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Introduction

Alwar quartzite, considered as dimension stone (ASTM 
International 2020) (Kaur et al. 2021), for its massive use 
in Indian cultural heritage and building sector is listed as 
a global heritage stone by International Union of Geologi-
cal Sciences (IUGS − 2022). As well as all over the world, 
even in India, the extensive use of stone materials as build-
ing stone, as it is easy to guess, produces, in addition to 
the finished product, a processing waste that accounts for 
up to 40–50% of the finished product and has a negative 
impact on the economy of companies and above all on the 
environment as it has to be landfill disposed (Indian Stone 
Industry Statistics and Trends; Gayakwad et al. 2015; Patel 
et al. 2015). The reuse/recycling of by-products or wastes 
from quarrying and operations, along with the concern on 
critical and strategic raw materials (Girtan et al. 2021; Euro-
pean Commission 2023), represent not only a need but also 
an opportunity to combine proper management of natural 
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Abstract
Waste deriving from quarrying operations of natural stone material retains almost all the mineralogical and compositional 
characteristics of the original material, for such reason this research aimed to test prototypes cementitious tile adhesives 
made up recycling the Alwar Quartzite waste, used as fine and ultra-fine aggregate. Particle size distribution analysis, 
along with X-ray diffractometry, X-ray fluorescence and Scanning Electron Microscopy were carried out to character-
ize the waste. Experimental research involved the mix-designing of three dough formulations (a regular one [N], a latex 
added [L] and a fast-setting [R]) tested by using different types of tiles: (i) polished metal plates, (ii) ceramic tiles and 
(iii) rough natural stone slabs. Fresh prepared doughs were firstly tested for thixotropy achieving high values (ranging 
82–93%) and cured for normative requested time after being stuck on a concrete support as reported in European UNI 
standard regulations. After respective curing time, adhesives technical performances were evaluated by the Pull-Off test 
obtaining results for Class 1 (N and R) and Class 2 (L) adhesives with high initial tensile adhesive strength. Experimental 
results carried out in this research proved the possibility to use huge amounts of waste coming from Indian stone indus-
try in cementitious tile adhesives sector without compromising technical performances, proposing itself as an alternative 
method to landfill disposal for this waste.

Keywords  Indian quartzite · Stone waste circular recycling · Cementitious tile adhesives · Sustainability · Pull-off test · 
Initial adhesive strength
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resources and land, focusing on a rational management of 
rock waste, deriving from cutting, grinding and polishing 
operations, according to the concepts of circular economy 
and reuse (de Gennaro et al. 2004; Gennaro et al. 2005, 
2007, 2008, 2009; Monteiro et al. 2004, 2005; García et al. 
2006; Wang et al. 2009; Dondi et al. 2016; Graziano et al. 
2016, 2022; Napolano et al. 2016; Lim et al. 2019; Marras 
et al. 2020, 2022; Behera et al. 2021; Camana et al. 2021; 
Chinnu et al. 2021; Marras and Careddu 2021; Molinari et 
al. 2021; Mpatani et al. 2021; Upadhyay et al. 2021; Zanelli 
et al. 2021). Wastes from industrial operation on ornamen-
tal and building stones are mostly identified by sludges 
and aggregates of different grain size, which, minus any 
contamination due to the type of processing or collection 
mechanism (tanks, filter-presses, sedimentation tanks, etc.), 
have the same chemical and mineralogical composition as 
the original material. For this reason, they can therefore, if 
properly characterized, be used as a secondary raw material 
for other technological applications aimed at a more con-
scious use of natural resources and, above all, at reducing 
environmental impact. Thus, depending on the geological 
nature of the processed material, some tested applications 
for waste recovery were focused on building sector as useful 
final destination as secondary raw materials (Trong-Quyen 
et al. 2003; de Gennaro et al. 2005; Gennaro et al. 2007, 
2008, 2009; Mun et al. 2005; Dondi et al. 2016; Mercurio 
et al. 2018; Graziano et al. 2022, 2024). Furthermore, some 
research focused also on other possible sectors of use such 
as agricultural and animal feed (Papaioannou et al. 2005; 
Eroglu et al. 2017) or transversal sectors with high added 
value, such as pharmaceuticals, environmental remediation, 
etc. (Cappelletti et al. 2017; König et al. 2020; Serati-Nouri 
et al. 2020; Morante-Carballo et al. 2021).

On the basis of the above considerations, possible recy-
cling of waste from the processing of ornamental rock 
depends strictly on the appropriate selection of the starting 
material and, above all, on a correct characterization aimed 
at knowing its geological nature, the absence of contamina-
tion due to the wear and tear of the working tools and, when 
used as a secondary raw material, the physical and mechani-
cal characteristics of the waste-based finished product. In 
this regard, Alwar quartzite has never been investigated, so 
this research paper is aimed at exploiting the peculiar fea-
tures when used as secondary raw material in mix design for 
tiles cementitious adhesives with experimental-tested tech-
nical features suitable to match requirements for the build-
ing sector. In the specific case of cementitious adhesives, 
the physical characterization required for the preparation of 
the technical data sheet of the adhesive is the evaluation of 
the tensile strength by pull-off test, along with the evalua-
tion of the thixotropy of the cement paste. (De Barroso and 
Cruz 1998; Júlio et al. 2004; Benzarti et al. 2011; Hoła et 

al. 2015; Szemerey-Kiss and Török 2017; Fazli et al. 2018; 
Afandi et al. 2023).

Materials and Methods

Geological Background

From the geological point of view, the Alwar group of quartz-
ites come from the Jaipur stone working district and are part 
of the so-called Delhi Supergroup (DeS), which was for-
merly the main part of the Aravalli Mountain Range located 
in the northwestern part of India (Fig. 1). DeS extends over 
700 km between Delhi in the north and Ahmadabad in the 
south and consists of lithologic associations of variable age 
ranging from Archean to Neoproterozoic (Heron 1953; Roy 
and Purohit 2015). Its main lithological constituents are 
identified by the Archean Gneissic Complex, the Paleopro-
terozoic Aravalli Supergroup, the Mesoproterozoic Delhi 
Supergroup, and the Vindhyan Supergroup of the Neopro-
terozoic. (Naqvi and Rogers 1987; Gopalan et al. 1990).

The DeS is composed by different lithotypes such as 
conglomerates, limestones, quartzites, schists, gneisses, 
amphibolites and mafic lavas, all undergone polyphase 
deformation and metamorphism from greenschists to 
amphibolites with syntectonic granitic activity (McKenzie 
et al. 2013; Roy and Purohit 2015; Sengupta and Basak 
2021).

The Jaipur political district, with the homonym capital 
of the state of Rajasthan, is in the eastern part of the Indian 
subcontinent and accounts for about 90% of the stone mate-
rial produced each year by the indian stone industry, with 
more than 16 million tons/year of processed material on a 
global Indian average production of 61  million tons/year. 
This huge volume of final products accounts for almost 70% 
of waste production (Indian Stone Industry Statistics and 
Trends). These values make the Indian stone industry both 
as one of the major industry leaders since the high demand 
in the international market, and one of the worldwide most 
waste-producer (Jalalian et al. 2021).

Waste Materials

Waste materials were collected from sieving and filter-
pressing operations on quartzite and identified respectively 
as (i) waste sand (WS) sample, deriving from the squaring 
and handling operations of dimension stone and (ii) waste 
powder (WP) sample coming from the cutting and polishing 
operations collected by the filter-press used to recycle water 
from the processing plant.
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Along with waste materials, other products currently 
marketed as building adhesives ingredients were used in 
this study (Fig. 2; Table 1). These products are:

– compound of additives for cementitious tiles adhesives, 
composed of: (a) Pentamix APL, a powder additive that 
can reduce the film thickness in cementitious adhesives 

and retard their formation, and also extending the open 
time of the adhesive and increasing the tensile strength 
(Pentamix APL); (b) Pentaresin P3, a water redispersible 
and highly alkali-resistant resin powder which improves 
adhesion, impact resistance and protects colors (Pentar-
esin P3); (c) Penta EC 4119, a medium-viscosity modi-
fied cellulose ether suitable for cement-based adhesives 

Fig. 1  Geological sketch map (modifed after Sengupta and Basak 2021)
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(retained on the No. 200 sieve) were separated by sieving, 
while the distribution of particle sizes smaller than 75 μm 
was determined by sedimentation.

Scanning Electron Microscopy - EDS Microanalyses

Microstructural investigations were performed by means of 
a Field Emission Scanning Electron Microscope equipped 
with an Energy Dispersive Spectrometer (FESEM/EDS; 
Zeiss Merlin VP Compact coupled with Oxford Instruments 
Microanalysis Unit; both used for observations and spot 
analyses. Data sets were obtained using a INCA X-stream 
pulse processor with the following operative conditions: 
15-kV primary beam voltage, 50–100 A filament current, 
variable spot size, from 30,000 to 200,000× magnification, 
20 mm working distance, and 50 s real-time counting. Data 
were achieved by means of INCA Energy software 5.05 
(XPP array and pulse pile-up corrections).

Mineralogical Characterization

Mineralogical analyses were carried out by means of X-ray 
powder diffraction (XRPD) using a Panalytical X’Pert Pro 
diffractometer, equipped with a RTMS X’Celerator detec-
tor with Cu-Kα radiation, operating at 40 kV and 40 mA. 
Sample powders were mixed with a 20% Buelher α-alumina 
as internal standard and micronized by using a Retsch XRD-
Mill McCrone in order to obtain a particle size < 10 μm, a 
condition that, as reported in literature, allows to obviate 
several problems when acquiring X-ray spectra (particle 
statistics, primary extinction, micro-absorption and, espe-
cially for feldspathic-type phases, preferential orientation 

and glues which increases the viscosity, water retention, 
mechanical strengths and thixotropy of mixtures (Penta 
EC 4119); (d) PentaMix R30, a wetting prepolymer that 
improves the application characteristics of powder and 
emulsion resins in cement mixtures by allowing dosage 
reduction (PentaMix R30);

– Portland cement, CEM I-42.5 (UNI EN 197-1 2011);
– Latex additive (Mapei Isolastic).
– Fast setting additive (PentaRapid CR1001).
– Regular water, conditioned to laboratory temperature.

Methods

Particle size Analysis

The role of aggregates in the mix design is a function of 
their particle size class, so the particle size analysis of waste 
samples was investigated by means of the quantitative 
determination of the distribution of particle sizes,  follow-
ing the indications reported in the in the reference standard 
(ASTM International 2002). Particles size larger than 75 μm 

Table 1  Marketed building adhesives ingredients
Component Name Property
Compound Pentamix APL Penta

Pentaresin P3 Penta
Penta EC 4119 Penta
PentaMix R30 Penta

Cement Portland CEM I-42.5 Italcementi
Latex additive Isolastic Mapei
Fast-setting additive Penta Rapid CR1001 Penta

Fig. 2  Waste samples and products currently marketed as building adhesives ingredients
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the compound and finally the Portland cement in succes-
sion and without water. Mixing was then operated for about 
30 min on a dry basis. Then the first half of the water was 
added for 15 min, and the remaining half for other 15 min 
(UNI EN 12004-1 2017).

The three mix-designs were respectively reported as: 
Normal (N), Latex (L) and Rapid (R) to identify a normal 
recipe, another one with the addition of Latex (mix L), which 
is usually added to improve gripping performance and a 
fast-setting one (mix R) for faster gripping performance.

The N mix was so assumed as the reference recipe and 
then integrated with the elasticizing additive (Latex - L) and 
the fast-setting additive (Rapid - R) in quantity of 6%/100kg 
and 5%/100kg respectively. Three formulations were so 
designed and tested to meet the requirements defined by 
standards for C1 and C2 classes adhesives characterized by 
an initial tensile adhesion strength and a high initial tensile 
adhesion respectively ≥ 0.5  N/mm2 and ≥ 1  N/mm2. Stan-
dard classes for R were marked by the letter F and consider 
physical features evaluated in not more than 6 h instead of 
28 days (UNI EN 12004-1 2017; UNI EN 12004-2 2017).

Fresh doughs rheology was tested for determining the 
thixotropy of the mass by applying the mixture to two steel 
plates. The thickness of the coating was so evaluated both 
on horizontal and vertical disposed plates after 24  h and 
reported as a percentage in relation to those of the horizontal 
disposed plate (UNI EN 13062 2004).

The experimental laboratory simulation was also 
extended to the type of tile used. In fact, three types were 
used to simulate different grip scenarios: an unpolished 
natural stone tile (high grip scenario), a ceramic commer-
cial tile (common grip scenario) and a steel tile (low grip 
scenario). After a curing period of 6 h for R and 28 days for 
N and L, Pull-Off tests were performed by using a Controls 
digital removable device mod. 58-C0215 fully complying 
with the standards requirements. For each dough formula-
tion 10 test tiles of each kind were tested for a total of 90 
Pull-off measurements (UNI EN 12004-2 2017).

Results and Discussion

Particle size for sample WP was already provided by the 
supplier as < 0.063  mm, sample WS was sieved and for-
merly identified as “medium sorted sand” with uniformity, 
curvature, and sorting coefficients respectively of 6-1.5 and 
1.9 (Fig. 3).

This experimental classification allows the possibil-
ity to use, from the physical point of view, of both waste 
samples as suitable ingredients for the mix design of the 
cementitious tiles adhesives (UNI EN 8520-1 2005; UNI 
EN 12004-1 2017). Fine and ultra-fine aggregates, i.e. with 

phenomena) (Chipera and Bish 1995, 2002). Samples were 
acquired between 5 and 70 °2θ, with a step interval of 
0.017 °2θ and a time per step of 120 s. Mineral phases were 
identified by the Panalytical Highscore Plus 3.0e software 
and PDF-2/ICSD mineral databases (International Crys-
tal Structure Database-ICSD 2012). Quantitative analyses 
were performed by RIR-Rietveld combined methods, using 
Topas software (version 5.0, Bruker, Germany) (Rietveld 
1969; Bish and Howard 1988; Bish and Post 1993).

Chemical Analyses

Chemical analyses were performed using an Axios Panalyti-
cal X-ray fluorescence (XRF) spectrometer, equipped with 
six analyzer crystals, three primary collimators and two 
detectors.

Sample powders were mixed with polyvinyl alcohol 
and poured in aluminum cups, above a layer of boric acid 
H3BO3, to be sure that infinite thickness was achieved; a 
pressure of 20 ton/cm2 was applied for 20 s using a hydrau-
lic press to obtain pressed powder pellets suitable for XRF 
analysis. Analytical percentage uncertainties are 1–2% rela-
tive (Cucciniello et al. 2017). The weight Loss on Ignition 
(L.o.I.), determined by gravimetric techniques, was evalu-
ated by firing at 1000 °C powders previously dried at 110 °C 
overnight (ASTM International 2021).

Mix Design and Characterization

Three different recipes were tested to simulate the normal 
working formulations reported in standards for building 
adhesives (Table 2) (UNI EN 12004-1 2017 Adhesives for 
ceramic tiles - Part 1: Requirements, assessment and veri-
fication of constancy of performance, classification and 
marking).

Fresh doughs were mechanical stirred by an Ika Werk 
mod. RW18 by adding, the fine aggregate, the ultra-fine one, 

Table 2  Mix design for lab experimental simulation
Mix design Unit N L R
Compound for cementi-
tious adhesives

kg/100 
kg

2.15 2.15 2.15

Portland cement 42.5 37.00 37.00 37.00
WS 34.00 34.00 34.00
WP 26.85 26.85 26.85
Elasticising additive (L) % - 6.00 -
Fast-setting additive (R) - - 5.00
H2O lt 20.00 20.00 20.00
Sample preparation electric 

mixer
electric 
mixer

electric 
mixer

Curing time 28 days 28 days 6 h
Test tile metal, 

ceramic, 
stone

metal, 
ceramic, 
stone

metal, 
ceramic, 
stone
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Despite the same precursor, i.e. the processed quartzite, 
small differences in both mineralogical and chemical com-
position indirectly reflect the mechanical operations on the 
rock. In fact, although the typical mineralogical composition 
of the rock is represented by quartz, mica and zircon (Kaur 
et al. 2021), calcite and k-feldspar can only be observed in 
the WS sample, probably resulting from the settling point 
of the cutting machine and certainly from incorrect sort-
ing of the waste exiting the processing line. This evidence 
highlights a fundamental requirement for the correct reuse 
of this type of waste, namely the need to differentiate the 
collection lines upstream by type of operation and type of 
material processed.

Scanning electron microscopy observations highlighted 
the main presence of not well-shaped quartz crystals both 
for WP and WS, indicating the nature of the sample ana-
lyzed or reflecting the result of operations on the stone 
(Fig.  4). EDS investigations basically confirmed the min-
eralogical and chemical composition and added informa-
tion on the relationships between the constituents. Unlike 
from calcite crystals, zircon and K-feldspar were visible 
and analyzable. This is closely related with the waste col-
lection mechanism. The presence of calcite therefore could 
be linked to the the confluence of different materials in the 
waste collection facilities.

Investigated samples were found to be free of metal 
contamination and for this reason were considered 
with all intents and purposes as secondary raw materi-
als to be incorporated within cement mixtures, as fine 

a grain size of less than 75 μm (WP) and between 75 μm and 
2 mm (WS), respectively, play the temper role by actively 
preventing the shrinkage of the fresh mix after the mixing 
water evaporation.

The mineralogical composition consists of predomi-
nantly quartz for both waste samples along with mica and 
zircon. Small differences can be identified in the higher 
presence of mica, along with calcite and K-feldspar only for 
WS sample (Table 2). The chemical analysis is consistent 
with the mineralogy and with the petrography of the rock 
(Kaur et al. 2021) reporting high Al, Ca and K values for 
sample WS (Table 3).

Table 3  Mineralogical and chemical composition (Tr: traces)
Unit WP WS

quartz wt% 91 84
mica tr 2
zircon tr tr
calcite 2
K-feldspar 1
amorphous 7 10
SiO2 wt% 91.0 81.7
TiO2 0.5 0.3
Al2O3 3.0 5.4
Fe2O3 1.3 1.4
MnO 0.1 0.1
MgO 0.1 0.4
CaO 0.3 3.2
Na2O 0.2 1.0
K2O 1.0 2.4
P2O5 0.1 0.1
Loss on Ignition % 2 4

Fig. 3  Particle size distribution of WS sample 

1 3

  105   Page 6 of 11



Geoheritage          (2024) 16:105 

From mineralogical point of view, all samples were 
composed of quartz, feldspars, mica and hatrurite. The lat-
ter representing a portland related mineral (C3S). Scanning 
electron investigation, showed that there is no reaction in 
the mix between the binders and the aggregates, thus acting 
as the temper and for his reason working as a support for 
the neoformation of minerals resulting from the setting and 
hardening reactions of the cement mixture such as C3S and 
compound-related ones identified by tubular habit and high 
carbon content (Fig. 5a and b respectively).

The Pull-off test (UNI EN 12004-2 2017), evaluated 
for mix categories and grip scenarios (cfr. par. 2.5) proved 
that all the mix designs can be used with profit in regular 
building applications, this because all mixes can be catego-
rized at least as Class1 (C1-C1F - initial tensile adhesion 
strength ≥ 0.5 N/mm2) according to technical performance 
(UNI EN 12004-1 2017) (Fig. 6).

(WS) and ultra-fine (WP) aggregates(UNI EN 8520-1 
2005; Italian Government 2006).

The three mix designs were created following indications of 
the reference standard with technical additions (Table 1) and 
rheology of fresh doughs was verified and validated since 
the thixotropy values were > 80% for all mixes (Table 4).

After curing time (28 days for N and L, 6  h for R – 
Table 1), dry doughs were analyzed by means of X-ray dif-
fractometry and SEM-EDS and tested by means of Pull-off 
test to evaluate the behavior of fine and ultra-fine aggregates 
in the mix.

Table 4  Rheology of fresh doughs (N: regular mix; L: latex added mix; 
R: fast-setting mix)

Unit N L R
Fresh dough thixotropy % 82 88 93

Fig. 5  SEM-EDS micrographs of dry dough after curing time

 

Fig. 4  SEM micrographs and EDS results of WP and WS samples
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below class 1) and, for compound L (latex added), even 
superior to 90% of the average values of real cases of com-
pounds made with products regularly marketed and used in 
practice. (Ramos et al. 2012).

Conclusions

Arwal quartzite represents a Global Heritage Stone that has 
been used as the main masonry material in various monu-
ments and buildings in and around Delhi and North India. 
This geomaterial is is currently extensively quarried and 
used in numerous heritage buildings and monuments with 

From a performance point of view there are no substan-
tial differences between the N mix design and the R, the real 
improvement refers to the effective setting time (28 days vs. 
6 h) with similar initial tensile strength. On another hand, 
the latex addition (L) determine a substantial improvement 
in the performance of the cementitious adhesive which can 
be categorized as Class 2 (≥ 1 N/mm2) for high initial ten-
sile adhesion strength (UNI EN 12004-1 2017).

By comparing the average results obtained with these 
experimental compounds with the data of a statistically high 
number of real cases (Fig. 7), all three compounds tested in 
this study have a technical behaviour superior to the major-
ity of the samples reported in the literature (performance 

Fig. 7  Comparison between experimental pull-off data and some real cases (Ramos et al. 2012)

 

Fig. 6  Pull-off test experimental 
results
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included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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an indirect production of huge amounts of waste coming 
from quarrying and processing operations.

This research verified the possibility to use this waste 
in innovative formulations for cementitious tiles adhesives 
as fine and ultra-fine aggregates as reported in technical 
standards.

Three mix-designs were prepared to test a regular (N) 
recipe, a latex added one (L) and a fast-setting (R) and used 
to stick three different kinds of tiles, an unpolished natural 
stone, a commercial tile and a steel tile.

According to technical standards, all formulations for 
cementitious adhesives tested in this work, can be used with 
profit in building sector because experimental values for ini-
tial and high initial tensile strength fall in the field of class1 
(> 0.5 N/mm2) for N and R and class2 (> 1 N/mm2) for L.

According to the results reported in this research, this 
quartzite waste has the same mineralogical and chemi-
cal characteristics of the initial rock and can be used, with 
profit, as a secondary raw material, representing a green 
alternative to landfill disposal.

Following this approach, finally, it can be argued that 
waste coming from stone processing can play an important 
role as technological substitute, enhancing the economies 
of territories and the industrial development. However, 
some refinements devoted to the differentiation of process-
ing lines and processed materials are necessary, also from 
an environmental perspective. Therefore, this study could 
also spur stakeholders to promote new applied research 
approaches for a substantial reduction of environmental and 
social impact of this indian global heritage stone general 
processing.
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