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A B S T R A C T   

Flooding is one of the most challenging weather-induced risks in urban areas. However, in a climate change 
perspective, significant gaps can still be observed in literature addressing the key role of rainfall input and related 
variability within urban flood impact models. The present research attempts to bridge this gap by investigating 
the effect of using a large ensemble of bias-corrected Euro-CORDEX climate projections on flood hazard esti-
mations, with the goal of understanding the propagation of future climate variability in terms of flooding outputs 
for the urban environment. With this aim, a scenario analysis is performed for two return periods (10 and 200 
years) building on nineteen climate projections for future horizon 2071–2100 under RCP 4.5 and 8.5 scenarios by 
means of CADDIES Caflood inundation model, using a test case in the City of Naples (Italy). Model outcomes are 
investigated and discussed in terms of relevant metrics and indicators available in literature targeting both 
general hazards, evaluated in terms of runoff volumes and flooded areas, and sectoral hazards, specified by a 
number of relevant literature hazard classifications. Modelling outcomes are analysed and normalised with 
respect to baseline values representing current climate conditions to emphasize potential impacts of climate 
change. Results show that flood features increase more slowly than rainfall, and the relationship between rainfall 
and flood increase is linear, with decreasing slope with increasing return period. Furthermore, the spread in 
rainfall input due to the use of different climate projections does not inflate through the impact modelling stages, 
albeit a dependence on the indicators used to model flood impacts can be observed. The outcomes of the research 
can be of aid to managers, designers and policy makers to understand the impacts of climate change in flood- 
prone urban areas and, in perspective, to adapt urban areas exploring the feasibility and effectiveness of 
solutions.   

1. Introduction 

Flooding is one of the most challenging weather-induced risks in 
urban areas, due both to the typically high exposures in terms of people, 
buildings and infrastructures (Ashley et al., 2005; Hlodversdottir et al., 
2015; Zhao et al., 2019; Zhou et al., 2019; Kourtis and Tsihrintzis, 2021), 
and to the uncertainties lying in the modelling of the involved physical 
processes (Kaspersen et al., 2017; Li et al., 2019; Alves et al., 2020). The 
complexity of urban environments is so high that, according to the 
specific focus of the analysis, flood impacts are usually estimated either 
in general terms, quantifying the extent and magnitude of flooded areas 

(which should be only the first step of flood impact assessments ac-
cording to Hammond et al., 2015), or targeting specific sub-systems with 
tailored evaluations, such as stage-damage curves (He et al., 2020) and 
traffic disruption models (Forero-Ortiz et al., 2020; Kasmalkar et al., 
2020). Detailed focus on the response of urban sub-systems is often 
coupled with simplified approaches for flood estimation: for instance, it 
has been argued that there still exists a gap in research in giving suffi-
cient consideration to the changes in rainfall at the urban level due to the 
effects of climate change, and its direct effect on the change in vulner-
ability of transport systems (metro network, specifically) at the local, 
regional and global scales (Madsen et al., 2014; Forero-Ortiz et al., 
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2020). 
In the framework of urban flood modelling, accuracy and reliability 

of results are deeply affected by the amount and detail of data required 
by the adopted modelling tool (Cao et al., 2020; Costabile et al., 2021), 
and by the spatial resolutions involved (Guidolin et al., 2016; de 
Almeida et al., 2018), as well as by a general unavailability of flood 
impacts observations suitable for validation purposes (Wang et al., 
2018; Macchione et al., 2019; Cao et al., 2020). In this perspective, 
meanwhile current literature is proactive in exploiting novel modelling 
tools able to reproduce flood features in the most accurate way (Wu 
et al., 2020), simplified models are particularly appreciated for scenario 
analysis (Löwe et al., 2017; Palla et al., 2018; Webber et al., 2019a; 
2019b; Cao et al., 2020). In this case, the focus is the effect of a single or 
a set of modelling parameters, which is investigated with a comparative 
analysis in spite of the accuracy of each simulation. This approach is 
particularly feasible, for instance, for selection, screening, or viability 
assessments of drainage solutions at pre-design stage. 

Scenario analysis is particularly suitable to investigate the possible 
impacts of climate change, whose estimation should account for the 
uncertainties lying in the adoption of different climate simulation 
chains, as prescribed by the 5th Assessment Report (AR5) of the Inter-
governmental Panel on Climate Change (IPCC, 2014). According to IPCC 
(2014), the frequency and/or magnitude of precipitation events could be 
greatly impacted by the expected climate change (Donat et al., 2016; 
Papalexiou and Montanari, 2019; Hosseinzadehtalaei et al., 2020; Tu 
et al., 2020) primarily due to the increase in temperature, entailing an 
increase in the atmospheric moisture retention capability. However, the 
effect of climate change on the rainfall regime of local areas is not 
straightforward, but deeply depends on the particular local features such 
as latitude, topography, distance from the coast. In this regard, Medi-
terranean area is recognized as a hot spot for climate change, since 
climate projections are consistent in providing future drying trends that 
could exacerbate social and geopolitical tensions in severely water- 
stressed regions such as North Africa and Middle East (Seager et al., 
2019; Tuel and Eltahir, 2020). Due to the very complex geomorpho-
logical features of the area, the adoption of downscaling (statistical or 
dynamical) approaches is required to properly assess the atmospheric 
patterns and the associated variations under climate change (Zollo et al., 
2016; Bucchignani et al., 2018; Jacob et al., 2020). The complexity of 
climate modelling, along with the identification of several possible 
future socio-economic and greenhouse gas concentration scenarios 
(“Representative Concentration Pathways”, RCP), acting as the main 
forcing, has generated a large number of climate projections for the next 
decades, providing different possible scenarios for the evolution of 
extreme rainfall regime of local areas (Reder et al., 2018; Padulano 
et al., 2019). As particularly concerns pluvial flooding of urban envi-
ronments, current scientific literature provides only a limited number of 
examples of impact analyses accounting for an ensemble of climate 
projections, as described below. The main difficulties mostly lie in the 
very large computational and storage requirements needed to deal with 
climate projections (even more so considering the continuously 
increasing number of climate simulations made available to the public, 
such as those included in the Euro-CORDEX initiative), in the assump-
tions and post-processing needed by those climate data to be made 
suitable for impact analyses, particularly in terms of spatial and tem-
poral scales (Maraun et al., 2010; Willems and Vrac, 2011; Arnbjerg- 
Nielsen et al., 2013), and in the additional complexity required by 
climate models to correctly capture the spatiotemporal dynamics of 
urban climate (Ban et al., 2021). Nevertheless, currently available 
spatial resolutions from raw climate models often prevent a reliable 
reproduction of precipitation patterns at very fine spatial and temporal 
scales. Sperotto et al. (2016) provided a methodology for pluvial flood 
risk assessment in the City of Venice (Italy) in a context of climate 
change, considering the results of a single raw climate projection under 
the RCP 8.5 scenario. Kaspersen et al. (2017) considered an ensemble of 
ten Euro-CORDEX bias-adjusted climate projections under RCP 4.5 and 

RCP 8.5 for a number of European cities. Pregnolato et al. (2017) pro-
vided a framework for risk assessment due to traffic disruption, simu-
lating a climate change scenario in Newcastle (UK) by means of a 
synthetic rainfall uplift assessment as provided by Dale et al. (2015) for 
the UK. Kaspersen and Halsnæs (2017) investigated the effect of climate 
change on a number of urban sub-systems (buildings, roads, human 
health, cultural assets) in the city of Odense (Denmark) by using one 
single climate simulation chain under the RCP 4.5 and RCP 8.5 sce-
narios, as well as the global +6◦ scenario. Martinez-Gomariz et al. 
(2019) provided a wide methodology for the estimation of flood risk 
targeting pedestrian and vehicular traffic in Badalona (Spain), making 
use of one single climate projection included in Euro-CORDEX under 
RCP 8.5. Zhou et al. (2019) investigated the effect of climate change on 
flooding for a major city in Northern China using an ensemble of low- 
resolution bias-adjusted Global Climate Models (GCMs) under RCP 2.6 
and RCP 8.5. Gusain et al. (2020) considered six GCMs, downscaled from 
their native low resolution and suitably bias-adjusted in terms of both 
precipitation and temperature, as input for hydrodynamic modelling 
and hazard analysis; the focus is on a very large -scale catchment with 
the main objective of building priority maps for flooded villages. Such a 
State-of-the-Art shows that, on one hand, the variability of climate 
modelling is seldom considered, since only a limited number of climate 
projections are included in the analysis (or, alternatively, a synthetic 
approach is preferred by means of the ensemble mean or relevant per-
centiles); on the other hand, the effects of such a variability are usually 
not the main focus of the analysis, as they are often overlapped with 
other sources of uncertainty. In the above-mentioned literature, the 
more specific is the target of the analysis, for instance requiring addi-
tional post-processing or modelling steps, the narrower the ensemble of 
climate projections or scenarios adopted. 

The proposed research attempts to bridge the gap between climate 
change modelling and urban flooding analysis by adopting a large 
ensemble of climate projections as input for urban flood modelling. The 
goal of the analysis is that of understanding the propagation of climate 
variabilities in terms of flooding outputs, with the particular purpose of 
estimating the impacts on a number of relevant urban sub-systems. With 
this aim, nineteen climate projections, suitably bias-adjusted, will be 
considered among those made available by the Euro-CORDEX initiative, 
and used as input for a grid-based inundation model (Guidolin et al., 
2016). Different metrics and indicators will be used to analyse flood 
results, providing information suitable for multi-purpose and multi- 
sectoral impact analysis, and tailored information to quantify the 
response of urban services with respect to any changes in rainfall in-
tensity, as those possibly caused by climate change. Finally, results of 
the involved modelling steps will be overlooked with a bird-eye 
perspective to understand the overall propagation of the variability in 
climate change projections throughout the system. 

The rest of the paper is organized as follows. First, for each stage of 
the analysis (extreme climate modelling, flood inundation modelling, 
flood hazard evaluation) an overview is presented to correctly position 
the research in the field literature and a full description of the adopted 
methodology is provided in order to highlight the rationale behind the 
choices made. Then, a case study is presented and described, along with 
relevant topographic and climate in situ data. Successively, results of the 
consecutive modelling steps for the case study are presented. Finally, a 
discussion of the impacts and limitations of the research is provided, and 
relevant conclusions are drawn. 

2. Rationale and methodology 

As Fig. 1 shows, the workflow of the research is structured in three 
main modelling modules, namely (i) the climate changes module, (ii) 
the flood inundation module and (iii) the flood hazard module. The first 
module builds on locally designed Intensity – Duration – Frequency 
(IDF) curves and spatially distributed rainfall datasets in order to iden-
tify the impacts of climate changes on the local extreme rainfall regime, 
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relying on cutting-edge bias adjustment techniques. The outcomes of the 
climate module are the main input of the second module, which relies on 
a grid-based flood inundation model with a degree of simplification 
acceptable for scenario analysis. The third module translates flood fea-
tures into relevant metrics for flood hazard estimations to investigate the 
potential effects of climate changes on flood risk conditions of urban 
environments. The final step consists of integrating the results of the 
preceding modules to understand how the variability in the rainfall 
input due to the use of multiple climate projections propagates 
throughout the impact modelling system. 

2.1. Climate change module 

Raw daily precipitation data are returned by nineteen climate ex-
periments included in the Euro-CORDEX ensemble (https://www.euro 
-cordex.net/), where Global Climate Models/Earth System Models 
(GCMs/ECMs) included in the 5th Coupled Model Intercomparison 
Project (CMIP5) are dynamically downscaled by using Regional Climate 
Models (RCMs) over a domain centred on Europe with a horizontal 
resolution of 0.11◦ (≃12 km). Currently, Euro-CORDEX is the most used 
ensemble for impact analyses related to extreme climate, due to the high 
number of included projections and to the added value in reproducing 
climate dynamics with respect to ensembles with lower horizontal res-
olutions (Jacob et al., 2020). However, although the increase in spatial 
resolution due to downscaling provides an improvement in the charac-
terization of regional weather patterns, structural uncertainties persist 
due, for instance, to the epistemic uncertainty in the knowledge of 
climate systems as well as to the modelling uncertainty related, for 
example, to the computationally allowable spatial resolutions and 
associated needed parametrizations for sub-grid processes. Under such 
constraints, the recognized biases in the different climate experiments 
prevent the adoption of raw climate outputs as inputs for impact anal-
ysis, especially for extreme events, where sub-grid processes could play a 
relevant role. To deal with these issues, in recent years, several statistical 
approaches have been proposed to reduce the biases, assumed as sys-
tematic, by adjusting climate outputs towards observed weather data 
used as reference over a common time period. Padulano et al. (2019) 
proposed an innovative approach where the bias adjustment procedure 
is directly applied on IDF curves, which constitute the main instrument 

to deal with extreme rainfall (Chow et al., 1988; WMO, 2009; Arnbjerg- 
Nielsen et al., 2013). 

The present research builds on the methodology proposed by Padu-
lano et al. (2019) which allows for the estimation of novel Intensity- 
Duration-Frequency curves updated to account for the effect of 
climate changes, relying on Quantile Delta Mapping (QDM; 
Cannonet al., 2015) for bias adjustment. QDM is a parametric bias 
correction technique particularly appreciated to preserve the climate 
signal at all probability levels, and especially for the extremes. Advan-
tages are counterbalanced by the larger computational effort required to 
fit probability distribution models to the observations as well as to 
model simulation results. In short, QDM consists of scaling raw projected 
values by means of a probability-dependent bias, estimated as the ratio 
of observed to simulated (for the reference period) quantiles for the 
same probability level (or return period T). The governing formula for 
QDM, applied to the annual maximum daily rainfall depth hd, in (mm), is 
shown in Equation (1). 

hd,bc(T) = hd,proj(T)⋅
Φ− 1

obs(T)
Φ− 1

curr(T)
(1)  

where subscripts obs, curr and proj point to the annual maximum pre-
cipitation depth samples coming from the observations (or, alterna-
tively, from a locally available IDF curve) for the reference period, from 
the model results for the same reference period and from the model 
results for a future horizon, respectively; subscript bc points to the final 
bias-corrected values; Φ− 1 stands for the inverse cumulative distribution 
of daily precipitation depths. All terms refer to the same probability 
level, or return period T. In order to obtain IDF curves for sub-daily 
rainfall durations, the storm index approach is applied (Viglione et al., 
2007), separately investigating the empirical dependence of mean 
annual maxima on rainfall duration and the probabilistic distribution of 
growth coefficients. For the first term, the same dependence estimated 
from the observations (or, alternatively, from a locally available IDF 
curve) is retained, assuming that it does not experience modifications in 
its structure due to climate changes. For the second term, results ob-
tained from daily precipitation values are extended to all the durations, 
under the assumption that annual maxima of daily rainfall are closely 
related to the annual maxima for a duration of 24 h. Accounting for 

Fig. 1. Workflow and Impact Simulation Chain. Climate module (blue) identifies rainfall scenarios used as input for the Flood module (green), whose results are used 
to evaluate selected metrics, models and indicators in the Hazard module (yellow). Outcomes of single steps can be used to map and visualize propagation of 
variability: each line of the radar graph maps the outcomes of each simulation starting from rainfall intensity and ending in hazard estimations. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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those assumptions, as demonstrated by Padulano et al. (2019) Eq. (1) 
can be rewritten as: 

hbc(t, T) = hobs(t, T)⋅Δm(T) (2)  

where t points to any rainfall duration, in [h], and hobs(t,T) coincides 
with the observed (or estimated by current locally available IDF curves) 
annual maximum rainfall depth for any rainfall duration t and return 
period T. Δm is the scaling factor representing the effects of climate 
changes as provided by a climate projection m (for example, one within 
a larger ensemble), expressed as a function of return period T. 

In Padulano et al. (2019), an ensemble of nineteen climate pro-
jections was used, and results were provided only in terms of ensemble 
mean and standard deviation. Instead, in the present research, the single 
members of the adopted ensemble of climate projections are retained 
individually, in order to investigate the propagation of this source of 
variability through flood modelling, and to better understand the effects 
in terms of flood features and flood hazard. This also complies with 
recent literature, suggesting that dealing with climate projections as 
they were independent realizations of a random variable (i.e. analysing 
the ensemble as a statistical sample, with a central value and a standard 
deviation, Tebaldi et al., 2005) could be questioned because the 
different GCMs/RCMs pairs often share assumptions and parametriza-
tions, possibly violating the assumption of statistical independence 
(Sanderson and Knutti, 2012; Christiansen, 2020). In other words, 
although results provided by an ensemble of climate projections could 
cluster in a narrow space (as will be demonstrated in the present 
research for the investigated case study), this does not mean that single 
climate projections positioning far from the cluster should be considered 
as outliers (namely, less probable). 

2.2. Flood inundation module 

CADDIES Caflood is a flood modelling software relying on Cellular 
Automata (CA) and based on a square regular grid and Von Neumann 
neighbourhood (Ghimire et al., 2013; Gibson et al., 2016). This model 
employs simple transition rules and a weight-based system rather than 
Shallow Water Equations to resolve the flow movement, minimising the 
need for solving computationally expensive algorithms while main-
taining high accuracy (Cao et al., 2020). The simplified features result in 
significantly improved modelling efficiency, ensuring reliable simulated 
water depths and velocities, with model run times up to 8 times faster 
than tested benchmark models for real-world applications (Guidolin 
et al., 2016). 

Caflood is able to account for spatially and temporally variant rain-
fall intensities and infiltration rates, which must be manually fed by 
users as time series; the main outputs consist of spatially and temporally 
distributed water depths and flow velocities. The computational speed 
increase (translating in no dramatic computational requirements) is 
counterbalanced by the simplified representation of several underlying 
physical processes (Webber et al., 2019b), such as the effect of an arti-
ficial drainage network or the positioning of drainage interventions, that 
can only be simulated through local cell water balance and roughness 
parameters. Such a degree of simplification makes Caflood particularly 
useful for pre-design evaluations and scenario analysis (Webber at al., 
2019a; 2019b; Cao et al., 2020), since at this stage no detailed data and 
information over the investigated areas are usually available; moreover, 
Caflood was found to reproduce observations with fair accuracy despite 
the simplifying assumptions (Wang et al., 2018). In particular, the 
simplified representation of sewer system can be considered feasible and 
consistent with the usually poor availability of related data (e.g. location 
and size of sewers). Other modelling tools share the same approach, 
setting the infiltration rate due to the stormwater system to a reference 
value, chosen arbitrarily (Cao et al., 2020) or equal to the sewer network 
design rainfall (Kaspersen et al., 2017). The code has been extensively 
validated using common benchmarks for flood propagation software 

packages (Guidolin et al., 2016), although only a limited number of test 
cases involved purely pluvial flooding conditions. 

2.3. Flood hazard module 

In case of extreme rainfall in urban contexts, a cascade of adverse 
consequences can be identified consisting of the rainfall-runoff trans-
formation (the flood) and the interaction with urban sub-systems such as 
buildings, infrastructure, and people. In this perspective, different levels 
of hazard can be identified stemming from different questions, such as: 
(i) how does the urban environment as a whole respond to extreme 
rainfall? and (ii) how does a specific urban sub-system respond to 
flooding? In a climate change perspective, such questions can be further 
attuned as (i) to what extent do flooding conditions change when extreme 
rainfall changes? and (ii) to what extent does a service keep a certain 
operational level despite climate changes? Answering the first question 
requires modelling the rainfall-runoff transformation process, in order 
to understand changes e.g. in flooded areas, flood depths and storm-
water volumes; this will be hereafter referred to as “cumulative hazard”. 
Answering the second question implies accounting for the features of the 
investigated sub-system, such as the transport network or pedestrian 
circulation, and their interaction with flooding features; this will be 
hereafter referred to as “operational hazard”. Although operational 
hazard can be regarded as a downstream effect of cumulative hazard, 
rainfall-runoff transformation models often include some urban sub- 
systems showing a physical interaction with rainfall, such as roads, 
buildings, or green areas. Given the complexity of modelling both pro-
cesses, a useful approach can consist in deriving from model simulations 
indicators and criteria suitable to be used as input for operational hazard 
estimation of the largest possible number of urban services and sub- 
systems. 

In the present paper, cumulative and operational hazards are 
investigated exploiting quantities and indicators commonly adopted in 
the field of flood risk, deployed in hazard classifications targeting one or 
multiple sectors, as described below. The simplest variables are water 
depth D (mm) and velocity V (m/s); other variables such as flood 
duration will not be considered although they may have an effect on 
urban risks (Luu et al., 2018). D and V are the raw output of flood 
modelling, typically adopted to compare the outcomes of different sce-
narios or different modelling approaches/strategies/tools, when the 
focus is on the rainfall-runoff transformation. Indeed, flood estimations 
focusing on flood model comparisons (e.g. Bermúdez et al., 2018), on 
the performance of flood adaptation measures (Webber et al., 2019a; 
2019b) or on the impact of climate changes (Kaspersen et al., 2017) 
typically compare baseline to updated scenarios by only means of water 
depth D, or depth-related variables such as flooded areas or flood vol-
umes. In such cases, different arbitrary classes for D can be used ac-
cording to the experienced variability interval, ranging from a dry/wet 
threshold, usually set to 1 cm (Bermúdez et al., 2018), 5 cm (Kaspersen 
et al., 2017; Palla et al., 2018; Mei et al., 2020) or 10 cm (Singh et al., 
2018) to a maximum value which is deeply affected by the local extreme 
rainfall regime and topography, but mostly by the proximity to an open 
drainage/river channel which usually causes larger flow features. Depth 
classes can be set arbitrarily by inspecting flood outcomes (Arrighi et al., 
2019; Li et al., 2019; He et al. 2020; Tanaka et al., 2020); natural breaks 
can be used (Sperotto et al., 2016) as well as deciles obtained inspecting 
the occurrence frequency of water depth within a flood map (Cao et al., 
2020; Papilloud et al., 2020); stretched values can also be adopted (Chen 
et al., 2018, Costabile et al., 2020a). Water depth can also be used 
directly for hazard classification: Mei et al. (2020) suggested six hazard 
classes, the first in the range D = 5–10 cm, with incremental steps of 10 
cm related to different levels of damage; Cao et al. (2020) proposed 
three hazard classes, starting from zero depth, with incremental steps of 
15 cm; Singh et al. (2018) classified four flood severity levels as “no 
flood” (0–10 cm), “minor flood” (10–50 cm), “moderate flood” (50–100 
cm) and “major flood” (>100 cm); a similar classification is proposed by 
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Pregnolato et al. (2017) but with lower thresholds (10, 20, 30 cm). 
Water depth D can provide focus on some operational hazards, such 

as flood hazard for the transport services or buildings, feeding threshold 
values for binary classifications identifying affected/not affected assets. 
For instance, Kramer et al. (2016) suggested that roads inundated with a 
water depth of at least 50 cm should be closed for civil traffic; for Arrighi 
et al. (2019) the threshold can be lowered to 30 cm; Kaspersen and 
Halsnæs (2017) reported thresholds of 20 cm for buildings, 5 cm for 
basements, roads and railways, 0.3 cm for health (health issues are 
assumed to occur as soon as polluted storm water enters basements), 20 
cm for historical/cultural assets. Incremental threshold values or hazard 
classes can be derived by stage-damage curves such as those provided by 
Van Ootegem et al. (2015) for buildings, basements and related content. 

Water depth D (alone or coupled with velocity-related Froude 
number Fr) is the main input of many investigations focused on the 
reduction in vehicle speed due to rainfall, considered as one of the main 
sources of traffic disruption (Pregnolato et al., 2017; Evans et al., 2020) 
as well as for the evaluation of flood risk for pedestrians and parked 
vehicles (Arrighi et al., 2019; Bocanegra et al., 2018; Martínez-Gomariz 
et al., 2019). Risk classifications can be successively derived based on 
the number of affected roads, people or vehicles. Water depth D and 
velocity V (often in terms of their combination U = V × D (m2/s) known 
as “unit discharge”) feed a large number of hazard classifications tar-
geting pedestrians (Russo et al., 2013) and vehicles (Bocanegra et al., 
2018); a relevant example is the hazard classification proposed by the 
Australian Institute for Disaster Resilience (AIDR, 2017; Costabile et al., 
2020a), identifying six hazard classes each relevant for a specific asset 
(children, elderly people, vehicles, buildings). The total head H = D +
V2/2g is also adopted by Kramer et al. (2016) for flood hazard classifi-
cation, compared to a threshold of 30 cm and 60 cm for the safety of 
passenger cars and emergency vehicles, respectively. 

In the present paper, different indicators and classifications will be 
adopted in order to understand the impact of climate changes at 
different return periods on a wide variety of outcomes targeting both 
cumulative and operational hazard (Table 1) considered interesting for 
the case study. First, a traffic-oriented hazard classification will be 
adopted in accordance with Evans et al. (2020), fed by water depth D 
(hazard model #1). Second, the well-known U-based hazard classifica-
tion provided by AIDR (2017) will be adopted, targeting multiple assets 
for integrated risk assessment (hazard model #2). Third, D will feed the 
threshold-based classification provided by Kaspersen and Halsnæs 
(2017), again allowing for integrated risk assessment (hazard model 
#3); however, the health-related threshold was removed to keep con-
sistency with the wet/dry threshold of 1 cm. Finally, the classification 
based on total head H (Kramer et al., 2016) will be considered as an 
alternative to the AIDR classification combining depth and velocity in-
formation (hazard model #4). 

Prior to hazard evaluations, two additional lumped indicators 
(labelled “Runoff Volume Index”, RVI, in m3, and “Flooded Area Index”, 
FAI, in %) will be analysed which aggregate information at the water-
shed level: 

RVI =
∑N

i=1
wi∙Di∙Ai (3)  

FAI =
1

Stot
∙
∑N

i=1
wi∙Ai (4)  

where Stot is the total extent of the study area, N is the number of cells in 
the investigated area, Ai is the cell size, Di is the water depth in the cell, 
and wi is a binary classificator assuming 0 value when Di is lower than a 
wet/dry threshold (which is set to a value of 1 cm), 1 otherwise. In the 
present research, both RVI and FAI are only evaluated under peak con-
ditions, identified by subscript p. In peak conditions each location of the 
case study attains its maximum water depth or velocity value experi-
enced during the flood event (which could not be concurrent): in other 

words, peak conditions do not correspond to a specific instant of the 
flood event, but they maximize criticality for every location of the 
investigated area. Given their extremely aggregated nature, those in-
dicators are only suitable for cumulative hazard estimations, and they 
can be used for quick preliminary understanding and comparison among 
different scenario outcomes. 

Peak conditions are also used for the evaluation of hazard models in 
Table 1: with this aim, the peak values of D, U and H are needed. The 
outcomes of hazard models in Table 1 are represented by the “Area 
Within the Class” (AWC) metric, expressed as a percentage of the 
inundable area of the case study, in other words comparing the area 
extent where the considered indicator is within a range of pre-
determined values across multiple scenarios. This approach has the main 
disadvantage of not accounting for the exact location of hazardous 
places in the study area; however, it was preferred to a cell-by-cell 
comparison due to the large number of scenarios to be simulated. 
Notice that the sum of AWC across the classes of each hazard model 
equals FAIp. 

3. Case study 

Fuorigrotta is one of the administrative units of the City of Naples, 
located in the western part of the city (Fig. 2). The pilot area chosen for 
the analysis is 2.1 km2 wide and it roughly coincides with the 

Table 1 
Flood hazard models.  

Hazard 
model 

Flood metric 
(reference) 

Hazard 
class 

Class 
ranges 

Class description 

#1 D 
Evans et al. 
(2020) 

H3 ≥ 30 cm high hazard (MAS(a) =

0, road closed) 
H2 10 – 30 cm medium hazard (MAS(a) 

= 20 km/h) 
H1 < 10 cm low hazard (MAS(a) =

road speed limit) 
#2 U = V ⋅ D 

AIDR (2017) 
H6 >4 m2/s unsafe for people, 

vehicles and buildings 
(failure) 

H5 ≤4 m2/s 
(D(b) ≤ 4 m, 
V(b) ≤ 4 m/ 
s) 

unsafe for people, 
vehicles and buildings 
(damage) 

H4 ≤1 m2/s 
(D ≤ 1.2 m, 
V ≤ 2 m/s) 

unsafe for people and 
vehicles 

H3 ≤0.6 m2/s 
(D ≤ 1.2 m, 
V ≤ 2 m/s) 

unsafe for vehicles, 
children and the elderly 

H2 ≤0.6 m2/s 
(D ≤ 0.5 m, 
V ≤ 2 m/s) 

unsafe for small vehicles 

H1 <0.3 m2/s 
(D < 0.3 
m, V < 2 
m/s) 

generally safe 

#3 D 
Kaspersen & 
Halsnæs 
(2017) 

H3 ≥ 20 cm unsafe for health, 
basements, roads, 
railways, buildings and 
historical/cultural 
assets 

H2 ≥ 5 cm, <
20 cm 

unsafe for health, 
basements, roads and 
railways 

H1 < 5 cm generally safe 
#4 H = D + V2/2g  

Kramer et al. 
(2016) 

H3 ≥ 60 cm high hazard for 
passenger cars and 
emergency vehicles 

H2 30 – 60 cm high hazard for 
passenger cars 

H1 < 30 cm low hazard  

(a) MAS = Maximum Allowable Speed of vehicles. 
(b) Limiting water depth and velocity. 
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stormwater drainage catchment serving the neighbourhood, which, in 
turn, is part of the complex and stratified combined sewer system of the 
City. The pilot area is located along the edges of the “Campi Flegrei” 
volcanic system: as such, it can be described as a flat basin with steep 
edges on the North-Eastern side, gently degrading towards the sea in 

South-West direction (Fig. 2). Due to its peculiar topographic features, 
the drainage efficiency of the sewer system in the area has always been 
limited, and a large number of enhancements, retrofitting and extraor-
dinary maintenance interventions have been proposed. The main con-
cerns mostly regard the accumulation of surface runoff due to the very 

Fig. 2. Case study location and strategic assets (simulated domain in red, main roads in blue, railroads in orange). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. (a) Digital Elevation Model; (b) Land Use Map; (c) Land Use classification of Fuorigrotta (NA). North arrow and scale bar refer to all panels. Data available at 
http://sit.cittametropolitana.na.it/lidar.html. 
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mild slopes in the central part of the pilot area, which, along with the 
overall poor maintenance conditions of gutters and drains, makes the 
storm water collection difficult. 

All the above-mentioned issues have a deep influence on the rainfall- 
runoff transformation, exacerbating the flood hazard conditions of the 
area. In turn, flood risks are even more relevant considering the high 
exposure levels. The census particles (dated 2011) highlight the resi-
dential purpose of the pilot area, with a population of about 40′000 and 
still growing, and a number of highly relevant strategic assets such as the 
football stadium, with all the satellite economic activities, the railway 
infrastructure for public transport (both local and extra-urban, with a 
large number of underground stations), and the road network, which is 
characterized by a large number of high-traffic routes (also in un-
derpasses and tunnels) connecting the area to the adjacent neighbour-
hoods and to the highway. Among all the above-mentioned assets 
(Fig. 3), the transport and road infrastructures proved to be the most 
vulnerable to pluvial flooding, with cascading indirect damages due to 
service disruption caused by traffic jams, potholes and railroad flooding, 
limiting mobility both within the area and towards the city economical/ 
business centre. Relevant service disruptions can be observed both for 
small and for large return periods: an example of this can be found in the 
very large underpass at the highway exit, which is closed at every 
rainfall event as a precautionary measure, even for small rainfall in-
tensities, with severe consequences for traffic. Moreover, damages to 
underground facilities, such as metro stations, but also garages and 
basements, are often experienced. For those reasons, this pilot area can 
be considered particularly interesting for pluvial flooding analysis, and 
especially in a context of climate change, in order to assess and map 
current and future hazard/risk conditions, as well as to plan adaptation 
strategies and measures. 

3.1. Topographic data and land use maps 

Different panels in Fig. 3 show the pilot area information that is 
needed for the modelling process, namely: (i) a LiDar-based Digital 
Terrain Model (http://sit.cittametropolitana.na.it/lidar.html) providing 
soil elevation with a native horizontal resolution of 1 m, remapped at a 
final resolution of 2 m, considered suitable for pluvial flooding analyses 
(Wang et al., 2018) and post-processed to remove building footprints; 
(ii) a Land Use classification, derived from merging different Land Use/ 
Land Cover labels according to their surface drainage properties 
(“impervious areas”, such as roads and pedestrian areas; “green areas”; 
“manmade pervious areas”, including railroads and sports facilities). 
Land Use classes were assigned different roughness and infiltration rates 
consistently with Wang et al. (2018), considering, for the impervious 
areas, an infiltration rate coincident with the design extreme rainfall 
value for the sewer system with a return period of 2 years, accounting at 
the same time for the sewer design return period (usually < 10 years) 
and for the observed poor maintenance conditions. Moreover, infiltra-
tion rates for green areas were differentiated according to slope referring 
to the fine sandy loam soil texture, as suggested by Kaspersen et al. 

(2017). Table 2 shows roughness and infiltration rate values for different 
Land Use classes and slopes; it should be noted that the “infiltration” 
label is used consistently with software notation and related literature 
(e.g. Wang et al., 2018), albeit it represents parametrized processes such 
as infiltration through green areas and sewer conveyance through drain 
inlets. 

Information shown in Fig. 3 and Table 2 are used as input for the 
CADDIES Caflood modelling tool, coupled with extreme rainfall sce-
narios derived from the methodology discussed in previous section. For 
the analyses, two different return periods for the rainfall events are 
considered, namely T1 = 10 yr and T2 = 200 yr, consistently with the 
observation that urban flooding can be due to either low-frequency 
events causing surcharge of the underground sewer systems with 
consequent overflowing, or high-frequency events caused by local, un-
predictable deficiencies of the drainage system (Palla et al., 2018). 
Urban drainage networks are usually designed for low return periods; 
nonetheless it is quite common to understand consequences of highly 
extreme rainfall events in urban areas (Kaspersen et al., 2017; Martínez- 
Gomariz et al., 2019; Cao et al., 2020; Li and Willems, 2020), although 
the statistical meaning of return periods under changing climates should 
be carefully considered (Cooley, 2013). 

3.2. Rainfall data 

Table 3 shows the members of the adopted ensemble of climate ex-
periments, exploiting six different GCM/ESMs and eight different RCMs 
in nineteen different combinations. In case of experiments sharing same 
GCM/ESMs and RCMs (e.g. members #5 and #8 in Table 3), different 
configurations, for instance in terms of parametrizations and/or tuning, 
can result in different outputs. The local extreme rainfall regime for the 
case study under climate changes is provided by Equation (2), using as 
observational reference the local design IDF curve over the period 
1971–2000, obtaining 19 IDF curves expected in the future horizon 
2071–2100 for RCP 4.5 and RCP 8.5 scenarios. As previously mentioned, 
subsequent analyses focus on two relevant return periods (T1 = 10 yr 
and T2 = 200 yr), for a total number of 2 × 2 × 19 = 76 simulations 
under climate change, plus two reference simulations under present 
climate conditions. 

4. Results of the impact simulation Chain 

4.1. Local extreme rainfall regime for the case study under climate change 

Table 3 provides, for each of the 19 climate projections, the annual 
maximum 1-hr rainfall intensity obtained from Equation (2) for the two 
reference return periods (T1 = 10 yr and T2 = 200 yr) and the two 
considered RCP scenarios. The observed annual maximum 1-hr rainfall 
intensity, provided by the design IDF curve for the reference period 
1971–2000, hereafter referred to as “I0”, is equal to 40.4 mm/h and 71.4 
mm/h for T1 and T2 respectively. 

Fig. 4 shows the Depth – Duration curves obtained by means of 
Equation (2) for different rainfall durations. As Fig. 4 (as well as Table 3 
for 1-hr duration only) shows, variability of climate projections is a 
function of return period and concentration scenarios: for fixed RCP 
scenario, variability is the largest for the largest return period, whereas, 
for fixed T, variability is the largest under the RCP 8.5 scenario, with the 
effect of concentration scenario more pronounced than that of return 
period. Variability also shows an increasing dependence on rainfall 
duration. Under RCP 4.5 rainfall values appear uniformly distributed in 
the variability range, whereas under RCP 8.5 rainfall values gather in 
the lower part of the range, close to the reference IDF curve for current 
climate, showing a small number of significantly diverging values rep-
resenting models #13, #18 and #10 from the highest to the lowest 
rainfall depth. In all cases, the upper and lower bounds of the variability 
range correspond to models #13 and #1 respectively; #1 also provides 
rainfall depth values lower than the observed one under RCP 4.5, for all 

Table 2 
Soil parameters for flood inundation modelling.  

Land Use 
Class 

Land Use Type Roughness Infiltration 
rate 

s*m(¡1/3) (mm⋅h¡1) 

A Impervious surfaces (roads, parking 
lots and manmade surfaces) 

0.02 27 

B-1 Green areas, slope 0–4% 0.03 16 
B-2 Green areas, slope 4–8% 0.03 13 
B-3 Green areas, slope 8–12% 0.03 10 
B-4 Green areas, slope 12–16% 0.03 6 
B-5 Green areas, slope > 16% 0.03 4 
C Manmade pervious areas (sport 

facilities and railroads) 
0.03 30  
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rainfall durations. 

4.2. Flood hazard evaluation 

4.2.1. Statistical features of flood-related variables 
Table 4 shows the main statistical features of the outcomes of the 

examined flood inundation models under peak conditions. For each 
combination return period/RCP scenario, the statistical properties are 
referred to the complete ensemble of simulations, including the baseline. 
For each variable, results are presented in terms of mean and median 
value, standard deviation, variability range, skewness coefficient, and 
variation coefficient. As Table 4 shows, the water depth variable D ex-
hibits a significantly skewed frequency, closely followed by total head H 
and, secondly, by unit discharge U, whereas flow velocity V only shows a 
limited, although non-negligible, skewness coefficient. Consistently, D 
and H show very small central values compared to the upper limit of the 

variability range, and mean values roughly double than the 50th 
percentile. Mean, median (although to a lower extent), maximum value 
and standard deviation uniformly increase moving from T1/RCP 4.5 to 
T2/RCP 8.5; conversely, skewness shows an increasing behaviour for V 
but a decreasing behaviour for D, and the opposite occurs for the coef-
ficient of variation. Similar considerations for combined variables U and 
H suggest that the frequency distribution of total head is mostly affected 
by water depth D, whereas distribution of U also accounts for the sta-
tistical features of variable V. 

4.2.2. Cumulative hazard indicators 
Fig. 5 shows RVIp and FAIp values for all the simulated scenarios. For 

each return period (T1 = 10 years in green, T2 = 200 years in red) RCP 
4.5 and 8.5 scenarios are identified by cross markers and triangle 
markers, respectively. However, due to the distribution of simulated 
rainfall intensities, most data points gather close to the respective 

Table 3 
Annual maximum 1-hr rainfall intensity (mm/h) under observed (locally available IDF curve) and future (bias-corrected) climate (maximum and minimum values in 
bold).  

Climate experiment GCM RCM T1 ¼ 10 years T2 ¼ 200 years 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

#1 CNRM-CM5_r1i1p1 CCLM4-8-17_v1  39.36  41.72  69.57  73.74 
#2 CNRM-CM5_r1i1p1 Aladin53  41.71  50.52  73.73  89.30 
#3 CNRM-CM5_r1i1p1 Alaro  42.38  49.83  74.92  88.09 
#4 CNRM-CM5_r1i1p1 RCA4_v1  51.81  56.51  91.59  99.89 
#5 EC-EARTH RACMO22E_v1  45.41  46.12  80.28  81.52 
#6 EC-EARTH HIRHAM5_v1  48.89  49.98  86.43  88.35 
#7 EC-EARTH CCLM4-8-17_v1  42.41  42.78  74.97  75.63 
#8 EC-EARTH RACMO22E_v1  45.03  44.92  79.59  79.40 
#9 EC-EARTH RCA4_v1  44.36  48.82  78.41  86.31 
#10 IPSL-CM5A-MR_r1i1p1 WRF331F_v1  51.42  66.60  90.90  117.73 
#11 IPSL-CM5A-MR_r1i1p1 RCA4_v1  46.68  45.88  82.52  81.10 
#12 HadGEM2-ES CCLM4-8-17_v1  44.97  51.88  79.50  91.70 
#13 HadGEM2-ES RACMO22E_v1  52.48  76.46  92.76  209.20 
#14 HadGEM2-ES RCA4_v1  47.81  49.53  84.51  87.56 
#15 MPI-ESM-LR_r1i1p1 CCLM4-8-17_v1  40.65  43.40  71.86  76.72 
#16 MPI-ESM-LR_r1i1p1 REMO2009  48.48  47.17  85.70  83.38 
#17 MPI-ESM-LR_r1i1p1 RCA4_v1  49.70  48.65  87.85  85.99 
#18 MPI-ESM-LR_r1i1p1 REMO2009  50.28  56.18  88.89  129.68 
#19 NorESM1-M HIRHAM5  42.67  50.06  75.42  88.49  

Fig. 4. Depth-Duration curves for the case study for two different return periods and two different RCP scenarios (local IDF curve used as baseline for climate change 
evaluation in black). DD curves expected in the future build on the methodology and application presented by Padulano et al. (2019). IDs of projections providing 
extremely high rainfall depths (Table 3) under RCP 8.5 are also shown. 
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baseline value, represented by black markers (which is also the mini-
mum simulated rainfall value for RCP 8.5, and the second minimum 
value for RCP 4.5), with only a limited number of particularly high 
values, representing climate projections #13, #18 and #10 under RCP 
8.5. 

For both metrics, data points perfectly align along a regression curve 
(with coefficient of determination R2 > 98% for both indicators), 
showing an increasing dependence of both runoff volume and flooded 
area on rainfall intensity; FAIp values show that, for the most critical 
rainfall scenario, the study area is only flooded at about 40% with D ≥ 1 
cm. The structure of the dependence is power-like in both cases, with 
RVIp and FAIp gradually increasing with I with a power of about 0.5 in 
both cases; for about I > 60 mm/h the last part of both curves can be 
considered linear. 

4.2.3. Operational hazard models 
Fig. 6 shows, for each return period, the amount of pilot area subject 

to hazard indicators D, U and H classified according to the criteria 
identified in Table 1, as a function of rainfall intensity I. For each hazard 

model, hazard classes are labelled from 1, which identifies the lowest 
hazard level, to 3 (highest hazard for the 3-class repartition criterium) or 
5 (highest hazard for the 6-class repartition criterium, where the sixth 
hazard class in Table 1 was never attained). Consistently with Table 3 
and Fig. 5, moving from the lowest to the highest rainfall intensity in 
each panel of Fig. 6 corresponds to moving from RCP 4.5 to RCP 8.5. 
Moving from left panel to right panel for each row of Fig. 6 corresponds 
to moving from T1 to T2, with data points gathering along the same curve 
(partitioned in two panels to improve visual inspection) for each hazard 
class, similarly to RVIp and FAIp in Fig. 5. The wide overlap between the 
two concentration scenarios for each of the investigated return periods 
makes the visual discrimination between RCP 4.5 and RCP 8.5 hardly 
possible. In all the panels of Fig. 6, the baseline values are also shown as 
black markers, pointing to the hazardous area values AWC under present 
climate conditions for both return periods. 

In all the examined scenarios, the widest portion of the pilot area is 
subject to the lowest hazard, with AWC values always higher than 10%, 
whereas the hazardous surface decreases with increasing hazard level. 
For all the hazard models the dependence of AWC on rainfall intensity is 

Table 4 
Statistical properties of CADDIES Caflood simulations (peak conditions).  

Variable Scenario mean £ 10 median £ 10 min £ 10 max σ £ 10 (a) γ(b) CV (c) 

D (m) T1, RCP 4.5  0.46  0.23  0.10  3.30  0.84  9.17  1.81 
T1, RCP 8.5  0.48  0.23  0.10  3.32  0.89  9.03  1.87 
T2, RCP 4.5  0.53  0.23  0.10  3.33  1.13  8.58  2.12 
T2, RCP 8.5  0.55  0.23  0.10  4.11  1.21  8.88  2.21 

V (m/s) T1, RCP 4.5  1.97  1.60  0.00  1.53  1.55  1.76  0.79 
T1, RCP 8.5  2.06  1.68  0.00  1.75  1.60  1.76  0.78 
T2, RCP 4.5  2.50  2.01  0.00  1.88  1.82  1.75  0.73 
T2, RCP 8.5  2.63  2.10  0.00  2.38  1.90  1.79  0.72 

U (m2/s) T1, RCP 4.5  0.07  0.03  0.00  0.26  0.11  5.10  1.61 
T1, RCP 8.5  0.07  0.03  0.00  0.39  0.12  5.21  1.62 
T2, RCP 4.5  0.11  0.04  0.00  0.48  0.17  5.05  1.62 
T2, RCP 8.5  0.12  0.05  0.00  1.12  0.20  6.01  1.70 

H (m) T1, RCP 4.5  0.49  0.26  0.08  3.30  0.83  9.12  1.70 
T1, RCP 8.5  0.51  0.27  0.05  3.32  0.89  8.97  1.75 
T2, RCP 4.5  0.58  0.28  0.03  3.33  1.13  8.48  1.95 
T2, RCP 8.5  0.60  0.28  0.09  4.11  1.21  8.74  2.03  

(a) Standard deviation. 
(b) Coefficient of variation (nondimensional). 
(c) Skewness coefficient (nondimensional). 

Fig. 5. Lumped indicators RVIp and FAIp for cumulative hazard as a function of rainfall intensity as provided by CADDIES Caflood. Regression curves in black (R2 >

98% in both panels); different colours identify different return periods; different markers identify baseline, RCP 4.5 and RCP 8.5 scenarios. 
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a function of the hazard class. Specifically, all hazard classifications 
show a lowest class (H1), corresponding to a low hazard condition 
(where all the indicator values are lower than the minimum threshold) 
with an almost constant AWC value which is also the maximum among 
the classes, implying that most of the pilot area (with a percentage al-
ways higher than 10%) is subject to the lowest hazard due to inundation 
despite experiencing a water depth ≥ 1 cm. For increasing hazard level, 
the hazardous area decreases, on average, and the dependence on 
rainfall increases. For the highest hazard classes (see for example AWC2) 
the amount of exposed pilot area attains very small values (lower than 
0.1%) but the dependence on rainfall intensity is significant in the entire 
range of investigated rainfall scenarios. 

The different hazard classifications show a relevant similarity espe-
cially in the estimation of the area exposed to a low hazard (H1). The 
classifications based on water depth D (hazard models #1 and #3) show 
a direct consistency with the statistical properties of water depth shown 

in Table 4, so that the lower is the threshold, the higher is the area 
characterized by a water depth lower or equal to the threshold. For 
instance, the amount of wet area exposed to D < 10 cm (H1 for hazard 
model #1) is larger than that exposed to D < 5 cm (H1 for hazard model 
#3), and the amount of wet area exposed to D ≥ 30 cm (H3 for hazard 
model #1) is smaller than that exposed to D ≥ 20 cm (H3 for hazard 
model #3). 

The classifications based on derived variables (hazard models #2 
and #4) show a different behaviour compared to the D-based classifi-
cations especially in the estimation of higher hazard classes, presumably 
due to the effect of the velocity parameter. Specifically, the AWC curves 
for H2 and H3 classes swap their position for the highest rainfall in-
tensities under T1 for hazard model #2, and for both return periods for 
hazard model #4. This happens because, whereas AWC values for H3 
constantly increase with increasing I, AWC values for H2 increase at first 
with I, and then they decrease (or reach a plateau) with increasing I for 

Fig. 6. Results of hazard models in Table 1 for 19 climate models under RCP 4.5 and RCP 8.5 for T1 = 10 years (left column) and T2 = 200 years (right column), 
expressed in terms of rainfall intensity (mm/h) and Area Within the Class (% of inundable area). Moving from the lowest to the highest I in each graph corresponds to 
moving from RCP 4.5 to RCP 8.5. Moving from left to right for each row corresponds to moving from T1 to T2, with data points gathering along the same curve for 
each hazard class, partitioned in two columns to improve visual inspection. Different colours identify different hazard classes; different markers identify baseline, 
RCP 4.5 and RCP 8.5 scenarios. 
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about I > 50 mm/h for T1, and for about I > 120 mm/h for T2. This 
behaviour should not be considered anomalous, since both quantities H 
and U build on two variables D and V which are often opponent: in each 
cell of the domain there usually are either high depths and low veloc-
ities, or low depths and high velocities, and the trend of their summation 
or product cannot be predicted a priori because it is very site-specific. 
For hazard model #2, in the range of T2, the amount of pilot area 
exposed to H3 hazard is larger than that exposed to H2 hazard for every 
simulated rainfall intensity. Finally, comparison of H1, H2 and H3 
values between hazard models #2 and #4 shows that the two criteria are 
substantially coincident. 

4.3. Analysis of normalized indicators 

As shown in the results section, the raw outcomes of flood inundation 
modelling (D, V and related variables) strictly depend on the rainfall 
intensity value used as input. This is particularly evident in Fig. 5 for 
cumulative hazard metrics, where the increase in rainfall intensity with 
respect to the baseline conditions is found to be the only predictor of the 
increase in peak runoff volumes and flooded areas. 

However, the present research is particularly oriented to understand 
if, and to what extent, flood hazard is affected by changes in climate 
conditions, and this depends not only on the rainfall input, but also on 
the hazard model adopted. As shown by Figs. 6 and 7, for example, the 
amount of area affected by any assigned level of flooding proves to be 
diversely affected by any increase in rainfall values compared to the 
baseline conditions; in other words, increases in rainfall values as those 
provided by climate change under the same return period provide 
different increase in the affected areas. With this aim, this section pro-
vides an analysis of normalized indicators: in other words, results shown 
in Figs. 5–7 are rearranged so that each metric x is represented by its 
normalized value x’=x/x0, where x0 corresponds to baseline conditions. 

4.3.1. Normalized cumulative hazard indicators 
Fig. 7 shows normalized peak indicators RVI’p = RVIp/RVIp,0 and 

FAI’p = FAIp/FAIp,0 as a function of normalized rainfall intensity I’=I/I0 
for all the exploited scenarios, which were dimensionally represented in 
Fig. 5. For fixed return periods, moving from RCP 4.5 to RCP 8.5 implies 
increasing rainfall intensity values (Table 3), so that data points 
continuously develop along a line from the smallest to the largest 

abscissa. However, two different lines occur for the two investigated 
return periods, due to the different reference conditions. In the range of 
investigation the behaviour can be effectively considered linear, with a 
coefficient of determination R2 higher than 98% in all cases. 

For fixed return period, Fig. 7 shows that the transformation of 
rainfall into runoff can be represented by a linear relation between the 
considered normalized variables. The equations for the regression lines, 
shown in each panel, are such that a unitary increase in rainfall does not 
imply a unitary change in flooding conditions, in terms of either runoff 
volume or flooded area. This confirms the recognized non-linearity of 
the rainfall – runoff transformation (Todini, 1988), which is represented 
in Fig. 7 by means of the 1:1 line. The functional form of the regression 
lines, as well as the parameters’ values, depend on the overall features of 
the case study judged relevant for the rainfall – runoff transformation. 
Neglected or simplified processes, such as the role of infiltration and the 
effect of the drainage network, may alter observed linearity. Among the 
experienced return periods, regression lines of T2 data points show a 
lower slope, implying that the more critical is the baseline scenario, the 
lower can be the increase in criticality due to an increase in rainfall with 
respect to baseline. This is particularly obvious for FAI’p, since flooded 
area cannot overcome 100%. Although only two return periods are 
examined in the research, it is expected that the slope of the regression 
line decreases with increasing return period. 

The aspect and location of the regression line could be altered by 
modifying drainage characteristics, for instance including adaptation 
measures; in this perspective, the diagram proposed in Fig. 8 could act as 
an abacus, driving the selection of interventions and providing infor-
mation about the feasibility and effectiveness of selected actions. For 
example, one or multiple interventions could be simulated with the 
desired effect of decreasing the slope of the regression line compared to 
the reference condition (e.g. that referring to present climate and 
drainage settings), so that extreme events would cause lower flood 
levels. It is worth noting that, as Fig. 7 shows, normalized flooded area 
increases to a lower extent than runoff volume with increasing 
normalized rainfall intensity. In other words, when using diagrams such 
as the one proposed in Fig. 7 for viability analysis of adaptation mea-
sures, the same performance in terms of slope reduction cannot be 
ensured for both indicators at the same time. 

Fig. 7. Normalized lumped indicators RVI’p and FAI’p as a function of normalized rainfall intensity I’ (1:1 line in grey, regression lines in red for T1, in green for T2). 
R2 > 98% in both panels and for both return periods. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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4.3.2. Normalized operational hazard model results 
Fig. 8 shows the same results shown in Fig. 6 but provides, on the 

vertical axis, normalized values AWC’, namely the ratio of AWC to the 
baseline value AWC0, whereas normalized intensity values are used for 
the horizontal axis. For each hazard model and each hazard class, two 
curves are provided corresponding to T1 (solid line) and T2 (dashed 
line); for each curve, increasing I’ implies moving from RCP 4.5 to RCP 
8.5 scenario. In all cases, for fixed I’, AWC’ is always higher for the 
smaller return period; this is expected since T1 is characterized by 
smaller intensity values than T2, corresponding to the lower branches of 
all curves in left panels of Fig. 6, where the change in AWC with I is still 
non-negligible compared to the flat curves in right panels of Fig. 6. 

For hazard models #1 and #3, for assigned normalized intensity and 
return period, normalized AWC increases with increasing hazard level. 
In other words, any increase in rainfall intensity causes an increase in 
the extent of exposed areas which is more significant for the highest 
hazard levels. The behaviour is quite similar between models #1 and #3 
with the evident exception of H3 class for T1 scenarios, where hazard 
model #1 provides a significantly larger inflation of exposed areas. For 
instance, for the T1 scenario, inflating rainfall intensity by 1.5 (in other 
words, increasing baseline intensity by 50%) implies inflating areas 
exposed to H3 by 2.2 according to hazard model #1, by 1.7 according to 
hazard model #3. 

The classifications based on derived variables (hazard models #2 
and #4) roughly confirm the above-mentioned results. Consistently with 
Fig. 6, H2 and H3 show an opposite trend in the range of T1 intensity 
values, with the H3 curve monotonically increasing, and the H2 
increasing (but less than H3) and then slightly decreasing with 
increasing intensity, which reflects in the elbow shown in Fig. 8 for both 
hazard models. For hazard model #2, H4 and H5 curves in Fig. 8 show a 
very rapid increase in exposed areas with normalized intensity (for 
instance, more than triplicating with doubling rainfall intensity) 
although with some erratic behaviours, especially for the smaller I’ 
values, probably due to the fact that AWC2 values for those classes are 
very small (Fig. 6) and possibly affected by estimation errors and 
approximations. 

4.4. Flood hazard mapping 

Fig. 9 shows the hazard maps provided by CADDIES Caflood for the 
most critical rainfall scenario, characterized by a return period T2 = 200 
years under the RCP 8.5 concentration scenario for the climate projec-
tion #13, corresponding to a rainfall intensity I = 209 mm/h. In Fig. 9 
only three flood hazard classifications are represented, namely the 
classification based on unit discharge U (hazard model #2), the classi-
fication based on water depth D (hazard model #3) and the classification 
based on total head H (hazard model #4); hazard model #1 can be 
considered redundant. As already mentioned in previous sections, 
lacking flood observations in the case study for validation purposes, 
hazard maps in Fig. 9 should be only analysed in comparison among 
different rainfall scenarios. However, a fair significance of results can be 
assessed considering that the inundation model correctly captures crit-
ical spots such as the underpass, the areas adjacent to the football sta-
dium and the entrance of the railway station. Hazard model #2 
particularly emphasizes critical conditions at the entrance of the un-
derpass, whereas hazard model #3 provides a non-negligible high haz-
ard level for the main railroad. Results of hazard model #4 can be 
considered similar to #2, but with the highest hazard levels condensed 
in a unique class. 

The outcomes of flood hazard mapping show that for the case study 
the adopted criteria are poorly selective, implying that most of the pilot 
area comes under the lowest hazard class, whereas a very small portion 
of the domain is assigned to the highest hazard levels. This is consistent 
with the statistical properties reported in Table 4 compared to the 
threshold values for hazard models in Table 1, with median values for all 
variables not far from the lowest thresholds, coupled to a deeply skewed 
distribution. 

4.5. Mapping the propagation of climate projections’ variability 

Fig. 10 shows, for each return period and each concentration sce-
nario, and for each climate simulation chain, the path of normalized 
variables representative of all the steps of the modelling chain: 

Fig. 8. Normalized results of operational hazard models in Table 1 for 19 climate models under RCP 4.5 and RCP 8.5 for T1 (solid lines) and T2 (dotted lines). Hazard 
classes are identified in colours grading from blue (minimum hazard level among all hazard models) to black (maximum hazard level among all hazard models). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(i) the climate change module: it accounts for projection un-
certainties (e.g. IPCC socio-economic and greenhouse gas con-
centration scenarios, climate model assumptions, 
parametrizations, discretization) as well as bias correction. It is 
represented in Fig. 10 by normalized annual maximum 1-hr 
rainfall intensity I’.  

(ii) the flood inundation module: it accounts for the uncertainties 
proper of the rainfall-runoff transformation modelling (assump-
tions, parametrizations, discretization) along with previous var-
iabilities. Among the investigated variables, normalized mean µ 
and standard deviation σ of water depth D and flow velocity V 
occurring over the pilot area are considered in Fig. 10.  

(iii) the cumulative hazard modelling: in Fig. 10, normalized FAI’p 
and RVI’p are chosen. These indicators can be considered repre-
sentative of the inundation modelling as well, since they only 
depend on water depth D.  

(iv) the operational hazard modelling: it accounts for the arbitrariness 
in the definition of threshold values for hazard classification 
along with previous variabilities. Normalized AWC’ is chosen as 
representative, with AWC values computed for the lowest hazard 
class for each hazard model in Table 1 (shortened as H1′ in 
Fig. 10). H1 class was preferred since it is the most represented 
hazard level for all hazard models. 

Fig. 9. Hazard maps for T2/RCP 8.5 scenario for climate projection #13: hazard model #2 based on unit discharge U, hazard model #3 based on water depth D, 
hazard model #4 based on total head H. H4 and H5 classes are only possible for hazard model #2. 
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The radar graph in Fig. 10 was considered the most effective tool to 
visually map and inspect results, since it is acknowledged as particularly 
suitable to show multivariate data. Each of the normalized indicators 
identified in (i)-(iv) is assigned an axis, with a common origin at the 
center of the graph. Each line maps the main outcomes of each single 
flood simulation, starting from rainfall intensity (vertical axis I’ and 
entry point for the radar graph lines), moving clockwise through raw 
flood features (axes from µ’(D) to σ’(V)) and cumulative hazard features 
(axes FAI’p and RVI’p) and ending at the operational hazard features 
(axis from H1′

1 to H1′
4). 

Fig. 10 shows that the spread in rainfall values used as input, which is 
due to the use of an ensemble of climate experiments (Table 3), slightly 
reduces moving from climate change modelling to flood modelling, 
implying a dampening effect of the flood modelling for all scenarios. In 
other words, a given increase in rainfall intensity with respect to present 
climate causes a lower increase in water depth features (particularly in 
the mean values) and in flow velocity features (particularly in the 
standard deviation). In turn, moving towards hazard modelling causes 
variability to inflate with respect to flood modelling, but keeping within 
a similar level with respect to rainfall variability. Among all the hazard 
metrics, variability in RVI’p proves to be the most inflated. Results of the 
four tested hazard models can be considered coincident; variability in 
H1′, along with variability in FAI’p, attains values similar to variability 
in rainfall. This is especially true for the RCP 4.5 scenarios which exhibit 
the lowest variability in rainfall increase with respect to the baseline, 
with I’ always lower than 1.5. Instead, for the RCP 8.5 scenarios, 
showing larger rainfall variability (with maximum I’ almost equal to 2 
and 3 for T1 and T2 respectively), a dampening effect of the hazard 
modelling can be appreciated in addition to the mitigating effect of the 
rainfall – runoff transformation. 

The behaviour of single climate simulation chains is consistent 
throughout the process, implying that the climate projections providing 

the highest increase in rainfall intensity also provide the highest increase 
in all the other metrics. This is particularly visible for T2 under RCP 8.5, 
where lines representing single climate experiments are concentric and 
never intersect. Finally, as also shown in Fig. 7 and Fig. 8, for both RCP 
scenarios variability in normalized metrics is narrower for T2 than for T1, 
implying that “alterations” due to the effect of climate change are not 
evenly distributed for all magnitudes of rainfall events (the hazard 
source), so that more significant changes with respect to present climate 
should be expected for the less critical events. 

As a final comment, Fig. 10 shows that the total spread in all the 
considered normalized variables keeps within the circle corresponding 
to the maximum experienced I’, which is roughly equal to 1.3 for T1/ 
RCP 4.5 (corresponding to an increase in rainfall intensity of 30% with 
respect to baseline), 2 for T1/RCP 8.5 (corresponding to an increase of 
100%), 1.3 for T2/RCP 4.5 (corresponding to an increase of 30%) and 3 
for T2/RCP 8.5 (corresponding to an increase of 200%), the only 
exception being RVI’p under RCP 4.5 scenarios. Within those circles, 
normalized statistical properties exhibit a significantly narrower vari-
ability range for all the simulated scenarios. 

5. Discussion 

5.1. Limitations of the work and future developments 

The choice of the flood modelling tool and related parametrizations, 
including simplified infiltration process and sewer system conveyance, 
may have an influence on the outcomes of the research that could 
constitute promising ground for further research, comparing, for 
instance, the adopted flood model both to more complex tools, explicitly 
accounting e.g. for the presence of a sewer system, and to expeditious 
models usually only accounting for the elevation layout. Due to the lack 
of flood observations, which is a very common situation in practical 

Fig. 10. Propagation of variability in climate projections through the impact modelling system for all simulated scenarios. Each line maps a single simulation starting 
from rainfall intensity (vertical axis), moving clockwise through raw flood features and ending to hazard model results. All variables are normalized by their cor-
responding baseline values. Baseline simulations are shown as black circles with unitary values for all normalized variables. 
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applications although usually accepted for scenario analyses, as dis-
cussed in the Introduction, it was not possible to validate the accuracy of 
results for any rainfall event, but it was only possible to check consis-
tency of results basing on visual inspection of flood maps and expert 
judgment. 

The observed skewness in flood depths, resulting from the flood 
inundation model, causes the extent of hazardous areas to significantly 
reduce with increasing hazard level, resulting in very small areas 
exposed to the highest hazard under future as well as present climate. 
Although an asymmetric distribution, skewed towards small depths, 
should be generally expected, the flat layout of the domain could deeply 
affect flood features because the distribution of water depths is signifi-
cantly uniform, with a limited number of outlying locations corre-
sponding to specific elements of the built environment (such as the 
underpass). 

Furthermore, questions arise about the representativeness of the 
adopted hazard models. For the pilot area, most of the highly hazardous 
areas were expected, such as the underpass; however, tangible experi-
ence of the site suggests that perceived hazard is higher even for rainfall 
events with lower frequency. In addition, some hazard models, such as 
AIDR (2017), fail to capture non-negligible risks that are captured by 
others. This could be explained noting that flood hazard models are 
often conceived for fluvial flooding, with usually larger water depths 
and velocities and considerable damages to the exposed assets, with 
highly critical consequences on their structural integrity (e.g. closed 
streets or transport service). Instead, purely pluvial flooding conditions 
may affect exposed assets especially at the operational level (e.g. traffic 
jams, delays), and this may not be efficiently captured by those hazard 
models. 

In any case, propagation of variability due to the adoption of an 
ensemble of climate projections throughout the Impact Simulation 
Chain was mapped using variables that were normalized by means of the 
corresponding baseline values referring to present climate. This 
reasonably ensures that results shown in Fig. 10, as well as the overall 
methodology, can be considered valuable despite the simplifications and 
possible inaccuracies caused by the flood inundation model (governing 
equations, numerical scheme, parametrizations for simplified processes) 
as well as by the particular choice of hazard metrics. 

5.2. Potential impacts on the related literature 

Despite the limitations highlighted in the previous section, the main 
findings of this research may have several impacts on the related liter-
ature, with specific reference to the estimation of climate change im-
pacts on flooding and the use of flood modelling tool. 

This paper proposes a multi-purpose impact analysis, based on cu-
mulative and operational hazards indicators. In this sense, the work 
offers novel points of view for those lines of research involved in the 
development of flood indices to identify spatial patterns of flood risk 
within a given studied areas (Xu et al., 2019; Shadmehri Toosi et al., 
2020). Moreover, some of the indicators considered here, such as RVI 
and FAI, can be considered similar to other synthetic parameters 
analyzed in the literature (see for example Löschner et al., 2017; Zhou 
et al., 2019) confirming their value when dealing with urban flood 
hazard assessment in a climate change context. 

The outcomes of the research can be of aid to water infrastructure 
managers, designers and policy makers when dealing with the impacts 
of climate change in flood-prone urban areas, and its relationship with 
the effects of increasing urbanization (Mahmoud and Gan, 2018). 
Furthermore, the impact simulation chain proposed in this paper can be 
further used for other purposes such as the quantification of benefits 
related to climate change adaption measures, which have been devoted 
particular attention in the recent literature (see, for example, Zhou et al., 
2018; Ghodsi et al, 2020). 

It is also important to underline the potential impact of this research 
for urban flood modelers, with particular reference to the application of 

CADDIES Caflood model. This numerical code was extensively applied 
for classic flood propagation situations (Guidolin et al., 2016) and only 
recently it has been also used for rain-on-grid simulation (Wang et al., 
2018) where the rainfall input is directly considered within the hydro-
dynamic model. It should be recalled that these simulations are very 
challenging from a numerical point of view (Cea and Bladé, 2015) and, 
due to the increasing use in the literature for both basin-scale (i.e. Fer-
raro et al., 2020) and urban scale (i.e. Guo et al., 2021) applications, 
further evidence is required about the suitability of the software package 
for pluvial flooding (Costabile et al., 2020b). 

As finally concerns the climate change perspective, in the field of 
urban flooding the paper presents a unique example of propagating the 
spread in rainfall coming from a large ensemble of climate projections 
throughout a comprehensive modelling chain, from the quantification of 
local effects of climate change up to flood hazard evaluations. The main 
difference with similar outcomes, such as those shown by Kaspersen 
et al. (2017), lies in the decision of mapping the results of each flood 
simulation (taking as input a specific rainfall value) separately. This 
approach stems from the assumption that each different climate pro-
jection provides an equiprobable future rainfall scenario, rejecting the 
common idea that particularly high future extreme rainfall values are 
outliers and, consequently, less credible than the moderate ones. 

6. Conclusions and lessons learnt 

A complete Impact Simulation Chain was performed consisting of a 
climate change modelling module, an urban flood modelling module 
and a flood hazard modelling module. Analyses were performed for two 
different return periods (T1 = 10 years and T2 = 200 years) for the test 
case of Fuorigrotta, City of Naples (Italy). 

The paper fills the current gap in the analysis of climate change 
impacts on urban flooding by relying on a full ensemble of climate 
projections (reflecting the use of a large ensemble of climate experi-
ments derived from different GCMs/ESMs coupled with different RCMs 
under different RCP scenarios), where single members were considered 
equiprobable, in opposition to current impact literature usually target-
ing ensemble mean and standard deviation or relevant percentiles. The 
main goal of the research consisted in understanding how the variability 
in the rainfall input propagated within the system and reflected onto the 
urban environment and related sub-systems. Despite the above- 
mentioned limitations, the following conclusions can be drawn:  

• variability of climate projections is a function of return period and 
concentration scenarios: for fixed RCP, variability is the largest for 
the largest return period, whereas for fixed T variability is the largest 
under RCP 8.5, with the effect of concentration scenario more pro-
nounced than that of return period. 

• Raw output variables of flood inundation model exhibit a consider-
ably asymmetrical distribution, with very large skewness coefficients 
for water depth, closely followed by total head and unit discharge, 
and smaller skewness values for flow velocity.  

• Analysis of cumulative hazard indicators shows that runoff volumes 
and flooded areas increase with increasing rainfall with a power of 
about 0.5. This implies that, with respect to current climate, for a 
fixed increase in rainfall the increase in both flood indicators has a 
magnitude which decreases with increasing return period. For the 
lower return period, the increase in runoff volumes is roughly equal 
to the increase in rainfall, whereas it is smaller for the higher return 
period. The experienced increase in flooded areas is always smaller 
than the increase in rainfall, probably due to the elevation features of 
the pilot area. Although this testifies the nonlinearity of the rainfall – 
runoff transformation, the relationship between rainfall increase and 
flood features increase was found to be linear for all return periods.  

• Analysis of operational hazard indicators show that, for increasing 
hazard level, the extent of hazardous areas decreases and the 
dependence on rainfall becomes more marked. For fixed hazard 
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level, hazardous areas are closely related to rainfall only for small 
intensities (namely, 10-yr return period under RCP 4.5) and then 
stabilize. With respect to current climate, for fixed return period the 
extent of hazardous areas increases more rapidly with increasing 
rainfall for higher than for lower hazard levels. For fixed hazard, 
inflation of hazardous areas is more evident for 10-yr than for 200-yr 
rainfall scenarios.  

• Mapping the propagation of rainfall variability through the Impact 
Simulation Chain in terms of normalized indicators shows that the 
spread in normalized rainfall input envelopes the variability range of 
all subsequent modelling steps, including raw flood modelling out-
puts, cumulative and operational hazard indicators. The envelope 
spread is roughly equal to 1.3 for T1/RCP 4.5 (corresponding to an 
increase in rainfall intensity of 30% with respect to current climate), 
2 for T1/RCP 8.5 (increase of 100%), 1.3 for T2/RCP 4.5 (increase of 
30%) and 3 for T2/RCP 8.5 (increase of 200%). On one hand, this 
confirms that the higher the return period the lower the increase in 
flood indicators, in comparison. On the other hand, this demon-
strates that concentration scenarios play a predominant role in the 
allocation of variability in the input and, as a consequence, in the 
output, with e.g. T1/RCP 8.5 scenario providing a higher increase in 
flood criticality than T2/RCP 4.5. 

In terms of input data, computational effort and reliability and 
versatility of the outputs, the adopted inundation model provides a 
balance between expeditious tools, often relying on elevation only, and 
comprehensive hydrodynamic models, usually fed by a large amount of 
detailed input data. This makes the Impact Simulation Chain particu-
larly suitable to be used for scenario analysis under climate change. The 
research provides a methodological framework that can be tailored to 
meet specific requirements and needs, adopting, for instance, different 
GCMs/RCMs couplings or bias-adjustment techniques, different flood 
models, or different hazard indicators. As a future perspective, this 
framework can be used to explore different uncertainty sources within 
the Impact Simulation Chain, as well as the feasibility and effectiveness 
of adaptation measures to reduce flood risks. 
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