
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Investigating the Resilience Source of
Classification Systems for Approximate

Computing Techniques
Mario Barbareschi, Associate Member, IEEE, and Salvatore Barone, Member, IEEE,

✦

Abstract—During the last decade, classification systems (CSs) re-
ceived significant research attention, with new learning algorithms
achieving high accuracy in various applications. However, their
resource-intensive nature, in terms of hardware and computation time,
poses new design challenges. CSs exhibit inherent error resilience,
due to redundancy of training sets, and self-healing properties, making
them suitable for Approximate Computing (AxC). AxC enables efficient
computation by using reduced precision or approximate values, leading
to energy, time, and silicon area savings. Exploiting AxC involves esti-
mating the introduced error for each approximate variant found during
a Design-Space Exploration (DSE). This estimation has to be both
rapid and meaningful, considering a substantial number of test samples,
which are utterly conflicting demands. In this paper, we investigate on
sources of error resiliency of CSs, and we propose a technique to
haste the DSE that reduces the computational time for error estimation
by systematically reducing the test set. In particular, we cherry-pick
samples that are likely to be more sensitive to approximation and per-
form accuracy-loss estimation just by exploiting such a sample subset.
In order to demonstrate its efficacy, we integrate our technique into
two different approaches for generating approximate CSs, showing an
average speed-up up to ≈18.

Index Terms—Approximate Computing, Design Space Exploration, De-
cision Trees, Deep Neural Networks

1 INTRODUCTION

Classification Systems (CSs) embrace different algorithms
that aim to classify input data into predefined categories or
classes. Most of them are based on machine learning tech-
niques that exploit a set of labeled samples, namely the data-
set, to generate a data model that is actually employed to
classify other samples. These algorithms are widely adopted
in a variety of applications, including speech recognition,
image recognition, decision support, traffic packet inspec-
tion, natural language processing, and so forth.

During the last decade, with the advent of the Big Data
era, CSs got a massive attention from the research commu-
nity, shifting the focus mainly on classification performance,
both in terms of accuracy and computational overhead.
Indeed, while new learning algorithms can generate models

Mario Barbareschi and Salvatore Barone are with the Department of Electrical
Engineering and Information Technologies, University of Naples Federico II,
Naples, Italy.
E-mail: [firstname.lastname]@unina.it
Authors are listed in alphabetical order.
Manuscript received April 19, 2005; revised August 26, 2015.

that achieve high accuracy in many applications, their usage
can be expensive, both in required hardware resources and
execution time, especially when dealing with large models
or when real-time processing is required.

For these systems, Approximate Computing (AxC) can
be successfully adopted: it leverages a set of techniques
that aim to balance the trade-off between result accuracy
and efficiency of a computing system. The basic idea is to
use techniques that allow computations to be performed
with reduced precision or with approximate values, rather
than exact values, to save energy, time, and, for hardware
circuits, area. When approximate, some computing systems
continue to behave almost correctly regarding the quality of
the results of their calculations, exhibiting some resilience to
errors. This is the case of CSs, which are inherently resilient
to error, since the training set and data model exhibit a
high degree of redundancy. The interesting results of Ap-
proximate Classification Systems (ACSs) implemented as
hardware accelerator are [1], [2], in which authors success-
fully implemented approximate variants of Decision Tree
based Mutiple Classifier Systems (DT MCSs), and [3], [4] in
which approximate multipliers were adopted to implement
artificial Neural Networks (NNs).

Generally speaking, to explore possible AxC variants
of a given computing system, it is necessary to estimate
introduced error through metric functions. In particular,
for ACSs, a Design-Space Exploration (DSE) strategy could
consider classification accuracy [5]. We can easily detect two
main challenges related to classification accuracy estima-
tion: i) test set relevance w.r.t. application and cardinality;
ii) computational convenience of classification accuracy cal-
culation.

As for the former, it is necessary to have a significant
amount of test samples in order to effectively estimate accu-
racy of approximate variants of a classifier. As for the latter,
since a new measure of accuracy is needed each time an
approximate variant is found during the DSE, the estimation
should take as little time as possible to get done. As one can
see, such observations conflict with one another: the larger
the test set, the more effective the accuracy estimation, but
the longer execution time. Conversely, the smaller the test
set, the less effective the accuracy estimation, but the shorter
execution time.

In this paper, we first investigate the sources of error

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3403757

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

resiliency in CSs that are exploited by the AxC, then we
profitably use such sources to propose a technique to reduce
time to calculate the accuracy loss of ACS variants by
significantly reducing the test set, selecting test samples that
are likely to be more sensitive to the approximation. By
doing so, we can estimate the accuracy of the approximate
system more efficiently and accelerate the DSE process. To
the best of our knowledge, this is the first paper providing
a general approach to haste accuracy loss estimation when
AxC is involved during a DSE. We integrate our technique
into two different methodologies to generate approximate
DT MCSs and NNs CSs, showing its efficacy through the
experimental results. In particular, we show a speed-up to
complete a DSE up to approximately 18. The remainder
of this paper is organized as follows. Section 2 provides
an overview of related work on ACSs and DSEtechniques.
Section 3 shows how AxC can be modeled as perturbation
source and provides some preliminary results about our
proposed method. Section 4 presents experimental result
on well-known and publicly available datasets and a thor-
ough analysis that highlighs benefits of our method. Finally,
Section 5 draws the conclusion of the paper and discusses
future research directions.

2 RELATED WORKS AND STATE-OF-THE-ART

Imprecise calculations can be selectively exploited to en-
hance computing system performance, according to the
scientific literature, defining the AxC paradigm [6]. In-
deed, due to the redundancy of inner calculations, some
applications are characterized by an inherent resiliency to
errors [5]. Basically, by relaxing the functional requirements
of a computing system, AxC enables the trade-off of output
accuracy for performance, but, unfortunately, exploiting it
to its full potential requires addressing several challenges.
Identifying portions of the application that are amenable
to approximation as well as suitable approximation tech-
niques, just to mention a few, are not trivial tasks since
they require in-depth knowledge of the target application.
Furthermore, assessing the error due to the approximation
is mandatory to ensure that quality constraints are met,
and only those approximate configurations delivering the
best compromises between error and savings have to be
selected [7], [8]. Despite these challenges, the AxC has
already been successfully exploited in a vast plethora of
application fields, both hardware and software. Hardware
circuit design [9], [10], [11] and signal and image processing
applications [12], [13], [14] are just a few examples.

Besides those mentioned, CSs are one of the most
suitable fields of application for the AxC, since the great
inherent error resiliency resulting from retrieving mod-
els through iterative training algorithms exploiting large
datasets [5], [15]. Since one of the main obstacles hindering
the widespread adoption of commercial hardware accelera-
tors for these applications is lack of scalability, a significant
body of work has been devoted to exploiting the AxC while
aiming at reducing their computational demands as well
as resource requirements, even though the effort is mainly
devoted to NNs rather than DT MCSs.

Concerning the latter, the authors of [16] observed that
only a fraction of the data in a given data set really needs

the full computational power of a classifier. Thus, they
propose to train a set of models with increasing complexity
and accuracy rather than a single, complex one, resorting
to dynamic reconfiguration during the inference phase to
select the appropriate model to apply to a given input. Fur-
thermore, a confidence level for each inference is computed,
and if that confidence falls above a certain threshold, the
classification process is terminated; otherwise, the inference
resorts to more accurate models.

Alternatively, comparators that test feature values
against thresholds at each node of a tree can be replaced
with approximate ones to reduce the hardware overhead of
DT MCSs [2]. Indeed, it is possible to reduce the number
of bits required for representing model features by neglect-
ing the least significant ones while keeping the weight of
the retained ones unchanged. The removal of parts of the
logic needed by comparisons reduces the size of circuits,
providing savings both in terms of silicon area and power
consumption. Anyway, selecting the number of bits to be
neglected for each of the features (and thresholds) to min-
imize hardware overhead while simultaneously pursuing
accuracy loss minimization is quite challenging, as they are
conflicting design goals. In [1], the authors addressed this
challenge while resorting to Multi-Objective Optimization
(MOO). In particular, they exploit the Non-dominated Sort-
ing Genetic Algorithm-II (NSGA-II) [17] to carefully select
approximate configurations that simultaneously minimize
both the accuracy loss and Field Programmable Gate Array
(FPGA) Look-Up Tables (LUTs).

Pertaining to NN based systems, state-of-the-art hard-
ware accelerators are tremendously resource intensive due
to the massive amount of processing elements needed to
effectively accelerate the computations [18]. Multipliers are
recognized as the most demanding component in terms of
overhead, both in terms of silicon area and power consump-
tion [19]; consequently, a significant number of libraries pro-
viding hundreds of implementations of approximate com-
ponents delivering different trade-offs between error and
hardware resource requirements, such as the EvoApprox-
Lib [20], have been proposed. In [3], suitable approximate
multipliers are selected from the mentioned library and de-
ployed to convolution layers, while the overall classification
error and energy consumption are simultaneously mini-
mized through MOO. Since the impact of approximation
on the end quality also depends on the input characteristics,
the requirement for accuracy may not be static. Hence, the
authors of [4] designed and deployed a dynamically re-
configurable multiplier, allowing the desired accuracy level
to be dynamically selected at run time. The deployment is
performed while resorting to the ratio between the accuracy
loss due to approximation of one specific layer and the
original accuracy – namely, the layer significance. The latter
is exploited to greedily map convolution layers exhibiting
low significance to the highest approximation degree. Fur-
thermore, for the layers that cannot be entirely mapped to
the highest approximation degree, the mapping is computed
filter-wise.

Regardless of the final application, assessing the error
due to the introduced approximation is mandatory, since the
approximation usually degrades the final quality of results.
Thus, for ACSs in our specific case, a software emulator of

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3403757

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

the accelerator, typically executed either on CPUs or GPUs,
is performed to measure the introduced error. However, this
emulation is typically several orders of magnitude slower
than the reference software implementation operating with
standard (non-approximate) floating-point or integer arith-
metic, since neither CPUs nor GPUs provide support for
fast emulation of approximate operations. In this paper,
we propose a technique to reduce the computational time
needed to measure the accuracy loss. In particular, we select
samples from the test data set that are likely to be more
sensitive to the approximation. Then, we exploit them for a
quicker estimation of the accuracy loss, accelerating the DSE
process and allowing for a broader exploration of the design
space.

3 REDUCING THE EFFORT OF THE ERROR ASSESS-
MENT PROCEDURE

During DSE, the classification accuracy is commonly
adopted as one of the fitness functions to be evaluated to
rank approximate variants. In particular, the classification
accuracy loss is either constrained or simultaneously mini-
mized while optimizing performance metrics, respectively,
in single or multi objective approaches [1], [3], [4], [11].

Our goal is to reduce the computational time required to
assess the impact of perturbations on classification accuracy.
This can be achieved either by reducing the size of the test
dataset or by using a different error metric. To the best of
our knowledge, there is no other error metric to be exploited
than accuracy-loss to measure the impact of approximation
on ACSs. Hence, we focus on the test dataset; specifically, on
test samples whose classification may be more susceptible to
approximation.

In the following, we first provide the reader with defi-
nitions and notations adopted in the paper, then we focus
how we can identify test samples whose classification may
be more susceptible to approximation. To this aim, we
try to figure out effects of perturbations on CS, giving an
insight of AxC as source of perturbation, supporting our
hypotheses by reporting preliminary experimental result.
Then, we intuitively exploit the susceptibility of test samples
to AxC perturbation introducing our ranking method.

3.1 Definitions and notations

CSs are generally differentiated by their data model (for
instance, Decision Tree (DT) uses a tree data structure) and
they exploit two algorithms, namely training and testing,
both based on a pre-labeled dataset D. Indeed, the dataset
D is partitioned into two different datasets, one used to
train the classification model, the other to estimate the
accuracy reached by the trained model.

The main objective of a training algorithm is to ob-
tain a model with as high accuracy as possible. So let
τi be a test sample, e.g., test images for NNs, got from
test set T = {τ0, τ1, τ2, · · · , τM−1} ⊂D and let θ∗τ be the
corresponding class label retrieved from the dataset. Let
also P(τi) be the test algorithm over the sample τi, that
is the inference on the test-sample τ . Generally speaking,
the inference results in the likelihood vector ρ := P(τi), that
has as many elements as possible classification outcomes:

ρ = {ρ0, ρ1 . . . ρN−1}. The j-th element of the latter
denotes the score that P assigned to the j-th class for the
test-sample τi, which can be interpreted as the likelihood
(or probability) of τi belonging to the j-th class. Hence, it is
clear that:

ρ :
∑

j ρj = 1 with 0 ≤ ρj ≤ 1 ∀j (1)

It follows that the predicted class over the sample τi, namely
θτi , is:

θτ := argmax (ρ) (2)

Although it might seem superfluous, for clarity it is hereby
reported that the likelihood of τ belonging to θτ , as given
by P, is max (ρ). We denote such likelihood as ρθτ (3).

ρθτ = max (ρ) (3)

Please bear in mind that, in case a misclassification occurs,
θ∗τ ̸≡ θτ ; in this case, we denote as ρθ∗ the likelihood that the
CS assigned to the actual class of τ . Furthermore, we denote
as Θ the set of correctly classified test samples, i.e.,

Θ := {τ |θ∗τ ≡ θτ} (4)

where θτ is given by Equation (2) and θ∗τ is the actual class
of τ . Finally, the classification accuracy of P is given by (5),
where | · | denotes the size of a set.

η = |Θ|
|T | (5)

3.2 Investigating on Classification System Resiliency
We are pretty confident, due to many fundamental re-
sults from the scientific literature, that CSs are resilient to
error [5]. This property is indeed imprinted by training
algorithms, since they exploit data-sets that contain a sig-
nificantly high numbers of properly distributed pre-labeled
samples. Such an error resilience is not only an advantage
from a classification perspective, since it gives to input data
of CSs some degree of tolerance w.r.t. error, but it is a feature
that AxC techniques can exploit to improve the performance
of these systems.

Without loss of generality, both in case of input-data
error or due to AxC techniques, we can state that a CS
is resilient to perturbation. Let ρ′ = P(τ ′i) ≡ P′(τi) be the
classification outcome due to such a perturbation. Following
Equations (2) and (4), we can measure the impact of the
perturbation onto resulting prediction accuracy.

η′ = |Θ′|
|T | (6)

Resorting to Equation (2), for each sample τ , we can distin-
guish three different cases:
Case A: argmax(ρ′) ≡ θ∗τ ≡ argmax(ρ), thus the resulting

accuracy is not affected w.r.t. P; on the contrary, we may
have either

Case B: a misclassification due to the perturbation leads to
an accuracy loss, hence: argmax(ρ′) ̸≡ θ∗τ ≡ argmax(ρ),
or

Case C: the perturbation causes a misclassified sample to be
properly classified, i.e., argmax(ρ′) ≡ θ∗τ ̸≡ argmax(ρ),
that is beneficial to the accuracy of P′.

As a consequence, whether Case A occurs, the accuracy
of perturbed CSs is not modified w.r.t. the reference predic-
tor. It follows that CS resiliency must reside in the fact that
most samples fall into Case A.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3403757

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Let us now consider the element-wise difference be-
tween likelihood vectors resulting from the reference and
the perturbed classifiers, that is:

δj = ρj − ρ′j ,∀j (7)

Clearly, for Case A, this difference must turn out to be negli-
gible and do not have an effect on Equation (2). Conversely,
for what pertains to Case B or Case C, Equation (2) gives a
different outcome, implying the following:

∃i : argmax(ρ) ̸≡ argmax(ρ + δ), ρ = P(τi), δ
′ = ρ− P′(τi) (8)

Due to the inherent resiliency of CSs, we know that Case A
is predominant against Case B and Case C, and hence the
value given by Equation (7) does not change the maximum
value index of the likelihood vector, so arbitrary |δj | ≤ ϵ.
Conversely, if the perturbation is strong enough, Cases B
and C are possible, so arbitrary |δj | > ϵ. Of course, we do
not know much about the distribution of δj since it should
be analyzed by varying the source of perturbation, i.e., data
error distribution and AxC techniques, but we can solely
state that, due to manifest resiliency of CSs, it likely does
not change the classification outcome when accuracy loss is
negligible.

Even though, some considerations are still possible
just taking a look at values of ρi ∈ ρ. Let us consider
ρ = [ρ0, ρ1, · · · ρN−1], and resorting to Equations (2, 3) we
can distinguish three different scenarios, i.e.:
Scenario A: the classification outcome is
ρθ ≈ 1, ρj ≈ 0 ∀j ̸= θ, i.e., the CS is pretty much
like sure that τ belongs to the class θ;
Scenario B: the classification outcome is
ρθ ≈ ρj ≈ 1

2 , ρθ > ρj , j ̸= θ, ρk ≈ 0 ∀k ̸= θ,∀k ̸= j, i.e.,
the CS is uncertain between two classes, to which a very
similar probability is associated;
Scenario C: ρθ ≈ ρj ≈ 1

N , ρθ > ρj ∀j ̸= θ; that is, the
probability of being labeled with one class or another is the
same; this is clearly the degenerate case w.r.t. Scenario B.

As for Scenario A, the predicted class has a probability
value far from other classes and, resorting to Equation (7),
the prediction is expected to be less sensitive to the consid-
ered perturbation. Thus, such a sample τ does not likely
contribute to change accuracy. On the contrary, in Scenario
B and Scenario C, the predictor P is quite sensitive to the
perturbation and P′(τ) is likely to result in a different class.
Thus, w.r.t. samples τi, resiliency of a CSs must derive from
the numerous samples τi that fall in Scenario A.

In order to measure how resilient is each sample τ w.r.t.
predictor P, we can exploit the normalized Gini-Simpson
index (9), or Gini impurity, from [21], a well-known metric
already widely employed in machine learning (especially
during DTs training), or alternatively the min-entropy es-
timation or the Euclidean distance. The Gini impurity, in
particular, is a direct measure of how often a randomly
chosen element of a given set would be incorrectly labeled
if it was labeled randomly and independently according to
the distribution of labels in that set.

IG(ρ) =
N

N−1

(
1−

∑N−1
j=0 ρ2i

)
, ρ = P(τ), τ ∈ T (9)

It reaches the minimum value of 0 when all elements in
the set have the same class label, that is equivalent to our

Scenario A, while it reaches the maximum value of 1 when
elements in the set are equally distributed among all classes,
that is our Scenario C.

Hence, in conclusion, we can state that training algo-
rithms, exploiting the repetitiveness and redundancy of
information in the dataset, aim to achieve the optimum on
the trained model by maximizing the number of samples
falling into Scenario A and, consequently, minimizing –
either directly, or indirectly – the loss function for each
sample in the given dataset, e.g., the Gini index for the
CART algorithm [22].

3.3 AxC as Perturbation Source

As aforementioned, during DSE of approximate variants of
a targeting CS, among others, classification accuracy is con-
sidered as a maximizing fitness function. Then, those AxC
variants that show an accuracy loss below a predetermined
tolerance threshold are taken into account. This inherently
implies that, for obtained AxC variants, δ is distributed
around zero and its absolute value is strictly correlated to
the actual accuracy loss.

Let us now empirically investigate how AxC impact
onto CS. To this aim, we set up a preliminary experimental
campaign in which we considered both DT MCSs and
NNs. As for the former, we considered DT MCSs trained
to classify samples taken from the Avila [23] and the Dry
Bean [24] datasets, on which 97.69% and 91.84% accuracy
is achieved, respectively. As for the latter, we considered
LeNet-5 [25] trained to classify images from the Modified
National Institute of Standards and Technology (MNIST)
benchmark [26], and ResNet-8 [27] targeting images taken
from the CIFAR-10 dataset [28]. These NNs exhibit 99.07%
and 86% accuracy, respectively. Besides, we resort to state-
of-the-art-methodologies to design ACSs for each of the
mentioned systems, while pursuing accuracy-loss and hard-
ware requirements minimization. Kindly note that these
systems are part of the test bed for subsequent in-depth
analysis; therefore, details concerning models, dataset, and
ACS design methodologies being used are omitted here, and
they will be provided to the reader in Section 4.

In this preliminary experimental campaign, given a test
set T , a predictor P and a set of ACSs, we computed, for each
of the samples, the mean absolute perturbation induced by
approximation on each score of the classes as in (10), that is
the mean of the absolute element-wise difference between
the scores that P and an ACS P′ assigns to a sample τ , for
each sample τ ∈ T , with N being the number of possible
classification outcomes, i.e., the number of classes. Please
note that E(τ) (10) is bounded due to (1).

E(τ) = 1
N

∑N−1
i=0 |ρi − ρ′i| = 1

N

∑N−1
i=0 |δi| (10)

Figure 1 and Figure 2 show the element-wise error
between the scores that P and an ACS P′ assigns to a
sample τ ∈ T (namely δ as defined in Equation (7)), and
the mean of the absolute element-wise difference between
the scores E(τ), as defined by (10), respectively. As the
reader can observe, although the error is almost always
close to zero for all ACSs, its variation range becomes larger
as the degree of approximation increases, hence the loss
of accuracy increases. Moreover, the higher the baseline

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3403757

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

0.3
0

0.4
2

0.6
3

0.8
8

0.9
9

3.3
8

4.8
7

13
.52

29
.59

49
.94

90
.08

Accuracy loss (%)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

*
′

* ,
T

(a) LeNet-5 NN on MNIST (baseline accuracy: 99.07%)

-0.
11 0.0

2
0.7

9
3.0

0
5.7

5
11

.14
14

.05
38

.46
40

.51
56

.61
74

.26

Accuracy loss (%)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

*
′

* ,
T

(b) ResNet-8 NN on CIFAR-10 (baseline accuracy: 86%)

-0.
19 0.2

9
0.6

7
0.8

6
1.7

3
4.6

0
8.0

5
14

.00
29

.91
44

.15
54

.79

Accuracy loss (%)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

*
′

* ,
T

(c) 5-DT MCS NN on Avila (baseline accuracy: 97.69%)

-0.
96 0.4

4
1.3

2
2.9

4
5.2

9
8.0

8
18

.30
41

.07
65

.32

Accuracy loss (%)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

*
′

* ,
T

(d) 13-DT MCS NN on Dry Bean (baseline accuracy: 91.84%)

Fig. 1: Box-and-whisker plots for ρθ∗ − ρ′θ∗ , for different ACSs, while considering τ ∈ T

0.3
0

0.4
2

0.6
3

0.8
8

0.9
9

3.3
8

4.8
7

13
.52

29
.59

49
.94

90
.08

Accuracy loss (%)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

1 M

M
1

i=
0

|
i

′ i|,
T

(a) LeNet-5 NN on MNIST (baseline accuracy: 99.07%)

-0.
11 0.0

2
0.7

9
3.0

0
5.7

5
11

.14
14

.05
38

.46
40

.51
56

.61
74

.26

Accuracy loss (%)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

1 M

M
1

i=
0

|
i

′ i|,
T

(b) ResNet-8 NN on CIFAR-10 (baseline accuracy: 86%)

-0.
19 0.2

9
0.6

7
0.8

6
1.7

3
4.6

0
8.0

5
14

.00
29

.91
44

.15
54

.79

Accuracy loss (%)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

1 M

M
1

i=
0

|
i

′ i|,
T

(c) 5-DT MCS NN on Avila (baseline accuracy: 97.69%)

-0.
96 0.4

4
1.3

2
2.9

4
5.2

9
8.0

8
18

.30
41

.07
65

.32

Accuracy loss (%)

0.00

0.05

0.10

0.15

0.20

0.25

1 M

M
1

i=
0

|
i

′ i|,
T

(d) 13-DT MCS NN on Dry Bean (baseline accuracy: 91.84%)

Fig. 2: Box-and-whisker plots for the mean of the absolute element-wise difference between the scores E(τ), as defined by (10), for different ACSs,
while considering τ ∈ T

Dataset

Split

Training set

Test set

Training

Data model

Sample
ranking

Ranked
Test set

DSE

AxC
technique

Approximate
Variant

Accuracy
Loss

Estimation

Approximate
Data model

Fig. 3: Dataflow of a DSE approach involving the test set ranking
proposed in this work.

accuracy of the classifier, the lower the value of E, as can
be seen by comparing Figure 2a, Figure 2b, Figure 2c, and
Figure 2d. In fact, classifiers with higher baseline accuracy
tend to have a narrower range of variation for Equation (10).

3.4 Test dataset ranking
Taking considerations of the above, when we need to esti-
mate the accuracy of P′ we can exploit, instead of (6), the

accuracy formerly computed over the reference predictor
P. Indeed, we proved that Case A does not contribute to
modifying accuracy of P′, while Case B and Case C do cause
accuracy to change its value. Hence, we need to identify
which samples τ are most likely to fall in these two cases.

Since the approximation evenly perturbs the vector ρ
in its entirety, rather than a single value ρi, and since
Equation (1) must hold, given a sample τi, if some ρi de-
creases/increases due to the approximation, some others ρj ,
j ̸= i increase/decrease accordingly. Consequently, whether
the difference between ρθ (3) and other scores ρj , j ̸= θ
is negligible, the error induced by approximation is likely
to impact the classification outcome, possibly leading to
misclassification (Scenario B and Scenario C). On the other
hand, whether the difference in terms of score between ρθ
and the others is significantly high, the approximation is
likely to cause no impact (Scenario A).

Based on the metric as defined in Equation (9), we

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3403757

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

rank test samples belonging to Θ – i.e., test samples being
correctly classified by P, as defined in (4) – and test samples
belonging to T \Θ – i.e., test samples being misclassified by
P. In Figure 3 we sketched the dataflow of a DSE campaign
over a machine learning datamodel that exploits the test
dataset ranking.

The impurity-based ranking procedure is described in
Algorithm 1. The procedure takes as input the predictor P

and the test dataset T , and produces partitions of T for
correctly classified and misclassified test samples, which are
empty at the beginning (lines 1 and 2) and filled as inference
is performed over τ ∈ T . Specifically, for each τ ∈ T ,
the actual class θτ is extracted from τ itself, the likelihood
vector ρ is computed using P(τ). Then, the impurity index
IG(ρ) as defined by Equation (9) is computed, as well as
the predicted θτ . Finally, τ is assigned either to C or M ,
based on the predictor result. During the DSE, in order to
quickly assess the impact of the approximation and possibly
quickly identify and discard approximate solutions with
high loss values, it is convenient to perform the inference
phase starting from test samples exhibiting higher impurity,
i.e., those for which the classification is supposed to be more
sensitive to perturbations, and hence to approximation.
Therefore, samples belonging to C are sorted in descending
order based on their impurity index. Conversely, as far
as misclassified samples are concerned, the approximation
may be beneficial for those samples that have a lower impu-
rity, eventually leading to a correct classification. Therefore,
samples belonging to M are sorted in ascending order
based on their impurity index.

Please note that the dataset ranking procedure has to be
performed only once, and, through Equation (5) it also pro-
vides the actual baseline accuracy of the non-approximate
classifier on the test dataset.

Algorithm 1 Impurity-based dataset ranking procedure
1: procedure SAMPLERANKING(P,T)
2: C ← ∅
3: M ← ∅
4: for τ ∈ T do
5: θ∗ ← classOf(τ)
6: ρ← P(τ)
7: θ ← argmax (ρ)
8: i← IG(ρ)
9: if θ∗

τ ≡ θτ then
10: C ← C ∪ {(τ, i)}
11: else
12: M ←M ∪ {(τ, i)}
13: end if
14: end for
15: C ← sortDescending(C)
16: M ← sortAscending(M)
17: return C,M
18: end procedure

3.5 Optimizing accuracy-loss estimation

Our rank-based loss estimation approach is formalized
in the Algorithm 2. Instead of computing accuracy as in
Equation 6, we want to take advantage of the fact that
the samples are sorted by susceptibility to approximation,
and then estimate the accuracy value, η̂′ on a subset of
the testset. To this aim, the estimation procedure needs
the ACS P′, the C and M subsets of the test dataset, as
computed by Algorithm 1, the baseline accuracy η of the

reference predictor P, and the maximum allowed accuracy
loss ν%. Please note that the baseline accuracy η parameter
of Algorithm 1 is superfluous, since η = |C|

|C|+|M | . It is
hereafter used solely for readability purpose.

Algorithm 2 first computes the maximum number of
allowed mispredictions to meet the constraint on the ac-
curacy loss, then it performs the inference starting from
samples belonging to M , which are those misclassified by
P. In case a test sample is correctly classified by the ACS
P′, the number of misclassifications is decreased, and, as
a result, the maximum number of allowed misclassifica-
tions is increased accordingly, as more mispredictions can
be tolerated to meet accuracy constraint while considering
samples τ ∈ C. Furthermore, the algorithm counts the
number of misclassified samples, and breaks the inference
on M as soon as that count exceeds a certain threshold,
which is given by the β parameter. In fact, samples in M
are evaluated starting from those with lower impurity –
i.e., those for which approximation is likely to be beneficial
leading to a correct classification – and as the procedure ex-
amines samples respecting the order given by impurity, this
likelihood decreases. Therefore, it is reasonable to assume
that once b consecutive samples have been misclassified, so
will the remaining ones.

The Algorithm behaves almost the same regarding sam-
ples belonging to C – i.e., those correctly classified by P –
with minor differences. In case the ACS outcome does not
match the expected one, the number of mispredictions is
increased, and whether it exceeds the threshold, the ACS P′

cannot meet the accuracy constraints; thus, the procedure
breaks. As done for samples in M , the algorithm counts the
number of consecutive correctly classified samples, and it
stops sooner whether this count exceeds a given threshold,
which corresponds to the α parameter of the estimation
procedure. These samples, in fact, are sorted in descending
order based on the impurity degree, and since it proceeds
with samples with lower impurity – that are less susceptible
to approximation – it is easy to expect that, at some point,
the ACS will stop misclassifying samples belonging to the
c set. However, stopping the procedure prematurely at the
first correctly classified sample is dangerous regarding the
confidence of the obtained estimate. Furthermore, as far as
samples belonging to C, resetting the counter of consecutive
correct classifications to zero in case a misclassification
occurs is pretty constrictive, and since it greatly affects the
number of samples on which the inference is computed, it
also has a significant impact on computation time. We deem
that the count could be reduced, for example by halving
it, instead of resetting the count value to zero, trading-off
the confidence on the loss value for quicker estimations.
The reduction of this count can be controlled using the γ
parameter of the algorithm.

Note that, η̂′ ≤ η′, being η̂′ computed over a subset of
T as shown in the Algorithm 2. So, in case of accuracy loss
is less than ν, we are able to provide an underestimation,
which confidence is guaranteed to be as close to 100% as α
is high. Conversely, in case the accuracy loss is less than ν,
the confidence is always 100%. Moreover, by setting α and
β very high, more samples are considered during the loss
estimation procedure, and, at the limit, it is possible to make

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3403757

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

sure that the entire dataset is considered. The same effect
is obtained by setting γ very high. Furthermore, setting
γ ≡ |T | equals setting α← 0 at line 24, resetting the counter
of consecutive correct classifications, resetting the counter
for consecutive correct classifications.

Algorithm 2 Accuracy-loss estimation procedure
1: procedure ESTIMATELOSS(η%, ν%, α, β, γ,P′,C,M)
2: maxMiss← ⌊(100− η% + ν%) · |C|+|M|

100 ⌋
3: miss← 0
4: b← 0
5: for τ ∈M do
6: θ∗ ← class of(τ)
7: ρ← P′(τ)
8: if θ∗ ≡ argmax (ρ) then
9: miss← miss− 1

10: b← 0
11: else
12: b← b + 1
13: end if
14: if b ≥ β then
15: break
16: end if
17: end for
18: a← 0
19: for τ ∈ C do
20: θ∗ ← class of(τ)
21: ρτ ← P′(τ)
22: if θ∗ ̸≡ argmax (ρ) then
23: miss← miss + 1
24: a← ⌊a/γ⌋
25: else
26: a← a + 1
27: end if
28: if miss ≥ maxMiss or a ≥ α then
29: break
30: end if
31: end for
32: return 100·miss

|C|+|M|
33: end procedure

3.6 Final remarks
In the above, we appreciated how the training algorithms
of CSs lead to trained models that are robust against per-
turbations. In particular, based on a probabilistic inference,
we can assume that the majority of samples belonging to
the test set are assigned likelihood vectors that fall onto
Scenario A. A side result, then, concerns the direct measure
of the resilience of a CS that we can obtain from the data set,
that is, how the impurity index is distributed over the entire
data set w.r.t. the trained model. Intuitively, models charac-
terized by impurity index values distributed tightly close to
zero are more resilient than ones characterized by impurity
index values distributed more uniformly. For these samples,
perturbations due to approximation would rarely impact
the classification outcome. Resorting to models and datasets
introduced in Section 3.3, we empirically investigate on the
distribution of the impurity index, given a test dataset T and
a classifier P. Specifically, we computed the Gini-impurity
(9) for each of the sample τ ∈ T , distinguishing between
correctly classified and misclassified test samples. Figure 4
reports results: the left-hand plots in figures 4a, 4b, 4c and
4d refer to correctly classified test samples – τ ∈ Θ –, while
the right-hand ones refer to misclassified samples.

As the reader can observe, for correctly classified test
samples (left-hand plots), the Gini-impurity (9) concentrates
very close to zero, confirming our assumption concerning
the majority of samples of the test set being assigned
likelihood vectors that fall onto Scenario A. Points beyond

the whiskers on the box-plots, conversely, pinpoint samples
for which the likelihood vectors that fall onto either Sce-
nario B or Scenario C. In the latter two cases, however,
the approximation could have either negative effects – a
sample previously classified correctly could be misclassified
by the ACS – or no effect at all – a sample continues to be
misclassified.

As for misclassified test samples (right-hand plots), for
most of the considered datasets and classifiers the Gini-
impurity values (9) distribute undeniably far from zero,
around the center-value IG(ρ) ≈ 1

2 . This happens whether
ρθ ≈ ρj ≈ 1

2 , ρθ < ρj , j ̸= θ, ρk ≈ 0 ∀k ̸= θ,∀k ̸= j, i.e.,
the CS is uncertain between two classes, to which a very
similar probability is given, however it determined the
wrong class as the winner. In this case, the approximation
can even be beneficial, since it could favor the correct class
to the detriment of the current wrong outcomes. The right-
most plot in Figure 4d, anyway, depicts a Gini-impurity
distribution close to zero for misclassified test samples as
well. This is dual to Scenario A: j ̸= θ : ρj ≈ 1, ρθ ≈ 0,
which means the CS is pretty much like sure that τ belongs
to the class j, albeit j is the wrong class. As for Scenario
A, perturbations due to approximation would rarely
impact the classification outcome; thus, it is unlikely that
approximation would lead to improved accuracy.

4 EVALUATION

In this Section, we evaluate our approach while designing
ACS involving two quite common machine-learning mod-
els, namely DT MCSs and NNs. We aim to empirically
prove that, when compared to methods involving a full
evaluation of the dataset for accuracy loss estimation, our
method can deliver equally good solutions in less time. This
is achieved through a faithful estimation of the accuracy
loss performed while considering only test samples that are
actually affected by approximation. Furthermore, we empir-
ically prove that, when a limited computational-time budget
is considered, the rank-based approach can provide even
better solutions when compared to approaches considering
the full dataset.

Before providing evidence supporting the above state-
ments in Section 4.2, we first provide full details concerning
the experimental setup in Section 4.1. In particular, we will
discuss how reference (non-approximate) CSs, as well as
ACS, have been designed while resorting to state-of-the-
art methodologies, including a brief discussion concerning
parameters influencing the DSE and Algorithm 2, i.e., the
accuracy-loss estimation procedure.

4.1 Experimental setup

In our analysis, we considered five different datasets, ad-
dressing the classification task while resorting to seven
different CSs. As mentioned, we considered both DT MCSs
and NNs, which design is detailed in Section 4.1.1 and
Section 4.1.2, respectively.

Before going deeply into discussing the design of ACSs,
we deem it worth noticing that, despite the evident differ-
ences in these two CSs, their design has some similarities.
For instance, concerning the DSE it is worth noticing that

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3403757

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

0.0 0.5
IG()

0

2000

4000

6000

8000

of

 s
am

pl
es

0.4 0.6 0.8
IG()

0

5

10

15

20

25

of

 s
am

pl
es

(a) LeNet-5 on MNIST (baseline ac-
curacy: 99.07%)

0.0 0.5
IG()

0

1000

2000

3000

4000

5000

6000

of

 s
am

pl
es

0.4 0.6 0.8
IG()

0

25

50

75

100

125

150

175

of

 s
am

pl
es

(b) ResNet-8 on CIFAR-10 (baseline
accuracy: 86%)

0.25 0.50 0.75
IG ()

0

250

500

750

1000

1250

1500

1750

2000

of

 s
am

pl
es

0.6 0.8
IG()

0

1

2

3

4

5

6

7

8

of

 s
am

pl
es

(c) 5-DT MCS on Avila (baseline ac-
curacy: 97.69%)

0.0 0.5
IG()

0

200

400

600

800

1000

1200

of

 s
am

pl
es

0.4 0.6 0.8
IG()

0

10

20

30

40

50

of

 s
am

pl
es

(d) 13-DT MCS on Dry Bean (base-
line accuracy: 91.84%)

Fig. 4: Distribution of the Gini impurity across test samples for different predictors. The left-hand plots refer to correctly classified test samples,
while the right-hand ones refer to misclassified test samples.

Dataset Instances Attributes Classes Predictor Baseline accuracy
Avila 20867 10 12 5-DT MCS 97.69%

Dry Bean 13611 17 7 13-DT MCS 91.84%
Spambase 4601 53 2 20-DT MCS 92.82%

MNIST 60000 N/A 10 LeNet-5 99.07%
ResNet-8 84.31%

CIFAR-10 60000 N/A 10 ResNet-14 86%
ResNet-24 85.78%

TABLE 1: Dataset and models being considered for evaluation

there are some parameters that depend neither on the par-
ticular classification model nor on the dataset, although they
definitely affect both the result quality and computational
time. In particular, for the NSGA-II, that is exploited to cope
with DSE when targeting both DT MCSs and NN, those of
major influence are the initial population size, the number of
generations, and the mutation and crossover probabilities.
According to the guidelines and suggestions from [29], we
have succeeded in achieving a good configuration for the
NSGA-II through successive attempts. Hence, during the
experimental phase, several campaigns were conducted,
during which the configuration parameters of the NSGA-
II were modified several times, aiming at Pareto frontiers
that were sufficiently diversified and populous.

As far as parameters governing the behavior of Algo-
rithm 2 – i.e., α, β and γ – they undeniably impact the num-
ber of samples involved in the accuracy loss estimation. We
evaluated through successive attempts that α = 0.07 · |T |,
β = 0.5·|T |, and γ = 2 can provide a good tradeoff between
error estimation confidence and speed-up, as shown later
on in this Section. A further fine-tuning of such parameters
would lead to negligible enhancmenents, so it is not worth
a deeper discussion in this paper.

As far as the effectiveness of our approach – i.e., proving
that , when compared to methods involving a full evaluation
of the dataset for accuracy loss estimation, our method can
deliver equally good solutions in less time – we employed
the same configuration for the DSE both when the accuracy
assessment is done on the whole dataset and when it is
done using our approach, for a rigorous and fair comparison
of results. Such configurations will be discussed in the
following sections. Conversely, in oder to prove that our
approach allows for superior solutions whether a limited
computational-time budget is considered, we exploited the
running performance metric and early-termination criterion
from [30]. Last, in order to discard solutions with a signifi-
cantly high accuracy loss, we defined a maximum accuracy
loss threshold, which is set to 5%.

4.1.1 Decision-tree based classifiers
For what pertains to DT MCSs, classifiers can be de-
signed starting from the reference dataset through different
machine-learning frameworks, such as KNIME 1 or Scikit-
learn [31]. Both describe classifiers using the Predictive
Model Markup Language (PMML), which is an XML-based
predictive model interchange format that makes use of the
IEEE 754 double-precision floating-point representation for
feature values and thresholds at each node of the trees. In
the following, without loss of generality, we resort to the
Scikit-learn [31] for training DT MCSs and, as reported in Ta-
ble 1, we considered three different datasets: the Avila [23],
the Dry Bean [32] and the Spambase [33] datasets, that are
all open-source and freely available through the UC Irvine
Machine Learning Repository2. The Avila data set has been
extracted from 800 images of the “Avila Bible”, a XII century
giant Latin copy of the Bible, and the prediction task consists
of associating each pattern to one of 12 copyists. The dataset
consists of 20867 test samples, each of which is composed
of 10 attributes encoded as floating-point. We addressed
the classification task by training a DT MCS consisting of 5
decision trees that reached 97.69%. The Dry Bean dataset is a
collection of 13611 images of 7 different registered dry beans
taken with a high-resolution camera, from which a total of
16 features were obtained, both integer and floating-point,
through segmentation and feature extraction stages. The
task is to distinguish between the seven different registered
varieties of dry beans with similar features. To cope with
this task, we trained a CS consisting of 13 decision trees,
providing 91.84% accuracy. The third dataset we consider
for DT MCS is the Spambase dataset, which consists of
4601 samples and involves recognizing spam and non-spam
emails. Distinguishing between these two classes is to be
done by evaluating 53 different features, both integer and
floating-point. To deal with this task with reasonably high
accuracy, we trained a DT MCS consisting of 20 decision
trees exhibiting 92.82% accuracy.

Pertaining to the approximation, we resort to the ap-
proach discussed in [1], [2]. It considers the DT MCS as
a black box, taking the PMML encoding of the predic-
tor and exploiting the bit-width reduction AxC technique
targeting model features’ representation to introduce ap-
proximation. In essence, the approach from [1] neglects the
least significant bits of features while keeping the weight
of the retained bits unaltered. This leads to a reduction

1. https://www.knime.com/
2. https://archive.ics.uci.edu/

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3403757

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.knime.com/
https://archive.ics.uci.edu/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Dataset Predictor Vars. Solution Space Pop.Size Generations Max.Time
Avila 5-DT MCS 10 ≈ 2 · 1017 20 31 3h

Dry Bean 13-DT MCS 17 ≈ 5 · 1027 35 59 5h
Spambase 20-DT MCS 53 ≈ 5 · 1098 100 151 5h

TABLE 2: MOO instances and corresponding NSGA-II configuration
parameters for DT MCS-based ACSs

in the size of circuits due to the removal of parts of the
logic needed by comparisons. Finally, MOO, that addressed
using the NSGA-II [17], is exploited to search for ACS
providing the best trade-offs between hardware overhead
and classification accuracy. Regarding this very last point,
the configuration parameters for the NSGA-II have been
set according to the guidelines and suggestions from [29].
Besides the population size and the maximum number of
generations, we report the maximum allowed runtime of the
NSGA-II to be used as early-termination criterion in Table 2.
Furthermore, albeit not reported in the mentioned Table, we
set the crossover and mutation probability to 0.8 and 0.1,
respectively.

4.1.2 Neural Networks
As far as NNs are concerned, reference networks can be
designed while resorting to state-of-the-art training frame-
works, such as TensorFlow [34] or pyTorch [35]. The latter
frameworks leverage 64-bit double-precision floating-point
to represent synaptic weights, biases, and activations while
performing both the training and inference phases. The use
of compression techniques, such as quantization, to reduce
NN model size is pretty common.

We resort to the TensorFlow [34] framework, leverag-
ing 8-bit Quantization-Aware Training (QAT) features pro-
vided by TensorFlow-LITE. The QAT entails quantization
during the training phase, clipping and rescaling weights
and activations while leveraging quantization thresholds.
Hence, the network is trained with simulated quantiza-
tion. As reported in Table 1, our evaluation involves four
different NNs, that are LeNet-5 [25], ResNet-8, ResNet-
14, and ResNet-24 [27]. The LeNet-5 Convolutional Neural
Network (CNN) has been trained to classify images from
the MNIST dataset of hand-written digits [26], on which
it exhibits 99.07% accuracy, while the ResNet-8, ResNet-
14, and ResNet-24 CNNs, instead, have been trained while
targeting images taken from the CIFAR-10 dataset [28],
which consists of 60 thousand RGB images, each belonging
to one among ten classes. The networks exhibit 84.31%, 86%
and 85.78% accuracy on the mentioned dataset, respectively.

Concerning approximation, we resort to the approach
from [3], which replaces accurate convolution layers within
NNs using approximate ones. Specifically, for each convo-
lution layer, a suitable approximate multiplier is selected
from the EvoApprox8b library [20] while the overall classi-
fication error – i.e., accuracy loss – and energy consump-
tion are simultaneously minimized through a MOO. The
MOO problem is addressed while resorting to the NSGA-
II heuristic [17]. We deploy approximate multipliers taken
from the 2022 version of the EvoApproxLib-Lite library
of approximate circuits, whose error characterization and
hardware overhead are reported in Table 3, for the reader
convenience.

Furthermore, as done in [3], we also resort to the tuning
procedure involving learned weights, in order to recover the

Circuit MAE (%) AWCE (%) MRE (%) Power (mW) Area (µm2)
1KV6 0.00 0.00 0.00 0.425 729.8
1KV8 0.0018 0.0076 0.28 0.422 711.0
1KV9 0.0064 0.026 0.90 0.410 685.2
1KVA 0.019 0.075 2.53 0.391 641.1
1KVM 0.049 0.20 2.40 0.369 652.8
1KVP 0.051 0.21 2.73 0.363 635.0
1KVQ 0.056 0.25 3.64 0.351 599.8
1KX5 0.15 0.69 8.93 0.289 543.0
1KXF 0.34 1.37 15.72 0.237 482.4
1L2J 0.081 0.39 4.41 0.301 558.9
1L2L 0.23 1.16 12.26 0.200 411.6
1L2N 0.52 2.66 27.44 0.126 284.9
1L12 3.08 12.30 135.77 0.052 172.2

TABLE 3: Error characterization and hardware requirements for ap-
proximate circuits taken from the EvoApproxLib-Lite library, as re-
ported in [20].

Dataset Predictor Vars. Solution Space Pop.Size Generations Max.Time
MNIST LeNet-5 5 ≈ 2.48 · 105 10 17 1h

ResNet-8 11 ≈ 7.43 · 1011 25 31 12h
CIFAR-10 ResNet-14 14 ≈ 1.28 · 1015 30 37 12h

ResNet-24 21 ≈ 4.60 · 1022 40 57 12h

TABLE 4: MOO instances and corresponding NSGA-II configuration
parameters for NN-based ACSs

accuracy loss. The latter procedure exploits a weight mapping
function, which is precalculated offline for each approximate
multiplier. Given an approximate multiplier M , for each
weight w, a weight w′ is determined as

argminw′∈W
∑

a∈I |M(a,w′)− a · w| ∀w ∈W (11)

i.e., the new weight w′ is determined such that it minimizes
the sum of absolute differences between the output of the
approximate and accurate multiplication over all inputs.
Finally, besides the accuracy loss, the DSE is driven by the
power consumed by the ACS, that is to be minimized. As
done in [3], we estimate it as the sum of power-consumption
of each multiplier being deployed in a given layer, mul-
tiplied the number of operations needed to compute that
layer.

Pertaining to the configuration parameters for the
NSGA-II, as mentioned, they have been set according to
the guidelines and suggestions from [29]. The population
size and the maximum number of iterations, as well as
the maximum allowed runtime, are reported in Table 4.
Furthermore, we once again 0.8 and 0.1 proved to be good
setups values respectively for the crossover and mutation
probability.

4.2 Experimental results
As mentioned, we considered both DT MCSs and NNs as
well as different datasets, for our analysis. In addition, be-
sides collecting DSE results, we also collected the estimation
error and the number of test samples exploited during the
estimation made through Algorithm 2. As for the estimation
error, in particular, it is computed as the difference between
the accuracy loss measured on the entire test dataset and its
estimation as provided by Algorithm 2.

Regarding the gain in time, as previously stated, we doc-
umented the quantity of samples utilized for each estimate

Dataset Test Samples Predictor Avg.Instances Comp.Full Comp.Rank Avg.Speed-up
Avila 2086 5-DT MCS 119 1454 85 ≈17

Dry Bean 1361 13-DT MCS 179 2181 311 ≈7
Spambase 460 20-DT MCS 46 2988 288 ≈10

MNIST 10000 LeNet-5 790 96 7 ≈12
ResNet-8 2068 2951 610 ≈4

CIFAR-10 10000 ResNet-14 1929 2891 558 ≈5
ResNet-24 1862 2893 538 ≈5

TABLE 5: Speed-up resulting from Algorithm 2

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3403757

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

0 2 4 6 8
Accuracy loss (%)

40000

42000

44000

46000

48000

50000

Es
tim

at
ed

 A
re

a

(a) 5-DT MCS on Avila

0.0 2.5 5.0 7.5 10.0
Accuracy loss (%)

105000

110000

115000

120000

125000

130000

135000

140000

Es
tim

at
ed

 A
re

a

(b) 13-DT MCS on Dry Bean

1 0 1 2
Accuracy loss (%)

47000

48000

49000

50000

51000

52000

Es
tim

at
ed

 A
re

a

(c) 20-DT MCS on Spambase

Fig. 5: Comparison of results for DT MCS-based ACSs. ♦ denote the Pareto front obtained through exhaustive dataset evaluation, while • results
from the rank-based evaluation approach as reported in Algorithm 2

0.5 0.0 0.5 1.0
Accuracy loss (%)

20000

30000

40000

50000

60000

70000

80000

Po
w

er
 c

on
su

m
pt

io
n

(m
W

)

(a) LeNet-5 on MNIST

0 2 4
Accuracy loss (%)

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Po

w
er

 c
on

su
m

pt
io

n
(m

W
)

1e7

(b) ResNet-8 on CIFAR-10

2 0 2 4
Accuracy loss (%)

1.2

1.4

1.6

1.8

2.0

Po
w

er
 c

on
su

m
pt

io
n

(m
W

)

1e7

(c) ResNet-14 on CIFAR-10

2 1 0 1 2 3
Accuracy loss (%)

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Po
w

er
 c

on
su

m
pt

io
n

(m
W

)

1e7

(d) ResNet-24 on CIFAR-10

Fig. 6: Comparison of results for NN-based ACSs. ♦ denote the Pareto front obtained through exhaustive dataset evaluation, while • results from
the rank-based evaluation approach as reported in Algorithm 2

Reference Rank-based

Re
fe
re
nc
e

Ra
nk
-b
as
ed

0.00 0.00

1.00 0.00
0.0

0.2

0.4

0.6

0.8

1.0

(a) 5-DT MCS on Avila

Reference Rank-based

Re
fe
re
nc
e

Ra
nk
-b
as
ed

0.00 0.00

1.00 0.00
0.0

0.2

0.4

0.6

0.8

1.0

(b) 13-DT MCS on Dry
Bean

Reference Rank-based

Re
fe
re
nc
e

Ra
nk
-b
as
ed

0.00 0.29

0.29 0.00
0.0

0.2

0.4

0.6

0.8

1.0

(c) 20-DT MCS on
Spambase

Fig. 7: Coverage index (12) for DT MCS-based ACSs.

Reference Rank-based

Re
fe
re
nc
e

Ra
nk
-b
as
ed

0.00 0.20

0.00 0.00
0.0

0.2

0.4

0.6

0.8

1.0

(a) LeNet-5 on
MNIST

Reference Rank-based

Re
fe
re
nc
e

Ra
nk
-b
as
ed

0.00 0.31

0.40 0.00

0.0

0.2

0.4

0.6

0.8

1.0

(b) ResNet-8 on
CIFAR-10

Reference Rank-based

Re
fe
re
nc
e

Ra
nk
-b
as
ed

0.00 0.11

0.64 0.00
0.0

0.2

0.4

0.6

0.8

1.0

(c) ResNet-14 on
CIFAR-10

Reference Rank-based

Re
fe
re
nc
e

Ra
nk
-b
as
ed

0.00 0.00

1.00 0.00
0.0

0.2

0.4

0.6

0.8

1.0

(d) ResNet-24 on
CIFAR-10

Fig. 8: Coverage index (12) for NN-based ACSs.

in the DSE. These are illustrated in plots of Figure 11 and
Figure 12. In most cases, the number of samples considered
during estimation is quite small compared to the size of the
test dataset. This allows faster estimation, resulting in an
average speed increase of up to approximately 18 times, as
shown in Table 5. In the mentioned Table, we also reported

0 5 10 15
0

5000

10000

15000

20000

25000

(a) 5-DT MCS on Avila

0 2 4 6
0

2000

4000

6000

8000

10000

12000

14000

16000

(b) 13-DT MCS on Dry
Bean

0 2 4
0

2500

5000

7500

10000

12500

15000

17500

(c) 20-DT MCS on
Spambase

Fig. 9: Estimation-error for DT MCS-based ACSs.

0.5 1.0 1.5
0

1000

2000

3000

4000

5000

6000

7000

(a) LeNet-5 on
MNIST

0.0 0.1 0.2 0.3
0

1000

2000

3000

4000

(b) ResNet-8 on
CIFAR-10

0.0 0.2 0.4 0.6 0.8
0

100

200

300

400

500

600

700

800

(c) ResNet-14 on
CIFAR-10

0.0 0.2 0.4 0.6
0

50

100

150

200

250

300

350

400

(d) ResNet-24 on
CIFAR-10

Fig. 10: Estimation-error for NN-based ACSs.

250

500

750

1000

1250

1500

1750

2000

119119119119

(a) 5-DT MCS on Avila

200

250

300

350

400

450

500

179179179179

(b) 13-DT MCS on Dry
Bean

40

45

50

55

60

65

70

75

80

46464646

(c) 20-DT MCS on
Spambase

Fig. 11: Number of evaluated test samples during the DSE for DT MCS-
based ACSs.

1000

1500

2000

2500

3000

790790790790

(a) LeNet-5 on
MNIST

2000

3000

4000

5000

6000

7000

8000

9000

10000

2068206820682071

(b) ResNet-8 on
CIFAR-10

2000

3000

4000

5000

6000

7000

8000

9000

10000

1929192919291943

(c) ResNet-14 on
CIFAR-10

2000

3000

4000

5000

6000

7000

8000

9000

10000

1862186218621903

(d) ResNet-24 on
CIFAR-10

Fig. 12: Number of evaluated test samples during the DSE for NN-
based ACSs.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3403757

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

computational time required by both the approaches, which
have been measured on a computing system equipped with
16-cores/32-threads AMD Ryzen 9550, an NVIDIA A5000
GPU, and 64GB of RAM.

Figure 5 and Figure 6 report Pareto fronts resulting
from DSE while designing DT MCSs and NNs. In these,
time budgest reported in Table 2 and Table 4 limits the
computational time for the DSE. In the these figures, ♦
denote ACSs provided by exhaustive test dataset evalua-
tion, while • refer to those resulting from our rank-based
evaluation approach, as in Algorithm 2. Please kindly note
that while during the DSE the Algorithm 2 is exploited to
shrink the dataset for error estimation, at the end of the DSE
the loss is recomputed on the whole dataset and plotted
in the mentioned figures. At first glance, for most of the
classifiers no significant differences can be easily spotted by
observing Figure 5 and Figure 6. This happend whether both
the rank-based and the evaluation performed on the whole
dataset are able to reach a good estimation of the Pareto
front before the allowed time budget. Anyway, it is worth
noticing that the Pareto front resulting from Algorithm 2
outperforms that resulting from full dataset evaluation in
Figure 5a, Figure 5b,Figure 6c and Figure 6d. This is simply
explained by the larger portion of the design space that a
reduced fitness computation-time allows, possibly leading
to better solutions. It is worth noticing that for the 13-DT
DT MCS dataset classifying samples from the Dry Bean
(Figure 5b), as well as ResNet-24 classifying images from the
CIFAR-10 dataset (Figure 6d, neither of the DSEs reached
completion within the given time budget. Nevertheless, it
is easy to recognize that the results provided by the rank-
based approach are superior, due to the larger portion of the
design space being explored.

Whenever no evident difference in Pareto fronts can be
observed in the figures, to relieve us of any doubt, we also
resort to the Coverage of two sets metric [36] that provides
a comparative method to determine which between two
candidate fronts – resulting from a heuristic such as the
NSGA-II – is closer to the actual Pareto front. Let A and
B be two sets of solutions for a MOO problem, the C (A, B)
maps the pair (A, B) to the interval [0, 1] as specified in (12).

C (A,B) := |{∀β∈B; ∃ α∈A:α⪰β}|
|B| (12)

Whether C (A, B) equals to 1, it means that all points in B
are dominated by, or they are equal to, points in A. On the
contrary, when no point in B is covered – i.e., dominated –
by any points in A, the C (A, B) equals to 0. Kindly note
that the expression α ⪰ β means “α covers β”, i.e., that the
solution α dominates the solution β or they are the same.

Since C (A,B) ̸= C (B, A), both have to be computed
when comparing Pareto fronts [36]. Hence, we computed
C between the Pareto-fronts resulting from exhaustive test
dataset evaluation and those resulting from our rank-based
approach (and vice versa), reporting results in Figure 7 and
Figure 8 respectively for DT MCS and NN based ACSs. The
coverage index (12) further confirms our hypothesis: low
values of C (A,B) and C (B, A) mean there is no manifest
dominance relationship between the two sets of solutions.
This empirically proves that, when compared to methods
involving a full evaluation of the dataset for accuracy loss
estimation, our method can deliver equally good solutions.

This behavior is rather easily explained. In fact, as evi-
denced by the plots in Figure 9 and Figure 10, the estimation
error, for solutions that exhibit an accuracy loss lower than
the given threshold, is really low for both decision tree-
based and neural network-based classifiers, regardless of the
particular classification problem.

5 CONCLUSION AND FUTURE DIRECTION

In this paper, we discussed how the computational time
required to measure the accuracy loss due to approximation
being introduced in CSs can be reduced by systematically
selecting test samples that are likely to be more sensitive
to the approximation, in order to provide a faithful yet
efficient loss estimation. We provided an in-depth discus-
sion concerning how approximation impacts CSs from an
analytical standpoint, and we identified in the normalized
Gini-Simpson index [21], or Gini impurity (9), the metric by
which to discriminate those test samples whose predictions
have higher sensitivity when approximation is introduced.
We integrated our technique into two machine learning
models to produce approximate variants of (CSs). Indeed,
we employed current state-of-the-art methods in designing
these models, incorporating various approximation tech-
niques, classification tasks, datasets, and classifiers. We then
assessed the accuracy loss using both exhaustive measure-
ments with the entire test dataset and estimations from our
approach. Our method demonstrated comparable perfor-
mance while significantly reducing computational time.

In the next future, we intend to investigate how to take
advantage of this approach for improving CS performance
and to make CS less susceptible to adversarial attacks. In
fact, by having the ability to measure how robust a given
sample is with respect to classification, it is possible to field
data model optimization procedures that focus on weakly
robust samples.

REFERENCES

[1] M. Barbareschi, S. Barone, and N. Mazzocca, “Advancing
synthesis of decision tree-based multiple classifier systems: an
approximate computing case study,” Knowledge and Information
Systems, pp. 1–20, Apr. 2021. [Online]. Available: https:
//link.springer.com/article/10.1007/s10115-021-01565-5

[2] M. Barbareschi, C. Papa, and C. Sansone, “Approximate Decision
Tree-Based Multiple Classifier Systems,” International Conference on
Optimization and Decision Science, p. 47, Sep. 2017.

[3] V. Mrazek, Z. Vasicek, L. Sekanina, M. A. Hanif, and
M. Shafique, “ALWANN: Automatic Layer-Wise Approximation
of Deep Neural Network Accelerators without Retraining,”
2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 1–8, Nov. 2019, arXiv: 1907.07229. [Online].
Available: http://arxiv.org/abs/1907.07229

[4] Z.-G. Tasoulas, G. Zervakis, I. Anagnostopoulos, H. Amrouch, and
J. Henkel, “Weight-Oriented Approximation for Energy-Efficient
Neural Network Inference Accelerators,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4670–4683,
Dec. 2020.

[5] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Analysis and characterization of inherent application resilience
for approximate computing,” in Proceedings of the 50th
Annual Design Automation Conference on - DAC ’13. Austin,
Texas: ACM Press, 2013, p. 1. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2463209.2488873

[6] A. Bosio, D. Ménard, and O. Sentieys, Eds., Approximate
Computing Techniques: From Component- to Application-Level. Cham:
Springer International Publishing, 2022. [Online]. Available:
https://link.springer.com/10.1007/978-3-030-94705-7

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3403757

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://link.springer.com/article/10.1007/s10115-021-01565-5
https://link.springer.com/article/10.1007/s10115-021-01565-5
http://arxiv.org/abs/1907.07229
http://dl.acm.org/citation.cfm?doid=2463209.2488873
http://dl.acm.org/citation.cfm?doid=2463209.2488873
https://link.springer.com/10.1007/978-3-030-94705-7

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[7] S. Barone, M. Traiola, M. Barbareschi, and A. Bosio, “Multi-
Objective Application-Driven Approximate Design Method,”
IEEE Access, vol. 9, pp. 86 975–86 993, 2021, conference Name: IEEE
Access.

[8] L. Sekanina, Z. Vasicek, and V. Mrazek, “Automated Search-Based
Functional Approximation for Digital Circuits,” in Approximate
Circuits, S. Reda and M. Shafique, Eds. Cham: Springer
International Publishing, 2019, pp. 175–203. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-99322-5 9

[9] E. Zacharelos, I. Nunziata, G. Saggese, A. G. Strollo, and E. Napoli,
“Approximate recursive multipliers using low power building
blocks,” IEEE Transactions on Emerging Topics in Computing, vol. 10,
no. 3, pp. 1315–1330, 2022.

[10] I. Scarabottolo, G. Ansaloni, G. A. Constantinides, L. Pozzi, and
S. Reda, “Approximate Logic Synthesis: A Survey,” Proceedings of
the IEEE, vol. 108, no. 12, pp. 2195–2213, Dec. 2020, conference
Name: Proceedings of the IEEE.

[11] M. Barbareschi, S. Barone, N. Mazzocca, and A. Moriconi, “A
Catalog-based AIG-Rewriting Approach to the Design of Ap-
proximate Components,” IEEE Transactions on Emerging Topics in
Computing, 2022.

[12] M. Ahmadinejad and M. H. Moaiyeri, “Energy- and quality-
efficient approximate multipliers for neural network and image
processing applications,” IEEE Transactions on Emerging Topics in
Computing, vol. 10, no. 2, pp. 1105–1116, 2022.

[13] H. A. Almurib, T. N. Kumar, and F. Lombardi, “Approximate DCT
Image Compression Using Inexact Computing,” IEEE Transactions
on Computers, vol. 67, no. 2, pp. 149–159, Feb. 2018.

[14] M. Barbareschi, S. Barone, A. Bosio, J. Han, and M. Traiola,
“A Genetic-algorithm-based Approach to the Design of DCT
Hardware Accelerators,” ACM Journal on Emerging Technologies in
Computing Systems, vol. 18, no. 3, pp. 1–25, Jul. 2022. [Online].
Available: https://dl.acm.org/doi/10.1145/3501772

[15] V. K. Chippa, D. Mohapatra, K. Roy, S. T. Chakradhar, and
A. Raghunathan, “Scalable Effort Hardware Design,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 9,
pp. 2004–2016, Sep. 2014.

[16] S. Venkataramani, A. Raghunathan, J. Liu, and M. Shoaib,
“Scalable-effort classifiers for energy-efficient machine learning,”
in Proceedings of the 52nd Annual Design Automation Conference.
San Francisco California: ACM, Jun. 2015, pp. 1–6. [Online].
Available: https://dl.acm.org/doi/10.1145/2744769.2744904

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.

[18] M. Capra, B. Bussolino, A. Marchisio, M. Shafique, G. Masera,
and M. Martina, “An Updated Survey of Efficient Hardware
Architectures for Accelerating Deep Convolutional Neural
Networks,” Future Internet, vol. 12, no. 7, p. 113, Jul. 2020, number:
7 Publisher: Multidisciplinary Digital Publishing Institute.
[Online]. Available: https://www.mdpi.com/1999-5903/12/7/
113

[19] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek,
and J. Han, “Improving the Accuracy and Hardware Efficiency of
Neural Networks Using Approximate Multipliers,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 2,
pp. 317–328, Feb. 2020.

[20] V. Mrazek, Z. Vasicek, L. Sekanina, H. Jiang, and J. Han, “Scalable
Construction of Approximate Multipliers With Formally Guar-
anteed Worst Case Error,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 26, no. 11, pp. 2572–2576, Nov. 2018.

[21] E. H. Simpson, “Measurement of Diversity,” Nature, vol. 163, no.
4148, pp. 688–688, Apr. 1949, number: 4148 Publisher: Nature
Publishing Group. [Online]. Available: https://www.nature.com/
articles/163688a0

[22] L. Breiman, J. H. Friedman, R. Olshen, and C. J. Stone, “Classifica-
tion and Regression Trees,” Routledge, 1984, publisher: Wadsworth.

[23] F. F. Claudio Stefano, “Avila,” 2018. [Online]. Available:
https://archive.ics.uci.edu/dataset/459

[24] UC Irvine Machine Learning Repository, “Dry Bean Dataset,”
2020. [Online]. Available: https://archive.ics.uci.edu/dataset/602

[25] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, Nov. 1998, conference Name: Pro-
ceedings of the IEEE.

[26] Y. LeCun, C. Cortes, and C. Burges, “MNIST Handwritten

digit database,” 1998. [Online]. Available: http://yann.lecun.
com/exdb/mnist/

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Las Vegas,
NV, USA: IEEE, Jun. 2016, pp. 770–778. [Online]. Available:
http://ieeexplore.ieee.org/document/7780459/

[28] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 (canadian
institute for advanced research),” 2010. [Online]. Available:
https://www.cs.toronto.edu/∼kriz/cifar.html

[29] A. E. Eiben and S. K. Smit, “Evolutionary Algorithm
Parameters and Methods to Tune Them,” in Autonomous
Search, Y. Hamadi, E. Monfroy, and F. Saubion, Eds. Berlin,
Heidelberg: Springer, 2012, pp. 15–36. [Online]. Available:
https://doi.org/10.1007/978-3-642-21434-9 2

[30] J. Blank and K. Deb, “A Running Performance Metric
and Termination Criterion for Evaluating Evolutionary Multi-
and Many-objective Optimization Algorithms,” in 2020 IEEE
Congress on Evolutionary Computation (CEC). Glasgow, United
Kingdom: IEEE, Jul. 2020, pp. 1–8. [Online]. Available:
https://ieeexplore.ieee.org/document/9185546/

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, and D. Cournapeau, “Scikit-learn: Machine
Learning in Python,” MACHINE LEARNING IN PYTHON, 2011.

[32] M. Koklu and I. A. Ozkan, “Multiclass classification of dry
beans using computer vision and machine learning techniques,”
Computers and Electronics in Agriculture, vol. 174, p. 105507,
Jul. 2020. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0168169919311573

[33] M. Hopkins, E. Reeber, G. Forman, and J. Suermondt, “Spambase
Data Set,” 1999. [Online]. Available: https://archive.ics.uci.edu/
ml/datasets/spambase

[34] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: A system for large-scale machine
learning,” The Google Brain Team, Tech. Rep., 2015. [Online].
Available: https://www.tensorflow.org/

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“PyTorch: An Imperative Style, High-Performance Deep Learning
Library,” Dec. 2019, arXiv:1912.01703 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/1912.01703

[36] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms:
a comparative case study and the strength Pareto approach,” IEEE
Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271,
Nov. 1999.

Mario Barbareschi is a Tenured Assistant Pro-
fessor of Computer Systems at the Department
of Electrical Engineering and Information Tech-
nologies of the University of Naples Federico
II. He received the Ph.D. in Computer and Au-
tomation Engineering in 2015 from the Univer-
sity of Naples Federico II. His research interests
include Hardware Security and Trust, Approx-
imate Computing, emerging technologies, and
embedded systems. He participates in interna-
tional projects, collaborating with academic in-

stitutions and several industrial partners. He has authored more than
70 peer-reviewed papers published in leading journals and international
conferences.

Salvatore Barone is an Assistant Professor at
the Department of Electrical Engineering and In-
formation Technology, University of Naples Fed-
erico II, Italy. He received his PhD in Informa-
tion Technology and Electrical Engineering in
2022, from the University of Naples Federico II,
Italy. His main research field is designing high-
performance computing systems, even though
his research interests include Safety Critical
Systems, Railway Systems, and Embedded Sys-
tems based on the FPGA technology.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3403757

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

http://link.springer.com/10.1007/978-3-319-99322-5_9
https://dl.acm.org/doi/10.1145/3501772
https://dl.acm.org/doi/10.1145/2744769.2744904
https://www.mdpi.com/1999-5903/12/7/113
https://www.mdpi.com/1999-5903/12/7/113
https://www.nature.com/articles/163688a0
https://www.nature.com/articles/163688a0
https://archive.ics.uci.edu/dataset/459
https://archive.ics.uci.edu/dataset/602
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://ieeexplore.ieee.org/document/7780459/
https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1007/978-3-642-21434-9_2
https://ieeexplore.ieee.org/document/9185546/
https://www.sciencedirect.com/science/article/pii/S0168169919311573
https://www.sciencedirect.com/science/article/pii/S0168169919311573
https://archive.ics.uci.edu/ml/datasets/spambase
https://archive.ics.uci.edu/ml/datasets/spambase
https://www.tensorflow.org/
http://arxiv.org/abs/1912.01703

	Introduction
	Related works and state-of-the-art
	Reducing the effort of the error assessment procedure
	Definitions and notations
	Investigating on Classification System Resiliency
	AxC as Perturbation Source
	Test dataset ranking
	Optimizing accuracy-loss estimation
	Final remarks

	Evaluation
	Experimental setup
	Decision-tree based classifiers
	Neural Networks

	Experimental results

	Conclusion and Future Direction
	References
	Biographies
	Mario Barbareschi
	Salvatore Barone

