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Bimodal buckling governs human fingers’ luxation
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Equilibrium bifurcation in natural systems can sometimes be explained as a route to
stress shielding for preventing failure. Although compressive buckling has been known
for a long time, its less-intuitive tensile counterpart was only recently discovered
and yet never identified in living structures or organisms. Through the analysis of
an unprecedented all-in-one paradigm of elastic instability, it is theoretically and
experimentally shown that coexistence of two curvatures in human finger joints is the
result of an optimal design by nature that exploits both compressive and tensile buckling
for inducing luxation in case of traumas, so realizing a unique mechanism for protecting
tissues and preventing more severe damage under extreme loads. Our findings might
pave the way to conceive complex architectured and bio-inspired materials, as well as
next generation artificial joint prostheses and robotic arms for bio-engineering and
healthcare applications.

finger joint | dislocation | tensile buckling | elastic stability

Bones are connected through joints, the articulations, permitting the specialized
movements necessary for everyday activities and, simultaneously, providing stability
to the musculoskeletal system.

Among the structurally and functionally different types of articulations, synovial
joints—also known as diarthroses—offer the highest degree of motion and are typical of
shoulders, knees, elbows, hips, hands, and feet (1, 2), which are all indeed implicated in
locomotion and handling of objects (3).

In human fingers, the diarthroses house the terminals of the joined bones in a cavity
enveloped by an articular capsule (4) that structurally connects the adjacent bones by
way of its outermost fibrous layer and secretes a viscous fluid filling the space of the
cavity through an inner membrane, the synovium, Fig. 1. Both the synovial fluid and
the sheets of hyaline cartilage that coat bones’ articulating surfaces eliminate friction and
absorb shocks during movements (5–7). Finally, extracapsular ligaments (7, 8) and the
suction-like effect, which provides negative intra-articular pressure in response to bone
ends’ distraction (i.e., separation) (9–14), contribute toward mechanical stabilization of
the joint (15).

As a result of their continuous involvement in body movements, synovial joints are
frequently subject to injuries, luxations being among the most common ones. They
consist in an abnormal displacement between the articulating bones, whose ends in
contact move out of their anatomical position, either for returning back (sub-luxation)
or fully and irreversibly dislocating (complete luxation) (16–18). In fingers, dislocations
typically occur in case of impacts due to falls or collisions during sport (19, 20), or
as a consequence of over-stretching caused by climbing or accidental fingers’ trapping
(21–23).

From a mechanical standpoint, luxations can be seen as the response of the bone-
joint-bone structural system to either abnormal compressive or tensile forces, giving rise
to the two mechanisms sketched in Fig. 1 and highlighted by X-ray images as well.
The geometrical configurations assumed by dislocated fingers, which recall deviation of
hinged bars due to elastic stability, as well as the extremely regular shape of the bone
epiphyses shown in Fig. 1, prompts the question of whether luxations may conceal a
mechanical strategy to preserve bone integrity and minimize irreversible tissues damages,
in the event of extraordinary loads.

To investigate this theoretically, and inspired from the two different curvatures
exhibited by the bone ends at the joint level, a structural all-in-one paradigm is introduced
in the present article, capable of undergoing both tensile and compressive buckling in
two orthogonal planes, whose resulting kinematics retraces the corresponding two above-
mentioned dislocations phenomena. To best mimic the real physiology of the finger’s
joint, the mechanical model is equipped with elastic elements simulating ligaments and
the suction effect due to the synovial capsule is additionally incorporated.
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Fingers’ joints are structural units
that connect different bone tracts,
providing simultaneously mobility
and mechanical stability. Due to
accidental overloads, finger joints
can undergo luxations, which lead
the articulating bone heads to
dislocate from their anatomical
position. We interpret this
phenomenon as a unified elastic
buckling mechanism induced by
both critical compressive and
tensile loads and ruled by the
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joint geometry in orthogonal
anatomical planes. With the aid
of a theoretical model and of an
experimental proof-of-concept,
we show how luxations represent
a natural instability-based
strategy to lower excessive
mechanical stresses and avoid
more severe injuries potentially
compromising fingers’
functionality.
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Fig. 1. On the Left, a sketch of the anatomy of the human hand highlighting the main components of the musculoskeletal system that drive the mechanics
of finger joints, with a focus on the suction-like effect limiting articular distractions, inset adapted from ref. 9. On the Right, sketches and original RX images
reproducing the complementary mechanisms of finger joints’ dislocation occurring in orthogonal anatomical planes of the hand: example of compression-
induced dorsal/volar luxation in the sagittal (or lateral) plane, characterized by a strong curvature of the bone terminals, and illustration of a lateral luxation
determined by a high tensile load in the transversal (horizontal) plane, where a weak curvature marks the geometry of the bones’ ends.

In this way, buckling-induced deviation of bone segments
from their physiological configuration is demonstrated to allow
a strong decrease of the overall elastic energy and a relief of
mechanical stresses, so preventing cracking in bone and tears
of ligaments and tendons, under both compressive and tensile
accidental loads. Our conclusion is that the finger structure not
only provides a key manifestation of tensile buckling in nature
(24) but might also represent a unique biological system whose
geometrical and mechanical features are optimally designed to
shield tissues from high stresses, by harnessing in one system both
compressive and tensile elastic instabilities (25–28). This could
open interesting perspectives for integrated neuro-mechanical
design of bionic hands, robotic prostheses, and exoskeletons for
human rehabilitation and other bioengineering applications (29).

A Luxation-Inspired All-in-one Buckling
Paradigm

The epiphyses of fingers’ bones, at interphalangeal and metacar-
pophalangeal joints, evidence two remarkably different curva-
tures in the two orthogonal anatomical planes, which affect the
type and range of movements of the articulated bone segments

(Fig. 1). In fact, an ideal longitudinal section through the
sagittal plane highlights a strong curvature allowing for smooth
flexion and extension, while a weak curvature is exhibited in the
transverse plane, where mobility is almost completely locked.
Apart from the role of the nonspheroidicity of the joint in
limiting the physiological range of motion, we propose that the
double, “strong and weak”, curvature is additionally involved in
driving fingers’ luxations under severe accidental loads, as a way
to prevent more serious damages of the articulation. In particular,
guided by the observation of the abnormal deviation of phalanges
led by luxations under both compressive and tensile extreme
forces, we here interpret luxations as an elastic equilibrium
bifurcation phenomenon. To this aim, an ad hoc conceived
mechanical model is introduced, equipped with a generalized
slider constraint, characterized by a double curvature in two
orthogonal planes (whose projections are shown in Fig. 2). This
model allows the analysis of the onset of elastic instability and
the transition from compressive to tensile modes of buckling in
the resulting all-in-one buckling paradigm.

More in detail, the system comprises two rigid rods inter-
connected by a hinge-slider joint, which consists of two circular
tracks in smooth mutual contact and only allows a relative sliding
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A B

C D

Fig. 2. Structural scheme of the proposed all-in-one paradigm of elastic instability undergoing (A) compressive and (B) tensile buckling in orthogonal planes as
a function of the ratio between the joint’s radius and the hinged rod’s length. (C) (Normalized) critical load versus ratio between the joint’s radius and the hinged
rod’s length, for an illustrative case with L1 = L2 = L/2, h = L/2, and k1 = k2L2. Herein, compressive (h/2 ≤ R < L1) and tensile (R > L1) buckling domains are
evidenced, along with the geometrically incompatible region where R < h/2. Also, the divergence of the tensile critical load for R/L1 → 1 is highlighted as well

as its asymptotic value F∞cr = k2L/2 +

√
k2
(
k2L2 + 4k1

)
/2 corresponding to the limit of straight slider, i.e., R/L1 → ∞. (D) Examples of equilibrium bifurcation

diagram for both the cases of structure buckling under axial compression (for R = h/2 = L/4; blue curve; Fcr = F−cr ) and tension (for R = 3L/4; red curve;
Fcr = F+cr ), by starting from an initially stable straight configuration (solid black curve) that becomes unstable (dashed black curve) beyond the bifurcation point.

without detachment (30). The extent of sliding is elastically
contrasted by an internal spring, circumferentially arranged along
the tracks, and the overall equilibrium of the structure is enforced
by the presence of an elastic hinge, acting at one of the ends and
so realizing a cantilever configuration. Such a joint reduces to a
traditional hinge in the limit case of vanishing ratio between the
radius of curvature and the rods’ length (28), while it becomes a
flat slider as in ref. 24 in the complementary condition of ideally
infinite ratio.

As sketched in Fig. 2, when loaded through a dead axial
force F at its free end, the considered system can exhibit both
compressive and tensile buckling, the first occurring in the plane
where the radius of curvature of the joint is shorter than the
hinged rod (strong curvature plane), while the second taking
place in the orthogonal direction, where the center of relative
rotation between the rigid tracts falls beyond the hinge (weak
curvature plane). In the figure, c and c′ denote the rotation
centers of the generalized joint in the reference and current
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configuration, respectively, L1 and L2 are the lengths of the
rigid rods, while R and h are the radius of curvature and the
transverse size of the slider, such that h ≤ 2R. When sufficiently
high, the external load induces buckling through the nontrivial
deformation modes shown in Fig. 2 A and B for compression and
tension, respectively. In both cases, the kinematics is governed
by two degrees of freedom, which can conveniently be identified
with the angles '1 and '2, describing the clockwise rotation of
the rods with respect to the horizontal direction. The horizontal
displacement of the right end, say u, can be written with reference
to its absolute value as

u = | (R + L2) cos'2 − (R − L1) cos'1 − L|, [1]

where L = L1 + L2, while the elongation Δl of the spring
associated with the slider is

Δl = R ('1 − '2) . [2]

Among the compatible deformation modes, equilibrium config-
urations follow from the stationarity of the total potential energy

Π =
k1

2
'2

1 +
k2

2
Δl2 − Fu, [3]

where k1 is the stiffness of the rotational spring constraining
the hinge and k2 is the stiffness of the spring acting along the
slider, both assumed as linear elastic. Stationarity of Π leads to
the system of nonlinear equations

(
1 + k1

k2R2

)
'1 − '2 −

F
k2R

(
1− L1

R

)
sin'1 = 0

'1 − '2 −
F
k2R

(
1 + L2

R

)
sin'2 = 0

, [4]

which admits bifurcation of the equilibrium solution for both
the conditions of strong and weak curvature. In particular,
bifurcation loads can be derived as a nontrivial solution of the
linearized equations [4] with respect to the Lagrangian variables
'1 and '2, thus yielding a quadratic equation for the axial force
F ,

a0F 2
− a1F − a2 = 0, [5]

with coefficients a0, a1, and a2 given by

a0 = (R − L1) (R + L2) ,

a1 = k1 (R + L2) + k2R2L, [6]

a2 = k1k2R2.

A tensile buckling force, F+
cr , is found, which refers to the

weak curvature plane (where R > L1), plus three compressive
bifurcation forces, the lowest of which, occurring in the strong
curvature plane (where R < L1), can be identified as “critical”,
F−cr . This implies that the mechanical model predicts deviations
from its straight configuration once tensile and compressive loads
overcome the respective critical thresholds

F±cr =

√
a2

1 + 4a0a2 ± a1

2a0
, [7]

where a2
1 + 4a0a2 ≥ 0 when L2 ≥ L1.

As an illustrative case of the proposed all-in-one buckling
paradigm, the critical load is plotted in Fig. 2C as a function
of the ratio between the radius of the sliding joint and the hinged

rod length. It is possible to observe that the structure switches
from compressive to tensile buckling when the radius R exceeds
the length L1, R = L1 thus representing a limit condition for
which tensile buckling does not occur. Furthermore, bifurcation
diagrams, numerically obtained as solutions of equations Eq. 4,
are reported in Fig. 2D for both compressive and tensile buckling.

Finally, it is worth noticing that straightforward calculations
allow to estimate the bending stiffness of the considered system at
the joint level as k2R2. This indicates that the double curvature,
characterizing the finger joints’ anatomy, naturally provides a
flexibility for the sagittal (strong curvature) plane higher than that
characterizing the transverse (weak curvature) plane, consistently
with the kind of mobility actually observed in fingers.

Cooperation of Elastic Instability and Suction
Effect in Luxation of Finger Joints

Finger joints of human hands can be considered hallmark struc-
tures for elucidating how the unique ability to experience both
compressive and tensile buckling can provide key stress shielding
responses to prevent bone, ligaments, and tendons from more
serious mechanical damages (31). To show this, the fingers’ bone-
joint-bone system is structurally modeled by following the above-
illustrated concept of all-in-one buckling paradigm, as reported
in Fig. 3 with reference to the transverse and sagittal anatomical
planes. Therein, to account for the stabilization role played by
the capsular and extracapsular fibrous tissues surrounding the
articular joint, elastic bands connecting the ends of the slider are
additionally incorporated in the mechanical model. Furthermore,
anatomical considerations suggest the possibility that a small
detachment between the epiphyses of the joined bones may occur
under distracting loads. This feature is implemented in the model
and coupled with the intracapsular suction effect that opposes the
separation between articular surfaces (9–14, 32). Investigation of
the system’s response under uni-axial load yields the identification
of tensile and compressive buckling as mechanisms dominating
lateral and dorsal/volar luxations, respectively, occurring in the
transversal and sagittal planes of the hand (16). The progression
of the dislocation process after luxation, falling beyond the scope
of the present study, is neglected.

Lateral Luxation Ruled by Tensile Buckling along the Weak
Curvature. The mechanical models illustrated in the Fig. 3,
Left show the tensile buckling mechanism through which finger
joints undergo lateral dislocations in the horizontal anatomical
plane, where the bones’ interface is characterized by the weak
curvature. In particular, starting from a resting condition, the
action of a distracting force F initially produces a small axial
separation between the articulating bone heads, remaining within
physiological limits. Then, as the magnitude of the load surpasses
a critical threshold, say F+

cr , the two epiphyses dislocate by
deviating laterally with respect to their straight anatomical
configuration.

The kinematic description of this bifurcation mode is char-
acterized by three Lagrangian parameters, namely the rotations
'1 and '2 of the rigid rods—representing bone segments—with
respect to the horizontal direction, and the relative displacement
Δ between their ends at the joint level. Therefore, equilibrium
configurations requiring stationarity of the total potential energy

Π =
kr
2
'2

1 +
EA
2l
[
(l ′+ − l)2 + (l ′− − l)2]+ Υic − Fu, [8]
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Fig. 3. Left: Structural schemes for the tensile-buckling mechanism governing lateral luxations of finger joints: the unloaded and underformed configuration
(Upper part), an axially distracted configuration under physiological load (Center), and a buckled (laterally deviated) state induced by a load overcoming the
critical threshold (Lower part). Right: Sketch of the compressive-buckling mechanism driving finger joints’ dorsal/volar luxations: the load-free configuration
(Upper part), the underformed configuration under physiological load (Center), and a buckled (deviated) state induced by an over-critical force (Lower part).
Center: Bifurcation diagrams exhibited by the structural model at growing tensile (red curves; Fcr = F+cr ) and compressive (blue curves; Fcr = F−cr ) load: a 3D plot
showing the dimensionless force as a function of the rotation angles (Upper part) and the dimensionless force-displacement curve (Lower part). Therein, solid
tracts identify equilibrium paths followed by the system, while dashed curve portions refer to theoretical unbuckled configurations. Results have been obtained
by considering the following values for the geometrical and constitutive parameters: h = 0.2L, s = h, l = 0.25L, A = 0.1sh, � = 1, t = 0.005L, Kic = 0.17E,
kr = 0.001EL3, with R = 0.55L for the tensile case (lateral luxation) and R = 0.1L for the compressive buckling (dorsal/volar luxation).

can be found by imposing ∂Π/∂'1 = ∂Π/∂'2 = ∂Π/∂Δ = 0.
In particular, the work done by the force F can be calculated by
expressing the magnitude of the horizontal displacement at the
right end as

u = | (R + L/2) cos'2 − (R − L/2− Δ) cos'1 − L|, [9]

where L/2 is the length of each of the two rigid tracts, so
that L is the whole length of the undeformed system, and R
is the radius of curvature of the joint, with R > L/2 (weak
curvature) in the considered anatomical plane. Moreover, the
internal elastic energy is provided by the sum of those stored
during the deformation inside of the rotational spring at the hinge
and of the two bands, both modeled as linear elastic elements, plus
the energetic contribution Υic . The latter is due to the suction
effect resisting distraction, which leads to the development of
an intracapsular pulling back pressure in response to increases
of the articular volume. More in detail, kr is the stiffness of the
elastic hinge, while E , A, and l are the Young modulus, the
nominal cross-sectional area and the length at rest of the bands,
respectively, with l accounting for the effective length covered by
ligaments in real fingers’ articulation. The deformed lengths of

the lower and upper bands are l ′+ and l ′−, respectively, and can
be calculated as

l ′± = l +
{
2R2 [1− cos ('1 − '2)]

+ Δ
{
Δ− 2R [cos 
 + cos (
 ± '1 ∓ '2)]

}}1/2 , [10]

where 
 is the opening angle of the joint, 
 = arcsin (h/2R), h
being its transverse size. Finally, the energy Υic can be expressed
as

Υic =
VicKic

�

[
e�(Jic−1)

− 1− � (Jic − 1)
]
, [11]

obtained by assuming the standard exponential law

pic =
∂Υic

∂Jic
= Kic

[
e�(Jic−1)

− 1
]
, [12]

to describe how the intracapsular pressure pic varies with the
Jacobian of the deformation Jic = V ′ic/Vic , representing the
ratio between the volumes of the articular fluid-filled space in
the deformed and undeformed states, approximated as being
spatially homogeneous. Here, Kic is the overall bulk modulus of
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the synovial fluid and matter inside the intra-articular space, and
� is a constitutive parameter ruling the grow rate of the pressure.
Moreover, it is possible to consider Vic = sAic and V ′ic = sA′ic ,
where s identifies the out-of-plane size of the joint (remaining
invariant during the deformation process), while Aic and A′ic are
the areas occupied by the projection of the intracapsular domain
onto the horizontal anatomical plane at the reference and current
configurations of the system, respectively. As sketched in Fig. 3,
the reference area can be estimated as Aic ≈ ht, where t is
a nominal thickness, while geometrical considerations allow to
obtain the following form for the current area A′ic :

A′ic = Aic + RΔ [1 + cos ('1 − '2)] sin 
. [13]

The above equations led to a numerical solution, with the
aid of the software Mathematica®. The diagrams reported in
Fig. 3 (red curves) show how, due to the cooperation of the
elasticity of the ligaments and the suction associated with the
intracapsular pressure, the bifurcation tensile load F+

cr is attained
at the end of an initial deformation process connected with
the axial distraction of the bone segments and is followed by
a significant reduction in the force gradient with respect to
the end displacement, when the post-buckling phase evolves.
This mechanical behavior demonstrates how, in case of high
distracting loads, tensile buckling rules lateral luxation and
provides an overall stress shielding by deviating fingers from their
natural straight configuration.

Dorsal/volar Luxations Ruled by Compressive Buckling along
the Strong Curvature. Dorsal and volar luxations of fingers are
injuries complementary to lateral ones and occur in response to
high compressive actions. In this case, the digits dislocate in the
sagittal plane of the hand, where articular joints exhibit strong
curvatures. From a mechanical point of view, these injuries can
again be interpreted as elastic instabilities, which lead the bone-
joint-bone system to deviate its configuration at the onset of
compressive buckling as shown in the Fig. 3, Right. In more
detail, the mechanics of dorsal/volar luxations can be treated by
following an approach analogous to that employed for lateral
ones. However, in this case, the rotations '1 and '2 are the sole
Lagrangian variables needed for a complete description of the
kinematics of the system, as no separation at the joint interface
occurs under compression. As a consequence, the total potential
energy in Eq. 8 lacks now the energy termΥic , and the expressions
for the displacement u in Eq. 9 and the lengths of the two elastic
ligaments l ′± in Eq. 10 simplify by imposing Δ = 0.

Stationarity of Π allows to find the equilibrium bifurcation di-
agrams shown in Fig. 3 (blue curves) and the critical compressive
load can be obtained in closed-form as

F−cr =

√
a2

1 + 4a0a2 − a1

2a0
, [14]

the coefficients a0, a1, and a2 being:

a0 = l
(
4R2
− L2) ,

a1 = 2
[
kr l (2R + L) + 4EAR2L

]
, [15]

a2 = 8EAkrR2,

with R < L/2 (strong curvature) and a2
1 + 4a0a2 ≥ 0. It is

worth noticing that the critical value in Eq. 14 corresponds to
the minimum between two possible bifurcation loads.

Similarly to the lateral luxation (governed by tensile
buckling), the mechanical model demonstrates that dorsal/volar

dislocations, ruled by compressive elastic instability, provide
again stress shielding of the bone-joint-bone finger system
in the sagittal plane where digits are deviated, invited by the
strong curvature of the articulating bone segments’ heads (see
bifurcation diagrams in Fig. 3).

An Experimental Proof of Concept Prototype. The proposed
luxation mechanism has been validated by an experimental
proof of concept model, based on a 3D-printed prototype,
incorporating the suction effect due to the articular capsule and
a design of the elastic ligaments tailored to replicate the real
functioning of the fingers’ bone-joint-bone system, as reported
in Fig. 4. Laboratory uni-axial tests performed on the built-
up prototype have confirmed that both compressive and tensile
buckling modes can be reproduced if all the main geometrical and
mechanical features characterizing the articulation are taken into
account. In particular, under compression, instability-induced
deviation of the system’s tracts from the straight configuration
occurs in the strong curvature plane, as it happens for dorsal
and volar dislocations, while bifurcation associated with tension
takes place in the weak curvature plane, after an initial phase of
axial distraction, similarly to lateral dislocations. These pieces
of evidence support the theoretical model and contribute to
experimentally highlight the double capability of finger joints
to undergo both compressive and tensile buckling, so providing
luxation as a stress-shielding strategy.

Discussion and Conclusion

The main conclusion of the present study is that dislocations—
common injuries of bone articulations as finger joints—can
be interpreted through an unprecedented mechanical instability
phenomenon that unifies compressive and tensile buckling and
leads to recognize luxation as a protection mechanism from more
severe damage for bones, exposed to extreme load. This is related
to the characteristic double-curvature geometry of the bones’
epiphyses at the joints, allowing for a two-mode (lateral and
dorsal/volar) fingers’ dislocation model, which has theoretically
and experimentally demonstrated to be the result of a unique
optimized design by nature. The latter ensures stress shielding
under axial forces exceeding physiological limits, independently
from their sign. In tension, the proposed mechanism provides a
hallmark example of tensile critical load involved in functioning
of a natural system.

The outcomes of the present research can be used in the
design of bio-inspired, mechanically and geometrically optimized
joints and structures, which can find a number of applications
at different scales, from soft- and micro-robotics to active and
passive actuators and exoskeletons in healthcare for rehabilitation
purposes.

Materials and Methods

The proof of principle prototype of the fingers’ bone-joint-bone system
was manufactured through 3D printing and tested under both tensile and
compressive forces. A double-curvature joint was designed to replicate (scale
3:1) the two complementary curvatures exhibited by the finger bones’ epiphyses
in a 3D printed model realized with STRATASYS F170 and STRATASYS Object30
printers, using polymeric materials (ABS - Acrylonitrile Butadiene Styrene) for
the bone tracts and a resinous material for the joint elements, Fig. 4. Particular
attention was devoted to mimic both the lubrication related to the synovial fluid
and the suction effect occurring within the articular capsule. To the purpose,
a film of high-pressure resistant grease (NLGI 3 lithium by AREXONS) was
interposed between the two contact surfaces of the joined elements and an
intact portion of sow intestine was used to encapsulate the joint. Finally, elastic
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Fig. 4. Upper part: Lateral and frontal views of the fingers’ joint anatomy pointing out the two characteristic (strong and weak) curvatures of the articulating
bone terminals (Left) are compared with the CAD model and 3D-printed prototype of the finger bone-joint-bone system (Right). Central part:Assembled prototype
employed for experimental tests—equipped with an articular capsule obtained from sow intestine, lubricating grease at the joint interface and ligament-like
elastic bands—(Left) produces the compressive (blue) and tensile (red) force-displacement curves (Right). Lower part: Sequences of images showing the buckling
kinematics exhibited by the system during the compressive (frames C1–C3) and tensile (frames T1–T3) tests; in particular, frames C1 and T1 correspond to
initial (unloaded and undeformed) configurations, frames C2 and T2 show states immediately following the onset of equilibrium bifurcation and frames C3 and
T3 provide configurations reached in the post-buckling phase. It is worth noticing that, due to the partial compressibility of the grease layer at the interface,
the response in compression does not recover the infinitely rigid behavior theoretically predicted. Also, consistently with the anatomy of the finger joints and
the theoretical model, elastic bands were positioned laterally in the sagittal and frontal planes and are shown in the photos deformed under compression or
tension.
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bands were fixed on the sides of the assembled structure in order to simulate
the presence of extracapsular ligaments, as illustrated in Fig. 4. The mechanical
response of the prototype was measured by employing a electromechanical
biaxial testing machine (ElectroForce TestBench four linear motors Planar Biaxial
230V with integrated 200N load-cells by TA Instruments) used in a uniaxial mode
to reproduce both tensile and compressive loading conditions. Specifically, a
progressively increasing axial displacement was quasi-statically (at a velocity
of 0.05 mm/s) applied to the ends of the structure, both constrained through
3D printed hinges. The reaction forces on the supports were measured via the
above-specified 200N load cells.

Data, Materials, and Software Availability. All study data are included in
the main text.
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