̊h|2 =|h|2 − (m− 1)

(
haa
m− 1

)2

=
1

|∇f |2

[
|Ricϕ|2 − 2RϕamR

ϕ
am −

m

m− 1
(Rϕmm)2 − 1

m− 1
(Sϕ)2 +

2

m− 1
SϕRϕmm

]
.

By plugging it in (6.35) we deduce the validity of (6.34).

Remark 6.40. In the assumptions of Proposition 6.33, if Dϕ = 0 then Σc is totally umbilical, that is

h̊ = 0,

or equivalently

hab =
1

|∇f |

(
Sϕ −Rϕmm
m− 1

− λ
)
δab, (6.41)

and for every a = 1, . . . ,m− 1
Rϕam = 0. (6.42)

Then, by plugging (6.41) in (6.38) we obtain

1

|∇f |
(Rϕab − λδab) =

1

|∇f |

(
Sϕ −Rϕmm
m− 1

− λ
)
δab,

that is,

Rϕab =
Sϕ −Rϕmm
m− 1

δab. (6.43)

In the following Proposition also the second equation of (6.32) comes into play.

Proposition 6.44. In the assumptions and the notations above with Dϕ ≡ 0 on Σc, that is, all the equations
of (6.32) are satisfied and c is a regular value of f , the quantities |∇f |, h, Sϕ and λ are constant on each
connected component of Σc. In particular Σc is totally umbilical hypersurface of (M, 〈 , 〉) with constant
mean curvature. Moreover ΣcSϕ is constant on Σc, where ΣcSϕ is the ϕ-scalar curvature of the Riemannian
manifold (Σc, 〈 , 〉Σc), where 〈 , 〉Σc is the metric induced on Σc and where we are considering the restriction
of ϕ on Σc.
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Proof. We use the notations of Proposition 6.33. Using the first equation of (6.32) and the fact that (6.36)
holds in the chosen frame we obtain

|∇f |2a
2

= fiafi = (−Rϕia + µfifa + λδia)fi = −Rϕbafb −R
ϕ
ma|∇f |+ λfa.

Using in it once again (6.36), together with (6.42) we deduce |∇f |2a = 0. Hence |∇f | is constant on Σc. By
Codazzi equation, the definition (2.1), and (6.42) and the fact that hab = hδab, we have

(m− 2)hb = Rmb = Rϕmb + αϕAmϕ
A
b = αϕAmϕ

A
b . (6.45)

Now observe that, using the second equation of (6.32) and (6.36)

ϕAm|∇f | = ϕAmfm = ϕAi fi − ϕAa fa = ϕAii = 0. (6.46)

Then, since |∇f | is constant on Σc, using (6.46)

(|∇f |h)b = |∇f |hb =
α

m− 2
ϕAb ϕ

A
m|∇f | = 0.

Hence |∇f |h is constant on Σc and, since |∇f | is constant on Σc, it implies that Σc has constant mean
curvature h. Using (6.3) with i = b, (6.36), (6.42) and also the first equation of (6.32) we conclude

1

2
Sϕb =Rϕkbfk + µ(fkbfk −∆ffb) + (m− 1)λb

=Rϕabfa +Rϕmb|∇f |+ µ(fabfa + fmb|∇f |) + (m− 1)λb

=Rϕmb|∇f |+ µfmb|∇f |+ (m− 1)λb

=µ(−Rϕmb + µfmfb + λδmb)|∇f |+ (m− 1)λb

=(m− 1)λb.

It follows that
1

2
Sϕ − (m− 1)λ (6.47)

is constant on Σc. In particular, if we show that Sϕ is constant on Σc we can conclude also that λ is constant
on Σc. To show that Sϕ is constant on Σc we first observe that (6.39) can be rewritten as

|∇f |h =
Sϕ −Rϕmm
m− 1

− λ. (6.48)

Hence we obtain

(m− 1)|∇f |h = Sϕ −Rϕmm − (m− 1)λ =

(
1

2
Sϕ − (m− 1)λ

)
+

1

2
Sϕ −Rϕmm,

and since both |∇f |h and (6.47) are constants on Σc we can conclude that also

1

2
Sϕ −Rϕmm

is constant on Σc. Then it is sufficient to show that Rϕmm is constant to obtain that Sϕ is constant and
conclude the proof. At this purpose, observe that uisng the first equation of (6.32),(6.43) and (6.48)

faa = −Rϕaa + µfafa + λδaa = −
(
Sϕ −Rϕmm
m− 1

)
(m− 1) + (m− 1)λ = (m− 1)|∇f |h,
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hence using (6.3) with i = m and (6.36) we can conclude

1

2
Sϕm =Rϕkmfk + µ(fkmfk −∆ffm) + (m− 1)λm

=Rϕamfa +Rϕmm|∇f |+ µ(famfa + fmm|∇f | −∆f |∇f |) + (m− 1)λm

=Rϕmm|∇f |+ µ(fmm −∆f)|∇f |+ (m− 1)λm

=Rϕmm|∇f | − µfaa|∇f |+ (m− 1)λm

=Rϕmm|∇f |+ µ(m− 1)h|∇f |2 + (m− 1)λm.

Since h and |∇f | are constants on Σc we deduce that

1

2
Sϕm −Rϕmm|∇f | − (m− 1)λm

is constant on Σc, then, using once again that |∇f | and also that (6.47) are constants on Σc,

0 =

(
1

2
Sϕm −Rϕmm|∇f | − (m− 1)λm

)
a

=

(
1

2
Sϕ − (m− 1)λ

)
am

−Rϕmm,a|∇f |

=−Rϕmm,a|∇f |.

Thus Rϕmm is constant on Σc and the proof of the constancy of Sϕ on Σc is concluded. Now it remains to
show that ΣcSϕ is constant on Σc. By Gauss formula, since the immersion is totally umbilical,

ΣcS = S − 2Rmm + (m− 1)(m− 2)h2,

hence, from the definitions (2.2) and (2.1)

ΣcSϕ =ΣcS − αϕAa ϕAa
=S − 2Rmm + (m− 1)(m− 2)h2 − α|dϕ|2 + αϕAmϕ

A
m

=Sϕ − 2Rϕmm − 2αϕAmϕ
A
m + (m− 1)(m− 2)h2 + αϕαmϕ

α
m

=Sϕ − 2Rϕmm + (m− 1)(m− 2)h2 − αϕAmϕAm.

Then we have, using (6.46):

ΣcSϕ|∇f | = [Sϕ − 2Rϕmm + (m− 1)(m− 2)h2]|∇f |,

and thus we can conclude that ΣcSϕ is constant.

Our aim now it to show that Σc is harmonic-Einstein with respect the the induced metric and the
restriction of ϕ, for a regular value c of f . To show it we need the following result, that has an importance
also on its own.

Proposition 6.49. In the assumptions above, if f is non-constant, then (M, 〈 , 〉) is ϕ-Cotton flat.

Proof. We want to prove that Cϕ = 0. By analiticity it is sufficient to prove the result on {x ∈M : ∇f(x) 6=
0}. We take a local first order frame {ei} along f . By the first integrability condition (6.12), since we are
assuming the validity of the third equation of (6.32) we deduce

Cϕijk = −ftWϕ
tijk. (6.50)

Hence, by the symmetries of Wϕ and using (6.36)

0 = −fiftWϕ
tijk = fiC

ϕ
ijk = faC

ϕ
ajk + |∇f |Cϕmjk = Cϕmjk|∇f |.
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Then Cϕmjk = 0. Since Σc is totally umbilical with constant mean curvature h is parallel, that is hab,c = 0.
Then, from Codazzi’s equation

Rmabc = 0, (6.51)

indeed
−Rmabc = hab,c − hac,b = 0.

But then, explicitating the decomposition (2.6)

0 = Rmabc = Wϕ
mabc +

1

m− 2

[
Rϕmbδac −R

ϕ
mcδab +Rϕacδmb −R

ϕ
abδmc −

Sϕ

m− 1
(δmbδac − δmcδab)

]
,

and since (6.42) holds we conclude from the above equality:

Wϕ
mabc = 0. (6.52)

Therefore, from (6.50), using (6.36) and (6.52) we obtain

Cϕabc = −ftWϕ
tabc = −fdWϕ

dabc − |∇f |W
ϕ
mabc = 0.

By the symmetries of Cϕ it remains only to prove Cϕamb = 0. First of all observe that

Rϕam,kθ
k =

Sϕ −mRϕmm
m− 1

θma , (6.53)

in fact from the definition of covariant derivative, since (6.42) holds,

0 =dRϕam

=Rϕkmθ
k
a +Rϕakθ

k
m +Rϕam,kθ

k

=Rϕbmθ
b
a +Rϕmmθ

m
a +Rϕabθ

b
m +Rϕamθ

m
m +Rϕam,kθ

k

=Rϕmmθ
m
a +Rϕabθ

b
m +Rϕam,kθ

k

and thus, using also (6.43) from the above equality we obtain

Rϕam,kθ
k =−Rϕmmθma −R

ϕ
abθ

b
m

=−Rϕmmθma −
Sϕ −Rϕmm
m− 1

δabθ
b
m

=−Rϕmmθma −
Sϕ −Rϕmm
m− 1

θam

=

(
−Rϕmm +

Sϕ

m− 1
− Rϕmm
m− 1

)
θma

=
Sϕ −mRϕmm

m− 1
θma ,

that is (6.53). Now we are going to prove
Rϕam,m = 0. (6.54)

Observe that, by taking i = a and j = m in the first equation of (6.32) we obtain

Rϕam + fam = µfafm,

and thus, using (6.42) and (6.36), we deduce
fam = 0. (6.55)
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Moreover, taking the covariant derivative of the first equation of (6.32) we infer

Rϕij,k + fijk = µfikfj + µfifjk + λkδij

that for i = m = k and j = a reads as

Rϕam,m + fmam = µfmmfa + µfmfam.

Then, using (6.55) and the commutation relation (1.116) of [1], that is

fijk = fikj +Rtijkft,

together with (6.51),
Rϕam,m = −(∆f − fbb)a. (6.56)

Indeed

Rϕam,m = −fmam = −(fmma + fiR
i
mam) = −(fmma + fbR

b
mam + fmR

m
mam) = −fmma = −(∆f − fbb)a.

Since, taking the trace of the first equation of (6.32) we obtain

Sϕ + ∆f = µ|∇f |2 +mλ

and since Sϕ, |∇f | and λ are constant on Σc we deduce from the above equality that also ∆f is constant on
Σc. Moreover, from the first equation of (6.32), (6.43) and (6.36)

fab =−Rϕab + µfafb + λδab

=− Sϕ −Rϕmm
m− 1

δab + λδab

=− 1

m− 1
(Sϕ −Rϕmm − (m− 1)λ)δab,

that is,

fab = − 1

m− 1
(Sϕ −Rϕmm − (m− 1)λ)δab. (6.57)

Tracing (6.57) we have
faa = −(Sϕ −Rϕmm − (m− 1)λ), (6.58)

and thus also faa is constant on Σc. Then we can conclude from (6.56) the valdity of (6.54), since both ∆f
and fbb are constants on Σc. Using (6.54) and (6.53) we infer

Rϕam,bθ
b = Rϕam,kθ

k =
Sϕ −mRϕmm

m− 1
θma .

Using (6.37) in the above equality we deduce the validity of

Rϕam,b =
Sϕ −mRϕmm

m− 1
θma (eb) =

1

|∇f |
mRϕmm − Sϕ

m− 1
fab. (6.59)

Then we finally obtain, using (2.36), (6.43) and (6.59)

Cϕabm =Rϕab,m −R
ϕ
am,b −

1

2(m− 1)
Sϕmδab

=

(
Sϕ −Rϕmm
m− 1

δab

)
m

+
1

|∇f |
Sϕ −mRϕmm

m− 1
fab −

1

2(m− 1)
Sϕmδab

=
Sϕm −Rϕmm,m

m− 1
δab −

1

2(m− 1)
Sϕmδab +

1

|∇f |
Sϕ −mRϕmm

m− 1
fab

=
1

2(m− 1)
Sϕmδab −

1

m− 1
Rϕmm,mδab +

1

|∇f |
Sϕ −mRϕmm

m− 1
fab.
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Moreover, since ϕ is harmonic, from (2.10),

Sϕm = 2Rϕim,i = 2Rϕam,a + 2Rϕmm,m.

By inserting it in the above equality we deduce the validity of

Cϕabm =
1

m− 1
Rϕcm,cδab +

1

|∇f |
Sϕ −mRϕmm

m− 1
fab. (6.60)

Taking the trace of (6.59) and using (6.58) we have

Rϕam,a =
1

|∇f |
mRϕmm − Sϕ

m− 1
faa =

1

|∇f |
Sϕ −mRϕmm

m− 1
(Sϕ −Rϕmm − (m− 1)λ). (6.61)

On the other hand, using (6.57) we obtain

1

|∇f |
Sϕ −mRϕmm

m− 1
fab = − 1

|∇f |
Sϕ −mRϕmm

(m− 1)2
(Sϕ −Rϕmm − (m− 1)λ)δab. (6.62)

Using (6.61) and (6.62) in (6.60) we conclude

Cϕabm =
1

m− 1
Rϕcm,cδab +

1

|∇f |
Sϕ −mRϕmm

m− 1
fab = 0,

then the proof is completed.

We are now able to prove the following Proposition, as claimed before.

Proposition 6.63. In the assumptions above, Σc is harmonic Einstein with respect the induced metric for
every regular value c of f .

Proof. First of all observe that Cϕ = 0 from Proposition 6.49, hence using also the third equation (6.32) the
first integrability condition (6.12) implies

0 = Cϕijk + ftW
ϕ
tijk = |∇f |Wϕ

mijk on Σc,

thus
Wϕ
mijk = 0. (6.64)

From the decomposition (2.6), using (6.64) we obtain

Rmamb =
1

m− 2

(
Rϕab +Rϕmmδab −

Sϕ

m− 1
δab

)
, (6.65)

indeed

Rmamb =Wϕ
mamb +

1

m− 2
(Aϕmmδab −A

ϕ
mbδam +Aϕab −A

ϕ
maδbm)

=
1

m− 2

(
Rϕmmδab −

Sϕ

2(m− 1)
δab +Rϕab −

Sϕ

2(m− 1)
δab

)
=

1

m− 2

(
Rϕab +Rϕmmδab −

Sϕ

m− 1
δab

)
.

Using (6.43) we then have

Rϕab =
Sϕ −Rϕmm
m− 1

δab,
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and by plugging it in the above we obtain

Rmamb =
1

m− 2

(
Sϕ −Rϕmm
m− 1

δab +Rϕmmδab −
Sϕ

m− 1
δab

)
=

Rϕmm
m− 1

δab.

By Gauss formula
ΣcRac = Rac −Ramcm + (m− 2)h2δac,

then using (2.1)
ΣcRϕac = ΣcRac − αϕAa ϕAc = Rϕac −Ramcm + (m− 2)h2δac.

By inserting (6.65) and using (6.43) in the above we obtain

ΣcRϕac =Rϕac −Ramcm + (m− 2)h2δac

=
Sϕ −Rϕmm
m− 1

δac −
Rϕmm
m− 1

δac + (m− 2)h2δac

=

[
Sϕ − 2Rϕmm
m− 1

+ (m− 2)h2

]
δac.

Thus, denoting by ΣcRicϕ, 〈 , 〉Σc and ΣcSϕ the ϕ-Ricci curvature, the induced metric and the ϕ-scalar
curvature of Σc (where we are considering the restriction of ϕ on Σc)

ΣcRicϕ =
ΣcSϕ

m− 1
〈 , 〉Σc .

We conclude that (Σc, 〈 , 〉Σc) is harmonic-Einstein since ϕ : M → (N, 〈 , 〉N ) is harmonic and thus from
dϕ(∇f) = 0 we see that ϕ : (Σc, 〈 , 〉Σc)→ (N, 〈 , 〉N ) is harmonic too.

We are now ready to prove the most important result of this section.

Theorem 6.66. Let (M, 〈 , 〉) be a complete, non-compact Riemannian manifold of dimension m with an
Einstein-type structure as in (6.1). Suppose that m ≥ 3, that α > 0, that µ 6= 1/(2 − m) and Bϕ(∇f, )
hold and that f is proper. Then, in a neighborhood of every regular level set of f , the Riemannian manifold
(M, 〈 , 〉) is locally a warped product with (m− 1)-dimensional harmonic-Einstein fibers.

Proof. Our assumptions permits to apply Theorem 6.27 to deduce that ϕ must be harmonic and Dϕ must
vanish on M . Let Σ be a regular level set of f , that is |∇f | 6= 0 on Σ (it exists by Sard’s theorem, since
f is non-constant). In a neighborhood U of Σ which does not contain any critical point of f the potential
function f only depends on the signed distance r to the hypersurface Σ. Hence, by a suitable change of
variable, we can express the metric tensor g as

dr ⊗ dr + gabdθ
a ⊗ dθb,

where gab = gab(r, θ) and r ∈ (r∗, r
∗) for some maximal r∗ ∈ [−∞, 0) and r∗ ∈ (0,+∞], where θ2, . . . , θm

is any local coordinates system on the level surface Σ. Since, as proved in Proposition 6.44, Σ is totally
umbilical and has constant mean curvature

∂gab
∂r

= −2hab = φgab, φ(r) = −2h(r).

Thus we deduce the validity of

gab(r, θ) = eΦ(r)gab(0, θ), Φ(r) =

� r

0

φ.

This proves that on U the metric g takes the form of a warped product metric

dr ⊗ dr + w2〈 , 〉Σ,

where w is a positive function on (r∗, r
∗) and 〈 , 〉Σ is the metric induced on 〈 , 〉 by g, which is harmonic-

Einstein by Proposition 6.63.
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7 The complete case

In this section we consider a complete Riemannian manifold (M, 〈 , 〉) with a gradient Einstein-type structure
of the form {

Ricϕ + Hess(f)− µdf ⊗ df = λ〈 , 〉
τ(ϕ) = dϕ(∇f),

(7.1)

where ϕ : M → (N, 〈 , 〉N ) is a smooth map, α, µ, λ ∈ R with α 6= 0, f ∈ C∞(M).
Recall that the validity of a system of the type

Ric + Hess(v)− 1

γ
dv ⊗ dv ≥ −(γ +m− 1)G(r)〈 , 〉, (7.2)

for some γ ∈ R+ and some continuous function G : R+
0 → R+

0 , implies some restriction on the volume growth
of geodesic balls. The same applies to the simpler system

Ric + Hess(v) ≥ −(γ +m− 1)G(r)〈 , 〉.

Here r(x) := distM (x, o) is the geodesic distance of x ∈M to a fixed origin o ∈M .
Indeed, in case γ > 0, the left hand side of (7.2) is the generalized Bakry-Émery Ricci tensor Ricγv of

(M, 〈 , 〉) introduced by Z. Qian in [40], so that we can write (7.2) in the form

Ricγv ≥ −(γ +m− 1)G(r)〈 , 〉. (7.3)

Inequality (7.3) enables us to estimate from above the weighted volume of geodesic balls

volv(Br) :=

�
Br

e−v,

via Theorem 2.4 of [28] whenever G has an appropriate behaviour at infinity (see (7.6)). Of course in the
estimate a role is played by the parameter γ. Indeed, let g be a positive solution (if any) of{

g′′ −Gg ≥ 0 on R+
0

g(0) = 0, g′(0) = 1.
(7.4)

Then (7.3), together with completeness of (M, 〈 , 〉), implies, via Theorem 2.4 of [28], that for r large enough,

volv(∂Br) ≤ Cgγ+m−1(r) and volv(Br) ≤ D + C

� r

0

gγ+m−1, (7.5)

for some constants C,D > 0. Note that, and this is important, the upper bound in (7.5) only depends on G
via g but not on v.

Assuming that G ∈ C1(R+
0 ) is positive and satisfies

inf
R+

0

G′

G
3
2

> −∞, (7.6)

by choosing

g(t) =
1

D
√
G(0)

(
eD

� t
0

√
G − 1

)
(7.7)

for a positive constant D large enough as a solution of (7.4), from Proposition 2.3 of [28] we have

∆vr(x) ≤ C
√
G(r(x)) for r(x) >> 1 (7.8)
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for some large enough positive constant C. As a consequence, for r0 ∈ R+ there exists A,B,C ∈ R+ such
that, for every r ≥ r0

volv(∂Br) ≤ eC
� r
r0

√
G

and

volv(Br) ≤ A+B

� r

r0

e
C

� t
r0

√
G
dt.

Note that, in case
Ricv ≥ −(m− 1)G(r)〈 , 〉,

that, for the sake of brevity we shall indicate as the case γ = +∞, the estimates corresponding to (7.5) are
given in Proposition 8.11 of [1], that is,

volv(∂Br) ≤ eC(r−ε)+
� r
ε (

� t
ε

(m−1)G)dt (7.9)

for some constants ε, C > 0 and r ≥ ε and, as a consequence,

volv(Br) ≤ D +

� r

0

eCs+
� s
ε (

� t
ε

(m−1)G)dtds (7.10)

with C, ε as above, D > 0 a constant and r ∈ R+
0 .

In particular, when G ≡ Σ for some Σ ∈ R, that is,

Ricγv ≥ −(γ +m− 1)Σ〈 , 〉 (7.11)

we have: if γ > 0 and Σ ≥ 0, (7.4) admits a positive solution h such that h(r) = e
√

Σr for r >> 1, so that
the second estimate in (7.5) yields

volv(Br) ≤ D + Ce(γ+m−1)
√

Σr for r >> 1 (7.12)

and some constants C,D > 0 while, if γ = +∞ and G ≡ Σ for some Σ ∈ R, that is,

Ricv ≥ −(m− 1)Σ〈 , 〉 (7.13)

from (7.9) and (7.10) we respectively obtain the estimates

volv(∂Br) ≤ e
m−1

2 Σr2+Cr and volv(Br) ≤ D +

� r

0

e
(m−1)Σ

2 t2+Ctdt for r >> 1 (7.14)

and some constants C,D > 0.
We point out that for if γ > 0 and Σ < 0, Qian, Theorem 5 in [40], shows that the complete manifold

(M, 〈 , 〉) satisfying (7.11) has to be compact. For γ = +∞ and Σ < 0 a complete Riemannian manifold
(M, 〈 , 〉) satisfying (7.14) is not necessarily compact (to see this it is sufficient to consider the Gaussian
shrinker gradient Ricci soliton structure on Euclidean space). Nevertheless, the following Proposition holds.

Proposition 7.15. Let (M, 〈 , 〉) be a complete Riemannian manifold such that (7.13) holds for some v ∈
C∞(M) and for some constant Σ < 0. Then (M, 〈 , 〉) is ∆v-parabolic.

Recall that (M, 〈 , 〉) is said to be ∆v-parabolic if every bounded above ∆v-subharmonic function on M
is constant.

To prove the above Proposition we observe that Theorem A of [41] can be easily adapted in the weighted
setting, obtaining

Theorem 7.16. Let (M, 〈 , 〉) be a complete Riemannian manifold, let v ∈ C∞(M) and assume that

volv(∂Br)
−1 /∈ L1(+∞). (7.17)

Then M is ∆v-parabolic.
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Proof (of Proposition 7.15). Our assumptions imply the validity of the first of (7.14). Thus, since Σ < 0 we
deduce the validity of (7.17).

For Σ ≥ 0 we have

Proposition 7.18. Let (M, 〈 , 〉) be a complete Riemannian manifold, v ∈ C∞(M) and Σ ≥ 0. Assume
either (7.12) holds or that the second inequality of (7.14) holds. Then we have the validity of the weak
maximum principle at infinity for ∆v. As a consequence, the L1-Liouville property for ∆v-subharmonic
functions holds.

Recall that the L1-Liouville property for ∆v-subharmonic functions holds if every u ∈ Liploc(M) solution
of ∆vu ≤ 0 on M and satisfying 0 ≤ u ∈ L1(M, e−v) is constant.

Proof. From Theorem 9 of [39], the validity of the weak maximum principle at infinity for ∆v is guaranteed
in case

r

log volv(Br)
/∈ L1(+∞). (7.19)

Since γ > 0, (7.11) implies
Ricv ≥ −(γ +m− 1)Σ〈 , 〉.

Then we can assume the validity of (7.13) in both cases. As remarked above we get (7.14) for some constants
C,D > 0, so that, by a computation we obtain that (7.19) holds. Now the validity of the L1-Liouville property
for ∆v-subharmonic functions can be deduced from Theorem 24 of [39].

In the presence of a gradient-Einstein type structure on a complete Riemannian manifold we naturally
have the validity of a system of the type (7.2), as we now show.

Proposition 7.20. Let (M, 〈 , 〉) be a complete Riemannian manifold with a gradient Einstein-type structure
as in (7.1) for some f ∈ C∞(M), ϕ : M → (N, 〈 , 〉N ), α ∈ R\{0} and µ, λ ∈ R. Let o ∈M be a fixed origin
and r(x) := distM (x, o) the geodesic distance of x ∈M from o. Let K : R+

0 → R+
0 such that

|dϕ|2 ≤ K(r) if α < 0 (7.21)

and F : R+
0 → R+

0 be such that

|∇f |2 ≤ F (r) if α < 0 and µ < 0. (7.22)

Then, denoting with t+ and t− the positive and negative part of t ∈ R, using the conventions 1
0 = +∞,

(+∞)+ = 0 and
Ric+∞

f = Ricf ,

we have

Ric
1
µ+

f ≥ −

((
1

µ

)
+

+m− 1

)
G(r)〈 , 〉, (7.23)

where

G = −λ− µ−F − α−K(
1
µ

)
+

+m− 1
. (7.24)

Proof. The following inequalities hold, in the sense of quadratic forms,

0 ≤ ϕ∗〈 , 〉N ≤ |dϕ|2〈 , 〉.

Hence using the first equation of (7.1) we obtain, in case α > 0

Ric + Hess(f)− µdf ⊗ df ≥ λ〈 , 〉
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while in case α < 0, using (7.21),

Ric + Hess(f)− µdf ⊗ df ≥ (λ+ αK(r))〈 , 〉.

From the above we conclude

Ric + Hess(f)− µdf ⊗ df ≥ (λ− α−K(r))〈 , 〉. (7.25)

In case µ = 0, (7.25) gives
Ric+∞

f = Ricf ≥ (λ− α−K(r))〈 , 〉,

and, in case µ > 0, (7.25) gives

Ric
1
µ

f ≥ (λ− α−K(r))〈 , 〉.

Moreover
df ⊗ df ≤ |∇f |2〈 , 〉

and thus, in case µ < 0, from (7.25), using (7.22), we get

Ricf ≥ (λ− α−K(r) + µF (r))〈 , 〉.

We then conclude the validity of (7.23).

As an application of Proposition 7.20 we have

Proposition 7.26. Let (M, 〈 , 〉) be a complete Riemannian manifold with a gradient Einstein-type structure
as in (7.1) for some f ∈ C∞(M), ϕ : M → (N, 〈 , 〉N ), α ∈ R \ {0} and µ, λ ∈ R. In case α < 0 assume

(|dϕ|2)∗ := sup
M
|dϕ|2 < +∞

and in case α, µ < 0 assume
(|∇f |2)∗ := sup

M
|∇f |2 < +∞.

Then

Ric
1

µ+

f ≥ −

((
1

µ

)
+

+m− 1

)
Σ〈 , 〉 (7.27)

with

Σ := −λ− α−(|dϕ|2)∗ − µ−(|∇f |2)∗(
1
µ

)
+

+m− 1
∈ R, (7.28)

where we are using the convention (+∞)− = 0. In particular

i) The weak maximum principle at infinity for ∆f and the L1-Liouville property for ∆f -subharmonic
functions hold;

ii) In case µ > 0, if α, λ > 0 or if α < 0 and λ > |α|(|dϕ|2)∗ then M is compact.

iii) In case µ = 0, if α, λ > 0 or if α < 0 and λ > |α|(|dϕ|2)∗ then (M, 〈 , 〉) is parabolic with respect to
∆f .

iv) In case µ < 0, if α > 0 and λ > |µ|(|∇f |2)∗ or if α < 0 and λ > |µ|(|∇f |2)∗+ |α|(|dϕ|2)∗ then (M, 〈 , 〉)
is ∆f -parabolic.

Proof. The validity of (7.27) with Σ given by (7.28) follows immediately from Proposition 7.20 by choosing,
in case α < 0, K ≡ (|dϕ|2)∗ and, in case µ < 0, F ≡ (|∇f |2)∗. Then i) follows from Proposition 7.18, ii)
from Theorem 5 of [40] and finally iii) and iv) follows from Proposition 7.15.
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Now we give, as a consequence of (4.20), a two-sided estimate on Sϕ∗ := infM Sϕ. Precisely we prove

Theorem 7.29. Let (M, 〈 , 〉) be a complete Riemannian manifold of dimension m with a gradient Einstein-
type structure as in (7.1) with α ∈ R \ {0}, µ, λ ∈ R, f ∈ C∞(M) and ϕ : M → (N, 〈 , 〉N ) a smooth map.
Assume α > 0 and 0 < µ ≤ 1. If λ ≤ 0 assume that f∗ > −∞ or that the smallest eigenvalue of Hess(f) is
bounded from below.

i) If λ > 0 then M is compact and

(m− 1)µ

1 + (m− 1)µ
mλ ≤ Sϕ∗ ≤ mλ.

If µ 6= 1, then
(m− 1)µ

1 + (m− 1)µ
mλ < Sϕ∗ ≤ mλ.

Furthermore, Sϕ∗ = mλ, that is, Sϕ(x0) = mλ for some x0 ∈ M , if and only (M, 〈 , 〉) is harmonic-
Einstein and f is constant.

ii) If λ = 0 then
Sϕ∗ = 0.

Moreover, if µ 6= 1, either Sϕ > 0 on M or otherwise (M, 〈 , 〉) is harmonic Einstein with Sϕ ≡ 0 and
f is constant.

iii) If λ < 0 then

mλ ≤ Sϕ∗ ≤
(m− 1)µ

1 + (m− 1)µ
mλ.

If µ 6= 1, then Sϕ(x0) = mλ for some x0 ∈ M if and only (M, 〈 , 〉) is harmonic-Einstein and f is
constant.

Proof. Since λ is constant, equation (4.20) can be written in the form

1

2
∆(1+2µ)fS

ϕ =(µ− 1)(α|τ(ϕ)|2 + |Tϕ|2)− (m− 1)µ+ 1

m
(Sϕ −mλ)

(
Sϕ − (m− 1)µ

1 + (m− 1)µ
mλ

)
. (7.30)

We set u := −Sϕ so that (7.30) takes the form

1

2
∆(1+2µ)fu =(1− µ)(α|τ(ϕ)|2 + |Tϕ|2) +

(m− 1)µ+ 1

m
(u+mλ)

(
u+

(m− 1)µ

1 + (m− 1)µ
mλ

)
. (7.31)

Since µ ≤ 1 we deduce

1

2
∆(1+2µ)fu ≥

(m− 1)µ+ 1

m
(u+mλ)

(
u+

(m− 1)µ

1 + (m− 1)µ
mλ

)
on M . We now set

g := (1 + 2µ)f

so that
1

2
∆gu ≥

(m− 1)µ+ 1

m
(u+mλ)

(
u+

(m− 1)µ

1 + (m− 1)µ
mλ

)
, (7.32)

or equivalently, in terms of Sϕ,

1

2
∆gS

ϕ ≤ − (m− 1)µ+ 1

m
(Sϕ −mλ)

(
Sϕ − (m− 1)µ

1 + (m− 1)µ
mλ

)
. (7.33)
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i) If λ > 0 then, from Proposition 7.26 ii), M is compact and since Sϕ∗ = Sϕ(x0) for some x0 ∈M , from
(7.33) we deduce

(m− 1)µ

1 + (m− 1)
mλ ≤ Sϕ∗ ≤ mλ.

We now show that the first inequality is strict if µ 6= 1. Indeed, by contradiction suppose Sϕ∗ =
(m−1)µ

1+(m−1)µmλ. Because of (7.33) the non-negative function

v := Sϕ − (m− 1)µ

1 + (m− 1)µ
mλ

satisfies

1

2
∆gv ≤ −

(m− 1)µ+ 1

m

(
v − 1

1 + (m− 1)µ
mλ

)
v = − (m− 1)µ+ 1

m
v2 + λv ≤ λv.

Since M is compact v attains its minimum and from the minimum principle, see page 35 of [20], we
deduce that v vanishes identically. Hence

Sϕ ≡ (m− 1)µ

1 + (m− 1)µ
mλ. (7.34)

From (7.30) by integration we then deduce

(1− µ)(α|τ(ϕ)|2 + |Tϕ|2) = 0,

so that, since µ < 1 and α > 0, (M, 〈 , 〉) is a harmonic-Einstein manifold. From the first equation of
(7.1) we infer

Sϕ

m
〈 , 〉+ Hess(f)− µdf ⊗ df = λ〈 , 〉,

that implies, using (7.34),

Hess(f)− µdf ⊗ df =
λ

1 + (m− 1)µ
〈 , 〉 > 0.

Since M is compact this gives a contradiction in the point of absolute maximum of f .

Suppose now that Sϕ∗ = mλ. Then

Sϕ ≥ Sϕ∗ = mλ ≥ (m− 1)µ

1 + (m− 1)µ
mλ,

hence from (7.33) we deduce
1

2
∆gS

ϕ ≤ 0.

Since M is compact we infer that Sϕ ≡ Sϕ∗ . Once again from (7.30) we obtain that (M, 〈 , 〉) is
harmonic-Einstein and from the first equation of (7.1) we have

Hess(f)− µdf ⊗ df = 0. (7.35)

Tracing (7.35) gives ∆f = µ|∇f |2 ≥ 0 and since M is compact and µ > 0, f must be constant.

If λ ≤ 0 we show that the weak maximum principle hold for ∆g if f∗ > −∞ or if the smallest eigenvalue of
Hess(f) is bounded from below. Suppose f∗ > −∞, then volg(Br) ≤ e−2µf∗volf (Br) and thus

r

log volfBr
/∈ L1(+∞),
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because of equation (7.1) and the estimate (7.14) valid with v = f and Σ = 0. From Proposition 3.17 of [36]
we obtain the validity of the weak maximum principle for ∆g. Now suppose that the smallest eigenvalue of
Hess(f) is bounded from below. The first equation of (7.1) can be written in terms of g as

Ric + Hess(g)− µ

(1 + 2µ)2
dg ⊗ dg = λ〈 , 〉+ 2µHess(f) + αϕ∗〈 , 〉N ,

so that, using α, µ > 0 and since the smallest eigenvalue of Hess(f) is bounded from below,

Ricγg ≥ λ〈 , 〉, with γ :=
(1 + 2µ)2

µ
> 0.

Then, from Proposition 7.26, the weak maximum principle for ∆g also holds in this case. Using Theorem
4.2 of [1], since λ ≤ 0, from (7.32) we deduce for u∗ := supM u,

− (m− 1)µ

1 + (m− 1)µ
mλ ≤ u∗ ≤ −mλ

of course when u∗ < +∞. But this is the case because of Theorem 4.1 of [1], (7.32) and the conditions on
the parameters. From the above we immediately infer

mλ ≤ Sϕ∗ ≤
(m− 1)µ

1 + (m− 1)µ
mλ.

ii) Let λ = 0, the bounds on Sϕ∗ gives Sϕ∗ = 0. In this case (7.33) gives ∆gS
ϕ ≤ 0 so that either Sϕ > 0 on

M or Sϕ ≡ 0. In the latter case, if µ 6= 1, from (7.30), we obtain that (M, 〈 , 〉) is harmonic-Einstein and
thus, from the first equation of (7.1), once again we deduce (7.35). Then or f is constant or otherwise
the positive function u := e−µf satisfies Hess(u) = 0. This is not possible since by a Cheeger-Gromoll
type argument, see for instance case i1) in the proof of Proposition 8.13 of [1], there are no positive
non-constant affine function.

iii) Let λ < 0. The estimates on Sϕ∗ have been obtained above. If Sϕ(x0) = mλ for some x0 ∈ M then,
from (7.33), the non-negative function v := Sϕ −mλ satifies,

1

2
∆gv ≤ −

(m− 1)µ+ 1

m
v

(
v +

1

1 + (m− 1)µ
mλ

)
= − (m− 1)µ+ 1

m
v2 − λv ≤ −λv,

that is,
∆gv + 2λv ≤ 0,

so that, since v attains its minimum, from the minimum principle v ≡ 0. Then Sϕ ≡ mλ and then, as
before, in case µ 6= 1 from (7.30) we infer that (M, 〈 , 〉) is harmonic-Einstein. From (7.1) we deduce
that satisfies (7.35). As in ii) above, we deduce that f is constant.

Note that in case µ = 0 and ϕ is constant (7.1) yields the Ricci soliton system

Ric + Hess(f) = λ〈 , 〉. (7.36)

In this situation we have the well known identity due to Hamilton,

∇S = 2Ric(∇f, ·)]. (7.37)

The latter, in turns, gives rise to the celebrated Hamilton identity

S + |∇f |2 − 2λf = Λ, (7.38)
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for some constant Λ ∈ R. Note that in case λ 6= 0 one can add a constant to f to obtain Λ = 0. We
shall generalize (7.37) and (7.38) to the Einstein-type structure (7.1). The equation corresponding to (7.37),
with λ non-constant, is given in a local orthonormal coframe by (4.19), which we report here for the sake of
convenience

1

2
Sϕj = Rϕkjfk − µ∆ffj + µfkfkj + (m− 1)λj . (7.39)

Observe that for µ = 0 and for λ and ϕ constants (7.39) reduces to (7.37). Next we extend (7.38) in the
following

Proposition 7.40. Let (M, 〈 , 〉) be a Riemannian manifold with an Einstein-type structure as in (7.1) with
λ constant. Then there exists Λ ∈ R such that, if µ 6= 0:

Sϕ − (µ− 1)|∇f |2 +

(
1

µ
−m

)
λ =

Λ

µ
e2µf , (7.41)

and if µ = 0:
Sϕ + |∇f |2 − 2λf = mλ− Λ. (7.42)

As a consequence we have the validity of the following equations, if µ 6= 0:

∆ff =
λ

µ
− Λ

µ
e2µf , (7.43)

and if µ = 0:
∆ff = Λ− 2λf. (7.44)

Remark 7.45. Observe that in (7.43) and (7.44) the map ϕ : M → (N, 〈 , 〉N ) and the constant α of Ricϕ do
not appear. This observation enables us to extends many results on quasi-Einstein manifolds to our more
general structure.

Proof. We claim the validity of the following equation

(∆ff + (m− 2)λ)j − 2fj(µ∆ff − λ) = 0. (7.46)

Towards this aim we trace the first equation of (7.1) to obtain

mλ = Sϕ + ∆f − µ|∇f |2. (7.47)

Taking the covariant derivative and inserting into (7.39) we deduce

1

2
Sϕj = Rϕkjfk − µ∆ffj + µfkfkj − λj + (Sϕ + ∆f − µ|∇f |2)j ,

that is,
1

2
Sϕj + (∆f)j +Rϕijfi = µ∆ffj + µfijfi + λj .

From the first equation of (7.1) we infer

Rϕijfi + fijfi = µ|∇f |2fj + λfj ,

and replacing into the above yields

1

2
Sϕj + (∆f)j − fijfi + µ|∇f |2fj + λfj = µ∆ffj + µfijfi + λj ,

that is,
Sϕj = −2(∆f)j + 2(1 + µ)fijfi − 2µ|∇f |2fj − 2λfj + 2µ∆ffj + 2λj . (7.48)
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The covariant derivative of (7.47) yields

Sϕj + (∆f)j = 2µfifij +mλj , (7.49)

and by inserting (7.48) into (7.49) we obtain

−2(∆f)j + 2(1 + µ)fijfi − 2µ|∇f |2fj − 2λfj + 2µ∆ffj + 2λj + (∆f)j = 2µfifij +mλj ,

that implies (7.46). Now, assuming λ constant (7.46) can be rewritten as

(∆ff)j − 2fj(µ∆ff − λ) = 0. (7.50)

If µ 6= 0 from (7.50) we deduce (
∆ff −

λ

µ

)
j

− 2µfj

(
∆ff −

λ

µ

)
= 0.

It follows that the function

v :=

(
∆ff −

λ

µ

)
e−2µf

is a constant, say −Λ
µ , on M . Indeed,

vj =

[(
∆ff −

λ

µ

)
j

− 2µfj

(
∆ff −

λ

µ

)]
e−2µf = 0.

Observe that since v = −Λ
µ we have the validity of (7.43). To deduce (7.41) it is sufficient to use (7.47) in

the form
∆ff = −Sϕ + (µ− 1)|∇f |2 +mλ (7.51)

so that inserting it in the definition of v we have

−Λ

µ
= v =

(
−Sϕ + (µ− 1)|∇f |2 +mλ− λ

µ

)
e−2µf .

If µ = 0, (7.50) becomes
(∆ff)j + 2λfj = 0,

and thus, since λ is constant,
(∆ff + 2λf)j = 0.

Then the function
v := ∆ff + 2λf

is constant on M . Choosing Λ such that v = Λ +mλ we obtain (7.44). Using (7.51) in the above gives

Λ +mλ = −Sϕ − |∇f |2 +mλ+ 2λf,

that is, (7.42).

Remark 7.52. In the above proof we use the first equation of (7.1) except in only one point, precisely when
we use (7.39) at the very beginning of the argument.
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Remark 7.53. It is worth to observe that when m ≥ 3 and

µ = − 1

m− 2
, (7.54)

or equivalently when (M, 〈 , 〉) is conformally harmonic-Einstein, equations (7.41) and (7.43) holds for λ ∈
C∞(M), see Theorem 2.49. This can also be seen directly, in fact from the proof of the Proposition above,
in case (7.54) holds, equation (7.46) becomes

(∆ff + (m− 2)λ)j − 2fj

(
− 1

m− 2
∆ff − λ

)
= 0,

that is,

(∆ff + (m− 2)λ)j +
2

m− 2
fj(∆ff + (m− 2)λ) = 0.

Then, setting

v := (∆ff + (m− 2)λ)e
2

m−2 f ,

it is easy to see that v is constant on M immediately obtaining the validity of (7.41) and (7.43), without
assuming constancy of λ .

In the proof of the Proposition above, in case µ 6= 0 we face the problem of the choice of the constant Λ.
Considering the case µ = 1

d for some positive integer d, it is possible to prove (for a proof see the doctoral
thesis of A. Anselli)

Theorem 7.55. Let (M, 〈 , 〉) and (F, 〈 , 〉F ) be Riemannian manifolds of dimension m and d respectively.
Let f ∈ C∞(M) and ϕ : M → (N, 〈 , 〉N ) be a smooth map. Denote by M̄ the warped product M ×u F , where

u = e−
f
d , and let Φ := ϕ ◦ πM : M̄ → (N, 〈 , 〉N ). Then (M̄, 〈 , 〉) satisfies,{

Ric− αΦ∗〈 , 〉N = λḡ

τ(Φ) = 0,
(7.56)

for some constant λ, if and only if (M, 〈 , 〉) satisfies{
Ric− αϕ∗〈 , 〉N + Hess(f)− 1

ddf ⊗ df = λ〈 , 〉
τ(ϕ) = dϕ(∇f)

and (F, 〈 , 〉F ) satisfies
FRic = Λ〈 , 〉F , (7.57)

where Λ is the constant given by
∆ff = dλ− dΛe2µf , (7.58)

Note that (7.58) is exactly (7.43) with µ = 1
d . Observe moreover that 4-dimensional Lorentzian mani-

fold satisfying (7.56) are natural examples of static spacetime satisfying the Einstein equation with energy
momentum tensor given by the energy-stress tensor of the wave map (harmonic map) Φ and vanishing cos-
mological constant. See the doctoral thesis of A. Anselli for more details.

We now provide some triviality results for gradient Einstein-type structure with potential function f

satisfying |∇(e−
f
p )| ∈ Lp(M) for some 1 < p < +∞. To prove the next Proposition we shall use

Theorem 7.59 (Theorem 1.1 of [37]). Let (M, 〈 , 〉) be a complete Riemannian manifold and let f ∈ C∞(M).
Assume that u ∈ Liploc(M) satisfy

u∆fu ≥ 0 weakly on M. (7.60)

If, for some p ∈ (1,+∞), (�
∂Br

|u|pe−f
)−1

/∈ L1(+∞), (7.61)

then u is constant.
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Proposition 7.62. Let (M, 〈 , 〉) be a complete, non compact Riemannian manifold of dimension m with a
gradient Einstein-type structure as in (7.1) with α ∈ R \ {0}, µ, λ ∈ R, f ∈ C∞(M) and ϕ : M → (N, 〈 , 〉N )

a smooth map. Suppose |∇(e−
f
p )| ∈ Lp(M), or equivalently |∇f | ∈ Lp(M, e−f ), for some p ∈ (1,+∞), α > 0

and that one the following conditions is satisfied

i) µ > 1
2 , Sϕ ≤

(
m− 1

2µ

)
λ on M ;

ii) µ = 1
2 , Sϕ < (m− 1)λ on M ;

iii) µ = 0, λ < 0;

iv) µ < 0, Sϕ ≥
(
m− 1

2µ

)
λ on M .

Then f is constant and (M, 〈 , 〉) is harmonic-Einstein.

Proof. Since λ ∈ R equation (4.22) becomes

1

2
∆f |∇f |2 = |Hess(f)|2 + α|τ(ϕ)|2 + (2µλm− λ− 2µSϕ)|∇f |2 + µ(2µ− 1)|∇f |4. (7.63)

Recall that, from Kato’s inequality,

|∇|∇f ||2 ≤ |Hess(f)|2 weakly on M.

Then we infer

1

2
∆f |∇f |2 = |∇f |∆f |∇f |+ |∇|∇f ||2 ≤ |∇f |∆f |∇f |+ |Hess(f)|2 weakly on M.

Combining the above with (7.63) and using α > 0, we obtain

|∇f |∆f |∇f | ≥ (2µmλ− 2µSϕ − λ)|∇f |2 + µ(2µ− 1)|∇f |4 weakly on M.

From the above, if anyone of i), ii), iii) or iv) holds then it is easy to show the validity of one of the following
inequalities for some positive constant c,

|∇f |∆f |∇f | ≥ c|∇f |2 or |∇f |∆f |∇f | ≥ c|∇f |4 weakly on M, (7.64)

Then we are in position to apply Theorem 7.59 with the choice of u = |∇f |, observing that |∇f | ∈ Lp(M, e−f )
guarantee the validity of (7.61) and that (7.60) holds. We then conclude that |∇f | is constant and therefore
from (7.64) f is constant. As a consequence of (7.63) we deduce

α|τ(ϕ)|2 = 0

and (M, 〈 , 〉) is harmonic-Einstein.

Remark 7.65. Consider the assumptions of Proposition 7.62 but instead of one of i), ii), iii) or iv), assume
now

v) µ > 0, λ < 0, Λ < 0 and

f∗ ≥
1

2µ
log

(
λ

2Λ

)
,

where f∗ := infM f and Λ is the constant appearing in (7.43).
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Rewrite (7.63) using the trace of the first equation in (7.1), as

1

2
∆f |∇f |2 = |Hess(f)|2 + α|τ(ϕ)|2 + |∇f |2(2µ∆f − λ− µ|∇f |2),

or equivalently,
1

2
∆f |∇f |2 = |Hess(f)|2 + α|τ(ϕ)|2 + |∇f |2(2µ∆ff + µ|∇f |2 − λ).

Therefore
|∇f |∆f |∇f | ≥ |∇f |2(2µ∆ff + µ|∇f |2 − λ) weakly on M. (7.66)

We use (7.43) to obtain, from (7.66),

|∇f |∆f |∇f | ≥ (λ− 2Λe2µf + µ|∇f |2)|∇f |2 weakly on M.

The hypothesis on λ, Λ and f∗ guarantee the validity of

λ− 2Λe2µf ≥ 0,

hence from the above we get
|∇f |∆f |∇f | ≥ µ|∇f |4 weakly on M,

and thus we can conclude, as in the proof of Proposition 7.62 that f is constant and τ(ϕ) ≡ 0.

Proposition 7.40 motivates the study of non-existence results or triviality results on a Riemannian man-
ifold (M, 〈 , 〉) for solutions of differential inequalities of the form

∆vv ≥ ρ+ βe2δv, (7.67)

for some constants ρ, β, δ ∈ R, possibly coupled with a system of the type

Ricγv ≥ −(γ +m− 1)G(r)〈 , 〉 (7.68)

for some γ ∈ R+ and some function G : R+
0 → R+

0 . Here a first result in this direction.

Theorem 7.69. Let (M, 〈 , 〉) be a complete Riemannian manifold of dimension m and let G ∈ C1(R+
0 ) be

a non-decreasing function with G(0) > 0 and 1√
G
/∈ L1(+∞). Assume γ, β, δ > 0. If ρ ≥ 0 there are no

solutions v of (7.67) satisfying (7.68), while if ρ < 0 there are no solutions of (7.67) satisfying both (7.68)
and

v∗ := sup
M

v >
1

2δ
log

(
− ρ
β

)
.

Proof. We first deal with the non-compact case. We claim the hypothesis on G imply the validity of the
Omori-Yau maximum principle for the operator ∆v. To prove this we first observe that, as reported at the
beginning of this section, under the milder hypotheses that G ∈ C1(R+

0 ), G > 0 on R+
0 and

inf
R+

0

G′

G
3
2

> −∞,

choosing g as in (7.7), g satisfies (7.4) and then, using Proposition 2.3 of [28], we deduce

∆vr(x) ≤ C
√
G(r(x)) for r(x) >> 1

for some positive constant C large enough. Moreover, since G is non-decreasing,

|∇r| = 1 ≤ C
√
G(r),
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again for some constant C > 0. Then an application of Theorem 3.2 and Remark 3.3 of [1] with the choices
(in the notation of [1]) γ(x) = r(x) and G(γ) given by

√
G(r), the present G, gives the validity of the claim.

Let now β, δ > 0. Choosing f(t) = ρ + βe2δt and F = f on [a,+∞), with a = 0 in case ρ ≥ 0 and

a = 1
2δ log

(
− ρ
β

)
otherwise, we can apply Theorem 3.6 of [1] to deduce v∗ < +∞ and

ρ+ βe2δv∗ ≤ 0.

Thus, for ρ < 0 we infer

v∗ ≤ 1

2δ
log

(
− ρ
β

)
while for ρ ≥ 0

0 < e2δv∗ ≤ − ρ
β
≤ 0

yielding a contradiction so that, in this case, v cannot exists.
The compact case, since v has to attain a maximum v∗ on M , follows immediately by the above reasoning.

Corollary 7.70. Let (M, 〈 , 〉) be a complete manifold supporting a gradient Einstein-type structure as in
(7.1) with λ a non-negative constant, µ > 0, α ≥ 0. Then f satisfies (7.43) with Λ ≥ 0.

Proof. Since α ≥ 0 from the first in (7.1) we have Ric
1/µ
f ≥ 0. Proceeding as in the proof of Theorem 7.69,

f∗ < +∞ and
λ

µ
− Λ

µ
e2µf∗ ≤ 0.

This yields a contradiction in case Λ < 0.

We observe that J. Case, see [12], proves non-existence of non-constant solutions of the equation

∆vv = βe2δv, (7.71)

on a complete Riemannian manifold (M, 〈 , 〉) for β, δ ≥ 0 and under the assumption

Ricγv ≥ 0,

for some γ > 0 (as a matter of fact he also considers the case γ = +∞, but this case can be dealt similarly
and we skip it for the sake of brevity). His proof is based on a conformal change of metric together with
a gradient estimate (note that for the latter one needs to consider an equation as in (7.71) instead of a
differential inequality). Our Theorem 7.69 recover Case’s result when β, δ > 0 and ρ = 0 even in case of the
differential inequality (7.67). However, we can obtain and in fact extend his full result for (7.67) with the
equality sign with the aid of the following trick.

Consider on M the equation
∆v = |∇v|2 + ρ+ βe2δv, (7.72)

and suppose that
Ricγv ≥ −(γ +m− 1)λ〈 , 〉, (7.73)

for some constant λ > 0. Referring to (7.3) with G = λ we find a solution g of (7.4) that for t >> 1 is given
by

g(t) = e
√
λt.

In this case, as r → +∞
volv(Br) ≤ D + Ee(γ+m−1)

√
λr (7.74)
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for some constants D,E > 0. Next, we recall Bochner’s formula

1

2
∆|∇v|2 = |Hess(v)|2 + Ric(∇v,∇v) + 〈∇∆v,∇v〉. (7.75)

Using equation (7.72) we obtain

〈∇∆v,∇v〉 = 〈∇v,∇|∇v|2〉+ 2δβe2δv|∇v|2 = 2Hess(v)(∇v,∇v) + 2δβe2δv|∇v|2.

We insert the above into (7.75) and we use (7.73) to finally get

1

2
∆v|∇v|2 ≥ |Hess(v)|2 + [2δβe2δv − (γ +m− 1)λ]|∇v|2 +

1

γ
|∇v|4. (7.76)

We are now ready to prove the following

Theorem 7.77. Let (M, 〈 , 〉) be a complete, possibly compact Riemannian manifold. Let v ∈ C2(M) and
suppose that for some γ > 0 the modified Bakry-Emery Ricci tensor satisfy

Ricγv ≥ 0. (7.78)

Let the product δβ ≥ 0 and ρ ∈ R. If v is a solution of (7.72) then v is constant.

Proof. First we analyse the non-compact case. Fix any λ > 0, then (7.78) implies the validity of (7.73).
Next set u := |∇v|2. Then, since by hypothesis δβ ≥ 0, from (7.76) we deduce the validity of the following
differential inequality

1

2
∆vu ≥ −(γ +m− 1)λu+

1

γ
u2.

From (7.74) we infer

lim
r→+∞

log volv(Br)

r2
= 0.

Applying Theorem 4.2 of [1] we deduce
u∗ := sup

M
u < +∞.

Then Theorem 4.1 of [1] yields the validity of the inequality

u∗
[

1

γ
u∗ − (γ +m− 1)λ

]
≤ 0,

so that
0 ≤ u∗ ≤ γ(γ +m− 1)λ.

Since λ > 0 was arbitrary we infer u∗ = 0 completing the proof.
From the above reasoning we see that the compact case is immediate.

Now we give a consequence of Theorem 7.77.

Corollary 7.79. Let (M, 〈 , 〉) and (P, 〈 , 〉P) be complete manifolds such that M ×P has an Einstein warped
product structure of the type

〈 , 〉 = 〈 , 〉+ e−
2
du〈 , 〉P,

where u ∈ C∞(M) and m, d are respectively the dimensions of M and P. If (M × P, 〈 , 〉) has non-negative
scalar curvature, then (P, 〈 , 〉P) is Einstein with non-negative scalar curvature.
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Proof. Since (M × P, 〈 , 〉) is Einstein with non-negative scalar curvature we have Ric = λ〈 , 〉 for some
constant λ ≥ 0. It is well known that (P, 〈 , 〉P) must be Einstein, that is

RicP = ζ〈 , 〉P,

for some ζ ∈ R and also that the following system holds
Ricdu = Ric + Hess(u)− 1

d
du⊗ du = λ〈 , 〉

∆uu−
d

m+ d
= −ζe 2

du.

Thus

Ricdu ≥ 0 and ∆uu =
d

m+ d
− ζe 2

du.

It follows that if P has negative scalar curvature, that is, if ζ < 0 Theorem 7.77 gives a contradiction. Indeed
if u is constant then

ζ =
d

m+ d
e−

2
du ≥ 0.

Remark 7.80. The above Corollary gives a partial answer to a question posed by A. Besse [8].

Next we consider the differential inequality (7.67) not paired with (7.2). Note that (7.67) (that is justified
by the geometric setting of equation (7.43)) immediately yields the validity of the differential inequality

∆v ≥ ρ+ βe2δv on M. (7.81)

The advantage of (7.81) over (7.67) is that the former can be treated with the aid of the weak maximum
principle for the Laplace Beltrami operator. More precisely with Theorem 4.2 of [1] we prove that a solution
v of (7.81) satisfies v∗ < +∞ and then, with Theorem 4.1 of [1], we arrive to prove non-existence for β, δ > 0
and ρ ≥ 0.

Explicitly we have

Theorem 7.82. Let (M, 〈 , 〉) be a complete, possibly compact Riemannian manifold satisfying

lim inf
r→+∞

log vol(Br)

r2
< +∞, (7.83)

and let ρ, β, δ ∈ R with β, δ > 0. If ρ ≥ 0 then (7.81) has no solutions, while if ρ < 0 there are no solutions
of (7.81) satisfying

v∗ := sup
M

v >
1

2δ
log

(
− ρ
β

)
.

Remark 7.84. By using Theorem 3.7 and Theorem 3.8 of [3] we see that the conclusions of Theorem 7.82
remain valid when M has a non-empty boundary ∂M by adding to (7.81) the boundary condition:

∂νv ≤ 0 on ∂M,

where ν is the outward unit normal to ∂M . Observe that completeness of (M, 〈 , 〉) in this case has to be
intended in the Cauchy sense. The same observation applies to Theorem 7.88 below. Observe that operating
the substitution

u := e−f ,

in case µ = 0 equation (7.44) becomes

∆u+ Λu+ 2λu log u = 0, (7.85)

while in case µ 6= 0 equation (7.43) becomes

∆u+
λ

µ
u− Λu1−2µ = 0. (7.86)

In case m ≥ 3 and (7.54) holds, (7.85) and (7.86) are valid also in case λ is non-constant.
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Now we analyse the differential inequality

∆u+ ρu+ βu1−2δ ≥ 0, (7.87)

Recall that in the geometric case we have equalities in (7.86). Non-existence for (7.87) can be obtained with
the parameters satisfying β > 0,δ < 0 and ρ ≤ 0. Indeed, with the techniques used above we prove the
validity of the following Theorem.

Theorem 7.88. Let (M, 〈 , 〉) be a complete, possibly compact Riemannian manifold satisfying (7.83) and
let ρ, β, δ ∈ R with β > 0 and δ < 0. If ρ ≥ 0 the differential inequality (7.87) has no solutions u satisfying

u∗ := sup
M

u > 0,

while if ρ < 0 there are no solutions u satisfying

u∗ <

(
− ρ
β

) 1
2δ

.

As a consequence of Theorems 7.82 and 7.88 we deduce the following

Corollary 7.89. Let (M, 〈 , 〉) be a complete, possibly compact Riemannian manifold satisfying (7.83). Then
(M, 〈 , 〉) has no Einstein-type structure as in (7.1) for some constants α, µ and λ with µ > 0, λ ≥ 0 and
Λ < 0. Here Λ is the constant of Proposition 7.40.

We conclude this section by considering the non-existence of solutions of (7.72) by means of the spectral
properties of the operator L := ∆− 2δρ. We set

u := e2δv

and we switch to the equation

∆u− 2δρu− 2δβu2 =

(
1 +

1

2δ

)
|∇u|2

u
,

equivalent to (7.72). Since u > 0 the above is, in turn, equivalent to

u∆u− 2δρu2 − 2δβu3 =

(
1 +

1

2δ

)
|∇u|2. (7.90)

We let λL1 (M) to denote the spectral radius of L and we observe that, by Rayleigh variational characterization,

λL1 (M) = inf
ψ∈C∞(M)

ψ 6≡0

�
M

(|∇ψ|2 + 2δρψ2)�
M
ψ2

= 2δρ+ λ∆
1 (M), (7.91)

with the obvious meaning of the notation. We next recall Theorem 3.3 of [30] taking the opportunity to
correct some typos there.

Theorem 7.92. Let (M, 〈 , 〉) be a complete manifold, a(x), b(x) ∈ C0(M) and suppose b(x) ≥ 0. Let H > 0,
K > −1 and A ∈ R be constants satisfying:

A ≤ H(K + 1)− 1. (7.93)

Assume that there exists ψ ∈ C2(M), ψ > 0, solution of the differential inequality

∆ψ +Ha(x)ψ ≤ −K |∇ψ|
2

ψ
on M.
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Then for any constant σ > −1 the differential inequality

u∆u+ a(x)u2 − b(x)uσ+1 ≥ −A|∇u|2

has no non-negative solutions u ∈ C2(M) satisfying

suppu ∩ {x ∈M : b(x) > 0} 6= ∅,

and (�
∂Br

ψ
τ+1
H (2−p)up(τ+1)

)−1

/∈ L1(+∞) (7.94)

for some constants p > 1 and τ > −1 such that

A ≤ τ ≤ H(K + 1)− 1.

We are now ready to prove

Theorem 7.95. Let (M, 〈 , 〉) be a complete, non-compact manifold and ρ, δ, β ∈ R constants such that

δβ > 0 and either 2δ ≤ −1 or 2δ > 0.

Suppose that
λ∆

1 (M) ≥ −2δρ. (7.96)

Then there exists no solution v of equation (7.72) on M satisfying

eγv ∈ L1(M), (7.97)

for some constant γ > 0 with

−1

δ
≤ γ ≤ 2.

Proof. From (7.96) and (7.91) it follows that λL1 (M) ≥ 0, where L = ∆ − 2δρ as above. By a result of
Fischer-Colbrie and Schoen in [19] there exists a smooth solution ψ > 0 on M of

Lψ = 0.

Setting u := e2δv we have the validity of (7.90) and we apply Theorem 7.92 with the choices

a(x) = −2δρ, b(x) = 2δβ > 0, A = −
(

1 +
1

2δ

)
, K = 0, H = 1, p = 2, τ =

γ

2
− 1, σ = 1.

The requests on δ and β in the statement show that the chosen parameter satisfy the required inequalities
of Theorem 7.92 and that (7.97) implies the validity of the corresponding (7.94). Since 2βδ > 0 then
{x ∈M : b(x) > 0} = M , but u > 0 and thus the conclusion follows at once.

Remark 7.98. We note that in case 2δ ≤ −1 equation (7.90) yields

∆u ≤ 2δρu. (7.99)

By Barta’s theorem

λ∆
1 (M) ≥ inf

M

(
−∆u

u

)
= −2δρ,

so that, in this case, assumption (7.96) is automatically satisfied.

As a geometric application of Theorem 7.95, using Remark 7.98, we get
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Corollary 7.100. Let (M, 〈 , 〉) be a complete, non-compact manifold. Then (M, 〈 , 〉) has no Einstein-type
structure as in (7.1) for some constants α, µ, λ in case Λ < 0, Λ the constant appearing in (7.41), and either
one of the following conditions hold

i) µ satisfies

µ ≤ −1

2

and (7.97) holds for some constant γ such that

− 1

µ
≤ γ ≤ 2;

ii) µ > 0, λ∆
1 (M) ≥ −2λ and (7.97) holds for for some constant γ such that

0 < γ ≤ 2;

We end the section with the following

Proposition 7.101. Let (M, 〈 , 〉) be a complete, non-compact manifold satisfying

vol(∂Br) ≤ Cear, (7.102)

for some constants C > 0 and a ≥ 0. Let 2δ ≤ −1, β ≥ 0 and suppose that

a2 + 8δρ < 0. (7.103)

Then equation (7.72) has no solutions on M .

Proof. Let v be a solution of (7.72) so that u := e2δv is a solution of (7.90). The choice of the parameter δ
yields the validity of (7.99) on M and therefore of (7.96). On the other hand by Theorem 6.8 of [10] and
(7.102) we have

λ∆
1 (M) ≤ a2

4
.

Putting together the latter and (7.96) we obtain

a2 ≥ −8δρ,

contradicting (7.103).

8 Some uniqueness results

We first prove a uniqueness result in the compact case for the equation

∆vv = ρ+ βe2δv, (8.1)

where ρ, β, δ ∈ R. It is clear that when − ρ
β > 0 the constant function

v := log

(
− ρ
β

) 1
2δ

(8.2)

is a solution of (8.1).
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Theorem 8.3. Let (M, 〈 , 〉) be a compact Riemannian manifold of dimension m ≥ 2 and let v ∈ C2(M) be
a solution of (8.1) on M for some constants ρ, δ and β 6= 0. Assume

Ric ≥ 2
m− 1

m
ρδ〈 , 〉 (8.4)

and if m = 2:

δ <
1

2
(8.5)

while if m ≥ 3 either

i) δ >
1

2
or ii) δ < − 2

m− 2
. (8.6)

Then − ρ
β > 0 and v is given by (8.2).

Proof. We fix τ ∈ R \ {0} and we perform the change of variable

u = e
v
τ

to obtain from (8.1) the validity on M of

∆u = ζ
|∇u|2

u
+ g(u), (8.7)

with

ζ := 1 + τ, g(u) :=
1

τ
(ρu+ βu1+2τδ). (8.8)

For σ ∈ R we define the vector field

V = uσ
(

1

2
∇|∇u|2 − ∆u

m
∇u
)
−
(
σ

2
+
m− 1

m
ζ

)
uσ−1|∇u|2∇u.

After a long computation, using Bochner’s formula and (8.7) we obtain

divV = uσ
[
|Hess(u)|2 − (∆u)2

m

]
+ uσRic(∇u,∇u)

− uσ−2

2m
[2(m− 1)ζ2 + 3mσζ +mσ(σ − 1)]|∇u|4

− uσ−1

2m
{[(m+ 2)σ + 2(m− 1)ζ]g(u)− 2(m− 1)ug′(u)}|∇u|2.

Next we insert the expression of g(u), g′(u) and the value of ζ given by (8.8) into the above to obtain

divV = uσ
[
|Hess(u)|2 − (∆u)2

m

]
− uσ−2

2m
A|∇u|4 − uσ+2τδ

2m
B|∇u|2

+
uσ

2m
[2mRic(∇u,∇u) +D|∇u|2],

(8.9)

where the coefficients A, B, D are given by
A := mσ2 + (3τ + 2)mσ + 2(m− 1)(1 + τ)2

B := [(m+ 2)σ + 2(m− 1)τ(1− 2δ)]
β

τ

D := −[2(m− 1)τ + (m+ 2)σ]
ρ

τ
.
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We integrate (8.9) on M and using the divergence theorem we infer

0 =

�
M

2muσ
[
|Hess(u)|2 − (∆u)2

m

]
−A

�
M

uσ−2|∇u|4 −B
�
M

uσ+2τδ|∇u|2

+

�
M

uσ[2mRic(∇u,∇u) +D|∇u|2].

(8.10)

We need to find values of the parameters σ, τ such that A ≤ 0, B ≤ 0 and minimize D on these values to
impose the condition on the Ricci curvature tensor to obtain

2mRic(∇u,∇u) +D|∇u|2 ≥ 0. (8.11)

Towards this aim we let

y := 1 +
1

τ
, γ := −σ

τ
.

Note that y 6= 1 and it is well defined since τ 6= 0. Rewriting A,B and D in terms of y and γ we see that
A ≤ 0 if and only if 2

m− 1

m
y2 − 2γy + γ2 − γ ≤ 0

B ≤ 0 if and only if 2β
m− 1

m+ 2
(1− 2δ) ≤ βγ

(8.12)

and (8.11) is implied by
2m

m+ 2
Ric ≥ ρ

(
2
m− 1

m+ 2
− γ
)
〈 , 〉. (8.13)

Since

|Hess(u)|2 − (∆u)2

m
≥ 0

by Newton’s inequality, to deduce from (8.10) that u (and therefore v) is constant it is enough to have one
strict inequality in one of the two inequalities of (8.12). Next we choose

γ := 2
m− 1

m+ 2
(1− 2δ). (8.14)

With this choice the second inequality of (8.12) is always satisfied, independently of β, with the equality
sign. Furthermore (8.13) becomes exactly assumption (8.4). With γ as in (8.14), A < 0 if and only if we can
choose y 6= 1 such that

(m+ 2)y2 − 2m(1 + 2δ)y +
m

m+ 2
(1− 2δ)[2(m− 1)(1− 2δ)−m− 2] < 0.

This is the case if the discriminant of polynomial expression in y is positive. Setting x := 1−2δ this amounts
to show that

x[m+ 2− (m− 2)x] > 0,

a fact guaranteed by the requirements in (8.5) if m = 2 and by (8.6) if m ≥ 3. Since v is constant from (8.1)
we obtain the conclusion of the Theorem.

Going back to the geometric origins of equation (8.1), see equation (7.41) of Proposition 7.40, we deduce
the next

Corollary 8.15. Let (M, 〈 , 〉) be a compact manifold of dimension m ≥ 2 with a gradient Einstein type
structure of the form {

Ricϕ + Hess(f)− µdf ⊗ df = λ〈 , 〉
τ(ϕ) = dϕ(∇f),
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for some α, µ, λ ∈ R, α 6= 0. Assume that Λ 6= 0, where Λ is the constant appearing on (7.41), that

Ric ≥ 2
m− 1

m
λ〈 , 〉 (8.16)

and that, for m = 2

µ <
1

2

while for m ≥ 3 either

i)µ < − 2

m− 2
or ii)µ >

1

2
.

Then f is constant so that Sϕ = mλ 6= 0 and{
Ricϕ = λ〈 , 〉
τ(ϕ) = 0.

In particular (M, 〈 , 〉) is harmonic-Einstein.

Next we prove a uniqueness result in the compact case for the equation

∆vv = β − 2λv, (8.17)

where λ, β ∈ R. It is clear that when λ 6= 0 the constant function

v :=
β

2λ
(8.18)

is a solution of (8.17).

Theorem 8.19. Let (M, 〈 , 〉) be a compact Riemannian manifold of dimension m ≥ 2 and let v ∈ C2(M)
be a solution of (8.17) on M for some constants λ and β 6= 0. Assume that (8.16) holds. Then λ 6= 0 and v
is given by (8.18).

The proof of the Theorem is postponed. Before, we add a couple of observations.

Remark 8.20. The case Λ = 0 is simpler, with the only restriction µ 6= 0. Indeed for Λ = 0, mu 6= 0, equation
(7.43) becomes ∆ff = λ/µ. Hence the function u = e−f > 0 solves

∆u = −λ
µ
u.

Compactness of M implies that u and therefore f is constant. Since u > 0, we must have λ = 0 and{
Ricϕ = 0

τ(ϕ) = 0.

In particular (M, 〈 , 〉) is harmonic-Einstein.

Putting together Corollary 8.15 with Remark 8.20 we obtain a result independent of the constant Λ.
Precisely we have

Corollary 8.21. Let (M, 〈 , 〉) be a compact manifold of dimension m ≥ 3 with a gradient Einstein-type
structure of the form {

Ricϕ + Hess(f)− µdf ⊗ df = λ〈 , 〉
τ(ϕ) = dϕ(∇f)

77



for some α, µ, λ ∈ R, α 6= 0. Assume that

Ric ≥ 2
m− 1

m
λ〈 , 〉

and

µ >
1

2
.

Then f is constant and ϕ is harmonic, so that{
Ricϕ = λ〈 , 〉
τ(ϕ) = 0.

In particular (M, 〈 , 〉) is harmonic-Einstein.

of Theorem 8.19. We fix τ ∈ R \ {0} and we perform the change of variable

u = e
v
τ

to obtain from (8.17) the validity on M of

∆u = ζ
|∇u|2

u
+ g(u), (8.22)

with

ζ := 1 + τ, g(u) :=
1

τ
(βu− 2λτu log u). (8.23)

For σ ∈ R we define the vector field

V = uσ
(

1

2
∇|∇u|2 − ∆u

m
∇u
)
−
(
σ

2
+
m− 1

m
ζ

)
uσ−1|∇u|2∇u.

As in the proof of Theorem 8.3, using Bochner’s formula and (8.22), we obtain

divV = uσ
[
|Hess(u)|2 − (∆u)2

m

]
+ uσRic(∇u,∇u)

− uσ−2

2m
[2(m− 1)ζ2 + 3mσζ +mσ(σ − 1)]|∇u|4

− uσ−1

2m
{[(m+ 2)σ + 2(m− 1)ζ]g(u)− 2(m− 1)ug′(u)}|∇u|2.

Next we insert the expression of g(u), g′(u) and the value of ζ given by (8.23) into the above to obtain

divV = uσ
[
|Hess(u)|2 − (∆u)2

m

]
− uσ−2

2m
A|∇u|4 +

uσ

2m

(
2λ log u− β

τ

)
B|∇u|2

+ uσ[Ric(∇u,∇u)−D|∇u|2],

where 
A := mσ2 + (3τ + 2)mσ + 2(m− 1)(1 + τ)2

B := (m+ 2)σ + 2(m− 1)τ

D := 2
m− 1

m
λ.

By choosing

σ = −2(m− 1)τ

m+ 2
(8.24)
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we obtain B = 0 and thus the above can be rewritten as

divV = uσ
[
|Hess(u)|2 − (∆u)2

m

]
− uσ−2

2m
A|∇u|4 + uσ[Ric(∇u,∇u)−D|∇u|2], (8.25)

We integrate (8.25) on M and using the divergence theorem we infer

0 =

�
M

uσ
[
|Hess(u)|2 − (∆u)2

m

]
− A

2m

�
M

uσ−2|∇u|4 +

�
M

uσ[Ric(∇u,∇u)−D|∇u|2]. (8.26)

We need to find values of the parameter τ such that A ≤ 0. Towards this aim we let

y := 1 +
1

τ
, γ := −σ

τ
.

Note that y 6= 1 and it is well defined since τ 6= 0. Rewriting A in terms of y, as in the proof of Theorem
8.3 above, we have

A ≤ 0 if and only if 2
m− 1

m
y2 − 2γy + γ2 − γ ≤ 0. (8.27)

Since

|Hess(u)|2 − (∆u)2

m
≥ 0

by Newton’s inequality and
Ric(∇u,∇u)−D|∇u|2 ≥ 0

by (8.16), to deduce from (8.26) that u (and therefore v) is constant, it is enough to have a strict inequality
in (8.27). Observe that, with the choice of σ given by (8.24),

γ = 2
m− 1

m+ 2
.

With this choice A < 0 if and only if we can choose y 6= 1 such that

(m+ 2)y2 − 2my +
m(m− 4)

m+ 2
< 0.

This is the case since the discriminant of the polynomial expression in y is given by 4m and it is positive.
Observe that since β 6= 0 and v is constant then λ 6= 0 and thus v is given by (8.1).

Going back to the geometric origins of equation (8.17), see equation (7.42) of Proposition 7.40, we deduce
the next

Corollary 8.28. Let (M, 〈 , 〉) be a compact manifold of dimension m ≥ 2 with a gradient Einstein type
structure of the form {

Ricϕ + Hess(f) = λ〈 , 〉
τ(ϕ) = dϕ(∇f),

(8.29)

for some α, λ ∈ R, α 6= 0. Assume that Λ 6= 0, where Λ is the constant appearing on (7.42) and that (8.16)
holds. Then f is constant so that Sϕ = mλ 6= 0 and{

Ricϕ = λ〈 , 〉
τ(ϕ) = 0.

In particular (M, 〈 , 〉) is harmonic-Einstein.
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Remark 8.30. Observe that if λ 6= 0 then the request Λ 6= 0 is not a restriction because one can add a
constant to f to obtain Λ 6= 0. However, observe that if λ = 0 and Λ = 0 then (7.42) becomes ∆ff = 0.
Thus the function u = e−f > 0 is harmonic on M . Compactness of M implies that u is constant. So is f ,
and we reach the same conclusion of Corollary 8.28 with λ = 0.

Putting together Corollary 8.28 and Remark 8.30 we have the validity of

Corollary 8.31. Let (M, 〈 , 〉) be a compact manifold of dimension m ≥ 2 with a gradient Einstein-type
structure of the form (8.29) for some α, λ ∈ R, α 6= 0, and such that (8.16) holds. Then f is constant and
ϕ is harmonic, so that {

Ricϕ = λ〈 , 〉
τ(ϕ) = 0.

In particular, (M, 〈 , 〉) is harmonic-Einstein.

Remark 8.32. In case λ > 0 then (8.16) implies via Myers’ Theorem the compactness of M . Observe also
that (8.16) is equivalent to

αϕ∗〈 , 〉N ≥ Hess(f) +
m− 2

m
λ〈 , 〉.

We now come to analyze the uniqueness of the second geometric equation in Proposition 7.40, that is,
(7.44). It is worth to consider it in the form (7.85). We begin with the prototype equation, for u > 0

∆u+ ρu− βu log u = 0 on M. (8.33)

Note that the positive constant e
ρ
β is a solution of (8.33), when β 6= 0. To show uniqueness we shall use

an unpublished comparison result due to G. Albanese in [2]. It extends some previous work in [42] to the

case of a very weak superlinearity uf̂(u) including the case of f̂(u) = log u as in (8.33). For f̂ ∈ C1(R+) we
require 

i) lim
t→+∞

f̂(t) = +∞

ii) lim inf
t→+∞

t1+εf̂ ′(t) > 0 for every ε > 0

iii) f̂ ′ is positive and ζ-decreasing on R+

iv) lim
t→+∞

f̂(t)

t2f̂ ′(t)
= 0,

(8.34)

where ζ-decreasing on R+ means that the constant ζ satisfies 0 < ζ ≤ 1 and for every t ∈ R+

inf
s∈(0,t]

f̂ ′(s) ≥ ζf̂ ′(t).

Theorem 8.35 ([2]). Let (M, 〈 , 〉, e−h) be a complete, non-compact weighted manifold, ζ ∈ R, τ ≥ 0 and
µ ∈ [0, 1] satisfying the condition

2 + ζ + τµ > 0.

Let a(x), b(x) ∈ C0(M), suppose that b(x) > 0 on M , that there exists a constant C > 0 such that for
r(x) >> 1

b(x) ≥ Cr(x)ζ

and finally that

sup
x∈M

a−(x)

b(x)
r(x)τ(1−µ) < +∞,

where a− is the negative part of a. Let f̂ ∈ C1(R+) satisfy (8.34) and let u, v ∈ C2(M) be positive solutions
on M of

∆hu+ a(x)u− b(x)uf̂(u) ≥ 0 ≥ ∆hv + a(x)v − b(x)vf̂(v)
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such that for some constant B ≥ 1 and for r(x) >> 1

v(x) ≥ 1

B
r(x)τ , u(x) ≤ Br(x)τ .

Assume

lim inf
r→+∞

log volh(Br)

r2+ζ+τµ
< +∞.

Then u ≤ v on M .

Note that the function
f̂(t) := log t, t ∈ R+

satisfies (8.34). From Theorem 8.35 and the latter observation we deduce the following

Proposition 8.36. Let (M, 〈 , 〉) be a complete, non-compact, manifold and let β > 0 and ρ ≥ 0. Assume
that for some constant τ ≥ 0

lim inf
r→+∞

log volBr
r2+τ

< +∞. (8.37)

Then equation (8.33) has at most one positive solution u satisfying, for some constant B ≥ 1 and for r >> 1

1

B
r(x)τ ≤ u(x) ≤ Br(x)τ . (8.38)

Note that, in case τ = 0 the assumption ρ ≥ 0 can be relaxed to ρ ∈ R. In particular in this setting the only
bounded and bounded away from zero positive solution u of (8.33) is u = e

ρ
β .

Suppose now that on the complete, non-compact Riemannian manifold (M, 〈 , 〉) we have an Einstein-type
structure of the form {

Ric− αϕ∗〈 , 〉N + Hess(f) = λ〈 , 〉
τ(ϕ) = dϕ(∇f)

(8.39)

for some α, λ ∈ R and ϕ : M → (N, 〈 , 〉N ). Assume λ 6= 0. Then, by adding a constant to f we can always
suppose that equation (7.44) has the form

∆ff + 2λf = 0.

Thus (7.85) for u = e−f becomes
∆u+ 2λu log u = 0. (8.40)

Observe also that the constant α and the smooth map ϕ do not appear into (8.40). Thus if we have a second
Einstein-type structure {

Ric− ᾱϕ̄∗〈 , 〉N̄ + Hess(g) = λ〈 , 〉
τ(ϕ̄) = dϕ̄(∇g)

(8.41)

for some ᾱ ∈ R and ϕ̄ : M → (N̄ , 〈 , 〉N̄ ), up to adding a constant to g the function v := e−g satisfies (8.40)
again. From Proposition 8.36 we then deduce the next

Corollary 8.42. Let (M, 〈 , 〉) be a complete, non-compact, manifold, α, ᾱ ∈ R+, ϕ : M → (N, 〈 , 〉N ) and
ϕ̄ : M → (N̄ , 〈 , 〉N̄ ) smooth maps and f, g ∈ C∞(M) potential functions on M realizing the two Einstein-type
structures (8.39) and (8.41) with λ < 0. Suppose that, for some constants B ≥ 1 and τ ≥ 0, for r(x) >> 1

− logB − τ log r(x) ≤ f(x), g(x) ≤ logB − τ log r(x).

If

lim inf
r→+∞

log volBr
r2+τ

< +∞

then
f = g + C on M,

for some constant C ∈ R.
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It remains to analyze the geometric equation (7.43) that we consider in the form (7.86). Thus, the
prototype equation is

∆u+ ρu− βu1−2µ, u > 0 (8.43)

with µ, ρ, β ∈ R. Note that the non-linearity can be written in the form uf̂(u) with f̂(t) = t−2µ. Thus the
requests appearing in (8.34) are satisfied if and only if µ < 0. Applying Theorem 8.35 we have

Theorem 8.44. Let (M, 〈 , 〉) be a complete, non-compact manifold. Let µ < 0, β > 0 and τ > 0. Assume
that (8.37) holds. Then equation (8.43) has at most one positive solution u satisfying (8.38) for some constant
B ≥ 1 and r(x) >> 1. In particular, if ρ > 0 the only bounded and bounded away from zero positive solution
u of (8.43) is

u =

(
ρ

β

) 1
2µ

.

Geometric conclusions similar to those contained in Corollary 8.42 are left to the interested reader.
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