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Abstract
In this paper we analyze the qualitative differences between evolutionary strategies and reinforcement learning algorithms 
by focusing on two popular state-of-the-art algorithms: the OpenAI-ES evolutionary strategy and the Proximal Policy 
Optimization (PPO) reinforcement learning algorithm – the most similar methods of the two families. We analyze how the 
methods differ with respect to: (i) general efficacy, (ii) ability to cope with rewards which are sparse in time, (iii) propensity/
capacity to discover minimal solutions, (iv) dependency on reward shaping, and (v) ability to cope with variations of the 
environmental conditions. The analysis of the performance and of the behavioral strategies displayed by the agents trained 
with the two methods on benchmark problems enable us to demonstrate qualitative differences which were not identified in 
previous studies, to identify the relative weakness of the two methods, and to propose ways to ameliorate some of those weak-
nesses. We show that the characteristics of the reward function has a strong impact which vary qualitatively not only for the 
OpenAI-ES evolutionary algorithm and the PPO reinforcement learning algorithm but also for other reinforcement learning 
algorithms, thus demonstrating the importance of optimizing the characteristic of the reward function to the algorithm used.

Keywords Evolutionary strategies · Reinforcement learning · Embodied agents · Agent-based simulation

1 Introduction

Evolutionary algorithms (EA) and reinforcement learning 
algorithms (RLA) represent two well-established techniques 
for training embodied and situated agents. Both methods 
permit training agents from scratch on the basis of a fit-
ness or reward function which rates how well the agent is 
behaving.

In this article we analyze the qualitative difference 
between the two methods. We briefly discuss the general 
efficacy, and the ability to cope with rewards which are 
sparse in time by briefly reviewing the evidence available 
in the literature. We propose three additional qualitative 

differences, which were not previously discussed in the lit-
erature: the propensity/capacity to discover minimal solu-
tions, the dependency on reward shaping, and the ability to 
cope with variations of the environmental conditions. For 
these qualitative differences we provide original experimen-
tal evidence.

Clarifying the qualitative differences permits choosing 
the most suitable algorithm and hyperparameters in a more 
informed way. Moreover, it permits identifying ways to miti-
gate the weakness of the algorithm chosen.

Clearly, carrying out a systematic comparison of all exist-
ing algorithms on a large set of benchmark problems is out 
of the scope of a single paper. This also in consideration of 
the fact that identifying qualitative differences requires in 
depth studies which go behind the mere comparison of per-
formance measures. Consequently, our analysis does not aim 
to be exhaustive. The objective of this paper is to illustrate 
qualitative differences which have not been analyzed in pre-
vious studies and to start collecting experimental data which 
can be used to characterize some of the existing algorithms 
with respect to those differences.
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For our analysis we focus primarily on two popular state-
of-the-art algorithms: the OpenAI-ES evolutionary strategy 
[1] and the Proximal policy optimization reinforcement 
learning algorithm (PPO) [2]. We start from these algo-
rithms also in consideration of the fact that they are the most 
similar among the evolutionary and reinforcement learning 
families. Indeed, they both operate on-policy and they both 
optimize a gradient on the basis of the Adam stochastic 
optimizer (other evolutionary algorithms operate without 
estimating a gradient and without using a stochastic opti-
mizer). However, for some of the analysis we also consider 
two off-policy reinforcement learning algorithms: the Twin 
Delayed DDPG (T3D) [3] and the Soft Actor-Critic (SAC) 
[4]. As we will see, the analysis of those algorithms also 
reveals interesting qualitative differences among reinforce-
ment learning algorithms.

The OpenAI-ES algorithm [1] belongs to the class of 
natural evolutionary strategies (NES) [5–8]. Let F denote 
the objective function acting on parameters θ, the algorithm 
generates a population, i.e. a set of solutions vector also 
called genotypes, with a Gaussian distribution over θ para-
metrized by ψ and tries to maximize the mean objective 
value Eθ∼pψ F(θ) over the population by using the Adam 
stochastic optimizer. During each iteration it takes a gradient 
step on ψ by using the following estimator:

The Proximal Policy Optimization Algorithm (PPO, [2]) 
is an actor-critic on-policy reinforcement learning method 
[9–12] which uses a parametrized stochastic policy. It oper-
ates on the basis of a surrogate gradient that penalizes exces-
sive divergence from the previous policy by clipping the 
gradient in a proximal trusted zone of the search space.

It updates the policy by using the Adam stochastic opti-
mizer via:

where s are the observation states, a the actions taken, � 
are the parameters of the network policy and L is the loss 
defined as:

where �� (a∣s)
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policy, A��k (s, a) is the advantage, and � is the threshold used 
to clip the gradient.

The Twin Delayed DDPG (TD3, [3]) is an off-policy rein-
forcement learning method which operates with a determin-
istic policy combined with two Q-functions. The usage of 
the smaller Q-value computed by the two Q-functions permit 
to reduce the problems caused by the overestimation of the 
Q-values. The algorithm learns the control policy �� and 
two Q-functions Q�1

 , Q�2
 in an alternate way by mean square 

error Bellman minimization:

where r is the reward, s′ the next state, d a discrete value 
that indicates if state s′ is terminal and � the discount factor.

Then both Q-policies are learned by regressing to this 
target:

Moreover, it uses a second policy network which contains 
a time-delayed version of the parameters of the first network 
to eliminate the instabilities caused by the need to optimize a 
target that depends on the same parameters to be optimized.

Like other algorithms which approximate the Q function, 
it uses an experience reply buffer which contains previous 
experiences. The policy is learned by maximizing Q�1

.
The Soft Actor-Critic (SAC, [4]) algorithm is similar 

to the TD3 algorithm. However, it uses a stochastic policy 
instead than a deterministic policy. Moreover, it determines 
the next state on the basis of the current policy instead than 
on the basis of a previous version of the policy.

The policy is trained to maximize a trade-off between 
the expected return and entropy, a measure of randomness 
of the policy.
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where H is the entropy of the policy computed from its 
distribution and � the trade-off coefficient.

The experiments reported in this article can be repli-
cated by using evorobotpy2, available from https:// github. 

https://github.com/snolfi/evorobotpy2
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com/ snolfi/ evoro botpy2, and stable baseline available from 
https:// github. com/ hill-a/ stable- basel ines. The modified 
reward functions described in Sect. 5 are implemented in 
evorobotpy2 and can be used by specifying the desired ver-
sion of the problems.

2  General efficacy

Comparing the general efficacy of EA and RLA is far from 
trivial since the performance depends on the problems con-
sidered, on the setting of the hyperparameters, and on the 
fitness or reward functions used, as we will also illustrate in 
the following sections.

In any case, overall, the existing comparative studies 
do not provide evidence indicating a general superiority 
of one class of methods over the other. Given the limited 
number of studies which compared the OpenAI-ES and the 
PPO algorithms we discuss here also the studies carried out 
with the CMA-ES [13] another state-of-the-art evolutionary 
algorithm similar to the OpenAI-ES and the TRPO [14], an 
algorithm similar to the PPO.

The results reported in [15] obtained with the CMA-ES 
and TRPO indicate a general superiority of the latter over 
the former. Indeed, the TRPO outperforms the CMA-ES on 
11 out of 12 classic control and MuJoCo locomotors prob-
lems. On the other hand, this result is biased from the fact 
that the duration of the training is determined on the basis 
of the total number of evaluation steps without considering 
that the computation cost of the TRPO algorithm is higher 
than that of the CMA-ES algorithm. Evolutionary algo-
rithms tend to be less sample efficient than reinforcement 
learning methods in general but are less computationally 
expensive and can benefit more from parallelization. Indeed, 
in a subsequent work [16] demonstrated that the OpenAI-ES 
evolutionary algorithm and the TRPO reinforcement learn-
ing algorithm achieve similar performance on the MuJoCo 
locomotors problems and on the Atari problems at equal 
computational cost. Moreover, they demonstrated that highly 
parallel implementations of evolutionary algorithms permit 
generating solutions in a remarkably short period of time.

The dependency of the relative performance on the prob-
lem considered can be appreciated in [17] which reports the 
superiority of one type of algorithm in certain problems and 
of the other type in the remaining problems.

The impact of the fitness or reward function is discussed 
in Sect. 5.

Reinforcement learning algorithms scale better to prob-
lems requiring the optimization of a large set of parameters 
than classical evolutionary algorithms. However, modern 
evolutionary strategies such as the OpenAI-ES algorithm 
appear to scale much better than classical methods [1].

3  Ability to cope with reward which are 
sparse in time

Another property which differentiates evolutionary and 
reinforcement learning algorithms is the ability to cope 
with rewards which are sparse over time, i.e. situations in 
which the offset in time between the execution of appropri-
ate actions and the reception of the corresponding reward 
is high.

EAs do not suffer from sparsity of the reward over time 
since they operate on the basis of a fitness measure that 
encodes the sum of the rewards collected during evalua-
tion episodes. RLAs instead struggle with the temporal 
credit assignment problem when rewards are sparse over 
time because they operate by estimating the efficacy of 
specific actions. Temporal difference in RLAs use boot-
strapping to better handle this aspect but still struggle with 
the sparsity of the rewards when the time horizon is long. 
An example of this effect is reported in the next Section.

We do not analyze this qualitative difference in more 
detail in this paper since it is well documented in the lit-
erature (see for example [18, 19].

Notice, however, that both EAs and RLAs suffer from 
problems in which the chance to obtain a positive reward is 
too small in general terms, irrespectively from the duration 
of the gap between the execution of appropriate actions 
and the collection of the reward. Problems of this kind 
may cause a bootstrap problem, i.e. the impossibility to 
start progressing caused by the impossibility to differenti-
ate between adaptive and counter-adaptive variations. This 
problem can be alleviated by adding an intrinsic reward 
component in the reward function that encourages the 
robots to perform new behaviors and/or to experience new 
observations [20–23].

4  Propensity/capacity to discover minimal 
solutions

Both evolutionary and reinforcement learning algorithms 
introduce random variations to discover better policies. 
However, they differ in the way in which variations are 
introduced. Indeed, the OpenAI-ES evolutionary algo-
rithm, and more generally evolutionary algorithms, intro-
duce variations in the parameters of the policy during the 
generation of a new population of policies while the PPO 
reinforcement learning algorithm, and most reinforce-
ment learning algorithms, introduce variations in the 
actions performed by the policy in each step (for alter-
native reinforcement learning methods which introduce 
variations in the parameters of the policy see [24, 25]). 

https://github.com/snolfi/evorobotpy2
https://github.com/hill-a/stable-baselines
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Moreover, in the PPO algorithm the distribution of varia-
tions is encoded in adapting parameters, is initially high, 
and usually decreases during the course of the training. 
In the OpenAI-ES algorithm, instead, the distribution of 
variation is constant. These differences have important 
consequences.

A first consequence is that the set of solutions which are 
available to the two algorithms differ. By using deterministic 
or almost-deterministic policies (i.e. policies in which the 
actions are perturbed through the addition of random values 
selected within a tiny range), the OpenAI-ES algorithm can 
adopt simple solutions, i.e. solutions which permit to solve 
the problem on the basis of few simple control rules. These 
simple solutions cannot be realized through the usage of 
stochastic policies and consequently cannot be found by the 
PPO algorithm.

This difference can represent an advantage or a disad-
vantage depending on the circumstances. Indeed, in some 
cases simple solutions permit to achieve optimal perfor-
mance in a clever and effective way. In other cases, simple 

solutions permit to achieve only sub-optimal performance 
and drive the learning process toward solutions which are 
qualitatively different from optimal solutions and which 
might correspond to local minima. In the former case the 
OpenAI-ES algorithm outperforms the PPO algorithm. In 
the latter case the OpenAI-ES algorithm is outperformed 
by the PPO algorithm.

This difference can be illustrated by analyzing the solu-
tions discovered by the OpenAI-ES and PPO algorithms for 
the Centipede and Breakout Atari problems. The OpenAI-ES 
algorithm solves these two problems by moving the player 
in a specific location and by later keeping the player in that 
precise position (see Fig. 1 center, Table 1, and Videos 1 and 
3). The links to the videos are included in the Supplementary 
Material). This minimal strategy enables the agent to collect 
a very high reward in some problems, like the Centipede 
game, but is suboptimal in other problems like the Break-
out game. This strategy is clearly inaccessible for agents 
trained with the PPO algorithm which are exposed to strong 
action perturbations. Consequently, the PPO algorithm is 

Fig. 1  Positions assumed by a typical player trained on the Centipede 
and Breakout Atari problems (top and bottom, respectively). The 
first column shows a screenshot of the game in color. The other col-
umns show in color at the bottom the frequency with which the agent 
is situated in different locations at the bottom during the game. The 
second and third columns display the data of the agents trained with 

the OpenAI-ES and PPO algorithms, respectively, Data obtained by 
running 5 replications of each experiment. As can be seen, the agents 
trained with the PPO algorithm move in different locations during the 
game while the agents trained with the OpenAI-ES algorithm remain 
in the same location for most of the game. Hyperparameters are 
reported in the supplementary material
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forced to develop more complex strategies which rely on the 
ability to intercept the ball from different positions (Fig. 1 
right, Table 1, and Video 2 and 4). In the case of the Break-
out problem, the possibility of the OpenAI-ES algorithm 
to select a minimal strategy is counter-productive since the 
strategy is suboptimal and constitutes a local minimum, i.e. 
prevents the possibilities to later select better strategies. 
Consequently, the PPO algorithm outperforms the OpenAI-
ES algorithm on this problem. In the case of the Centipede 
problem, instead, the possibility to select this minimal strat-
egy is advantageous since the strategy is more effective than 
alternative strategies. Consequently, the OpenAI-ES algo-
rithm outperforms the PPO algorithm in this problem.

Table 1 displays the performance obtained with the PPO 
and the OpenAI-ES algorithms on 21 Atari games. The 
former outperforms the latter method in 8 games, the latter 
outperforms the former in 6 games. The performance does 
not differ statistically in the remaining cases. The games 
where an algorithm statistically outperforms the other are 
highlighted with an asterisk. As for the Breakout game, the 
advantage of the PPO agents in the Asterix, BeamRider 
Boxing, Phoenix, Atlantis, Fishing Derby and Qbert games 

is obtained through the development of behavioral strate-
gies which are more elaborated than those displayed by 
OpenAI-ES agents. Moreover, as for the Centripede game, 
the advantage of the OpenAI-ES agents on the Gravitar, 
SpaceInvaders, Frostbite, Freeway, and games is obtained 
through the development of simple behavioral strate-
gies which result effective in these games and which are 
not discovered by the PPO agents. The advantage of the 
OpenAI-ES agents on the Venture games, instead, can be 
explained by the large temporal offset between the execu-
tion of the appropriate action and the collection of the 
corresponding reward which characterizes this game.

The ability of EAs to discover simple and clever strate-
gies is well-documented in the literature [26, 27]. The pres-
ence of a correlation between solutions which are simple and 
solutions which represent local minima is indicated by few 
preliminary studies [28, 29]. Moreover, the fact that solu-
tions which are robust to variations are often more general 
than solutions which are fragile to variation is supported 
by several studies [28–30]. The fact that some of the strate-
gies available to evolutionary algorithms are not available to 
reinforcement learning algorithms was not discussed before, 
as far as we know, and consequently constitutes an original 
contribution.

The qualitative difference between the OpenAI-ES and 
the PPO algorithms can be reduced by perturbing the actions 
also in the case of the former algorithm. This technique is 
usually used to evolve solutions which are robust to environ-
mental variations [31] and/or to evolve solutions which can 
cross the reality gap, i.e. which keep operating effectively 
once they are moved from the simulated to the real environ-
ment [32].

Figure 2 displays the performance achieved by training 
deterministic policies, stochastic policies subjected to minor 
perturbations and stochastic policies subject to much larger 
perturbations with the OpenAI-ES algorithm on three dif-
ferent PyBullet continuous problem: walker2D, Hopper and 
Humanoid [33, 34]. In the former cases the perturbations 
are generated with the addition of Gaussian random values 
with an average of 0.0 and standard deviation of 0.01. In the 
latter case, the distribution of perturbation for each action 
value is parametric and is initially set to values close to 1.0 
(as in the case of the policies used by the PPO algorithm). 
As can be seen, the addition of small perturbations to the 
action vector permits to generate solutions which are robust 
with respect to this form of perturbation. Moreover, it leads 
to better performance in part of the problems considered. 
On the other hand, the utilization of the parametric Gauss-
ian policies normally used by the PPO leads to significantly 
worse performance in all cases.

Overall, this implies that the OpenAI-ES algorithm toler-
ates and can even benefit from the addition of small action 

Table 1  Performance obtained on 21 Atari games with the PPO and 
OpenAI-ES algorithms

Each experiment was replicated 10 times. Each cell indicates the 
average performance and the standard deviation obtained in 10 rep-
lications of the experiment. The asterisks indicate the conditions in 
which one method produces significantly better performance than the 
alternative method (Wilcoxon rank sum test p-value < 0.001)

Game PPO OpenAI-ES

Amidar 370.755 ± 99.09 242.5 ± 43.9
Asterix 3234.0 ± 108.9* 1475.0 ± 43.3
Asteroids 1846.67 ± 176.19 3175.0 ± 258.5
BeamRider 3679.34 ± 377.9* 1320.0 ± 20.7
Boxing 92.395 ± 0.93* 29.5 ± 1.5
Breakout 350.4 ± 88.5* 30 ± 8
Gravitar 727.375 ± 74.0 2300.0 ± 0.0*
Krull 7431.93 ± 206.50 8773.5 ± 1879.5
Phoenix 10,124.67 ± 1199.5* 4860.0 ± 411.9
Qbert 5487.75 ± 1306.04* 3183.3 ± 1297.8
Solaris 2825.2 ± 98.5 2378.2 ± 102.5
Atlantis 1,819,341.3 ± 101,474.7* 90,650.0 ± 2250.0
Centipede 4182.05 ± 41.25 26,046.5 ± 2290.5*
FishingDerby − 18.36 ± 20.80* -51.0 ± 4.0
Pong 19.99 ± 0.34 20.3 ± 0.4
Skiing − 11,319.67 ± 3322.67 -11,064.0 ± 4121.7
SpaceInvaders 608.30 ± 14.67 1218.3 ± 76.6*
Venture 67.66 ± 51.84 1150.0 ± 250.0*
Freeway 21.53 ± 15.23 28.5 ± 5.5*
Kangaroo 1350.0 ± 200.5 1100.0 ± 100.0
Frostbite 292.32 ± 18.10 1267.5 ± 575.0*
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perturbations. However, unlike the PPO algorithm, it is 
unable to tolerate large perturbations.

5  Dependency on reward shaping

Evolutionary and reinforcement learning algorithms also 
differ with respect to their dependency on reward shaping. 

Fig. 2  Maximum performance obtained with the OpenAI-ES algo-
rithm on the Pybullet Hopper (top), Walker2d (center) and Human-
oid (bottom) environments. The boxplots display the performance 
obtained by using a deterministic policy, a Gaussian policy in which 
actions are perturbed with tiny random values (i.e. random values 
generated with an average of 0.0 and a distribution of 0.01), and a 
parametrized diagonal Gaussian policy. The second experimental 
condition produces significantly better performance than the first 

experimental condition in the case of the Hopper and Humanoid 
problems (Wilcoxon non parametric test p-value < 0.001) and equally 
good performance in the case of the Walker2D problem (Wilcoxon 
non parametric test p-value > 0.05). The third experimental conditions 
produce worse performance than the first experimental condition in 
all cases (Wilcoxon non parametric test p-value < 0.001). Hyperpa-
rameters are reported in the supplementary material
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Reward shaping refers to the attempt to facilitate the devel-
opment of effective solutions by designing reward functions 
which rate the learning agents not only for their ability to 
solve the task but also for abilities which are instrumental to 
the solution of the problem. For example, the development 
of a walking ability can be obtained by rewarding the agent 
on the basis of its speed toward the destination only, i.e. on 
the basis of its ability to walk fast only. Alternatively, it can 
be obtained by also rewarding the learning agent for the 
ability to remain upright. This additional reward component 
(incentive) is intended to favor the development of an ability 
to stay upright which does not constitute a solution of the 
problem by itself but which can facilitate the development 
of the ability to walk. Unfortunately, however, identifying 
useful incentives can be challenging since the effect of the 
incentives is hard to predict and since the introduction of 
incentives can promote the development of non-effective 
solutions which maximize the incentives without maximiz-
ing the primary component of the reward function [35, 36].

Many benchmark problems include incentives in their 
reward functions. For example, the Pybullet locomotors 
problems and the Bipedal hardcore problem include a bonus 
for staying upright. In this section we analyze the effect that 
the incentive has on agents trained on the Hopper and Walk-
er2d Pybullet problems and on the Bipedal Hardcore prob-
lem with the OpenAI-ES algorithm and with the PPO, T3D 
and SAC reinforcement learning algorithms.

The comparison of the performance obtained with and 
without the incentive (Figs. 3 and 4, respectively) and the 
visual inspection of the behavior of the trained agents indi-
cates that the incentive has a strong impact on the results. 
The impact is positive or negative depending on the problem 
and on the algorithm used. Overall, the effect of the incen-
tive is positive in settings in which the agents fail to develop 
a walking ability by being rewarded for the distance travelled 
only and negative in the other settings.

In the case of the Bipedal Hardcore problem, the agents 
manage to develop an ability to walk without the incentive 
with all algorithms. Consequently, the distance travelled by 
the agents trained with the incentive is lower in all cases.

For the other two problems, the OpenAI-ES algorithm 
manages to develop a walking behavior without the incentive 
and fails with the incentive. This confirms that the addition 
of the incentive is counterproductive in settings in which 
the agents manage to solve the task also without it (see also 
[37]). The low performance obtained with the incentive is 
due to the fact that in this experimental condition the agents 
develop an ability to avoid falling by staying still which 
maximizes the reward obtained through the incentive only. 
The PPO algorithm is unable to develop a walking ability 
without the incentive (i.e. the trained agents just fall down 
after few steps) and benefit from the incentive. The TD3 
also benefits from the incentive since it fails to develop an 

ability to walk in the case of the Walker2D problem and in 
some of the replications of the Hopper problem. The SAC 
algorithm manages to produce a walking behavior without 
the incentive in most of the replications and produces simi-
lar performance on the average with the incentive. The fact 
that the distribution of performance among replications is 
wider without the incentive and smaller with the incentive, 
indicates that in the case of SAC the incentive has a positive 
impact on the replications which fail producing a walking 
behavior and a negative impact on the other replications.

The differences among the algorithms are probably due 
to the usage of deterministic versus stochastic policies and 
to differences in the exploration abilities. The usage of 
policies which are highly stochastic, especially during the 
initial phase of the training process, increases the com-
plexity of the problem to be solved since it requires to dis-
cover a set of parameters which enable the agent to walk in 
the presence of strong action perturbations. Consequently, 

Fig. 3  Average distance traveled by Hopper, Walker2D, and Bipedal 
Hardcore agents trained with the OpenAI-ES, PPO, TD3 and SAC 
algorithms. Results obtained with the reward function which does 
not include the incentive for remaining upright. Each boxplot shows 
the results obtained post-evaluating for 5 episodes the best 10 trained 
agents of the 10 corresponding replications. Boxes represent the inter-
quartile range of the data and horizontal lines inside the boxes mark 
the median values. The whiskers extend to the most extreme data 
points within 1.5 times the inter-quartile range from the box. The 
hyperparameters used are described in the supplementary material
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the usage of stochastic policy increases the potential utility 
of the incentive. This consideration can be used to explain 
why the PPO algorithm, which uses a stochastic policy, is 
completely unable to discover a walking ability in the case 
of the Hopper and Walker2D problems without the incen-
tive and benefit from the incentive. The results obtained 
with the TD3 and SAC algorithm, on the other hand, seem 
to imply that the algorithms differ also with respect to 
the ability to explore the search space independently from 
whether they use a stochastic or deterministic policy. This 
is not surprising since evolutionary and reinforcement 
learning methods differ with respect to the way in which 
they introduce variations and since the SAC algorithm, 
which is less dependent on the incentive, improves its 
exploration ability through the maximization of entropy.

More generally, the results reported in this section 
demonstrates that the performance of all algorithms are 

dramatically affected by the characteristics of the reward 
functions and that the reward functions optimized for an 
algorithm can be very sub-optimal for other algorithms. 
This implies that benchmarking alternative methods with-
out optimizing the reward function can be useless, an issue 
which was neglected to date.

6  Ability to cope with environmental 
variations

Still another property which differentiates EAs and RLs is 
the ability to cope with environmental variations. Expos-
ing the agents to variable environmental conditions is nec-
essary to promote the development of solutions which are 
robust with respect to variations, i.e. to avoid the selection 
of solutions overfitted to the specific environmental condi-
tions experienced during the evolutionary or learning pro-
cess [31]. The environmental conditions can be varied by 
changing the initial position/orientation of the robot and of 
the objects present in the environment at the beginning of 
evaluation episodes and by perturbing the state of the robot 
and/or the environment during the episode. The introduc-
tion of environmental variations, however, makes the reward 
measure noisy. Indeed, in the presence of environmental 
variations, the fitness or the reward collected by an agent 
does not depend on the skill of the agent only but also on 
the environmental conditions encountered during the agent’s 
evaluation. The fitness or reward will thus be overestimated 
or underestimated for agents which encountered favorable or 
unfavorable environmental conditions, respectively.

Reinforcement learning methods, like the PPO, can tol-
erate greater environmental variations than evolutionary 
methods such as the OpenAI-ES. This can be explained by 
considering that the latter algorithm, and more generally 
ESs, operate by introducing variations maximizing the total 
reward while the PPO, and many other RLAs, operate by 
introducing variations maximizing the advantage, i.e. the 
offset between the reward expected in a certain condition and 
the reward obtained in that condition. The expected reward 
is higher and smaller in easy and difficult environmental 
conditions, respectively. Consequently, the utilization of the 
advantage permits to filter out the effects of the variations of 
the environmental conditions, providing that the prediction 
of the expected reward is accurate.

The fact that the PPO algorithm can tolerate higher envi-
ronmental variations than the OpenAI-ES algorithm can be 
illustrated with the Slime Volley environment [38]. This is 
a volley game in which two agents are situated in the two 
subparts of a field divided by a net. The goal of each agent 
is to send the ball into the ground of the opponent and to 
avoid that the ball touches the agent’s field. In the version of 
the problem considered, the left agent is trained while the 

Fig. 4  Average distance traveled by Hopper, Walker2D, and Bipedal 
Hardcore agents trained with the OpenAI-ES, PPO, TD3 and SAC 
algorithms. Results obtained with the standard reward function which 
includes an incentive for remaining upright. Each boxplot shows the 
results obtained post-evaluating for 5 episodes the best 10 trained 
agents of the 10 corresponding replications. Boxes represent the 
inter-quartile range of the data and horizontal lines inside the boxes 
mark the median values. The whiskers extend to the most extreme 
data points within 1.5 times the inter-quartile range from the box. The 
hyperparameters used are described in the supplementary material
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right agent moves on the basis of a pre-trained policy which 
remains constant. In a problem of this kind the orientation 
and velocity with which the ball is launched at the begin-
ning of the episode has a strong impact on the fitness/reward 
collected by the agent, especially at the beginning of the 
evolutionary or learning process in which the ability of the 
agent to intercept the ball is poor. The reward obtained by 
an agent correlates primarily with the fraction of episodes 
in which the ball is launched toward the agent’s own field 
and with the initial orientation and velocity with which the 
ball is launched –- two factors which are independent from 
the agent’s skill.

The fact that the PPO algorithm tolerates the effect of 
those environmental variations better than the OpenAI-ES 
algorithm is demonstrated by the fact the PPO manages 
to quickly develop effective agents while the OpenAI-ES 
fails (Fig. 5, top). Moreover, it is demonstrated by the fact 
that the OpenAI-ES algorithm manages to solve the sym-
metrical version of the Slime Volley problem in which the 
noise caused by the environmental variation is substantially 
reduced without reducing the overall range of variation of 
the environmental conditions (Fig. 5, bottom). In the sym-
metrical version of the problem, the orientation and veloc-
ity of the ball is generated randomly during even episodes 
while is generated by inverting the angle of 180 degrees and 
by maintaining the same velocity of the previous episode, 
during odd episodes. This ensures that the number of times 
in which the ball is launched in the field of the two players 
and the relative angle with which it is launched are the same. 
The modification of the problem introduced thus reduces the 

impact of the environmental variations without altering the 
complexity of the problem to be faced and the distribution 
of conditions to be faced.

The weakness of the OpenAI-ES algorithm in that 
respect can be reduced by using the super-symmetrical 
version of the original algorithm introduced here in 
which symmetrical individuals are exposed to the same 
environmental conditions (Fig. 6). The algorithm uses 
symmetrical sampling to improve the accuracy of the 
estimated fitness gradient. This means that the popula-
tion is formed by couples of offspring which are gener-
ated by perturbing the parameters of the parent through 
the addition and subtraction of the same vector of ran-
dom values. In the standard version of the algorithm, 
each individual is exposed to randomly different envi-
ronmental conditions. In the super-symmetrical version 
of the algorithm introduced here, instead, each couple 
of symmetrical offspring is exposed to randomly differ-
ent environmental conditions but the two symmetrical 
offspring are exposed to the same environmental condi-
tions. This permits us to estimate the relation between 
the perturbations received by each couple of symmetrical 
offspring and the fitness obtained independently from the 
effect of environmental variations. As shown by Fig. 6, 
this method permits to achieve significantly better per-
formance than the standard OpenAI-ES algorithm in the 
modified version of the task (Wilcoxon non parametric 
test p-value < 0.01).

Another method which can be used to reduce the noise 
of the fitness measure in evolutionary algorithms consists 
in estimating the relative difficulty of environmental con-
ditions and choosing conditions which have similar levels 
of difficulty on the average (see [39]).

Fig. 5  Performance obtained by agents trained with the PPO and 
OpenAI-ES algorithms, left and right respectively, during the train-
ing process. Data obtained on the standard and symmetrical versions 
of the Slime Volley problem, top and bottom respectively. Mean and 
90% bootstrapped confidence intervals of the mean (shadow area) 
across 10 replications per experiment

Fig. 6  Performance obtained by agents trained with the super-sym-
metrical version of the OpenAI-ES algorithm (symmetric) and with 
the standard version of OpenAI-ES algorithm (base) on the sym-
metrical version of the Slime Volley problem. Each boxplot shows 
the results obtained in 10 replications. Boxes represent the inter-quar-
tile range of the data and horizontal lines inside the boxes mark the 
median values. The whiskers extend to the most extreme data points 
within 1.5 times the inter-quartile range from the box
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7  Discussion

In this article we compared the EAs and RLs by focus-
ing in particular on the OpenAI-ES and PPO algorithms 
which are the most similar methods belonging to the two 
classes and which represent the state-of-the-art in their 
respective class. The results of the comparisons reported 
in the literature and the original results reported here do 
not indicate a general superiority of one algorithm over the 
other but rather that the two methods differ qualitatively 
with respect to several factors. The appreciation of these 
factors can be crucial to identify the method which is most 
promising for a particular problem and/or to identify how 
the weakness of the methods can be reduced.

Probably one of the most important factors is the vari-
ability of the environmental conditions. Unlike the Ope-
nAI-ES, the PPO algorithm includes a mechanism for fil-
tering out the noise affecting the reward measure caused 
by environmental variations. Such a mechanism consists in 
the calculation of the advantage which is based on an esti-
mation of the expected reward. This enables the PPO algo-
rithm to outperform the OpenAI-ES algorithm in problems 
in which the impact of environmental variations is large 
and in which the expected reward can be predicted with 
sufficient accuracy. Conversely, it enables the OpenAI-ES 
algorithm to outperform the PPO in problems in which the 
expected reward cannot be predicted accurately.

The weakness of OpenAI-ES algorithm in this respect 
can be reduced in different manners: (i) by using the super-
symmetrical version of the algorithm introduced here, (ii) 
by estimating the complexity level of environmental condi-
tions and by evaluating agents in environmental conditions 
which have a similar level of complexity ([39, 40], and (iii) 
by altering the problem in a way which reduce the impact 
of environmental variation (see Sect. 6). The weakness 
of the PPO algorithm with respect to problems in which 
estimating the expected reward is difficult can be reduced 
by enriching the observation of the critic with informa-
tion which is available in simulation and which cannot be 
accessed in hardware (see for example [35]).

A second important factor is the reward function. The 
OpenAI-ES algorithm operates effectively also in prob-
lems in which the temporal offset between the execution 
of the appropriate actions and the collection of the corre-
sponding reward is large and in which the reward function 
is simple. The PPO algorithm struggles more in problems 
in which the rewards are sparse in time and benefit more 
from the introduction of incentives in the reward func-
tion. Alternative reinforcement learning algorithms, such 
as the PPO, the SAC and the TD3 also differ in that respect 
among themselves. These findings imply that the reward 
function should be optimized to the particular method 

used. Moreover, they imply that benchmarking alterna-
tive algorithms without optimizing the reward function 
to each specific method provides little evidence on the 
relative efficacy of the compared methods.

A third important factor is the solution space which can 
be accessed by the two methods. The OpenAI-ES algorithm 
has access to a large set of solutions which includes mini-
mal solutions, i.e. solutions which operate on the basis of 
few control rules. The PPO algorithm instead has access 
to a restricted solution space which includes only the solu-
tions capable of copying with large action perturbations. 
This latter set of solutions often exclude minimal solutions. 
This qualitative difference represents a strength and a weak-
ness for the OpenAI-ES and the PPO methods, respectively, 
for problems in which simple solutions achieve high per-
formance. Instead, it represents a weakness and a strength 
for the OpenAI-ES and the PPO methods, respectively, for 
problems in which minimal solutions correspond to local 
minima. These qualitative differences also explain why evo-
lutionary and reinforcement learning methods often discover 
qualitatively different behavioral solutions.

Expliciting the qualitative difference of alternative meth-
ods permits clarifing the relative weaknesses of each algo-
rithm and identifing methods for ameliorating such weak-
nesses. For example, the realization of the inability of the 
OpenAI-ES method to deal with large environmental vari-
ations enabled us to propose the super-symmetrical version 
of this algorithm which is more effective in this respect. 
Moreover, understanding the characteristics of the particular 
method used can be used to tune the characteristics of the 
experimental setup in a more informed way.
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