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Abstract: The need to find a trade-off between protecting water-related ecosystems and increasing
safe water-use for human society is recognized in the 2030 Agenda of the European Union. We
assess the ecological status of a riverine system in order to mitigate human impacts, considering its
importance for supplying drinking water to more than 4 million users in Rome. We used an integrated
approach, analyzing animal and plant communities at riverbanks and the riverbed. A macrobenthos
analysis revealed a well-structured community with a good ecology for all sampling stations. The
highest value was found immediately upstream and downstream of the springs collection system,
while the lowest richness value was where the river collects urban wastewater. A floristic inventory
showed Hemicryptophytes composing almost 45% of all species, and prevalence of Euroasiatic
(35%) and Orophilous (34%) chorotypes. A positive correlation between riverbed vegetation and
the quality of the benthic community was revealed, while tree height seems to have a negative
trend. Our data suggest a river stretch affected by resurgence and water abstraction did not highlight
irreversible alterations to the landscape. Indeed, the composition of vegetation and correlated animal
communities mirrored a clinal gradient expected for an Apennine river system. Our study has the
potential to improve the approach used to monitor the impacts of humans on freshwater ecosystems,
aiming at preserving the integrity of the water-related landscape.

Keywords: freshwater landscape; human impact; sustainable water management; freshwater quality;
landscape preservation; macrobenthos; riparian vegetation; water use

1. Introduction

Freshwater is a critical necessity for human society and the environment, provid-
ing trophic resources and space for biodiversity as well as various benefits for global
productions in economic, sanitary, cultural, aesthetic, and scientific terms [1–4].

The world is experiencing an ever-increasing decrease of water quality with a massive
decline in the biodiversity of freshwater habitats; far greater than those in the most impacted
terrestrial and marine ecosystems [5,6]. Mainly, human activities and global climate change
are impacting on the structure and function of the aquatic landscape by, e.g., pollution
agents, microbial and physical–chemical contaminants, drought, and floods, inducing
changes in freshwater quantity and quality, and sometimes compromising animal and plant
communities, human health, and landscape assets [7–9].

Despite European Union efforts to reverse freshwater degradation, in 2019, only 41%
of surface water bodies in Europe showed a good ecological status [10]. Cumulative
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effects of multiple stressors, across spatial and temporal levels, are identified as one of the
major factors undermining biodiversity and ecosystem functioning for riparian and aquatic
ecosystems worldwide [11,12].

The importance of finding a trade-off between “the need to protect and restore water-
related ecosystems, including [. . .] rivers, aquifers, and lakes” and “substantially increase
water efficiency for use in all sectors and ensure fresh water withdrawals and supplies to
address water scarcity and substantially reduce the number of people suffering from water
scarcity” is also recognized by international governments, so much so as to be the number
six goal of the European Union Sustainable Development Goals included in the 2030
Agenda of the Member States of the United Nations, and approved by the United Nations
General Assembly, to promote prosperity while protecting the planet (https://www.un.org/
sustainabledevelopment/ Accessed on 4 May 2023). Thus, understanding how anthropic
activities might impact the aquatic landscape is a key goal to ensure continued sustainable
use of this essential resource. Hence, any information about a river system that is influenced
by human activities can be a necessary piece in understanding the functioning and resilience
of aquatic ecosystems.

Aquatic invertebrate assemblages (macrobenthos) are crucial elements in the benthic
ecosystem involved in bioturbation, remineralization, filtration, and provision of food
sources for fish, larger invertebrates, and birds [13–15]. Macrobenthos assemblage patterns
and distribution are highly sensitive to pollution and hydromorphological and structural
landscape alterations [16–22], and given their low mobility, bottom feeder habits, and rep-
resentativeness at all levels of the trophic scale (i.e., detrivorous, phytophagous, predators,
parasites, and preferential food for fish), this makes them powerful indicators of freshwater
landscape health [16,23–25]. Thus, monitoring the composition and abundance of aquatic
bioindicator taxa is crucial to assess the ecological status of aquatic ecosystems and ensure
resource sustainability [26], potentially preventing deterioration of the landscape [27].

Similarly, riparian vegetation, as an interface between water and land, is included
as a quality element of hydromorphological conditions; thus, it needs to be evaluated in
the assessment of the ecological status of water bodies [28,29]. Indeed, it provides critical
habitats, nutrients, and organic matter for aquatic species, while supporting terrestrial
wildlife [30], and the study of riparian zones gives a valuable indication of the overall
health status of the river ecosystem [31]. Furthermore, macrophyte species composition
is influenced by the chemical properties of water, flow speed, solar irradiance, and water
management [32]. Therefore, aquatic plants influence water quality and, at the same time,
serve as indicators of the ecological condition of the river landscape.

Current methodologies tend to focus on individual aspects of the ecosystem in relation
to pressure factors [33–35] but rarely integrate more elements (communities) into a single,
cohesive analysis. At present, studies exploring the relationship between benthic macroin-
vertebrate communities and riparian vegetation of small Italian streams are limited [36,37].
This deficiency constitutes a significant gap in the scientific literature, as an integrated
assessment could provide a more comprehensive and enhanced understanding of the
ecological health of stream ecosystems.

With this in mind, our goal is to provide a methodological approach to evaluate
landscape integrity and risk for biodiversity in an Apennine river system affected by
humans, and to combine the sustainable exploitation of water resources and their supply
for different public uses. Through integrated analysis of the composition and abundance of
macrobenthos and riparian vegetation, we assess the ecological status of a river managed
for supplying water to more than 4 million users in Rome, and subjected to different types
of impacts (such as exploitation for fish production, wastewater receptor use, and water
abstraction). This sort of watchfulness is crucial to preserving the ecological integrity of
freshwater-related landscapes.

https://www.un.org/sustainabledevelopment/
https://www.un.org/sustainabledevelopment/
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2. Materials and Methods
2.1. Study Area

The study was performed along the Farfa River (central Italy), belonging to the
Tevere-Farfa Regional Nature Reserve and located in the Special Conservation Area “Farfa
River—medium-high course” (code IT6020018), which is included in the Natura 2000
network (Figure 1).
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Figure 1. Study area. Red square: location of the Farfa River (central Italy). Sampling stations are
indicated by red spots (1–4). Areas representative of anthropogenic pressures are highlighted by
white-dotted squares (A–D). The blue arrow indicates the flowing river direction.

The Farfa river (altitude 250–300 m above sea level) is 37 km long, with a basin of
257 km2, and a torrential regime [38], flowing through an area characterized by hilly
landscape with agriculture as the main land use.

Before sampling, we defined some of the main characteristics of the investigated areas,
such as the hydromorphology (type of substrate, type of flow, and depth), the type of
riparian vegetation, altitude, exposure, slope, lithological type, rockiness, stoniness, the
presence of any structures of anthropic origin or point sources of pollution (Supplementary
Table S1), and the distance between sampling stations (Supplementary Table S2). According
to the Water Framework Directive, this river belongs to Hydroecoregions HER13-Apennines
Centre River typology, and it has also been classified as river macrotype M4 for diatoms
and aquatic invertebrate communities (Italy, Ministerial Decree 8 November 2010, n. 260).

Different types and levels of anthropogenic pressures, including urban and industrial
wastewater discharges (Figure 1A), ichthyogenic spots for breeding (Figure 1B), an artificial
lake for sport fishing (Figure 1C), and water supply (Figure 1D), affect the river system; thus,
we selected four sampling stations representative of these landscape conditions (Figure 1):

- Station 1: the Fosso della Mola (UTM WGS84 33T: E 320673.760–N 4677220.717) that
is at the point where the river collects urban wastewater from the municipality of
Monteleone; a center of 1.159 inhabitants (ISTAT, EU Statistical Institutes). Here, the
river is 1.5 m long, a few tens of millimeters in depth, and has dense bank vegetation
surrounded by an agricultural and arable environment.

- Station 2: the Fosso della Mola that is upstream of the “Le Capore” springs (Frasso
Sabino, central Italy) (UTM WGS84 33T: E 319624.434–N 4677876.461); this station is
representative of the ecological conditions of the watercourse after the water supplied
by Fosso delle Mole.

- Station 3: Fiume Farfa that is downstream of the “Le Capore” springs (UTM WGS84
33T: E 319192.977–N 4678085.328); this station is representative of the ecological
conditions of the watercourse after the release of the springs. It also corresponds to
the ARPA Lazio surveillance station named “Farfa 1”. The Le Capore springs are
characterized by an artesian aquifer system with an annual mean discharge of about
5 m3/s. These springs are managed by ACEA ATO2 SpA, which is a water utility that
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operates mainly in central Italy, supplying drinking water to more than 4 million users
in the city of Rome and its hinterland. The springs of “Le Capore” and Peschiera fed
the homonymous aqueduct of Peschiera-Capore, which is a strategic aqueduct system
that supplied over 80% of the water needs of the Roman water distribution network.

- Station 4: the Fosso delle Mole ditch that is downstream of a fish farming factory
(UTM WGS84 33T: E 321398.253–N 4677945.623). This station is representative of one
of the main waterways that supplies the Farfa river. It originates between Tommasella
and Capannaccia and is also fed by the Fosso Venella in a north-east direction with
respect to the “Le Capore” springs.

2.2. Sampling

We used an integrated approach to analyze the ecological quality of the river system
(Figure 2).
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sampling stations (S1–S4).

The sampling surveys were performed in early Autumn 2022 in the period following
the establishment of summer stratification due to the high temperatures reached on the
surface [39]. We avoided sampling during the flood period, considering that, in the
sections surveyed, the river became non-fordable, showing a flow rate incompatible for
estimating ecological quality according to the STAR Intercalibration Common Metric index
(STAR_ICMi, see later). Thus, invertebrate drift phenomena occur, altering the composition
of a site’s macroinvertebrate community [40].

Aquatic macroinvertebrates were collected using a multihabitat approach and, for each
station, 10 subsamples distributed in an area of 0.1 m2 were collected and then pooled into
a single sample representative of the corresponding site (according to National Unification
Body of European Normalization, UNI EN 16150:2013).

The collection of organisms was carried out with a Surber net according to the man-
ufacturer’s standard parameters (UNI EN 28265:1995 and UNI EN 27828:1996, Water
Framework Directive 2000/60/EC for the quantitative collection of benthic invertebrates).
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It has a square-shaped stainless-steel frame (0.32 × 0.32 m), defining an overall sampling
area of 0.1 m2. The nylon net is 0.6 m long, and has a standard mesh size of 500 µm,
anti-wear protection, and a 500 mL unscrewable opaque polyethylene collection bottle.

Sampling was performed from the most downstream point of the selected area toward
the upstream areas in order to avoid altering the subsequently sampled microhabitats.
During the operational steps, the Surber net was positioned with the metal sampling frame
against the current, well-anchored to the bottom, in a site at a depth < 0.5 m, with medium
and/or low current.

Each time, the collected material was placed in a 500 mL polyethylene collection bottle,
and then screened in-field to remove any residues, plants, and/or non-interest coarse
material, using 50 × 40 × 12 cm white plastic trays with ribbed bottoms and strainers with
different meshes. Finally, the material was placed in uniquely labeled 50 mL sterile Falcon
tubes, with 96% ethyl alcohol, and transported to the laboratory in dedicated cooler bags.

2.3. Taxonomic Identification of the Macrobenthos

Count and morphological identifications of the aquatic invertebrates at the family
and/or genus level were based on the observation of distinctive characteristics of the taxon
under a Leica EZ4 stereomicroscope and using reference manuals [41–45].

2.4. Ecological Quality Status Assessment

River quality assessment was performed according to the requirements of the Wa-
ter Framework Directive (CEC 2000). The STAR Intercalibration Common Metric index
(STAR_ICMi) [46,47] was used to assess the Ecological Quality Status (EQS) of the river
course. This six-metric index includes different parameters of benthic communities, such
as taxa sensitivity, abundance, and richness/diversity. Each metric has a specific weight,
and they are normalized by comparison to previously established reference conditions
(according to the DM 260/2010, Italy, Ministerial Decree 8 November 2010, n. 260) to obtain
the Ecological Quality Ratio (EQR), ranging from zero to one, where zero represents the
worst quality. Each EQR score contributes to the final characterized STAR_ICM index
score. The EQS is defined by Ministerial Decree 260/2010 according to reference limits for
high/good/sufficient/poor/bad classes.

2.5. Flora and Vegetation Characterization

Botanical surveys to examine the patterning of flora and vegetation identified homo-
geneous units suitable for the development of plant communities, which were classifiable
into physiognomic categories to capture variations in the ecosystem in different stretches
of the watercourse. Since the river quality and its macrobenthic communities depend on
characteristics of the watercourse and surroundings, our survey involved both riverbanks
and the riverbed. Overall, 19 sampling plots were performed on the riverbanks (n = 10)
as well as in the riverbed (n = 9) at four sample sites selected along the entire accessible
stretch of the watercourse (Figure 1). The specimens were identified according to [48] and
were then classified based on their growth habit using Raunkiaer’s life-forms system [49],
as well as according to their chorotype [48].

The set of 19 surveys has been reorganized into two sub-matrices: riverbanks and
riverbeds. All species with a frequency lower than four were eliminated from these matri-
ces to avoid a “noise” effect. The resulting matrix was subjected to multivariate analysis
(classification) using Jaccard dissimilarity for PCoA (Principal Coordinates Analysis), and
hierarchical cluster analysis and complete linkage for UPGMA (unweighted pair group
method with arithmetic mean) dendrograms. Data analysis and visualization were per-
formed in the R environment for statistical computing [50], using the tidyverse package
family [51] and vegan [52].
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2.6. Correlation between Vegetation and Benthonic Macroinvertebrates

To evaluate the effect vegetation on macrobenthic assemblages, we performed a
regression analysis using STAR_ICM index values as the descriptors of macrobenthic
assemblages, and the average emerged portion of herbs, shrub coverage, herbaceous
coverage, and average tree height as descriptors for riparian vegetation. The results were
considered statistically significant with p < 0.05.

3. Results
3.1. Ecological Quality by Macrobenthos

Taxonomic identification of macrobenthos revealed 45 families. In all sampling stations,
we identified macrobenthic families ascribable to predators, herbivores, and omnivores,
such as Plecoptera (i.e., Perlidae and Perlodidae), Trichoptera (i.e., Odontoceridae, Hy-
dropsychidae, and Goeridae), Ephemeroptera (i.e., Heptageniidae and Baetidae), Diptera
(i.e., Limoniidae, Simuliidae, Tabanidae, and Chironomidi), Lumbricidae, Hirudinea,
Coleoptera (i.e., Elmidae), crustaceans (i.e., Asellidae and Gammaridae), and Gastropoda
(i.e., Lymnaeidae and Planorbidae). In general, the largest groups of the macrobenthic com-
munity were Ephemeroptera, Trichoptera, and Diptera, followed by Crustacea. However,
the orders Bivalvia, Zygoptera, and Plecoptera were poorly represented (Figure 3A). The
most ubiquitous taxa were Baetidae (Ephemeroptera) and Hydropsychidae (Trichoptera),
which were present in all four stations with different percentages (Figure 3B). These fami-
lies, together with Gammaridae, constitute the largest groups; in particular, Gammaridae
reached the highest values at station S3 (Figure 3B). We also detected tolerant families such
as Lumbricidae and Chironomidae, and polysaprobic invertebrates such as Simuliidae,
particularly at station S4 (Figure 3B).
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Figure 3. Quantitative and qualitative analysis of the macrobenthic community. (A) Relative per-
centage of macroinvertebrate orders for the investigated river stretch. Other includes Acaridae
(Acarina), Hydrozoa (Cnidaria), Goriidae (Nematoda), Dugesiadae (Platyhelminthes), and Haemop-
idae (Hirudinea). (B) Sankey diagram representing macroinvertebrate taxa per sampling station
(S1–S4). The size of the bands (right) is proportional to the abundance of a given taxon in the site (left).
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The Sankey diagram provides a direct indication of biological diversity, richness,
and taxa sharing for each sampled station. The greatest richness value was recorded for
S4, which was immediately downstream of an ichthyological breeding site, while the
lowest value was for S1 at an urban wastewater discharge site. These two river branches,
characterized by different benthic communities, flow into the stretch monitored by the S2
sampling site, which was downstream of a sport fishing lake and upstream of S3. Here,
richness of the benthic community was low, although it was very diversified. Immediately
downstream of S3, both richness and diversity increase (Figure 3B).

The ecological quality estimated by the STAR_ICM index was classified as “good” for
all sampling stations (Table 1). In particular, stations S2 and S3, which were immediately
upstream and downstream of the Le Capore springs collection system, have the highest
STAR_ICM index values (0.81 and 0.77, respectively).

Table 1. EQR (Ecological Quality Report) values for each station. Ecological quality scale:
high = EQR ≥ 0.95; good = 0.71 ≤ EQR < 0.95; moderate = 0.48 ≤ EQR < 0.71; scarce = 0.24 ≤
EQR < 0.48; bad = EQR < 0.24.

Station

1 2 3 4
ASTP (EQR) 0.78 0.88 0.83 0.83
N_EPT (EQR) 0.41 0.83 0.50 0.75
Log (SelEPTD + 1) (EQR) 0.81 0.65 0.63 0.50
1-GOLD (EQR) 0.97 1.00 0.92 0.66
Shannon–Weiner (EQR) 0.76 0.96 1.02 0.66
STAR_ICM normalised 0.74 0.81 0.77 0.69
Ecological quality good good good good

3.2. Characterization of Vegetation Pattern

The floristic inventory comprises 126 entities distributed across 55 families. The plant
physiognomies are primarily associated with the presence of water, characterized by linear
riparian communities tracing watercourses (Supplementary Table S3).

Riparian vegetation is predominantly represented by black and white poplar (Populus
nigra and P. alba), white willow (Salix alba), black alder (Alnus glutinosa), and elderberry
(Sambucus nigra). Additionally, less developed formations such as black locust (Robinia
pseudoacacia) woods and areas dominated by herbaceous and shrubby plants were also
observed. The structure of these communities appears stable and complex.

The PCoA of the ridgeback sites (Figure 4A) reveals that almost all of them are
concentrated in the upper quadrants, except for sites 1 and 2, which exhibit compromised
naturalness, as the riverbed is nearly dry except for a large wastewater discharge pipe on
one side. Here, the vegetation consists of a mix of shrubs, such as bramble, elderberry, and
wild rose, with remnants of an ancient forest of black poplar. Only at site number 4 were
consortia of common reed (Arundo donax) and Arundo plinii detected.

Hemicryptophytes represent 45% of all species, followed by phanerophytes (28%), and
geophytes (21%), with hydrophytes and chamaephytes showing lower values of 5% and
1%, respectively. Analysis of the chorological spectra shows the prevalence of Euroasiatic
(35%) and Orophilous (34%) chorotypes, followed by steno-Mediterranean (10%), euri-
Mediterranen (9%), and boreal (8%) chorotypes. All other species represent less than 5% all
together (Figure 5).
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Figure 5. Quantitative and qualitative analysis of the plant community. (A) Percentages of life forms
and (B) chorological types in the study area.
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3.3. Correlation between Riparian Vegetation and Macrobenthic Community

The relationship between the community of benthonic macroinvertebrates (STAR_ICM
index) and the characteristics of riparian vegetation highlights a positive correlation with
the emerged portion of herbs from the riverbed (p < 0.05, F = 50.855, df = 3) (Figure 6A).
The STAR_ICM is instead negatively correlated with the height of the trees in the riparian
forest (p < 0.001; F = 1275.57, df = 3) (Figure 6B). The percentages of herbaceous coverage
(Figure 6C) and shrub coverage (Figure 6D) do not appear to be correlated with the
macrobenthic community (p > 0.05).
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Figure 6. Relationship between macrobenthic communities (STAR_ICM) and riparian vegetation
at the four sampling stations (black spots): (A) average emerged portion of herbs (cm); R2 = 0.9621,
p = 0.0191, F = 50.855, df = 3; (B) average tree height (m); R2 = 0.998, p = 0.0007, F = 1275.57, df = 3;
(C) herbaceous coverage (%); R2 = 0.5025, p = 0.2910, F = 2.0205, df = 3; and (D) shrub coverage (%),
R2 = 0.3101, p = 0.443, F = 0.8992, df = 3; scatterplots indicated by regression line.

4. Discussion

The Apennine river systems represent an extraordinary reservoir of biodiversity [53],
and correct management for species and habitat conservation involves constant monitor-
ing of quality conditions to prevent and mitigate the effects inevitably occurring on the
landscape and its natural systems [54].

On the river stretch surveyed, we detected at least four anthropic impacts that af-
fect, to different extents and ways, the Farfa river system and the surrounding environ-
ment. Although these activities have effects on animal and plant components, favor-
ing or penalizing some taxa, the riverine system showed self-regenerative capacity in
a few hundred meters, cushioning the impact and reshaping new and different levels
of diversity, while keeping the quality of the water in a good status as indicated by the
STAR_ICM index values. This was in accordance with the ISPRA Lazio classification for
Farfa1 station (corresponding to S3 station in this study) of the regional network of moni-
toring (https://www.arpalazio.it/web/guest/ambiente/acqua/dati-acqua, accessed on
5 April 2022).

The resilience of the Farfa river system could be ascribable firstly to river flowing
typology, facilitating river self-purification potential [55], the introduction of oxygen, and

https://www.arpalazio.it/web/guest/ambiente/acqua/dati-acqua
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continuous organic material mixing [56]. However, the restoration and/or maintenance
of the integrity of the aquatic animal community, mainly made up of the larval phases
of epigean insects, also depends on the environment close to the riverbed, the strips of
riparian forest, the reed thicket, and bank vegetation [33]. As a matter of fact, many
authors highlight the importance of riparian vegetation in the restoration of Mediterranean
streams, and how it is an important feature for the river benthic community. In our
study system, it is interesting to note how vegetation in the riverbed is linked to high
STAR_ICM values, probably as an effect of increased water turbulence, which in turn
induces greater oxygenation and self-purification. In contrast, when the riparian forest
contains tall trees, a negative correlation emerges with macrobenthic communities. This
data could be interpreted in relation to the reduction of illumination and consequently of
photosynthetic microalgae [57–64].

Furthermore, our results align with the findings of [61], stressing the key role of ripar-
ian vegetation in maintaining the physical and chemical stability of the water landscape,
and how, for aquatic macroinvertebrates, riparian vegetation acts as an important source of
allochthonous material, thereby impacting the food web of aquatic systems. Indeed, taxo-
nomic identification of macrobenthos revealed a well-structured community characterized
by taxa ascribable to all major trophic levels: predator, herbivore, and detritivore groups.

The plant communities represent linear forest formations with both obligate riparian
guilds (i.e., willow, poplar, alder, etc.), and water-stress tolerant (i.e., Rubus, black locust,
etc.) and deciduous competitive (ash, elderberry) plants following the watercourse. In addi-
tion to these, less developed consortia such as black locust woods and stations dominated
by herbaceous and shrubby plants have been also observed.

The structure and successional development of riparian communities are highly in-
fluenced by fluvial factors and processes; indeed, several studies have reported clear
relationships between riparian trait composition and water availability [65].

Numerous impacts of flow regulation and water level management on riparian com-
munities have been documented globally [66–68], including vegetation encroachment, and
changes in the composition and diversity of riparian vegetation [69–71]. Our vegetation
survey highlighted an overall situation with little compromise in terms of floristic richness
and diverse vegetation physiognomies, with few stations showing very good naturalistic
conditions. Even near the underground disappearance of the Farfa river, along the banks, a
mature woodland condition persists due to its ability to draw water deeply by its roots.
The lack of open areas along almost the entire watercourse implies the scarcity of the giant
read (A. donax).

Plants growing in the riverbed represent the characteristic herbaceous macrophyte
formations of aquatic environments, entirely or partially submerged, such as hydrophytes
(i.e., Berula erecta), rooted hydrophytes (i.e., Potamogeton pectinatus), and floating hy-
drophytes (i.e., Lemna minor). All these play a crucial role in the functioning of running
waters, regulating water speed, nutrient concentrations, and ecological characteristics
suitable for the presence of fishes and invertebrates [72].

Beyond a snapshot of the current state of the river landscape, we can speculate about
its recent evolution by integrating present and past data. Indeed, considering the STAR-
ICM index, Marcheggiani [8] and co-workers evaluated the overall ecological status of the
Farfa river as “good”, analyzing a stretch downstream of the Le Capore plant; interestingly,
at the Farfa01 sampling site (corresponding to our S3 station). After almost four years, our
analyses agree with a good ecological status for the river areas investigated.

In summary, the integration of information from the past [8] and the current status
of the Farfa river seems to suggest that the resurgence site and water abstraction are
integrated into the river ecosystem and not affecting landscape integrity. Indeed, the
successional and vegetation variations and the correlated animal communities mirrored a
clinal gradient expected for an Apennine river system. However, long-term monitoring
could provide a clearer picture of the changing ecological status of the river system and the
factors underlying its potential resilience. These investigations could provide information
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to prevent any negative impacts with irreversible outcomes on biotic communities and
the landscape.

5. Conclusions

Apennine freshwater systems are a biodiversity reservoir whose conservation requires
management landscape efforts for species and habitats, which also aim at preventing and
mitigating the impacts inevitably occurring by humans. In this respect, the characterization
of biological communities (composition and abundance) is a standardized method to eval-
uate river system quality status and the impact on landscape integrity. However, current
analysis rarely integrates characterization of benthic macroinvertebrate communities and
riparian vegetation to explore ecological environmental conditions [36,37]. In our study, we
showed how these biological indicators function in tandem. We also provided empirical
data as a base for new methodologies that could be more broadly applicable across different
types of water bodies. Consequently, our study has the potential to improve the approach
used to monitor and preserve the ecological integrity of freshwater-related landscapes. Our
analysis is placed in a time line of continuity for monitoring of the river system, repre-
senting an important database for future investigations. Indeed, long-term monitoring is
necessary to check for potentially dangerous situations and to prevent negative impacts
with irreversible outcomes on biotic communities and the environment.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/land13071076/s1: Figure S1: Species count in each plant family;
Table S1: Main characteristics of the sampled stations; Table S2: Distance (meters above sea level)
between sampling stations; Table S3: Vegetation surveys [73].
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