
Vol.:(0123456789)1 3

Evolutionary Intelligence (2024) 17:1185–1195
https://doi.org/10.1007/s12065-022-00801-3

RESEARCH PAPER

Qualitative differences between evolutionary strategies
and reinforcement learning methods for control of autonomous
agents

Nicola Milano1 · Stefano Nolfi1

Received: 21 September 2022 / Revised: 1 November 2022 / Accepted: 17 November 2022 / Published online: 7 December 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
In this paper we analyze the qualitative differences between evolutionary strategies and reinforcement learning algorithms
by focusing on two popular state-of-the-art algorithms: the OpenAI-ES evolutionary strategy and the Proximal Policy
Optimization (PPO) reinforcement learning algorithm – the most similar methods of the two families. We analyze how the
methods differ with respect to: (i) general efficacy, (ii) ability to cope with rewards which are sparse in time, (iii) propensity/
capacity to discover minimal solutions, (iv) dependency on reward shaping, and (v) ability to cope with variations of the
environmental conditions. The analysis of the performance and of the behavioral strategies displayed by the agents trained
with the two methods on benchmark problems enable us to demonstrate qualitative differences which were not identified in
previous studies, to identify the relative weakness of the two methods, and to propose ways to ameliorate some of those weak-
nesses. We show that the characteristics of the reward function has a strong impact which vary qualitatively not only for the
OpenAI-ES evolutionary algorithm and the PPO reinforcement learning algorithm but also for other reinforcement learning
algorithms, thus demonstrating the importance of optimizing the characteristic of the reward function to the algorithm used.

Keywords Evolutionary strategies · Reinforcement learning · Embodied agents · Agent-based simulation

1 Introduction

Evolutionary algorithms (EA) and reinforcement learning
algorithms (RLA) represent two well-established techniques
for training embodied and situated agents. Both methods
permit training agents from scratch on the basis of a fit-
ness or reward function which rates how well the agent is
behaving.

In this article we analyze the qualitative difference
between the two methods. We briefly discuss the general
efficacy, and the ability to cope with rewards which are
sparse in time by briefly reviewing the evidence available
in the literature. We propose three additional qualitative

differences, which were not previously discussed in the lit-
erature: the propensity/capacity to discover minimal solu-
tions, the dependency on reward shaping, and the ability to
cope with variations of the environmental conditions. For
these qualitative differences we provide original experimen-
tal evidence.

Clarifying the qualitative differences permits choosing
the most suitable algorithm and hyperparameters in a more
informed way. Moreover, it permits identifying ways to miti-
gate the weakness of the algorithm chosen.

Clearly, carrying out a systematic comparison of all exist-
ing algorithms on a large set of benchmark problems is out
of the scope of a single paper. This also in consideration of
the fact that identifying qualitative differences requires in
depth studies which go behind the mere comparison of per-
formance measures. Consequently, our analysis does not aim
to be exhaustive. The objective of this paper is to illustrate
qualitative differences which have not been analyzed in pre-
vious studies and to start collecting experimental data which
can be used to characterize some of the existing algorithms
with respect to those differences.

 * Nicola Milano
 nicola.milano@istc.cnr.it

 Stefano Nolfi
 stefano.nolfi@istc.cnr.it

1 Laboratory of Autonomous Robots and Artificial Life,
Institute of Cognitive Science and Technologies, National
Research Council, Rome, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-022-00801-3&domain=pdf

1186 Evolutionary Intelligence (2024) 17:1185–1195

1 3

For our analysis we focus primarily on two popular state-
of-the-art algorithms: the OpenAI-ES evolutionary strategy
[1] and the Proximal policy optimization reinforcement
learning algorithm (PPO) [2]. We start from these algo-
rithms also in consideration of the fact that they are the most
similar among the evolutionary and reinforcement learning
families. Indeed, they both operate on-policy and they both
optimize a gradient on the basis of the Adam stochastic
optimizer (other evolutionary algorithms operate without
estimating a gradient and without using a stochastic opti-
mizer). However, for some of the analysis we also consider
two off-policy reinforcement learning algorithms: the Twin
Delayed DDPG (T3D) [3] and the Soft Actor-Critic (SAC)
[4]. As we will see, the analysis of those algorithms also
reveals interesting qualitative differences among reinforce-
ment learning algorithms.

The OpenAI-ES algorithm [1] belongs to the class of
natural evolutionary strategies (NES) [5–8]. Let F denote
the objective function acting on parameters θ, the algorithm
generates a population, i.e. a set of solutions vector also
called genotypes, with a Gaussian distribution over θ para-
metrized by ψ and tries to maximize the mean objective
value Eθ∼pψ F(θ) over the population by using the Adam
stochastic optimizer. During each iteration it takes a gradient
step on ψ by using the following estimator:

The Proximal Policy Optimization Algorithm (PPO, [2])
is an actor-critic on-policy reinforcement learning method
[9–12] which uses a parametrized stochastic policy. It oper-
ates on the basis of a surrogate gradient that penalizes exces-
sive divergence from the previous policy by clipping the
gradient in a proximal trusted zone of the search space.

It updates the policy by using the Adam stochastic opti-
mizer via:

where s are the observation states, a the actions taken, �
are the parameters of the network policy and L is the loss
defined as:

where �� (a∣s)
��k

(a∣s)
 is the probability ratio of performing those

actions with the current and the previous version of the

(1)∇ψE�∼pψ
F(�) = E�∼pψ

[

F(�)∇ψlogpψ(�)
]

(2)�k+1 = argmax
�

E
s,a∼��k

[

L
(

s, a, �k, �
)]

(3)L
(

s, a, �k, �
)

= min

(

��(a ∣ s)

��k (a ∣ s)
A
��k (s, a), clip

(

��(a ∣ s)

��k (a ∣ s)
, 1 − �,+�

)

A
��k (s, a)

)

policy, A��k (s, a) is the advantage, and � is the threshold used
to clip the gradient.

The Twin Delayed DDPG (TD3, [3]) is an off-policy rein-
forcement learning method which operates with a determin-
istic policy combined with two Q-functions. The usage of
the smaller Q-value computed by the two Q-functions permit
to reduce the problems caused by the overestimation of the
Q-values. The algorithm learns the control policy �� and
two Q-functions Q�1

 , Q�2
 in an alternate way by mean square

error Bellman minimization:

where r is the reward, s′ the next state, d a discrete value
that indicates if state s′ is terminal and � the discount factor.

Then both Q-policies are learned by regressing to this
target:

Moreover, it uses a second policy network which contains
a time-delayed version of the parameters of the first network
to eliminate the instabilities caused by the need to optimize a
target that depends on the same parameters to be optimized.

Like other algorithms which approximate the Q function,
it uses an experience reply buffer which contains previous
experiences. The policy is learned by maximizing Q�1

.
The Soft Actor-Critic (SAC, [4]) algorithm is similar

to the TD3 algorithm. However, it uses a stochastic policy
instead than a deterministic policy. Moreover, it determines
the next state on the basis of the current policy instead than
on the basis of a previous version of the policy.

The policy is trained to maximize a trade-off between
the expected return and entropy, a measure of randomness
of the policy.

(4)y
(

r, s
�

, d
)

= r + �(1 − d)min
i=1,2

Q�i, targ

(

s
�

, a
�(

s
�))

(5)

L
(

�i,D
)

= E
(s,a,r,s� ,d)∼D

[

(

Q�i
(s, a) − y

(

r, s
�

, d
))2

]

, i = 1, 2

(6)

�∗ = argmax
�

E
�∼�

[

∞
∑

t=0

� t
(

R
(

st, at, st+1
)

+ �H
(

�
(

⋅ ∣ st
)))

]

where H is the entropy of the policy computed from its
distribution and � the trade-off coefficient.

The experiments reported in this article can be repli-
cated by using evorobotpy2, available from https:// github.

https://github.com/snolfi/evorobotpy2

1187Evolutionary Intelligence (2024) 17:1185–1195

1 3

com/ snolfi/ evoro botpy2, and stable baseline available from
https:// github. com/ hill-a/ stable- basel ines. The modified
reward functions described in Sect. 5 are implemented in
evorobotpy2 and can be used by specifying the desired ver-
sion of the problems.

2 General efficacy

Comparing the general efficacy of EA and RLA is far from
trivial since the performance depends on the problems con-
sidered, on the setting of the hyperparameters, and on the
fitness or reward functions used, as we will also illustrate in
the following sections.

In any case, overall, the existing comparative studies
do not provide evidence indicating a general superiority
of one class of methods over the other. Given the limited
number of studies which compared the OpenAI-ES and the
PPO algorithms we discuss here also the studies carried out
with the CMA-ES [13] another state-of-the-art evolutionary
algorithm similar to the OpenAI-ES and the TRPO [14], an
algorithm similar to the PPO.

The results reported in [15] obtained with the CMA-ES
and TRPO indicate a general superiority of the latter over
the former. Indeed, the TRPO outperforms the CMA-ES on
11 out of 12 classic control and MuJoCo locomotors prob-
lems. On the other hand, this result is biased from the fact
that the duration of the training is determined on the basis
of the total number of evaluation steps without considering
that the computation cost of the TRPO algorithm is higher
than that of the CMA-ES algorithm. Evolutionary algo-
rithms tend to be less sample efficient than reinforcement
learning methods in general but are less computationally
expensive and can benefit more from parallelization. Indeed,
in a subsequent work [16] demonstrated that the OpenAI-ES
evolutionary algorithm and the TRPO reinforcement learn-
ing algorithm achieve similar performance on the MuJoCo
locomotors problems and on the Atari problems at equal
computational cost. Moreover, they demonstrated that highly
parallel implementations of evolutionary algorithms permit
generating solutions in a remarkably short period of time.

The dependency of the relative performance on the prob-
lem considered can be appreciated in [17] which reports the
superiority of one type of algorithm in certain problems and
of the other type in the remaining problems.

The impact of the fitness or reward function is discussed
in Sect. 5.

Reinforcement learning algorithms scale better to prob-
lems requiring the optimization of a large set of parameters
than classical evolutionary algorithms. However, modern
evolutionary strategies such as the OpenAI-ES algorithm
appear to scale much better than classical methods [1].

3 Ability to cope with reward which are
sparse in time

Another property which differentiates evolutionary and
reinforcement learning algorithms is the ability to cope
with rewards which are sparse over time, i.e. situations in
which the offset in time between the execution of appropri-
ate actions and the reception of the corresponding reward
is high.

EAs do not suffer from sparsity of the reward over time
since they operate on the basis of a fitness measure that
encodes the sum of the rewards collected during evalua-
tion episodes. RLAs instead struggle with the temporal
credit assignment problem when rewards are sparse over
time because they operate by estimating the efficacy of
specific actions. Temporal difference in RLAs use boot-
strapping to better handle this aspect but still struggle with
the sparsity of the rewards when the time horizon is long.
An example of this effect is reported in the next Section.

We do not analyze this qualitative difference in more
detail in this paper since it is well documented in the lit-
erature (see for example [18, 19].

Notice, however, that both EAs and RLAs suffer from
problems in which the chance to obtain a positive reward is
too small in general terms, irrespectively from the duration
of the gap between the execution of appropriate actions
and the collection of the reward. Problems of this kind
may cause a bootstrap problem, i.e. the impossibility to
start progressing caused by the impossibility to differenti-
ate between adaptive and counter-adaptive variations. This
problem can be alleviated by adding an intrinsic reward
component in the reward function that encourages the
robots to perform new behaviors and/or to experience new
observations [20–23].

4 Propensity/capacity to discover minimal
solutions

Both evolutionary and reinforcement learning algorithms
introduce random variations to discover better policies.
However, they differ in the way in which variations are
introduced. Indeed, the OpenAI-ES evolutionary algo-
rithm, and more generally evolutionary algorithms, intro-
duce variations in the parameters of the policy during the
generation of a new population of policies while the PPO
reinforcement learning algorithm, and most reinforce-
ment learning algorithms, introduce variations in the
actions performed by the policy in each step (for alter-
native reinforcement learning methods which introduce
variations in the parameters of the policy see [24, 25]).

https://github.com/snolfi/evorobotpy2
https://github.com/hill-a/stable-baselines

1188 Evolutionary Intelligence (2024) 17:1185–1195

1 3

Moreover, in the PPO algorithm the distribution of varia-
tions is encoded in adapting parameters, is initially high,
and usually decreases during the course of the training.
In the OpenAI-ES algorithm, instead, the distribution of
variation is constant. These differences have important
consequences.

A first consequence is that the set of solutions which are
available to the two algorithms differ. By using deterministic
or almost-deterministic policies (i.e. policies in which the
actions are perturbed through the addition of random values
selected within a tiny range), the OpenAI-ES algorithm can
adopt simple solutions, i.e. solutions which permit to solve
the problem on the basis of few simple control rules. These
simple solutions cannot be realized through the usage of
stochastic policies and consequently cannot be found by the
PPO algorithm.

This difference can represent an advantage or a disad-
vantage depending on the circumstances. Indeed, in some
cases simple solutions permit to achieve optimal perfor-
mance in a clever and effective way. In other cases, simple

solutions permit to achieve only sub-optimal performance
and drive the learning process toward solutions which are
qualitatively different from optimal solutions and which
might correspond to local minima. In the former case the
OpenAI-ES algorithm outperforms the PPO algorithm. In
the latter case the OpenAI-ES algorithm is outperformed
by the PPO algorithm.

This difference can be illustrated by analyzing the solu-
tions discovered by the OpenAI-ES and PPO algorithms for
the Centipede and Breakout Atari problems. The OpenAI-ES
algorithm solves these two problems by moving the player
in a specific location and by later keeping the player in that
precise position (see Fig. 1 center, Table 1, and Videos 1 and
3). The links to the videos are included in the Supplementary
Material). This minimal strategy enables the agent to collect
a very high reward in some problems, like the Centipede
game, but is suboptimal in other problems like the Break-
out game. This strategy is clearly inaccessible for agents
trained with the PPO algorithm which are exposed to strong
action perturbations. Consequently, the PPO algorithm is

Fig. 1 Positions assumed by a typical player trained on the Centipede
and Breakout Atari problems (top and bottom, respectively). The
first column shows a screenshot of the game in color. The other col-
umns show in color at the bottom the frequency with which the agent
is situated in different locations at the bottom during the game. The
second and third columns display the data of the agents trained with

the OpenAI-ES and PPO algorithms, respectively, Data obtained by
running 5 replications of each experiment. As can be seen, the agents
trained with the PPO algorithm move in different locations during the
game while the agents trained with the OpenAI-ES algorithm remain
in the same location for most of the game. Hyperparameters are
reported in the supplementary material

1189Evolutionary Intelligence (2024) 17:1185–1195

1 3

forced to develop more complex strategies which rely on the
ability to intercept the ball from different positions (Fig. 1
right, Table 1, and Video 2 and 4). In the case of the Break-
out problem, the possibility of the OpenAI-ES algorithm
to select a minimal strategy is counter-productive since the
strategy is suboptimal and constitutes a local minimum, i.e.
prevents the possibilities to later select better strategies.
Consequently, the PPO algorithm outperforms the OpenAI-
ES algorithm on this problem. In the case of the Centipede
problem, instead, the possibility to select this minimal strat-
egy is advantageous since the strategy is more effective than
alternative strategies. Consequently, the OpenAI-ES algo-
rithm outperforms the PPO algorithm in this problem.

Table 1 displays the performance obtained with the PPO
and the OpenAI-ES algorithms on 21 Atari games. The
former outperforms the latter method in 8 games, the latter
outperforms the former in 6 games. The performance does
not differ statistically in the remaining cases. The games
where an algorithm statistically outperforms the other are
highlighted with an asterisk. As for the Breakout game, the
advantage of the PPO agents in the Asterix, BeamRider
Boxing, Phoenix, Atlantis, Fishing Derby and Qbert games

is obtained through the development of behavioral strate-
gies which are more elaborated than those displayed by
OpenAI-ES agents. Moreover, as for the Centripede game,
the advantage of the OpenAI-ES agents on the Gravitar,
SpaceInvaders, Frostbite, Freeway, and games is obtained
through the development of simple behavioral strate-
gies which result effective in these games and which are
not discovered by the PPO agents. The advantage of the
OpenAI-ES agents on the Venture games, instead, can be
explained by the large temporal offset between the execu-
tion of the appropriate action and the collection of the
corresponding reward which characterizes this game.

The ability of EAs to discover simple and clever strate-
gies is well-documented in the literature [26, 27]. The pres-
ence of a correlation between solutions which are simple and
solutions which represent local minima is indicated by few
preliminary studies [28, 29]. Moreover, the fact that solu-
tions which are robust to variations are often more general
than solutions which are fragile to variation is supported
by several studies [28–30]. The fact that some of the strate-
gies available to evolutionary algorithms are not available to
reinforcement learning algorithms was not discussed before,
as far as we know, and consequently constitutes an original
contribution.

The qualitative difference between the OpenAI-ES and
the PPO algorithms can be reduced by perturbing the actions
also in the case of the former algorithm. This technique is
usually used to evolve solutions which are robust to environ-
mental variations [31] and/or to evolve solutions which can
cross the reality gap, i.e. which keep operating effectively
once they are moved from the simulated to the real environ-
ment [32].

Figure 2 displays the performance achieved by training
deterministic policies, stochastic policies subjected to minor
perturbations and stochastic policies subject to much larger
perturbations with the OpenAI-ES algorithm on three dif-
ferent PyBullet continuous problem: walker2D, Hopper and
Humanoid [33, 34]. In the former cases the perturbations
are generated with the addition of Gaussian random values
with an average of 0.0 and standard deviation of 0.01. In the
latter case, the distribution of perturbation for each action
value is parametric and is initially set to values close to 1.0
(as in the case of the policies used by the PPO algorithm).
As can be seen, the addition of small perturbations to the
action vector permits to generate solutions which are robust
with respect to this form of perturbation. Moreover, it leads
to better performance in part of the problems considered.
On the other hand, the utilization of the parametric Gauss-
ian policies normally used by the PPO leads to significantly
worse performance in all cases.

Overall, this implies that the OpenAI-ES algorithm toler-
ates and can even benefit from the addition of small action

Table 1 Performance obtained on 21 Atari games with the PPO and
OpenAI-ES algorithms

Each experiment was replicated 10 times. Each cell indicates the
average performance and the standard deviation obtained in 10 rep-
lications of the experiment. The asterisks indicate the conditions in
which one method produces significantly better performance than the
alternative method (Wilcoxon rank sum test p-value < 0.001)

Game PPO OpenAI-ES

Amidar 370.755 ± 99.09 242.5 ± 43.9
Asterix 3234.0 ± 108.9* 1475.0 ± 43.3
Asteroids 1846.67 ± 176.19 3175.0 ± 258.5
BeamRider 3679.34 ± 377.9* 1320.0 ± 20.7
Boxing 92.395 ± 0.93* 29.5 ± 1.5
Breakout 350.4 ± 88.5* 30 ± 8
Gravitar 727.375 ± 74.0 2300.0 ± 0.0*
Krull 7431.93 ± 206.50 8773.5 ± 1879.5
Phoenix 10,124.67 ± 1199.5* 4860.0 ± 411.9
Qbert 5487.75 ± 1306.04* 3183.3 ± 1297.8
Solaris 2825.2 ± 98.5 2378.2 ± 102.5
Atlantis 1,819,341.3 ± 101,474.7* 90,650.0 ± 2250.0
Centipede 4182.05 ± 41.25 26,046.5 ± 2290.5*
FishingDerby − 18.36 ± 20.80* -51.0 ± 4.0
Pong 19.99 ± 0.34 20.3 ± 0.4
Skiing − 11,319.67 ± 3322.67 -11,064.0 ± 4121.7
SpaceInvaders 608.30 ± 14.67 1218.3 ± 76.6*
Venture 67.66 ± 51.84 1150.0 ± 250.0*
Freeway 21.53 ± 15.23 28.5 ± 5.5*
Kangaroo 1350.0 ± 200.5 1100.0 ± 100.0
Frostbite 292.32 ± 18.10 1267.5 ± 575.0*

1190 Evolutionary Intelligence (2024) 17:1185–1195

1 3

perturbations. However, unlike the PPO algorithm, it is
unable to tolerate large perturbations.

5 Dependency on reward shaping

Evolutionary and reinforcement learning algorithms also
differ with respect to their dependency on reward shaping.

Fig. 2 Maximum performance obtained with the OpenAI-ES algo-
rithm on the Pybullet Hopper (top), Walker2d (center) and Human-
oid (bottom) environments. The boxplots display the performance
obtained by using a deterministic policy, a Gaussian policy in which
actions are perturbed with tiny random values (i.e. random values
generated with an average of 0.0 and a distribution of 0.01), and a
parametrized diagonal Gaussian policy. The second experimental
condition produces significantly better performance than the first

experimental condition in the case of the Hopper and Humanoid
problems (Wilcoxon non parametric test p-value < 0.001) and equally
good performance in the case of the Walker2D problem (Wilcoxon
non parametric test p-value > 0.05). The third experimental conditions
produce worse performance than the first experimental condition in
all cases (Wilcoxon non parametric test p-value < 0.001). Hyperpa-
rameters are reported in the supplementary material

1191Evolutionary Intelligence (2024) 17:1185–1195

1 3

Reward shaping refers to the attempt to facilitate the devel-
opment of effective solutions by designing reward functions
which rate the learning agents not only for their ability to
solve the task but also for abilities which are instrumental to
the solution of the problem. For example, the development
of a walking ability can be obtained by rewarding the agent
on the basis of its speed toward the destination only, i.e. on
the basis of its ability to walk fast only. Alternatively, it can
be obtained by also rewarding the learning agent for the
ability to remain upright. This additional reward component
(incentive) is intended to favor the development of an ability
to stay upright which does not constitute a solution of the
problem by itself but which can facilitate the development
of the ability to walk. Unfortunately, however, identifying
useful incentives can be challenging since the effect of the
incentives is hard to predict and since the introduction of
incentives can promote the development of non-effective
solutions which maximize the incentives without maximiz-
ing the primary component of the reward function [35, 36].

Many benchmark problems include incentives in their
reward functions. For example, the Pybullet locomotors
problems and the Bipedal hardcore problem include a bonus
for staying upright. In this section we analyze the effect that
the incentive has on agents trained on the Hopper and Walk-
er2d Pybullet problems and on the Bipedal Hardcore prob-
lem with the OpenAI-ES algorithm and with the PPO, T3D
and SAC reinforcement learning algorithms.

The comparison of the performance obtained with and
without the incentive (Figs. 3 and 4, respectively) and the
visual inspection of the behavior of the trained agents indi-
cates that the incentive has a strong impact on the results.
The impact is positive or negative depending on the problem
and on the algorithm used. Overall, the effect of the incen-
tive is positive in settings in which the agents fail to develop
a walking ability by being rewarded for the distance travelled
only and negative in the other settings.

In the case of the Bipedal Hardcore problem, the agents
manage to develop an ability to walk without the incentive
with all algorithms. Consequently, the distance travelled by
the agents trained with the incentive is lower in all cases.

For the other two problems, the OpenAI-ES algorithm
manages to develop a walking behavior without the incentive
and fails with the incentive. This confirms that the addition
of the incentive is counterproductive in settings in which
the agents manage to solve the task also without it (see also
[37]). The low performance obtained with the incentive is
due to the fact that in this experimental condition the agents
develop an ability to avoid falling by staying still which
maximizes the reward obtained through the incentive only.
The PPO algorithm is unable to develop a walking ability
without the incentive (i.e. the trained agents just fall down
after few steps) and benefit from the incentive. The TD3
also benefits from the incentive since it fails to develop an

ability to walk in the case of the Walker2D problem and in
some of the replications of the Hopper problem. The SAC
algorithm manages to produce a walking behavior without
the incentive in most of the replications and produces simi-
lar performance on the average with the incentive. The fact
that the distribution of performance among replications is
wider without the incentive and smaller with the incentive,
indicates that in the case of SAC the incentive has a positive
impact on the replications which fail producing a walking
behavior and a negative impact on the other replications.

The differences among the algorithms are probably due
to the usage of deterministic versus stochastic policies and
to differences in the exploration abilities. The usage of
policies which are highly stochastic, especially during the
initial phase of the training process, increases the com-
plexity of the problem to be solved since it requires to dis-
cover a set of parameters which enable the agent to walk in
the presence of strong action perturbations. Consequently,

Fig. 3 Average distance traveled by Hopper, Walker2D, and Bipedal
Hardcore agents trained with the OpenAI-ES, PPO, TD3 and SAC
algorithms. Results obtained with the reward function which does
not include the incentive for remaining upright. Each boxplot shows
the results obtained post-evaluating for 5 episodes the best 10 trained
agents of the 10 corresponding replications. Boxes represent the inter-
quartile range of the data and horizontal lines inside the boxes mark
the median values. The whiskers extend to the most extreme data
points within 1.5 times the inter-quartile range from the box. The
hyperparameters used are described in the supplementary material

1192 Evolutionary Intelligence (2024) 17:1185–1195

1 3

the usage of stochastic policy increases the potential utility
of the incentive. This consideration can be used to explain
why the PPO algorithm, which uses a stochastic policy, is
completely unable to discover a walking ability in the case
of the Hopper and Walker2D problems without the incen-
tive and benefit from the incentive. The results obtained
with the TD3 and SAC algorithm, on the other hand, seem
to imply that the algorithms differ also with respect to
the ability to explore the search space independently from
whether they use a stochastic or deterministic policy. This
is not surprising since evolutionary and reinforcement
learning methods differ with respect to the way in which
they introduce variations and since the SAC algorithm,
which is less dependent on the incentive, improves its
exploration ability through the maximization of entropy.

More generally, the results reported in this section
demonstrates that the performance of all algorithms are

dramatically affected by the characteristics of the reward
functions and that the reward functions optimized for an
algorithm can be very sub-optimal for other algorithms.
This implies that benchmarking alternative methods with-
out optimizing the reward function can be useless, an issue
which was neglected to date.

6 Ability to cope with environmental
variations

Still another property which differentiates EAs and RLs is
the ability to cope with environmental variations. Expos-
ing the agents to variable environmental conditions is nec-
essary to promote the development of solutions which are
robust with respect to variations, i.e. to avoid the selection
of solutions overfitted to the specific environmental condi-
tions experienced during the evolutionary or learning pro-
cess [31]. The environmental conditions can be varied by
changing the initial position/orientation of the robot and of
the objects present in the environment at the beginning of
evaluation episodes and by perturbing the state of the robot
and/or the environment during the episode. The introduc-
tion of environmental variations, however, makes the reward
measure noisy. Indeed, in the presence of environmental
variations, the fitness or the reward collected by an agent
does not depend on the skill of the agent only but also on
the environmental conditions encountered during the agent’s
evaluation. The fitness or reward will thus be overestimated
or underestimated for agents which encountered favorable or
unfavorable environmental conditions, respectively.

Reinforcement learning methods, like the PPO, can tol-
erate greater environmental variations than evolutionary
methods such as the OpenAI-ES. This can be explained by
considering that the latter algorithm, and more generally
ESs, operate by introducing variations maximizing the total
reward while the PPO, and many other RLAs, operate by
introducing variations maximizing the advantage, i.e. the
offset between the reward expected in a certain condition and
the reward obtained in that condition. The expected reward
is higher and smaller in easy and difficult environmental
conditions, respectively. Consequently, the utilization of the
advantage permits to filter out the effects of the variations of
the environmental conditions, providing that the prediction
of the expected reward is accurate.

The fact that the PPO algorithm can tolerate higher envi-
ronmental variations than the OpenAI-ES algorithm can be
illustrated with the Slime Volley environment [38]. This is
a volley game in which two agents are situated in the two
subparts of a field divided by a net. The goal of each agent
is to send the ball into the ground of the opponent and to
avoid that the ball touches the agent’s field. In the version of
the problem considered, the left agent is trained while the

Fig. 4 Average distance traveled by Hopper, Walker2D, and Bipedal
Hardcore agents trained with the OpenAI-ES, PPO, TD3 and SAC
algorithms. Results obtained with the standard reward function which
includes an incentive for remaining upright. Each boxplot shows the
results obtained post-evaluating for 5 episodes the best 10 trained
agents of the 10 corresponding replications. Boxes represent the
inter-quartile range of the data and horizontal lines inside the boxes
mark the median values. The whiskers extend to the most extreme
data points within 1.5 times the inter-quartile range from the box. The
hyperparameters used are described in the supplementary material

1193Evolutionary Intelligence (2024) 17:1185–1195

1 3

right agent moves on the basis of a pre-trained policy which
remains constant. In a problem of this kind the orientation
and velocity with which the ball is launched at the begin-
ning of the episode has a strong impact on the fitness/reward
collected by the agent, especially at the beginning of the
evolutionary or learning process in which the ability of the
agent to intercept the ball is poor. The reward obtained by
an agent correlates primarily with the fraction of episodes
in which the ball is launched toward the agent’s own field
and with the initial orientation and velocity with which the
ball is launched –- two factors which are independent from
the agent’s skill.

The fact that the PPO algorithm tolerates the effect of
those environmental variations better than the OpenAI-ES
algorithm is demonstrated by the fact the PPO manages
to quickly develop effective agents while the OpenAI-ES
fails (Fig. 5, top). Moreover, it is demonstrated by the fact
that the OpenAI-ES algorithm manages to solve the sym-
metrical version of the Slime Volley problem in which the
noise caused by the environmental variation is substantially
reduced without reducing the overall range of variation of
the environmental conditions (Fig. 5, bottom). In the sym-
metrical version of the problem, the orientation and veloc-
ity of the ball is generated randomly during even episodes
while is generated by inverting the angle of 180 degrees and
by maintaining the same velocity of the previous episode,
during odd episodes. This ensures that the number of times
in which the ball is launched in the field of the two players
and the relative angle with which it is launched are the same.
The modification of the problem introduced thus reduces the

impact of the environmental variations without altering the
complexity of the problem to be faced and the distribution
of conditions to be faced.

The weakness of the OpenAI-ES algorithm in that
respect can be reduced by using the super-symmetrical
version of the original algorithm introduced here in
which symmetrical individuals are exposed to the same
environmental conditions (Fig. 6). The algorithm uses
symmetrical sampling to improve the accuracy of the
estimated fitness gradient. This means that the popula-
tion is formed by couples of offspring which are gener-
ated by perturbing the parameters of the parent through
the addition and subtraction of the same vector of ran-
dom values. In the standard version of the algorithm,
each individual is exposed to randomly different envi-
ronmental conditions. In the super-symmetrical version
of the algorithm introduced here, instead, each couple
of symmetrical offspring is exposed to randomly differ-
ent environmental conditions but the two symmetrical
offspring are exposed to the same environmental condi-
tions. This permits us to estimate the relation between
the perturbations received by each couple of symmetrical
offspring and the fitness obtained independently from the
effect of environmental variations. As shown by Fig. 6,
this method permits to achieve significantly better per-
formance than the standard OpenAI-ES algorithm in the
modified version of the task (Wilcoxon non parametric
test p-value < 0.01).

Another method which can be used to reduce the noise
of the fitness measure in evolutionary algorithms consists
in estimating the relative difficulty of environmental con-
ditions and choosing conditions which have similar levels
of difficulty on the average (see [39]).

Fig. 5 Performance obtained by agents trained with the PPO and
OpenAI-ES algorithms, left and right respectively, during the train-
ing process. Data obtained on the standard and symmetrical versions
of the Slime Volley problem, top and bottom respectively. Mean and
90% bootstrapped confidence intervals of the mean (shadow area)
across 10 replications per experiment

Fig. 6 Performance obtained by agents trained with the super-sym-
metrical version of the OpenAI-ES algorithm (symmetric) and with
the standard version of OpenAI-ES algorithm (base) on the sym-
metrical version of the Slime Volley problem. Each boxplot shows
the results obtained in 10 replications. Boxes represent the inter-quar-
tile range of the data and horizontal lines inside the boxes mark the
median values. The whiskers extend to the most extreme data points
within 1.5 times the inter-quartile range from the box

1194 Evolutionary Intelligence (2024) 17:1185–1195

1 3

7 Discussion

In this article we compared the EAs and RLs by focus-
ing in particular on the OpenAI-ES and PPO algorithms
which are the most similar methods belonging to the two
classes and which represent the state-of-the-art in their
respective class. The results of the comparisons reported
in the literature and the original results reported here do
not indicate a general superiority of one algorithm over the
other but rather that the two methods differ qualitatively
with respect to several factors. The appreciation of these
factors can be crucial to identify the method which is most
promising for a particular problem and/or to identify how
the weakness of the methods can be reduced.

Probably one of the most important factors is the vari-
ability of the environmental conditions. Unlike the Ope-
nAI-ES, the PPO algorithm includes a mechanism for fil-
tering out the noise affecting the reward measure caused
by environmental variations. Such a mechanism consists in
the calculation of the advantage which is based on an esti-
mation of the expected reward. This enables the PPO algo-
rithm to outperform the OpenAI-ES algorithm in problems
in which the impact of environmental variations is large
and in which the expected reward can be predicted with
sufficient accuracy. Conversely, it enables the OpenAI-ES
algorithm to outperform the PPO in problems in which the
expected reward cannot be predicted accurately.

The weakness of OpenAI-ES algorithm in this respect
can be reduced in different manners: (i) by using the super-
symmetrical version of the algorithm introduced here, (ii)
by estimating the complexity level of environmental condi-
tions and by evaluating agents in environmental conditions
which have a similar level of complexity ([39, 40], and (iii)
by altering the problem in a way which reduce the impact
of environmental variation (see Sect. 6). The weakness
of the PPO algorithm with respect to problems in which
estimating the expected reward is difficult can be reduced
by enriching the observation of the critic with informa-
tion which is available in simulation and which cannot be
accessed in hardware (see for example [35]).

A second important factor is the reward function. The
OpenAI-ES algorithm operates effectively also in prob-
lems in which the temporal offset between the execution
of the appropriate actions and the collection of the corre-
sponding reward is large and in which the reward function
is simple. The PPO algorithm struggles more in problems
in which the rewards are sparse in time and benefit more
from the introduction of incentives in the reward func-
tion. Alternative reinforcement learning algorithms, such
as the PPO, the SAC and the TD3 also differ in that respect
among themselves. These findings imply that the reward
function should be optimized to the particular method

used. Moreover, they imply that benchmarking alterna-
tive algorithms without optimizing the reward function
to each specific method provides little evidence on the
relative efficacy of the compared methods.

A third important factor is the solution space which can
be accessed by the two methods. The OpenAI-ES algorithm
has access to a large set of solutions which includes mini-
mal solutions, i.e. solutions which operate on the basis of
few control rules. The PPO algorithm instead has access
to a restricted solution space which includes only the solu-
tions capable of copying with large action perturbations.
This latter set of solutions often exclude minimal solutions.
This qualitative difference represents a strength and a weak-
ness for the OpenAI-ES and the PPO methods, respectively,
for problems in which simple solutions achieve high per-
formance. Instead, it represents a weakness and a strength
for the OpenAI-ES and the PPO methods, respectively, for
problems in which minimal solutions correspond to local
minima. These qualitative differences also explain why evo-
lutionary and reinforcement learning methods often discover
qualitatively different behavioral solutions.

Expliciting the qualitative difference of alternative meth-
ods permits clarifing the relative weaknesses of each algo-
rithm and identifing methods for ameliorating such weak-
nesses. For example, the realization of the inability of the
OpenAI-ES method to deal with large environmental vari-
ations enabled us to propose the super-symmetrical version
of this algorithm which is more effective in this respect.
Moreover, understanding the characteristics of the particular
method used can be used to tune the characteristics of the
experimental setup in a more informed way.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12065- 022- 00801-3.

Author contributions All authors contributed equally

Declarations

Conflict of interests The authors declare the absence of any financial
or non-financial competing interest.

References

 1. Salimans T, Ho J, Chen X, Sidor S, Sutskever I (2017) Evolu-
tion strategies as a scalable alternative to reinforcement learning.
arXiv: 1703. 03864 v2

 2. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017)
Proximal policy optimization algorithms. arXiv preprint arXiv:
1707. 06347

 3. Fujimoto S, Hoof H, Meger D (2018). Addressing function
approximation error in actor-critic methods. In: International
conference on machine learning. PMLR. pp 1587–1596

https://doi.org/10.1007/s12065-022-00801-3
http://arxiv.org/abs/1703.03864v2
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

1195Evolutionary Intelligence (2024) 17:1185–1195

1 3

 4. Haarnoja T, Zhou A, Hartikainen K, Tucker G, Ha S, Tan J,
Kumar V, Zhu H, Gupta A, Abbeel P, Levine S (2018) Soft actor-
critic algorithms and applications. arXiv preprint arXiv: 1812.
05905

 5. Wierstra D, Schaul T, Glasmachers T, Sun Y, Peters J, Schmid-
huber J (2014) Natural evolution strategies. J Mach Learn Res
15(1):949–980

 6. Sehnke F, Osendorfer C, Rückstieß T, Graves A, Peters J, Schmid-
huber J (2010) Parameter-exploring policy gradients. Neural Netw
23(4):551–559

 7. Glasmachers T, Schaul T, Yi S, Wierstra D, Schmidhuber J
(2010). Exponential natural evolution strategies. In: Proceedings
of the 12th annual conference on Genetic and evolutionary com-
putation (pp 393–400)

 8. Schaul T, Glasmachers T, Schmidhuber J (2011) High dimensions
and heavy tails for natural evolution strategies. In: Proceedings of
the 13th annual conference on Genetic and evolutionary computa-
tion (pp 845–852)

 9. Mnih V, Badia A P, Mirza M, Graves A, Lillicrap T, Harley T.,
Silver D Kavukcuoglu K (2016). Asynchronous methods for deep
reinforcement learning. In: International conference on machine
learning (pp 1928–1937). PMLR

 10. Zhang Z, Wang D, Zhao D, Han Q, Song T (2018) A gradient-
based reinforcement learning algorithm for multiple cooperative
agents. IEEE Access 6:70223–70235

 11. Konda V, Tsitsiklis J (1999). Actor-critic algorithms. Advances
in neural information processing systems, 12

 12. Haarnoja T, Zhou A, Abbeel P, Levine S (2018). Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In: International conference on machine learning
(pp 1861–1870). PMLR

 13. Hansen N, Ostermeier A (2001) Completely derandomized self-
adaptation in evolution strategies. Evol Comput 9:159–195.
https:// doi. org/ 10. 1162/ 10636 56017 50190 398

 14. Schulman J, Levine S, Abbeel P, Jordan MI, Moritz P. (2015)
Trust region policy optimization. In: ICML, pp 1889–1897

 15. Duan Y, Chen X, Houthooft R, Schulman J, Abbeel P (2016).
Benchmarking deep reinforcement learning for continuous con-
trol. In: International conference on machine learning. PMLR, pp
1329–1338

 16. Salimans T, Ho J, Chen X, Sidor S Sutskever I (2017) Evolution
strategies as a scalable alternative to reinforcement learning. arXiv
preprint arXiv: 1703. 03864

 17. Zhang S, Zaiane OR (2017) Comparing deep reinforcement learn-
ing and evolutionary methods in continuous control. arXiv pre-
print arXiv: 1712. 00006

 18. Khadka S, Tumer K (2018). Evolution-guided policy gradient
in reinforcement learning. In: Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Systems (pp
1196–1208)

 19. Zhu S, Belardinelli F, León B G (2021). Evolutionary reinforce-
ment learning for sparse rewards. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion (pp
1508–1512)

 20. Badia A P, Piot B, Kapturowski S, Sprechmann P, Vitvitskyi A,
Guo Z D, Blundell C. (2020). Agent57: Outperforming the atari
human benchmark. In: International Conference on Machine
Learning (pp 507–517). PMLR

 21. Burda Y, Edwards H, Storkey A, Klimov O. (2018). Exploration
by random network distillation. arXiv preprint arXiv: 1810. 12894

 22. Schmidhuber J (2010) Formal theory of creativity, fun, and
intrinsic motivation (1990–2010). IEEE Trans Auton Ment Dev
2(3):230–247

 23. Lehman J, Stanley K O(2008). Exploiting open-endedness to solve
problems through the search for novelty. Artificial Life, 329–336

 24. Plappert M, Houthooft R, Dhariwal P, Sidor S, Chen Y, Chen X,
Asfour T, Abbeel P, Andrychowicz M (2017). Parameter space
noise for exploration. arXiv preprint arXiv: 1706. 01905

 25. Raffin A, Stulp F (2020) Generalized state-dependent exploration
for deep reinforcement learning in robotics. arXiv preprint arXiv:
2005. 05719

 26. Lehman J, Clune J, Misevic D, Adami C, Altenberg L (2020) The
surprising creativity of digital evolution: A collection of anecdotes
from the evolutionary computation and artificial life research com-
munities. Artif Life 26(2):274–306

 27. Wilson DG, Cussat-Blanc S, Luga H, Miller JF (2018). Evolving
simple programs for playing Atari games. In: Proceedings of the
Genetic and Evolutionary Computation Conference (pp 229–236)

 28. Milano N, Nolfi S (2018). Scaling up cartesian genetic program-
ming through preferential selection of larger solutions. arXiv pre-
print arXiv: 1810. 09485 (2018)

 29. Milano N, Pagliuca P, Nolfi S (2019) Robustness, evolvability and
phenotypic complexity: insights from evolving digital circuits.
Evol Intel 12(1):83–95

 30. Wagner A (2013) Robustness and evolvability in living systems,
vol 24. Princeton University Press

 31. Pagliuca P, Nolfi S (2019) Robust optimization through neuroevo-
lution PloS one 14(3):e0213193

 32. Jakobi N, Husbands P, Harvey I (1995) Noise and the reality
gap: the use of simulation in evolutionary robotics. In: Moran F,
Moreno A, Merelo JJ, Chacon P (eds) European Conference on
Artificial Life. Springer, Berlin

 33. Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J,
Tang J, Zaremba W (2016) OpenAI Gym. arXiv: 1606. 01540

 34. Coumans E, Bai Y (2016) Pybullet, a python module for physics
simulation for games, robotics and machine learning. http:// pybul
let. org, 2016–2019

 35. Andrychowicz M, Baker B, Chociej M et al. (2018). Learning
dexterous in-hand manipulation. arXiv: 1808. 00177 v5

 36. Nolfi S (2021) Behavioral and cognitive robotics: An adap-
tive perspective. roma, italy: institute of cognitive sciences and
technologies, National Research Council (CNR-ISTC). ISBN
9791220082372

 37. Pagliuca P, Milano N, Nolfi S (2020) Efficacy of modern neuro-
evolutionary strategies for continuous control optimization. Front
Robot A I:7

 38. Ha D (2020) Slime volleyball gym environment. https:// github.
com/ hardm aru/ slimevolleygym

 39. Milano N, Nolfi S (2021) Automated curriculum learning
for embodied agents a neuroevolutionary approach. Sci Rep
11(1):1–14

 40. Milano N, Carvalho J T, Nolfi S. (2017). Environmental variations
promotes adaptation in artificial evolution. In: 2017 IEEE Sym-
posium Series on Computational Intelligence (SSCI) (pp. 1–7).
IEEE

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
https://doi.org/10.1162/106365601750190398
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1712.00006
http://arxiv.org/abs/1810.12894
http://arxiv.org/abs/1706.01905
http://arxiv.org/abs/2005.05719
http://arxiv.org/abs/2005.05719
http://arxiv.org/abs/1810.09485
http://arxiv.org/abs/1606.01540
http://pybullet.org
http://pybullet.org
http://arxiv.org/abs/1808.00177v5
https://github.com/hardmaru/
https://github.com/hardmaru/

	Qualitative differences between evolutionary strategies and reinforcement learning methods for control of autonomous agents
	Abstract
	1 Introduction
	2 General efficacy
	3 Ability to cope with reward which are sparse in time
	4 Propensitycapacity to discover minimal solutions
	5 Dependency on reward shaping
	6 Ability to cope with environmental variations
	7 Discussion
	References

