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Abstract
The paper presents a new insight of a recently proposed method named partial pos-
sibilistic regression path modeling. This method combines the principles of path
modeling with those of possibilistic regression to model the net of relations among
blocks of variables, where a weighted composite summarizes each block. It assumes
that randomness can refer back as the measurement error, which is the error in mod-
eling the relations between the observed variables and the corresponding composite,
and the vagueness to the structural error, which is the uncertainty in modeling the
relations among the composites behind each block of variables. The comparison of
the proposed method with a classical composite-based path model is based on a sim-
ulation study. A case study on the use of Wikipedia in higher education illustrates a
fruitful usability context of the proposed method.

Keywords Interval data · Randomness–vagueness · Structural equation modeling ·
Least absolute values

1 Introduction

Socio-economic and natural systems can be defined as having complex relationships
between sets (or blocks) of variables. Regression analysis is likely the statistical
method most widely used to study the dependencies between two sets of variables.
However, when the phenomenon increases in complexity, a single equation model
becomes inadequate for analyzing and describing the data dependence structures.
Complex as the mathematical model may be, it is approximate and can account for a

B Rosaria Romano
rosaroma@unina.it

Francesco Palumbo
fpalumbo@unind.it

1 Department of Economics and Statistics, University of Naples Federico II, Naples, Italy

2 Department of Political Sciences, University of Naples Federico II, Naples, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-020-01026-7&domain=pdf
http://orcid.org/0000-0002-9708-1753


616 R. Romano, F. Palumbo

simplified abstraction of the reality. Therefore, classical statistical models are devel-
oped under the following paradigm (Judd et al. 2011):

DAT A = MODEL + ERROR.

Regression analysis can model only direct relationships between independent and
dependent variable(s). It strongly limits the variables in that they cannot have any
indirect effects on each other. The path analysis approach (Tukey 1964; Alwin and
Hauser 1975) offers a way to overcome such a limitation by allowing to model a set of
relationships between observed variables. In other words, path analysis is constructed
through a system of simultaneous simple or multiple regressions. Several approaches
exist to path models; the most known is structural equation modeling (SEM) (Bollen
1989; Kaplan 2008). SEM combines the ideas behind path analysis with the basic
principles of confirmatory factor analysis (Thurstone 1931),whichpresumes that fewer
factors than the number of observed variables are responsible for the shared variance-
covariance matrix. Through this analysis, SEM carries the idea that different subsets
or blocks of variables are expressions of different concepts. Then latent variables
(LVs) are those that cannot be directly observable but are measurable through a set of
manifest variables (MVs). The relationships between the LVs define the structural or
inner model, whereas the relationships between each LV and its block of MVs define
the measurement or outer model. Partial least squares (PLS) represents an alternative
approach to path models named PLS path modeling (PLSPM). Like the SEM, PLSPM
aims to study the relationships among blocks ofMVs, thought PLS estimates the net of
linear relations among the blocks through a system of independent equations based on
simple and multiple regressions. A peculiarity of PLSPM is that a weighted composite
summarizes each block of MVs (Bollen and Bauldry 2011), and the relations among
the composites define the structural model. The underlying assumption is that the
relevant information regarding the relationships within and between the blocks of
MVs are carried through the composites (Dolce et al. 2018). Although PLSPM has
been increasing in popularity, it has also been strongly criticized as an alternative
estimation method of a SEM model (Rönkkö and Evermann 2013; Rönkkö 2014).
On the other hand, a recently proposed modified PLSPM allows overcoming some of
these weaknesses (Dijkstra and Henseler 2015b, a), and most recently, a new model
has been proposed (Dijkstra 2017).

Specifically, in PLSPM, there are two different sources of errors that correspond to
the outer model and the innermodel, respectively. Residuals represent the gap between
the precise mathematical model and reality and are the estimates of the error terms.
According to conventional rules, a model fits the data (and it is then useful for describ-
ing the reality) if the total residuals are less than a priori defined thresholds. Dealing
with two different types of residuals, this choice of the threshold may become arbi-
trary, and the results interpretationmeaningless. The present work aims to consider the
innovative approachwithin the pathmodels framework that is named partial possibilis-
tic regression path modeling (PPRPM) (Romano and Palumbo 2016, 2017), which
separately but consistently considers the measurement and structural model errors.
More properly, the following two types of errors are defined: (i) ameasurement model
error that refers to a variability not explained by the composite that the corresponding

123



Partial possibilistic regression path modeling: handling... 617

MV is supposed to measure (Romano and Palumbo 2017) and (ii) a structural model
error that refers to a disturbance in the prediction of the dependent composites by the
respective predictors. Therefore, measurement model residuals refer to the MVs and
can be interpreted using the usual reading key, but structural model residuals cannot;
structural model residuals refer to the composites that cannot be directly observed
or that are assumed to be determinations of known random variables: these residuals
represent the model’s inadequacy in describing relationships between composites. In
other words, the structural model residuals account for the model’s inadequacy to
represent real-world complexity.

In statistical reasoning, one cannot disregard the uncertainty that comes with rea-
soning under partial knowledge using mathematical models (Coppi 2008). Partial
knowledge may be due to different causes: data sampling errors, mathematical model
inadequacies, and/or fragmented knowledge of causal relationships. Bezdek (1981)
describes the uncertainty in mathematical models as belonging to three categories:
(i) inaccurate measurements, (ii) random occurrences, and (iii) vague descriptions.
In the present study, the researchers assigned the measurement error to the first two
categories and the structural error to the third category. Therefore, the solutions of
the inner model parameters can be assumed to belong to epistemic sets. According
to Couso and Dubois (2014), an epistemic set roughly captures information about a
population via observations. It is assumed that the true parameters can be estimated
by a random variable that takes values in a given set, but the estimator probability
distribution is unknown. Readers interested in the debate between epistemic and ontic
sets may refer to Couso and Dubois (2014) and Dubois (2014). Typically an epistemic
model delivers an imprecise output, given the available incomplete information. The
present work proposes an epistemic modeling in the context of interval-based repre-
sentations. Actually, interval valued data can be interpreted as a special case of an
LR2 fuzzy number X̃ , with membership function μX̃ (z) (for 0 ≤ z ≤ 1), and defined
by four parameters, namely the left center (c1), the right center (c2), the left spread
(l > 0) and the right spread (r > 0):

μX̃ (z) =

⎧
⎪⎨

⎪⎩

L
( c1−z

l

)
z ≤ c1,

1 c1 ≤ z ≤ c2,

R
( z−c2

r

)
z ≥ c2.

Note that {L(z), R(z)} : R → [0, 1], then if c1 = c2 and l = r = 0 we get an interval
(Ferraro and Giordani 2017).

In the proposed approach, measurement model residuals refer to the random occur-
rence in the data, whereas interval-valued structural model estimations account for the
model’s vague description of the real world in the epistemic view.

The present work considers an alternative approach within the path models frame-
work: partial possibilistic regression path modeling (PPRPM) (Romano and Palumbo
2016, 2017). Themost innovative aspect of PPRPM is the differentmethod it offers for
considering uncertainty in the measurement and structural models. On the one hand,
this method gives rise to possibilistic regression (PR) (Tanaka and Guo 1999), which
accounts for vagueness in the parameters that govern the system structure by yielding
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interval path coefficients. On the other hand, this method allows for the least absolute
deviation (LAD) regression (Bloomfield and Steiger 1983), which accounts for inac-
curate measurements and random occurrences. The work aims to deepen the study of
the potential of the PPRPM also through a simulation study that allows evaluating the
effect of various measurements and structural errors.

This paper is organized as follows: In Sect. 2, the methodological framework is
introduced; in Sect. 3, the proposed method is explained; a simulation study and a
practical application of the proposed method are discussed in Sects. 4 and 5, respec-
tively; and finally, in Sect. 6 concluding remarks are made.

2 Background

PPRPM depends on the philosophy of the composite-based approach. Each composite
is calculated as a weighted aggregate of its corresponding MVs, and its partial result
is then used to define the net of relationships within and between the blocks of MVs.
Among the composite-based models, PLSPM (Tenenhaus et al. 2005; Wold 1975) is
the closest to the formalization presented in this paper. However, notwithstanding that
PLSPM is based on the least square criterion, this does not prevent us from adopting
(almost) the same notation as in (Vinzi et al. 2010) in the rest of the paper. Differently
from the classical composite-based methods, PPRPM introduces two novelties: (i) the
relationships in the measurement model are defined through least absolute deviation
regression (Bloomfield and Steiger 1983) to model the randomness; (ii) the relation-
ships in the structural model are described through possibilistic regression (Tanaka
and Guo 1999) to model the vagueness. The remainder of this section consists of
three subsections: Sect. 2.1 PLSPM algorithm, which is the related method used as a
comparison; Sect. 2.2 a brief description of the LAD regression and the; Sect. 2.3 PR
formalization.

2.1 Partial least squares pathmodeling

According to the notation used in Vinzi et al. (2010), the typical data structure in a
PLSPM is composed by H (h = 1, 2 . . . , H ) blocks of manifest variables recorded
on a set of N statistical observations. Each block consists of Ph variables, where the
generic variable of the generic block is referred to as xph , ph = 1, 2, . . . , Ph , for any
h ∈ H , so that

∑
h Ph = P . The H blocks of variables are arranged into a partitioned

data matrix

X = [X1,Xh, . . . ,XH ],

whereXh is the generic block. According to the net of relations among the composites,
each blockXh can be referred to as endogenous or exogenous. In the structural model,
the endogenous compositesη are dependent variables,while the exogenous composites
ξ are independent variables. In the following equations, it is assumed without loss of
generality that the composites and the MVs are scaled to zero mean and unit variance
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so that the location parameters can be eliminated. The basic structural equation model
(Bollen 1989) can be described by the following equations:

xph =wphηh + εph , (1a)

xph =wph ξh + δph , (1b)

ηh =Bηh′ + �ξh′′ + ζh, (1c)

where h �= h′ �= h′′ may refer either to endogenous or exogenous composites. The
equations defined in (1a) and (1b), which are also referred to as outer relations, form the
measurement model, and the generic equation defined in (1c) formalizes the structural
model. This equation is referred to as inner relation. Here the wph is the loading
associated to the ph MV in the h block, B and � correspond to the path coefficients
linking the corresponding η and ξ composites. Although in the classic SEM notation
the variables associated with the endogenous composite are commonly referred to as
yph , here it is preferred to keep the xph notation consistently with the previous notation
in which the variousXh blocks were defined as constitutive elements of the partitioned
matrix X.

Regarding the error terms, ζh represents errors in the inner relations (i.e., distur-
bances in the prediction of endogenous composites), whereas εh and δh represent
imprecision in the measurement process.

In PLSPM, an iterative procedure permits estimations of the composite scores
and loadings, while structural coefficients are obtained from ordinary least square
regressions of the estimated composites. As PLSPM notation makes no distinction
between endogenous and exogenous composites or betweenblocks ofMVs (Vinzi et al.
2010), the following equations refer to any block of MVs as Xh and each composite
as ξh , where h = 1, . . . , H .

The algorithm computes the composite scores by alternating the outer and inner
estimations until convergence. The procedure starts on the centered (or standardized)
MVs by choosing arbitrary weightswph . In the external estimation, the h-th composite
is estimated as a linear combination of the corresponding MVs:

vh ∝
Ph∑

ph=1

wphxph = Xhwh, (2)

where vh is the standardized outer estimate of the composite ξh , and the symbol ∝
means that the left side of the equation corresponds to the standardized right side. In
the internal estimation, the composite is estimated by considering its links with the
other h′ adjacent1 composites:

ϑh ∝ ∑
h′ ehh′vh′ , (3)

where ϑh is the standardized inner estimate of the latent variable ξ h and the inner
weights ehh′ , according to the so-called centroid scheme (Tenenhaus et al. 2005), are

1 In the PLSPM notation, two variables are said to be adjacent if they are related to each other in the same
structural equation (Chin et al. 1998).
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equal to the sign of the correlation between vh and vh′ (where h, h′ = 1, . . . , H ). Alter-
native weighting schemes are provided in the original algorithm (Lohmöller 1989). In
PLSPM, these first two steps update the outer weights wph , which are the regression
coefficients in the simple regressions of the p-thmanifest variable of the h-th block xph
on the inner estimate of the h-th latent variable ϑh . The outer weights also correspond
to the covariances as ϑh becomes standardized:

wph = cov(xphϑh). (4)

Even for the external weights, the original algorithm provides an alternate scheme
(Lohmöller 1989). The algorithm iterates until convergence, which can formally be
demonstrated only for one- and two-block models (Lyttkens et al. 1975) in the general
case; moreover in the model with more than two blocks, recent works showed that
the PLSPM algorithm optimizes different criteria according to the mode chosen for
the computation of the outer weights (Hanafi 2007; Tenenhaus and Tenenhaus 2011).
After convergence, the structural or path coefficients are estimated through single and
multiple linear regressions of the estimated composites:

ξh = βh0 +
∑

h′:ξh′→ξh

βhh′ξh′ ,+ζh, (5)

where ξ h is the generic dependent composite, and βhh′ is the generic path coefficient
interrelating the h′-th independent composites to the h-th dependent composite (where
h �= h′). The notation → indicates that ξh′ and ξh are adjacent composites.

2.2 Least absolute deviation regression

LAD regression aims to study the relationship between a dependent variable Y and a
set of predictors X1, . . . , Xm, . . . , XM through the linear function

Y = λ1X1 + · · · + λmXm + · · · + λM XM + ε, (6)

whereλm indicates the generic regression coefficient, X1 is a unitary vector, and ε is the
error term. Parameters λm are estimated by solving the following linear programming
problem:

{λ1, . . . , λm, . . . , λM } = argmin
λm

= |Y − (λ1X1 + · · · + λmXm + · · · + λM XM )|
(7)

LAD regression does not have an analytical solvingmethod; thus, an iterative approach
is required. However, LAD regression is resistant to effects caused by outliers in
the data since it places equal emphasis on all observations (Koenker 2009). Those
interested in learning more about LAD are referred to Bloomfield and Steiger (1983)
work.

123



Partial possibilistic regression path modeling: handling... 621

2.3 Possibilistic regression

The purpose of PR is to explain a dependent variable as an interval output in terms of
the variation in the explanatory variables. Generally speaking, PR defines the relation
between one dependent variable Y and a set of M predictors X1, . . . , Xm, . . . , XM

through a linear function containing interval-valued coefficients:

Y = ω̃1X1 + · · · + ω̃mXm + · · · + ω̃M XM , (8)

where ω̃m denotes the generic interval-valued coefficient, andωm andωm are the upper
and lower bounds, respectively. Interval-valued coefficients, referred to as interval
coefficients throughout the rest of this paper, are also defined in terms of the midpoint
and the spread (also called the range), ω̃m = {cm, am}:

cm = 1

2
(ωm + ωm) am = 1

2
(ωm − ωm).

There are no restrictive assumptions on the model. Any deviations between the data
and the linear models were assumed to be caused by the vagueness of the parameters
and not by measurement errors, unlike classical statistical regression. This means that
there is no external error component in PR. All uncertainties are embedded in the
spread of the coefficients, such that PR minimizes the total spread of the interval
coefficients

min
am

∑M
m=1

(∑N
n=1 am |xnm |

)
, ∀ m = 1, . . . , M, ∀ n = 1, . . . , N , (9)

under the following linear constraints

∑M
m=1 cmxnm + α

∑M
m=1 am |xnm | ≥ yn,

∑M
m=1 cmxnm − α

∑M
m=1 am |xnm | ≤ yn, ∀n = 1, . . . , N , (10)

satisfying the following conditions: (i) am ≥ 0; (ii) cm ∈ R; (iii) xn1 = 1.
The constraints in Eq. (10) guarantee the inclusion of thewhole given data setwithin

the estimated boundaries, where xnm represents the generic value of Xm and n =
(1, . . . , N ). The degree of possibility α varying in ]0, 1] is a subjective measure that
depends on the context; decreasing theα coefficient expands the estimated intervals. In
the rest of the paper the α coefficient is set to 1 since this corresponds to the minimum
am . Those interested in learning more about PR, and in the choice of α specifically,
are referred to Tanaka and Guo (1999).

Wang and Tsaur (2000) provided a suitable interpretation of the regression inter-
val by proposing an index of confidence (IC), which is similar to the traditional R2

in statistics. The index is defined as the ratio between the SSR (regression sum of
squares) and the SST (total sum of squares), where the former represents the variation
in the interval midpoints between the lower and upper bounds, and the latter measures
the total variation in the observed dependent variables between the lower and upper
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bounds. Then IC = SSR/SST , with 0 ≤ IC ≤ 1, and it gives a measure of the vari-
ation in Y between Y and Y . A higher IC means that a well-estimated PR is modeled
and can support a better prediction. The literature offers several alternatives to fuzzy
or interval regression (Diamond 1990; Kim et al. 1996; Marino and Palumbo 2002;
Ferraro et al. 2010; Petit-Renaud and Denœux 2004), yet Tanaka and Guo (1999)
possibilistic approach remains the only one that estimates interval-valued regression
coefficients capable of embedding the entire error component. One of the strongest
criticism of PR concerns its sensitivity to anomalous observations. Some procedures
for reducing the effect of outliers have been presented (Wang et al. 2015; Nadimi et al.
2013).

3 Handling uncertainty in pathmodels: Partial possibilistic
regression pathmodeling

In composite-based SEM, the three residual terms ε, δ, and ζ (see Eqs. (1a)–(1c))
play a crucial role in the modeling process. PLSPM aims to minimize the sum of the
residual variances of all the dependent variables in the model, both latent and observed
(Vinzi et al. 2010). Without loss of generality, in the following, the two residual terms
ε and δ are attributed to the measurement error. Therefore, ζ represents the error in the
structural (inner) relations (i.e., disturbances in the prediction of endogenous compos-
ites), whereas ε and δ represent the impreciseness in the measurement (outer) process.
The randomness is relegated to the measurement model, and in the inner model, the
only source of uncertainty is due to the relations among the composites. However, in
the model, through the alternate inner and outer estimation of the composite scores,
the two error components (structural and measurement) interact and coexist. Then,
the error components are never modeled simultaneously in the same equation, and
it follows that an analytical formulation of their propagation is not a priori possible
(Baudrit et al. 2007). According to the epistemic approach to the partial knowledge,
PPRPM treats the vagueness in the prediction of the composites differently from the
imprecision in the measurement of MVs. Thus, PPRPM differs from composite-based
SEM in that elements in the coefficient matrices, such as B and � in Eq. 1c, are
interval-valued, but vector residual ζ is no longer included in the model. Therefore,
PPRPM gives rise to PR that accounts for the imprecise nature or vagueness in our
understanding of the phenomena, by including interval-valued path coefficients in the
structural model. Consistently with the structural model estimation that minimizes the
sum of the spreads of the interval parameters, the estimation process of the measure-
ment model is based on the least absolute values (LAD). LAD regression minimizes
the sum of the absolute values of the residuals. Measurement model residuals estimate
the same type of error as in the PLSPM outer model, that is the imprecision in the
measurement process. It is worth noting that, the presence of outliers affects the mea-
surementmodel; therefore, their impact on the structuralmodel is thenmitigated by the
LAD outer estimation because of its well-known robustness (Dodge 1997; Koenker
2009) that helps significantly to protect the model against the effect of anomalous
observations. The thrust of the paper does not concern the sensitivity of the model
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but the determination of a precise model that describes the unobserved constructs that
take the form of intervals (Dubois 2014).

3.1 The algorithm

The PPRPM estimation process is an L1 norm problem that independently minimizes
the sum of the absolute values of the residuals in the measurement model and the sum
of all the ranges of the interval-valued coefficients in the structural model. PPRPM
follows the same iterative procedure as PLSPM, alternating the inner and outer esti-
mations of the composite scores; however, the algorithm computes the outer weights
and the path coefficients in a different way.

The outer weight wph is the regression coefficient in the LAD regression of the
p-th MV of the h-th block xph on the inner estimate of the h-th composite ϑh :

xph = wphϑh + ε ph . (11)

The structural (or path) coefficient is the regression coefficient in the PR among the
estimated composites:

ξ̃ j = β̃0 j +
∑

h:ξh→ξ j

β̃h jξh, (12)

where ξ j ( j = 1, . . . , J and J < H ) is the generic endogenous (dependent) latent

variable and β̃h j is the generic interval path coefficient in terms of the midpoint and the
range β̃h j = {chj ; ahj }, or equivalently [β

h j
, βh j ] = [chj ±ahj ], which interrelates the

h-th exogenous (independent) variable to the j-th endogenous variables (where h �=
j). The higher the midpoint coefficient, the higher the contribution to the prediction
of the endogenous composite is. The higher the spread of the coefficient, the higher
the vagueness in the relation among the composites is.

In PPRPM, themodel can be validated using the same criteria defined in the PLSPM
framework. In particular, this criterion applies to the assessment of the measurement
model, which can be validated through the communality index (Tenenhaus et al. 2005).
However, the same reasoning cannot be extended to the validation of the structural
model, and even less so to that of the globalmodel. In PPRPM, each structural equation
is modeled with PR, which includes the error term in its parameters; thus, there is no
residual term. The quality of the model can be measured here with the IC index
presented in Sect. 2.3.

About the whole computational complexity of the algorithm, the outer and inner
estimations are obtained by solving a linear programming (LP) problem through the
simplex algorithm. Specifically, in the outer model estimation, the algorithm inde-
pendently computes P LAD regressions, and each solution has a computational
complexity equal to O(ln N ) (where N refers to the total number of observations).
The inner model estimation algorithm solves as many LP problems as the number
of structural equations with the simplex algorithm. Each problem involves a simplex
algorithm with the computational complexity depending on N and on the number of
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Fig. 1 Path diagram of the structural and measurement models in the simulation study

independent variables according to O(lnmN ), where m refers to the number of pre-
dictors. The whole algorithm (the outer and the inner step) iterates until convergence is
satisfied. According to the evidence from the simulation studies (see the following sec-
tion), the whole algorithm requires negligible computational time, as the complexity
is of ln N order, and the convergence is empirically achieved.

4 A simulation study

The simulations focus on the effect of various measurement and structural errors,
combined with different degrees of skewness and diverse sample size. They were
mainly based on four previous studies (Cassel et al. 1999, 2000; Westlund et al. 2001;
Vilares et al. 2010).

The sensitivity of the results was investigated with respect to:

– Skewness (symmetric, highly skewed).
– Sample size (50, 500).
– Level of noise in the structural model (ζ : 10, 30%).
– Level of noise in the measurement model (ε: 10, 30%).

The PLSPM and PPRPM estimations of the structural and measurement models were
compared in terms of bias and precision (mean squared error (MSE)). The distribution
of the estimated scores of the composites is also of special interest.

4.1 Data-generating process

The data were generated according to a structural model (see Fig. 1) consisting of two
exogenous composites (ξ1 and ξ2) and one endogenous composite (ξ3).

The inner model was defined as:

ξ3 = β1ξ1 + β2ξ2 + ζ,
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Fig. 2 Examples of distributions of exogenous composite scores generated in the simulation study: sym-
metric (left plot) and highly skewed (right plot)

Table 1 Simulation design
β(6, 6) β(9, 1)

ε (%) ζ (%) n = 50 n = 500 n = 50 n = 500

10 10 A B I L

30 10 C D M N

10 30 E F O P

30 30 G H Q R

where β1 and β2 are the path coefficients, and ζ is the random disturbance effect.
The following values were assumed: β1 = 0.9;β2 = 0.3. The measurement model
equations for the generic latent variables ξh , with h = 1, . . . , 3, were:

x1h = λ1hξh + ε1h,

x2h = λ2hξh + ε2h,

x3h = λ3hξh + ε3h,

where λ1h , λ2h , and λ3h are the loadings, and ε1h , ε2h , and ε3h are the random noise
effects. The following values were assumed: λph = 0.75; 0.80; 0.85 for p = 1, . . . , 3.
The exogenous composites ξh were generated from the beta distribution βu,v: B(6,6)
symmetric case, and B(9,1) highly skewed. The noises ζ and ε were realizations of
the continuous uniform distribution U (−a, a), with an expectation of zero. Variance
accounted for two levels of the corresponding dependent variable variance: 10% (low
noise) and 30% (medium noise). The simulation of the disturbance components is a
ticklish choice in such a scheme. As amatter of fact, it is not feasible to simultaneously
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Fig. 3 Bias of scenarios A, B, C, D, E, F, G, and H with symmetric MVs (β(6, 6))

take under control the endogenous composites and the MVs distributions, because
they are defined as the sum of the variables. To appreciate the skewness effect on
the model parameter estimations (and on the latent variables), according to Cassel
et al. (1999, 2000) and Westlund et al. (2001), the two sources of uncertainty were
generated from the uniform distribution. According to our formulation, the vagueness
in the model inadequacy is fully represented by the whole set of relationships among
the composites. To appreciate the vagueness, the simulation study evaluates the effects
of the different scenarios defined as the combination of the latent variables and the
error term simulations.

By way of example, Fig. 2 shows the corresponding kernel density plot of the
distributions of the exogenous composite scores in the symmetric (left plot) and skewed
context (right plot). For the two cases, samples of 50, and of 500 were generated, and
the data was then re-scaled to the interval [1, 9]. The sampling distributions consist of
500 replicates of the model estimations.

Table 1 shows the selected simulation settings. As can be seen, the complete design
includes 16 scenarios, derived from the intersection of the four factors (ε, ζ , n, βu,v),
each with two levels. Scenarios from A to H allow us to compare the two methods
with increasing sample size and as the level of noise in the inner and outer mod-
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Fig. 4 Bias of scenarios I, L, M, N, O, P, Q, and R with skewed MVs (β(9, 1))

els increases. The remaining scenarios compare the two methods according to the
increasing skewness in the MVs.

4.2 Results

The results in Table 2 offer a comparison between the two methods with increasing
sample size (nA = 50, nB = 500). The estimations are negatively biased for both
methods. According to the literature (Schneeweiss 1993), this result was expected for
PLSPM; the values shown in Table 2 confirm these results for PLSPM and show that
the same occurs for PPRPM. The bias does not seem to be influenced by the increasing
sample size. As expected, the PPRPM parameter MSE is larger than the PLSPMMSE
in all the scenarios. In PPRPM there is no error term in the inner model; thus, the error
component reflects on the parameter estimations. This error component represents
the extent of vagueness that in PLSPM is discarded in the model residuals. Moving,
respectively, from scenarios A to C and B to D, the bias increases according to the
increase in the measurement error term (from 10 to 30%).

The results in Table 3 allow comparing the bias and the precision when the level
of noise in the inner and outer models increases. More specifically, from scenarios E
to G (n = 50), and from F to H (n = 500) only the measurement model error varies

123



632 R. Romano, F. Palumbo

Fig. 5 Absolute values of skewness of MVs in scenarios I, L, M, N, O, P, Q, and R

(10–30%). The Table 3 shows that the noise level increase in the outer models has a
proportional and direct effect on the estimation of the structural model.

Tables 4 and 5 aim to show the effect of the skewness on the model parameter
estimations. These tables replicate the same structure of the two previous tables, but
the exogenous composites are generated from the skewed Beta distributions. In this
case, what is important to note is that PLSPM is slightly affected by the skewness.
This effect is well-known among the PLSPM community and is generally considered
an advantage in terms of robustness (Cassel et al. 2000; Vilares et al. 2010). However,
skewed distributions mean that in one or more composites there is a tendency toward
the higher or lower scores in the scale. This is important evidence for the researcher
and should be taken properly into account. In PLSPM, such skewed behavior affects
the model residuals. However, it is taken into account by the inner model parameters
in PPRPM. Tables 4 and 5 highlight that the PPRPM estimations have higher bias,
generally. This is due to the larger spreads of the interval-valued parameters toward the
direction of the asymmetry. Figures 3 and 4 summarize the results of the simulation
study. The average distortion (absolute values) in the scenarios are compared. Figure 3
shows that in all scenarios except E and G the PPRPM has a smaller distortion than
that of PLSPM. That is, with increasing structural error (from 10 to 30%), PPRPM
has greater distortion, but it becomes smaller when the sample size increases (from
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Table 6 Indicators used to measure the constructs

Label Indicators

SA1 It is important to share academic content in open platforms

SA2 It is important to publish research results in other media than academic journals or books

SA3 It is important that students become familiar with online collaborative environments

PU1 The use of Wikipedia makes it easier for students to develop new skills

PU2 The use of Wikipedia improves students’ learning

PU3 Wikipedia is useful for teaching

IM1 The use of Wikipedia is well considered among colleagues

IM2 In academia, sharing open educational resources is appreciated

IM3 My colleagues use Wikipedia

BI1 In the future I will recommend the use of Wikipedia to my colleagues and students

BI2 In the future I will use Wikipedia in my teaching activity

UB1 I use Wikipedia to develop my teaching materials

UB2 I use Wikipedia as a platform to develop educational activities with students

UB3 I recommend my students to use Wikipedia

UB4 I recommend my colleagues to use Wikipedia

UB5 I agree my students use Wikipedia in my courses

n = 50 to n = 500). Figure 4 shows that in the presence of skewed variables, PPRPM
always has higher distortion than PLSPM, but the difference between the two meth-
ods is decreased as the sample size increases. Skewness has been measured by the
standardized third moment coefficient. Consistently with the simulation settings (sce-
narios from I to R), all composite’s distributions are negatively skewed (Tables 4, 5);
for sake of legibility Fig. 5 visualizes the absolute values of the skewness. Results
show the common tendency of the two methods to present lower asymmetry for the
endogenous latent variable, that is, the variable obtained as a linear combination of
the two exogenous variables that are simulated as skewed variables. In addition, in
all scenarios, the PPRPM produces slightly lower values, especially for the second
composite. This result confirms the ability of the LAD regression implemented in
the PPRPM measurement model to be more robust than the least squares regression
implemented in the PLSPM measurement model.

5 Empirical evidence: The use of Wikipedia in higher education

In this section, the results of a practical application are discussed. The proposed data
set is available in the UCI Machine Learning Repository (Lichman 2013). The aim of
the study was to investigate university faculty members’ perceptions and practices in
usingWikipedia as a teaching resource (Meseguer-Artola et al. 2016). The survey was
conducted among students at two Spanish universities, but only data gathered from
the Universitat Oberta de Catalunya (UOC) was used in this application.
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Fig. 6 Model graph and hypotheses

Fig. 7 Boxplots of the indicators

Five constructswere considered for the current research: Sharing attitude (SA), per-
ceived usefulness (PU), social image (SI), behavioral intention (BI), and use behavior
(UB). Additional details on the specific indicators used to measure these constructs
and shown in Table 6 can be found in Meseguer-Artola et al. (2016).

The hypotheses considered in this paper are shown in Fig. 6. The model assumes
that teachers’ behavioral intention to use Wikipedia is directly influenced by their
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Fig. 8 Measurement model results: weights

sharing attitude, their perceptions of the social image of Wikipedia, and the perceived
usefulness of Wikipedia. Furthermore, it is assumed that the teachers’ use behavior is
determined by their behavioral intention.

An exploratory analysis (see Fig. 7) of the indicators shows that some of the distri-
butions are highly skewed, which is common for questionnaires operated on an ordinal
scale. Thus, the decision to adopt LAD regression for the measurement model seems
appropriate for this type of data. Figures 8 and 9 show the measurement model results,
that is, the outer weights and loadings of PLSPM and PPRPM. As shown in Fig. 8, the
main differences are found in the sharing attitude construct, which presented skewed
indicators.

The results for the structural model are reported in Table 7. The path coefficients
and the fit indices for PLSPM and PPRPM are shown. The results highlight the role
of PU as the most important predictor of BI. In PLSPM, BI (0.52) is higher than SA
and SI, in PPRPM, BI has a coefficient with the highest midpoint (0.20) compared
to the other constructs. PPRPM also provides component-wise information on the
uncertainty of the relationships. This applies to the relationship between BI and SA,
whose path coefficient has a range equal to 0.21, and the relationship between BI and
SI, whose path coefficient has a range equal to 0.18. Although both approaches show
the highest coefficient for the relationship between UB and BI, PPRPM also highlights
that this relationship is characterized by greater uncertainty, with a range equal to 0.35.
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Fig. 9 Measurement model results: loadings

Table 7 Structural model results Relations PLSPM PPRPM
Path coefficient R2 Path coefficient IC

BI < SA 0.14 0.50 {0.17; 0.21} 0.85

BI < PU 0.52 {0.20; 0.00}

BI < SI 0.22 {0.05; 0.18}

UB < BI 0.79 0.63 {0.44; 0.35} 0.86

6 Conclusion and perspectives

The partial least squares approach to structural equation model estimation has experi-
enced significant growth over the last decade, thanks to a large number of applications
in areas where the theory had been less developed. Researchers consider using PLSPM
when the primary objective is to predict and explain target constructs (Hair Jr et al.
2016, p. 14). As demonstrated in previous studies and the current simulation study,
PLSPM can integrate data under very limited assumptions and works efficiently with
small sample sizes. However, despite its extreme flexibility, PLSPM does not allow
the user to properly appreciate global goodness of fit. This limitation also depends
on the presence of two different kinds of residuals: the measurement and the struc-
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tural model ones. By introducing the possibilistic regression approach to structural
model relationships, the current proposed method offers an alternative approach for
considering different kinds of residuals.

Structural models can be defined by a more or less complex net of relations, and
simulation studies provide empirical proof of the stability and consistency of PPRPM
estimates, compared with traditional PLSPM. Such evidence encourages the use of
PPRPM as interval-valued parameters method that represent a richer information.
More empirical evidence and additional simulation studies are necessary to assess
the capabilities of PPRPM. Future research should focus on procedures for protecting
against unwanted effects caused by outliers.
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