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Preface

This book collects the short papers presented at CLADAG 2019, the 12th Scientific
Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian
Statistical Society (SIS).

The meeting has been organized by the Department of Economics and Law of the
University of Cassino and Southern Lazio, under the auspices of the SIS and the
International Federation of Classification Societies (IFCS). CLADAG is a member
of the IFCS, a federation of national, regional, and linguistically-based
classification societies. It is a non-profit, non-political scientific organization,

whose aims are to further classification research.

Every two years, CLADAG organizes a scientific meeting, devoted to the
presentation of theoretical and applied papers on classification and related methods
of data analysis in the broad sense. This includes advanced methodological research
in multivariate statistics, mathematical and statistical investigations, survey papers
on the state of the art, real case studies, papers on numerical and algorithmic
aspects, applications in special fields of interest, and the interface between
classification and data science. The conference aims at encouraging the interchange
of ideas in the above-mentioned fields of research, as well as the dissemination of

new findings.

CLADAG conferences, initiated in 1997 in Pescara (Italy), were soon considered
as an attractive information exchange market and became a most important meeting

point for people interested in classification and data analysis. One reason was



certainly the fact that a selection of the presented papers is regularly published in

(post-conference) proceedings, typically by Springer Verlag.

The Scientific Committee of CLADAG2019 conceived the Plenary and Invited
Sessions to provide a fresh perspective on the state of the art of knowledge and
research in the field. The scientific program of CLADAG 2019 is particularly rich.
All in all, it comprises 5 Keynote Lectures, 32 Invited Sessions promoted by the
members of the Scientific Program Committee, 16 Contributed Sessions, a Round
Table and a Data Competition. We thank all the session organizers for inviting
renowned speakers, coming from 28 countries. We are greatly indebted to the

referees, for the time spent in a careful review.

The editors would like to express their gratitude to the Rector of the University of
Cassino and Southern Lazio and the Director of the Department of Economics and
Law for having hosted the meeting. Special thanks are finally due to the members
of the Local Organizing Committee and all the people who with their abnegation
and enthusiasm have worked for CLADAG 2019.

Special thanks go to Alfiero Klain and Livia lannucci for the editorial and

administrative support.

Last but not least, we thank all the authors and participants, without whom the

conference would not have been possible.

Cassino, September 11, 2019
Giovanni C. Porzio
Francesca Greselin

Simona Balzano



UNIFYING DATA UNITS AND MODELS IN
(CO-)CLUSTERING

Christophe Biernacki!

1 Université Lille 1, FRANCE,
(e-mail: christophe.biernacki@math.univ-1illel.fr)

Statisticians are already aware that any modelling process issue (explo-
ration, prediction) is wholly data unit dependent, to the extend that it should
be impossible to provide a statistical outcome without specifying the couple
(unit,model). In this talk, this general principle is formalized with a particular
focus in model-based clustering and co-clustering in the case of possibly mixed
data types (continuous and/or categorical and/or counting features), being also
the opportunity to revisit what the related data units are.

Such a formalization allows to raise three important spots: (i) the couple
(unit,model) is not identifiable so that different interpretations unit/model of
the same whole modelling process are always possible; (ii) combining differ-
ent “classical” units with different “classical” models should be an interesting
opportunity for a cheap, wide and meaningful enlarging of the whole mod-
elling process family designed by the couple (unit,model); (iii) if necessary,
this couple, up to the non identifiability property, could be selected by any tra-
ditional model selection criterion. Some experiments on real data sets illustrate
in detail practical beneficits from the previous three spots.

It is a joint work with Alexandre Lourme (University of Bordeaux).



STATISTICS WITH A HUMAN FACE

Adrian Bowman!

1 University of Glasgow, (e-mail: adrian.bowman@glasgow.ac.uk)

Three-dimensional surface imaging, through laser—scanning or stereo—pho-
togrammetry, provides high-resolution data defining the surface shape of ob-
jects.

Human faces are of particular interest and there are many biological and
anatomical applications, including assessing the success of facial surgery and
investigating the possible developmental origins of some adult conditions.

An initial challenge is to structure the raw images by identifying features
of the face. Ridge and valley curves provide a very good intermediate level at
which to approach this, as these provide a good compromise between informa-
tive representations of shape and simplicity of structure.

Some of the issues involved in analysing data of this type will be discussed
and illustrated. Modelling issues include simple comparison of groups, the
measurement of asymmetry and longitudinal patterns of shape change. This
last topic is relevant at short scale in facial animation, medium scale in indi-
vidual growth patterns, and very long scale in phylogenetic studies.



BAYESIAN MODEL-BASED CLUSTERING WITH
FLEXIBLE AND SPARSE PRIORS

Bettina Griin!

I Johannes Kepler Universitat Linz, (e-mail: bettina.gruen@jku.at)

Finite mixtures are a standard tool for clustering observations. However,
selecting the suitable number of clusters, identifying cluster-relevant variables
as well as accounting for non-normal shapes of the clusters are still challenging
issues in applications.

Within a Bayesian framework we indicate how suitable prior choices can
help to solve these issues. We achieve this considering mainly prior distri-
butions that have the characteristics that they are conditionally conjugate or
can be reformulated as hierarchical priors, thus allowing for simple estimation
using MCMC methods with data augmentation.



GRINDING MASSIVE INFORMATION INTO FEASIBLE
STATISTICS: CURRENT CHALLENGES AND
OPPORTUNITIES FOR DATA SCIENTISTS

Francesco Mola!

! University of Cagliari, (e-mail: mola@unica.it)

Massive amounts of data used to make quicker, better and more intelligent
decisions to create business value are nowadays available for companies and
organizations. Terms like big data, data science, analytics, artificial intelli-
gence, machine learning etc., are very common in both academia and industry.
All these areas of research are orientated towards answering the increasing de-
mand for understanding trends and/or discovering patterns in data. Usually,
collected data is massive and uncertain due to noise, incompleteness and in-
consistency. The main goal of a statistician/data scientist is therefore to turn
massive data into feasible information, the latter intended as able to describe
efficiently an observed phenomenon, to gain indications about its future evolu-
tion as well as to provide useful insights for the ongoing decisional process. All
these considerations lead towards arguing that the role of the statistician/data
scientist considerably evolved in the latest years. In my presentation, after a
brief description of the scenario summarized above, I will discuss three ex-
amples/case studies concerning image validation, hotels’ reputation and social
media popularity trying to give a contribution to the debate about turning the
enormous amount of available data into feasible statistics. In all cases, ad-
hoc but standard classification methods are used to obtain information that is
extremely feasible and adds value to a decisional process.



STATISTICAL CHALLENGES IN THE ANALYSIS OF
COMPLEX RESPONSES IN BIOMEDICINE

Sylvia Richardson'

I University of Cambridge, (e-mail: sylvia.richardson@mrc-bsu.cam.ac.uk)

To exploit better the structure of the rich sets of characteristics, such as
clinical biomarkers, molecular profiles or detailed ontology records, that are
currently being collected on large samples of healthy or diseased individuals,
statistical models of the variations within and the interplay between different
layers of data can be constructed.

Generic Bayesian model building strategies and algorithms have been tai-
lored for this purpose. In this talk, I will discuss three areas: implementing
joint hierarchical modelling of a large number of responses and a large num-
ber of features to discover features associated with many responses; analysing
tree structured ontology data with application for finding the underlying ge-
netic origin of rare diseases; and characterising network structures using fast
Bayesian inference in large Gaussian graphical models. Common statistical
issues of accounting for model uncertainty, ability to borrow information for
retaining power and scalability of Bayesian computations will be highlighted.
Modelling strategies and computations will be illustrated on case studies.



MODEL-BASED CLUSTERING OF TIME SERIES DATA:
A FLEXIBLE APPROACH USING NONPARAMETRIC
STATE-SWITCHING QUANTILE REGRESSION MODELS

Timo Adam', Roland Langrock! and Thomas Kneib?

I Bielefeld University, (e-mail: timo.adam@uni-bielefeld.de,
roland.langrock@uni-bielefeld.de)

2 University of Gottingen, (e-mail: tkneib@uni-goettingen.de)

ABSTRACT: We propose a model-based clustering approach for time series data ap-
plications where clusters are inferred from the conditional quantiles of the variable of
interest given the current state of a hidden state process. The suggested methodology
allows us to draw a detailed picture of i) the effect of some covariate on those quan-
tiles within clusters, and ii) the entire response distribution in a flexible data-driven
way without the need to specify a parametric family of distributions. As an illustrat-
ing example, we model Spanish energy prices to obtain clusters relating to periods of
relatively calm and nervous market regimes, respectively.

KEYWORDS: hidden Markov models, penalized B-splines, quantile regression.

1 Introduction

Quantile regression models (QMs, Koenker, 2005) are widely used for model-
ing the conditional quantiles of the variable of interest given some covariate.
In this paper, we extend QMs to time series data applications where the quan-
tile curves are subject to state switching controlled by a hidden Markov chain,
which provides an essentially distribution-free alternative to Markov-switching
generalized additive models for location, scale, and shape (MS-GAMLSS,
Adam et al., 2017, Langrock et al., 2018). By decoding the hidden states un-
derlying the observations, the resulting class of Markov-switching QMs (MS-
QMs) can be used for model-based clustering of time series data.

2 Methodology

2.1 Model formulation and dependence structure

MS-QMs comprise two stochastic processes, a hidden state process, {S; };=1...1,
and an observed state-dependent process, {¥;},—i 7. The state process is



(CHEHHENA) o

Figure 1. Dependence structure of a Markov-switching quantile regression model.

observed

modeled as a discrete-time N-state Markov chain (where N determines the
number of clusters) with transition probability matrix I = (v;;), where v;; =
Pr(S, = j|S;—1 =1i),i,j=1,...,N, and initial distribution (row) vector § = (J;),
where §; = Pr(S; =1i),i=1,...,N.

At each time ¢, the state-dependent process generates an observation from
some (unspecified) distribution with state-dependent quantile functions g§S’> (%),
where 0 < T < 1 denotes the quantile of interest. Using penalized B-splines
(Eilers & Marx, 1996), the quantiles are modeled as functions of covariates,

K
g () = By + Y BB (), (1)
k=1

where B%) denotes the state-dependent intercept and Bisjc) the coefficient asso-
ciated with the k-th B-spline basis function of degree d evaluated at the covari-
ate value x;, i.e. Bf (x;); we consider cubic basis functions, i.e. d = 3.

2.2 Model fitting and clustering

For a fixed quantile T, quantile regression is commonly carried out by opti-
mization with respect to the loss function p(y; — gz(x/)) = (v — ge(x)){T —
1(y,—ge(x,))<0 - This is equivalent to maximum likelihood assuming an asym-
metric Laplace (AL) distribution, with density far(yv:;u,0,T), which yields,
in a Bayesian setup, posterior consistent estimators even if the observations
are not AL-distributed (Sriram et al., 2016). Defining the forward variables

o (i) = fO1,..., 1,8 = i), which are summarized in the row vectors o, =
(oy(1),...,04(N)), the recursion
o =0P(y1);00 =0, 1 TP(y,), t=2,....T, 2)

can be applied to evaluate oy, where P(y,) = diag(fAL(y,;,ut(l),G(l),r),...,

faL(yes ,u,(N) ,6V) 1)), with state-dependent quantile curves ,u,@ = ggi) (x;), scale



parameters 6\, and (fixed) quantile T. From o7, the likelihood is obtained as
L(8) = f(1,--., yr|®) = XYV fO1,...,yr,s7 = i) = orl. For simultane-
ously considering multiple quantiles T, g = 1,...,Q, we follow Sriram et al.
(2016) and consider a pseudo-likelihood as the objective criterion to be maxi-
mized, where the quantile-specific state-dependent densities in (1) are replaced
by HqQ:1 faL(yes ---,Tq). To avoid i) overfitting and ii) quantile crossing, two
penalties are added to the pseudo-log-likelihood, which leads to

log([Jpen.(e)) :log( (9))
K
—zzx z( BY,) e

i=1g= i

Mz

T Q
; ; grq x) g‘\? . (x))=<0’

roughness penalty quantile crossing penalty

1

where 7»((;) denotes some smoothing parameter, Azﬁg?.k the squared second-

order differences between adjacent coefficients, and ¢ some (arbitrary) con-
stant which ensures non-crossing quantile curves.

From some fitted MS-QM, clusters can be obtained by computing the most
likely state sequence underlying the observations via the Viterbi algorithm.
The state-dependent densities as required for Viterbi can be approximated
based on the estimated quantile curves as

f)(/i)(yt) = X , g = min{q €0,...0+1:y, < §glq)(xt)} )
8 (x¢) _grq*,l(xt)

Ty — Tge—1

where the (not estimated) quantile curves associated with Tp = 0 and Tp+1 =1
are defined as min(yy,...,yr) and max(yi,...,yr), respectively.

3 Illustrating example

As an illustrating example, we model the conditional quantiles of daily en-
ergy prices in Spain, Y;, given the oil price, x;, over time. The data (Sanchez-
Espigares & Lopez-Moreno, 2014) comprise 1761 daily observations between
February 1, 2002, and October 31, 2008. For each of N = 2 states, we used
K =30 B-spline basis functions, where (for simplicity) all smoothing parame-
ters were set to 1, and ¢ was chosen to be 5.

The results are displayed in Figure 2. Within cluster 1, the energy prices
are fairly low and exhibit a moderate volatility. Within cluster 2, the prices
are generally higher and exhibit a considerably higher volatility. Overall, the
energy price distribution is quite heavily affected by the oil price, where the
corresponding effect substantially differs across both clusters and quantiles.
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Figure 2. Fitted state-dependent quantile curves for T = (0.1,0.2,0.3,...,0.9) with-
out penalization (left), with penalization (center), and Viterbi-decoded time series as
obtained under the model with penalization (right).

4 Discussion

We have proposed MS-QMs as a model-based clustering approach for time
series data applications. Key features of MS-QMs include i) their feasibility to
infer cluster-specific covariate effects on various quantiles, and ii) the flexible,
data-driven way in which the entire response distribution is modeled. The
immense flexibility, however, comes at the cost of a potentially large set of
tuning parameters. The development of efficient model selection techniques
may therefore provide an important avenue for future research.
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ABSTRACT: My talk discusses topics pertaining to generalized linear modeling, with
focus on categorical data: (1) bias due to floor and ceiling effects in using ordinary
linear models with ordinal response data, (2) interpreting effects with nonlinear link
functions, (3) alternatives to logit and probit link functions with binary responses, (4)
cautions in using Wald tests and confidence intervals when effects are large, and (5)
the behavior and choice of residuals. In this accompanying paper, we discuss topics
(2) and (3), which involve new and recent research.

KEYWORDS: Ordinal models, binary data, nonlinear link functions.

1 Introduction

We discuss some issues about generalized linear models that deserve more
attention in terms of additional research or greater awareness of existing liter-
ature. I became increasingly aware of the issues years while writing a book on
linear and generalized linear models (Agresti 2015) and while revising three
books on categorical data analysis (Agresti 2010, 2013, 2019). This paper dis-
cusses two of five topics from my talk: Section 2 proposes a simple way to
interpret effects in generalized linear models that use nonlinear link functions,
by comparing groups using a probability summary about the higher response.
Section 3 argues that for modeling binary responses, the identity link and log
link functions can often supplement the logit and probit links.

2 Interpreting Effects in GLMs with Nonlinear Link Function

For many standard nonlinear link functions in generalized linear modeling,
the interpretation of the model effects is difficult for non-statisticians and for
methodologists who are mainly familiar with ordinary linear models. To illus-
trate, suppose y is ordinal with ¢ outcome categories. For observation i, let x;;
denote the value of explanatory variable k. Consider the cumulative link model

hnk[P(ylgj)]:a]—i_Zkalk) j:17"'7c_17
k
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for links such as the logit, probit, or complementary log-log,. For the probit
link (i.e., the inverse of the standard normal cdf ®), f; represents the change in
@~ ![P(y; < j)] for a 1-unit increase in xy, adjusting for the other explanatory
variables. This is a rather obscure interpretation, as few people can make sense
of effects on the scale of an inverse of a cdf.

One way used to interpret effects relies more on an underlying latent vari-
able model (McKelvey and Zavoina 1975). For the observed ordinal response
y and for a latent response y*, suppose y; = BTxi + &;, where g; has some para-
metric cdf G with mean 0. Suppose that thresholds (cutpoints) —eo = oy <
o) < ... < O = oo exist such that

yi=jif o1 <y; < aj.
Then, at a fixed value x,
Pyi <) =P0i < o) =Py = Bxi < a;— " x)
=P <a— B x)=G(a,— B xi).
This implies the model
G Py < jlx)]=0;—B"x;

with G~! as the link function. In particular, one obtains the cumulative probit
model when G is the standard normal cdf ®; then @~ ! is the probit link.

We suggest a simple interpretation that utilizes this latent variable model,
formulated in terms of a summary for comparing two groups, adjusting for the
other explanatory variables. Let z be an indicator variable for the two groups.
At any potential setting (xp,...,x,) of p explanatory variables, let yj and y}
denote independent latent variables when z = 1 and when z = 0, respectively.
For the latent variable model that generates the cumulative probit model

O P(y < j)] = 0= Bz—Brx1r — -~ = Bpxy,

the difference between the conditional means of y} and y; is 8, and
P(yi >y3) = P[(y1 —y3) > O]

0i—y)—B _-B
PP 2 =1 0(-5/vD) = (8/V).
At any setting of the p explanatory variables, differences between the normal
conditional means for the two groups of f = (0,0.5,1,2,3) standard deviations
correspond to P(y} > y3) values of (0.50, 0.64, 0.76, 0.92, 0.98).
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For details, including corresponding expressions with logit and comple-
mentary log-log links, see Agresti and Kateri (2016). That article also dis-
cusses related measures for the observed response scale. The idea can extend
to other generalized linear models and to more complex models, such as gen-
eralized additive models.

3 Using Alternatives to the Logit and Probit Links with Binary
Responses

For binary responses, the logit and probit links are used almost exclusively.
Sometimes, however, we can also use the log and the identity links.

e The identity link provides similar fits as the logit or probit link when
P(y = 1) falls mainly between about 0.2 and 0.8. It has simpler inter-
pretations, as the model parameters relate to differences of probabilities
instead of ratios of odds.

e The log link provides similar fits as the logit or probit link when P(y =
1) falls mainly below 0.5. It has simpler interpretations, as the model
parameters relate to ratios of probabilities instead of ratios of odds.

e With uncorrelated explanatory variables, the effects with log and identity
links are the same in the full model as in marginal models with sole
predictors, which is not true with logit or probit links.

We illustrate the first two points with data from a recent Istat survey. For
the binary response y = whether employed (i.e., y = 1 means that the person
is present in some administrative source), we use explanatory variables x; =
gender (1 = female, 0 = male), x, = whether an Italian citizen (1 = yes, 0 = no),
and x3 = whether receiving a pension (1 = yes, 0 = no).

Consider first the 27,775 subjects in the survey having age over 65. For
the 8 combinations of x1, x,, x3, the sample proportions employed fall between
0.02 and 0.12. The main-effects logit and log-link model fits are

logit[P(y = 1)] = —1.8686 — 1.3236x; — 0.4295x, +0.2162x3,
log[P(y = 1)] = —2.0374 — 1.2388x; — 0.3619x, + 0.2003x3.

The absolute difference in fitted proportions, averaged over the 27,775 cases, is
0.0001. For the log-link model, the exponentiated coefficients estimate proba-
bility ratios; e.g., adjusting for x, and x3, the probability a woman is employed
is estimated to be exp(—1.2388) = 0.2897 times the probability a man is em-
ployed.
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Consider next the 72,225 subjects having age under 65. For the 8 combi-
nations of x;, xp, x3, the sample proportions employed fall between 0.18 and
0.74. The main-effects logit and identity-link model fits are

logit[P(y = 1)] = 0.3502 — 0.6440x, +0.7017x, — 1.8737x3,

P(y=1)=0.5875—0.1386x; +0.1513x, — 0.4079x3.

The absolute difference in fitted proportions, averaged over the 72,225 cases,
is only 0.004. For the identity-link model, the coefficients estimate differences
of probabilities. For instance, adjusting for x; and x3, the probability that a
woman is employed is estimated to be 0.1386 lower than the probability that a
man is employed.

The effects in the models using log and identity links can be approximated
by linearizations of logit-link models, such as by using average marginal ef-
fects measures that are available with software such as R and Stata. For details,
see Agresti, Tarantola, and Varriale (2019). Such measures are also relevant
for ordinal responses (Agresti and Tarantola 2018).
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ABSTRACT: Burnout is a serious problem in modern society and early detection
methods are needed to successfully handled its multiple effects. However, in many
countries, official statistics on this topic are not available. For this reason, we propose
to use Google Trends data as proxies for the interest in burnout and to analyze them
through the functional data analysis (FDA) approach. Under this framework, the func-
tional analysis of variance (FANOVA) model is used for testing a macro geographic
area effect on search queries for the keyword “burnout” in Italy. The estimation of
the FANOVA model is proposed in a finite dimensional space generated by a basis
function representation. Thus, the functional model is reduced to a MANOVA model
on the basis coefficients.

KEYWORDS: Burnout, Google Trends data, FDA, FANOVA model.

1 Introduction

Burnout is typically defined as a three dimensional syndrome characterised
by emotional exhaustion, depersonalization and lack of professional efficacy
(Maslach & Jackson, 1981). It has a strong impact not only on working well-
being as it inevitably influences the private and social life of individuals. In-
deed, burnout can affect health, giving rise to both physical and psychoso-
matic problems such as depression, anxiety, low self-esteem, guilt feelings,
and low tolerance of frustration (Maslach et al., 2001). In this context, the
role of social support in reducing the negative effects of burnout becomes
fundamental, especially under the current situation of crisis in the world of
work. Although the importance of this phenomenon is now recognized, in
many countires official statistics on the rates of burnout among workers are
not available. For this reason, we propose the use of Google Trends data as
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proxies for assessing burnout. The basic idea is that internet searches may be
considered indicators of the public interest. Indeed, people reveal information
about their needs, wants, interests, moods and phycological problems through
their Internet search histories, which are stored in the form of Google Trends
data. More specifically, we propose to analyze Google Trends data through the
functional data analysis (FDA) approach (Ramsay & Silverman, 2005) because
data floowing from the web can be viewed as an infinite process, which con-
tinuously evolve over the time domain (Fortuna et al., 2018). Since functional
data are infinite-dimensional objects, they provide a more suitable represen-
tation of Google Trends search queries than traditional multivariate vectors.
Moreover, FDA allows to address the so-called ‘curse of dimensionality’ of
big data, enabling an effective statistical analysis when the number of vari-
ables exceeds the number of observations. Under this framework, the func-
tional analysis of variance (FANOVA) model has been applied for studying
the relationship between the functional queries and an explanatory categorical
variable. In particular, the problem of testing the null hypothesis of equality
of mean functions across different groups is addressed. In this paper, the es-
timation of the FANOVA model has been considered in a finite dimensional
space generated by a basis. Then, the problem has been reduced to a finite
multivariate ANOVA (MANOVA) model on the vector of basis coefficients.

2 The FANOVA model with regularized basis expansions
for Google Trends data

Since Google Trends data continuously flow from the server of a web site, they
can be seen as functions in a continuous domain, rather than scalar vectors

L
(Fortuna et al., 2018). Specifically, let y; () = {yj(tj,)} ,j=12,...nbea

functional variable observed in a discrete set of sampling points, [ =1,2,...., L,
in the temporal domain 7. Let us also assume that y(¢) € L>(7T'), where L*(T)
is the Hilbert space of square integrable functions. One usual solution to re-
construct the functional form of the n samples starting from the discrete ob-
servations, is to assume that sample paths belong to a finite-dimension space
spanned by a basis {0;(¢),02(),---,0x(¢)}, so that they can be expressed as
follows:

y(1) =Ad(1) e))
where y = [y1(¢),...,ya(t)]"; A = (aj) is the matrix of basis coefficient expan-
sion; and ¢(¢) = [01(¢),---,0k(¢)]” is a K dimensional vector of basis func-

tions.
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Let {y;j(t):t € T,i=1,...,.I;j=1,...,n;} be I independent samples of func-
tions drawn from a second order stochastic process Y = {Y (¢) :r € 7'}, contin-
uous in quadratic mean, whose sample functions belong to L?(‘7). Assuming
that there is a single factor with [ different levels or groups (i = 1,2,...,1)
and n; observations within each group; the model for the j-th observation
(j=1,2,...,n;) in the i-th group can be expressed as follows:

(1) = ZB(1) + (1) 2)
where y(t) = [y1(¢),y2(t),...,ya(t)]" is a vector of functional observations of
length 1 = Y1, nis B(r) = [B1 (1) = (o), Balt) =1 (1), Bo(r) = vi(1)] is
vector of functional effects of length Q = I+ 1; €(t) = [g1(¢),€2(¢), ..., €4(2)]T
is a vector of n residual functions and Z is a (n x Q) design matrix, coding the
group membership. The FANOVA model is equivalent to a standard ANOVA
model, with the difference that the parameters B(r), and hence the predicted
observations y(z) = ZB(t), are vectors of functions rather than vectors of num-
bers.

The parameter vector B(7) in equation (2) can be estimated using the standard
least squares criterion; thus, minimizing the residual sum of squares:

LMSSE(B) = [ [y(r) ~ ZB(O)]" (o) ~ ZB(r)) 3)

To fit the model (2), it is usual to assume that the sample paths and the parame-
ter functions belong to the same finite space generated by a basis of functions,
so that the observed response functions are expressed as in (1) and the regres-
sion functions as follows:

K
By(t) =Y buti(t) =Bo(t) g=1,...,0; “)
k=1

where B = (bj;) is the matrix of basis function coefficients and ¢(z) = (¢, (¢), ...,
...,0x(t))T is the K dimensional vector of basis functions. In this context, the
least squares fitting criterion in (3) can be defined as follows:

LMSSE(B) = [ [A6() - ZBO()]" [A0() - 2Bt (5)
which leads to the following estimation of the functional effects:
B(r) = (2"wz) 'Z"WA ©6)

where ¥ = (y jq) kxk 18 the symmetric matrix of the inner products between
basis functions, ¥ = [, ®(¢)"¢(z), and A has an additional row of zeros to
satisfy the constraint on the functional effects (Sayes et al., 2008).
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3 Conclusions

Burnout is a growing problem in the modern society. It is usually thought of as
an individual response to prolonged work related stress, which in turn, impacts
on job satisfaction and thereafter, can affect the phycological, physiological,
affective and behavioral well-being of workers (Dyrbye et al., 2011). The esti-
mation of this phenomenon is essential to design social support for reducing its
negative effects. However, in many countries, official statistics for the rates of
burnout are not available. In this context, we propose the use of Google Trends
data as proxies for the interest in burnout. In this scenario, we aim to provide
an original methodological approach for the analysis of social indicators based
on big data, through the FDA approach. The latter has the advantage of reduc-
ing the dimension of the huge amount of data with the conversion of vectors
into functions. Under this framework, the FANOVA model can be used for
testing a possible effect of different factors on the search queries.
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ABSTRACT: There are many attempts to measure well-being in various countries
around the world. The Italian experience, conducted by the Italian National Institute of
Statistics (Istat), is probably the most advanced (Equitable and Sustainable Well-being
— BES): the selection of indicators involved many actors of civil, entrepreneurial and
institutional society; there are twelve well-being domains and around 130 individual
indicators drawn mainly from Istat surveys and archives. In this way, Istat generated a
complex multi-indicator system, the understanding of which required the adoption of
approaches that would allow for more concise views that could summarise the com-
plexity. In this perspective, the guiding concept crossing all possible strategies is
synthesis. In the last four BES reports, the Istat adopted the aggregative approach to
synthesis and calculated composite indicators to provide one-dimensional measure-
ments for each domain. Nowadays, in literature, the work paradigm adopted by Ital-
ian official statistics seems to be the most complete and imitated. The objective of our
work is to provide, starting from the indicators of each domain, synthesis adopting a
non-aggregative approach, namely the Partial Order Set Theory (Poset). In particular,
the synthetic indicators in time series from 2010 to 2017 will be constructed for the
Italian Regions (provided by Istat using an aggregative procedure) using the posets
trying to analyse the phenomenon from a spatial and temporal perspective.

KEYWORDS: well-being, italian regions, synthesis, non-agggregative approach, poset.
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ABSTRACT: Imputing missing data from a data set is still a challenging issue both in
theoretical and applied statistics. In the context of multivariate time series, the prob-
lem of missing data becomes even more challenging due to the dependence structure
which is present in the data. Recently, a new imputation procedure for multivariate
time series has been proposed in Parrella ef al. , 2018, which uses the class of Spatial
Dynamic Panel Data models (SDPD) to model serial correlation and cross-correlation
simulanteously. This paper is aimed at discussing a residual bootstrap construction to
approximate the sampling distribution of the missing value estimators.

KEYWORDS: multivariate time series, missing values, bootstrap.

1 Introduction: the model and the imputation procedure

Let y; be a multivariate stationary process of order p, assumed for simplicity
with zero mean value, collecting the observations at time ¢ from p different
variables. Following Dou et al. , 2016 and Parrella et al. , 2018, we assume
that the process can be modeled by the following SDPD model

Yi = D(Xo)Wy, +D(M1)y—1 +D(A2) Wy, —1 +uy, (D)

where D(-) are diagonal matrices with diagonal coefficients from the vectors
Ao,M and A,, and the error process w, is serially uncorrelated. Model (1) be-
longs to the family of spatial econometric models, so it is particularly oriented
to model spatio-temporal data. The matrix W is called spatial matrix and col-
lects the weigths used in the spatial regression of each time series observation
with simultaneous or delayed observations of neighboring data. However, if
one uses a correlation based matrix W to measure variable distances, instead
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of using physical distances, one can use model (1) to analyse any kind of mul-
tivariate time series, not necessarily of strictly spatial nature.

In the following, we assume that y;,---,yr are realizations from the sta-
tionary process defined by (1). Then, we denote with X; = Cov(y;,y;—;) =
E(y:y,_ J-) the autocovariance matrix of the process at lag j, where the prime
subscript denotes the transpose operator. Let us assume that yy,--- ,yr are re-
alizations from a stationary process as in (1), not necessarily with zero mean
value. In case of processes with no zero mean, model (1) can be still used for
parameter estimation after a pre-processing step which centers the observed
time series. Let &, = (&;1,...,9;,) be a vector of zeroes/ones that identifies all
the missing values in the observed vector y;, so that 8,; = 0 if the observation
Yri is missing, otherwise it is &;; = 1.

The imputation procedure for missing values and missing sequences has
been proposed in Parrella er al. , 2018. It starts, at iteration 0, by initializing

the mean centered vector yt(o), fort=1,...,T,as

T T
v =50 (yt — y<0>) , with§® =Y §,05,/) &, (2)
=1 t=1

where the operator o denotes the Hadamard product and the ratio between the
two vectors in the formula of () is made component-wise.
Then, the generic iteration s of the procedure, with s > 1, requires that:
. ~s—=1) ~s=1) ~(s—1) . . :
a) we estimate (A, ,A; ,A, ) as in equation (8) reported in the ap-

pendix section, using the centered data {ygs_l), cee, y(TS _1)};

b) we compute, fort=1,...,7T,
) s—1 ~s=10 (51 ~(s—1) s—1
Wy ™4y Dy +DRy Wy )

~(s A(S_]
VW= by

(s 1 & - () | (s
7 = Y (Sesi+(1-8)o @ +501)) @)
=1
wWo= 8o -yY)+(1-8)03, 5)
where 1 is a vector of ones.
c) We iterate steps a) and b) with increasing s = 1,2,.. ., until
Iy -y B <, (©)

with 1y sufficiently small.

At the end of the procedure, the reconstructed multivariate time series is
given by fit(s) = yt(s) +y9.r=1,2,...,T.
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2 A Bootstrap construction for missing values estimation

The residual bootstrap approach can be effectively used to approximate the
sampling distribution of the missing value estimators. The theoretical proper-
ties of the following residual bootstrap scheme for time series can be derived
following Choi & Hall, 2000. The bootstrap algorithm can be implemented as
follows.

Denote with 9" = (y1,---,yr) the observed time series. The bootstrap

resampled time series 9 = (y7,---,y7) is built as follows.

1. Compute the residuals /sf,(s) = y,(s) —?,(S), where yt(s) is computed by the (5)

and ?,(s) is computed by the (3). The value for the index s is taken from
the last iteration of the imputation procedure described in the previous
section.

2. Obtain the bootstrap error series {€;} by drawing 7' samples indepen-

dently and uniformly, with replacement, from the centered residuals é,(‘v) =

g —g”.

3. Generate the bootstrap series y;, fort = 1,...,T, as
~x ~(s) -1 ~(s) ~(s) () %
Yi = I, =D(hg )W) [ [ D(A; ) +D(Ay )W |y, =, +¢/ |-

This bootstrap construction induces a conditional probability P,, given the
sample 9. As usual, the bootstrap distribution can be approximated by Monte
Carlo simulation, by repeating the steps 1-3 for B times and by using the em-
pirical distribution of the bootstrap replicates

(b) _ <x(b)

v =y"+3%  b=1,...B

Given the bootstrap distribution, a number of problems could be addressed
effectively. For example, it can be used to approximate confidence intervals
and confidence bands, of nominal level 1 — o for missing value sequences.
Moreover, when applying this model class to environmental pollution time
series time series, such as PMy and PM, 5, the bootstrap distribution can be
adequately used to estimate exceedance probability that the pollution levels
exceed a specific threshold (Draghicescu & Ignaccolo, 2009), as defined by
European law rules.

These lines of research are still under active developing.
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3 Appendix: estimation of model parameters

The parameters of model (1) can be estimated following Dou et al. , 2016. In
particular, given stationarity, from (1) we derive the Yule-Walker equations

(I=D(h)W)Zi = (D(M) + D(A2)W)Zo,
where I is the p-order identity matrix. The i-th row of the equation system is
(e — hoiw))Z1 = (M€ +AxW))Xo, i=1,...,p, (7

with w; the i-th row vector of W and e; the i-th unit vector. The vector
(Aoi, MisAp;)' is estimated by the generalized Yule-Walker estimator, available
in closed form,

(hoi, i Aai) = (XX) XY, i=1.2,...p, ®)
where )A(,- = (ill Wi, foe,-, fowi), SA([ = fll e; and the estimated Xy and X are

R lel . N 1 T )
Y= Z Yer1y, and Eo= — Zyzyt-
r =1 Tt:l
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ARCHETYPAL CONTOUR SHAPES
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ABSTRACT: Shapes are represented by contour functions from planar object out-
lines. Functional archetypal analysis is proposed to describe closed contour shapes.
Each contour function is approximated by a convex combination of functional con-
tour archetypes, which are a mixture of cases in the data set. Archetypes represent
extreme shape patterns and improve the interpretability of highly complex distribu-
tions. The archetypal contours of feet from an anthropometric database of the adult
Spanish population are extracted, which is useful for improving the fit in footwear.

KEYWORDS: shape analysis, archetype analysis, functional data analysis, footwear.

1 Introduction

Archetype Analysis (AA) (Cutler & Breiman, 1994) is an unsupervised tech-
nique that describes cases of a sample as a mixture of archetypes, which in
turn, are mixtures of the cases in the sample. This multivariate technique was
extended to functional data (Epifanio, 2016; Vinué & Epifanio, 2017).

Shape is all the geometrical information that remains after location, scale
and rotational effects are removed from an object. Shapes can be analyzed
from three approaches (Stoyan & Stoyan, 1994): objects can be treated as
subsets of R?, they can be described by landmarks, or by using functions that
represent their contours. Epifanio et al., 2018 propose archetypal shapes based
on landmarks. Here we propose archetypal shapes based on contour functions.
In particular, we consider the natural parametrization of the contour, i.e. when
the contour is parametrized by its arc length. This can be applied to any contour
(other contour functions have limitations (Kindratenko, 2003)).

In Sect. 2 the methodology is introduced and it is applied on a foot shape
data set in Sect. 3. The work ends with some conclusions in Sect. 4.

2 Methodology

Let X be an n x m matrix with n observations and m variables. AA seeks to
find k archetypes, i.e a kK x m matrix Z, in such a way that x; is approximated
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by a mixture of z;’s (archetypes): Z]/(‘:I o;;z;, with the mixture coefficients
contained in the n X k matrix o. Additionally, z;’s is expressed as a mixture
of the data through the mixture coefficients found in the k x n matrix B: z; =

n

Z Bjix;. To obtain the archetypes, AA computes two matrices o and 3 that

=1

minimize the following residual sum of squares (RSS): ¥, ||x; — ZIJ‘-ZI oz,
k

=Y" | — Z’J‘-Zl o Y lex1||2, under the constraints 1) Z o;; = 1 with
=1

) J
oij >0fori=1,...,nand2) Y By =1withB;; >0for j=1,....k.
I=1

2.1 Functional Archetype Analysis (FAA)

In the functional context, the values of the m variables in the standard mul-
tivariate context are replaced by function values with a continuous index f.
Similarly, summations are replaced by integration to define the inner product.
See Epifanio, 2016 for details about extension of AA to functional data.

In our problem, two functions characterize each contour, so FAA for bi-
variate functions must be considered. Let f;(t) = (x;(¢),y:(¢)) be a bivariate
function. Its squared norm is || fi[|2 = [”x;(¢)2dt + [7yi(t)2dt. Let b% and b
be the vectors of length m of the coefficients for x; and y; respectively for the

n k
basis functions Bj,. Therefore, FAA is defined by RSS = Z Ilfi — Z ozt =
i=1 j=1

Yoy i = Xy 0y Xy B fill? = Xy [l — Xy 0ty Xy B |+ Xy 1y —
Xy oy iy Bayill” = iy a*'Wa' + XL, 2"/ Wa' , where a'' = b’ -

Yh o X Bib® and @’ =b' —¥5_ oy Y7, Bjb”’, with the correspond-
ing constraints for o and ; and where W is the order m symmetric matrix with
elements Wy, m, = . f By, B, dt. In the case of an orthonormal basis, W is the
order m identity matrix, and FAA is reduced to AA of the basis coefficients.
But, in other cases, we may have to resort to numerical integration to evaluate
W, but once W is computed, no more numerical integrations are necessary.

3 Application
Knowledge of foot shape has a great relevance for the appropriate design of

footwear. It is a main issue for manufacturing shoes, since a proper fit is a key
factor in the buying decision, besides improper footwear can cause foot pain
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and deformity, especially in women. Therefore, the objective is to identify
the shapes that represent the fitting problems of the population by means of
archetypal shapes, which are extreme patterns. Then the shoe designer may
adapt the design to the measurements of the extremes of a size.

Footprints have been extracted from an database of 775 3D right foot scans
representing Spanish adult population. The anthropometric study was carried
out by the Instituto de Biomecdnica de Valencia. Data was collected in differ-
ent regions across Spain using an INFOOT laser scanner. The binary images
have been centered and scaled to remove the effects of translations and changes
of scale as explained by Epifanio & Ventura-Campos, 2011.

In order to obtain the contour functions, the tracing begins counterclock-
wise in the most eastern outline point in the same row as the centroid, using
bwtraceboundary of the image toolbox of MatLab. We normalize these func-
tions in such a way that the perimeter length is eliminated, and the functions
are defined on [0,1]. We approximate each curve by a linear combination of
51 Fourier basis (note that this basis system is periodic with period 1). All this
work has been done by means of fda library (Ramsay & Silverman, 2005). We
have therefore two pairs of functions (representing coordinates) {X(¢),Y (¢)}
for each foot, with 7 € [0, 1].

3.1 Results

FAA is applied to the database. The screeplot is represented in Fig. 1, with
the number of archetypes versus the respective RSS, and an elbow is found at
k = 3. Fig. 1 also shows the contour of the 3 archetypes and the ternary plot
(black circles and red triangles indicate women and men, respectively), where
o values are displayed. The feet distribute more densely between archetype 2
and 3. The first archetype correspond with the solid black contour, the second
one with the dashed red contour, while the third one is the dotted green contour.

4 Conclusions

AA for contour functions has been proposed. We have applied it to a novel
data set of foot images. Knowing the extreme shapes can help shoe designers
adjust their designs to a larger number of the population and be aware of the
characteristics of the users that will not be comfortable to use them, whether
to consider a line of special sizes or modify any shoe feature to cover more
customers. As future work, we can extend AA to surface functions in order to
analyze 3D foot shapes.
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Figure 1. Screeplot (left-handed). Archetypes (central panel) and ternary plot (right-
handed). See text for details.
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ABSTRACT: Random projections have recently emerged as a powerful tool to address
the computational issues posed by high dimensional or very long data-sets. They
can be applied to reduce either the number of columns or the number of rows. Be-
sides facilitating computations they have also shown relevant statistical properties. In
this work we highlight the main aspects and applications of random projections and
present the use of matrix sketching in linear discriminant analysis with a focus on the
issue of imbalanced classes.

KEYWORDS: random projections, sketching, supervised classification.

1 Introduction

High dimensional or very long datasets pose challenging issues for multivari-
ate analysis. Let’s consider an n X p data matrix X, related to p variables
observed on n units. When the number of features is large compared to the
number of units, estimates are rather unstable. When p > n most of the classi-
cal multivariate methods can no longer be applied because the involved Gram
matrix (X ' X) cannot be inverted (as it is no longer full rank). When, on the
contrary, it is the number of units to be very large, the Gram matrix can be
easily inverted but its computation becomes heavily demanding.

Reduction in the number of columns (variables) or in the number of rows
(units) can be dealt with in a unified framework resorting to random projec-
tions. Through random projections the columns of the data matrix are linearly
combined with randomly generated weights and mapped to a d-dimensional
subspace, with d < p, while approximately preserving interpoint distances. In
the same way, the rows of the data matrix can be linearly combined with ran-
domly generated coefficients, thus reducing the dataset size from n to k while
approximately preserving the inner product, i.e. the Gram matrix.

The theoretical motivation for this is given by Johnson & Lindenstfauss,
20log p

1984’s Lemma according to which given u,v C Q C R" and k = 2

bl
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where € € (0,1/2), there exists a Lipschitz mapping f : R” — R¥ such that
forallu, v e Q:

(L=e)fu—v[* <[ f(w) = fF(VIP? < (1 +e)Ju—v]?

This means that, after mapping, distances and hence scalar product are pre-
served up to a constant €.

Linear combinations generated by suitably chosen random matrices have been
proved to satisfy the lemma. When applied to the columns they are referred to
as random projections (RPs); when applied to the rows the term matrix sketch-
ing is used instead.

Besides these common features, random projections and matrix sketching
present specific characteristics which are mirrored in the algorithms based on
them. In this work we highlight the main aspects and applications of random
projections and present the use of matrix sketching in linear discriminant anal-
ysis with a focus on the issue of imbalanced classes.

2 Random projection based multivariate methods

All the most successful methods based on random projections entail the follow-
ing steps: (i) map at random the original high-dimensional data onto a lower
subspace, (ii) apply the chosen method to the dimensionally reduced data, (iii)
combine the results on (selected) RPs via ensemble methods.

Analysis in the dimensionally reduced space have successfully been ap-
plied in order to perform large covariance estimation (Marzetta et al., 2011),
supervised (Cannings & Samworth, 2017) and unsupervised (Anderlucci et al.,
2019a) classification, sparse principal components (Gataric et al., 2017) and
multiple regression analysis (Anderlucci et al., 2019b).

However useful in reducing dimensionality, random projections are highly
unstable and, exactly because of their randomness, most of them can com-
pletely miss the relevant structure in the data. Moreover, they are run to ob-
tain a final dimension d which is typically lower than the limit suggested by
Johnson-Lindenstrauss’ Lemma in order to preserve distances. Ensembles of
the results obtained on suitably chosen random projections compensate for the
instability and enlarge the dimension of the explored space, thus reaching the
lemma’s limit in an indirect way.

Ensembles have turned out to be very powerful, but they sometimes may
be redundant and may hide the role of the original variables, which is also
somehow masked by the recourse to random projections. These aspects have
been addressed in the literature (see Fortunato et al., 2017).
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3 Matrix sketching for Multivariate Analysis

When 7 is too large to allow fast computations, matrix sketching has turned
out to be an extremely useful and theoretically grounded device. It usually
involves the following steps: (i) reduce the number of rows of the data matrix
from n to k (k < n) premultiplying it by the random Sketching Matrix {S}, (ii)
apply the chosen method to the sketched data.

The similarity with the random projection strategy is striking, but one im-
mediately notices the lack of the ensemble step. Indeed ensembles are no
longer required for matrix sketching for practical and theoretical reasons. They
definitely increase the computational burden without providing better results as
the sketched dimension k is well within the Johnson-Lindenstrauss limit and
provides a sufficiently good approximation in itself.

Sketching methods have been theoretically developed and successfully ap-
plied in the context of multiple linear regression (Ahfock et al., 2017) and,
recently, of linear discriminant analysis (Falcone et al., 2019). In this paper
we propose to adopt matrix sketching in a rather unconventional setting.

In many practical contexts, observations have to be classified into two
classes of remarkably distinct size. In such cases, many established classifiers
often trivially classify instances into the majority class achieving an optimal
overall misclassification error rate. This leads to poor performance in classify-
ing the minority class.

To tackle this problem, researchers often first rebalance the class sizes in
the training dataset, through oversampling the minority class or undersampling
the majority class, and then use the rebalanced data to train the classifiers. It is
well known however that undersampling may lose some relevant information
while oversampling may lead to overfitting. As previously stressed, the main
feature of matrix sketching is that it preserves the scalar product. We propose
to use this relevant property in order to rebalance class sizes by performing
what we called Group-wise Sketching. It can be used in the classical sense
to reduce the size of the largest class, thus keeping most of the information
since all the original units are linearly combined (GwPS); but, by choosing a
sketching dimension larger than the class size, it can also be used to increase
the size of the small class thus preventing overfitting thanks to the randomness
involved in the linear combination of the units (GwPOS).

The following empirical results reported here as an example show the good
performances of the proposed method, definitely in line with the oversampling
(OverS) and undersampling (UnderS) results and with a slight improvement in
the ability to detect the small class.
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Table 1. Dataset mammography - Median values (over 200 reps)

Accuracy Sensibility = Specificity AUC

LDA 0.98 0.99 0.55 0.90
OverS 0.83 0.83 0.89 093
UnderS 0.83 0.83 0.89 093
GwPOS 0.83 0.83 090 0.93
GwPS 0.83 0.83 090 0.93

Empirical results The Mammography dataset (https://www.openml.
org/d/310) has p = 6 and n = 11,183 labeled as noncalcification (7y =
97.68%) and calcifications (1 = 2.32%). Data have been split into training
(75%) and test (25%) sets. Median values are reported in Table 1.
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ABSTRACT: In this paper we propose a variable selection method for multiple linear
regression which is based on axis-aligned random projections and accounts for partial
correlation between each predictor and the response. Performances of the proposed
method are evaluated on simulated data.
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1 Introduction

It is well known that, when dealing with high dimensional data, most of the
classical multivariate methods cannot be applied or give unreliable results and
it is known as well that when the number of observed variables p is large
the relevant information may be contained in an s-dimensional subset of the
observed variables.

In the context of multiple linear regression this means that the vector of
regression coefficients for the model involving all the p variables is sparse. The
ordinary approach for variable selection based on stepwise methods has turned
out to produce very unstable results and new alternative solutions have recently
appeared in the literature. The problem, for instance, has been addressed by
either directly applying /; norm regularization to the original data (Tibshirani,
1996) or by screening the variables to identify the most relevant ones and then
applying an /; penalty to the selected subset (Fan & Lv, 2008). The reasons
for this two-step approach lie in the high computational load inherent in the
penalized approach.

In this paper we propose a new method for variable selection in multiple
linear regression which is based on random projections. The use of random
projections to reduce the dimensionality of a data set is becoming increasingly
popular in the multivariate statistical literature. The common trait of the most
effective solutions consists in randomly combining the p columns of the data
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matrix X, thus mapping the data onto a random d-dimensional (with d < p)
subspace on which classical analyses can be performed. The results obtained
on different random projections are then summarized by ensemble methods
in order to obtain the final estimates. Successful applications include super-
vised classification (Cannings & Samworth, 2017), large covariance estima-
tion (Marzetta et al., 2011), large-scale regression (Thanei et al., 2017) and
sparse principal components (Gataric et al., 2017).

2 Predictor selection via Random Projections

In our proposal we exploit the special feature of axis aligned random projec-
tions, which represent a fast and analytically tractable way to perform random
variable selection. Given a data matrix X we consider XA where A is a p x d
axis aligned random matrix. The least squares problem is than rephrased in
terms of XA as by = argminp||y — XAb|| and many different A matrices are
considered. In particular we consider B; sets composed by B, random pro-
jections each and within each block of B, projections we chose the one for
which the fitted regression model shows the largest R>. As the matrix A is axis
aligned only a few variables will contribute to b4 in each selected projection
but combining the models fitted in all the B; top projections we can obtain a
ranking of the p variables and after cutting the ranking at the assumed sparsity
level s we identify the most relevant predictors for y.

3 Simulation Study

To study and to evaluate the performance of the proposed method, we partially
reproduce the numerical study of Fan & Lv, 2008. In particular, Fan and Lv
consider two main scenarios to validate their Sure Independence Screening
(SIS) method: independent and correlated features.

Simulation I: ‘independent features’. The first scenario considers a lin-
ear model with IID standard Gaussian predictors and Gaussian noise with stan-
dard deviation 6=1.5. Two settings with (n,p)=(200,1000) and (n,p)=(500,2000)
are considered. The number s of relevant predictors is 8 and 18, and the cor-
responding non-zero coefficients are randomly chosen as follows. Let’s set
a=4-log(n)/n1/?) and 5-log(n)/n''/? respectively; the non-zero coefficients
are of the form (—1)"a|z| for each model, where u is drawn from a Bernoulli
distribution with parameter 0.4 and z is drawn from the standard Gaussian dis-
tribution. In particular, the ,-norms P of the two simulated models are 6.695
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Scenario I: independent features
s=8 s=18
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Figure 1. Scenario 1, Distribution of the minimum number of selected variables that
is required to include the true model when (a) n = 200 and p = 1000 and (b) n = 800
and p = 2000.

and 9.582. For each model 100 data sets are simulated; the size of the pro-
jected space d is set to 10 and 500 blocks of 50 axis-aligned projections each
are considered. In order to facilitate the comparison with the results of Fan and
Lv, Figure 1 reports the distribution of the minimum number of variables to be
selected in order to include the true model. More than the 70% of the datasets
ranked the relevant variables as first. Such results clearly outperform those of
SIS reported in Figure 5 (a), page 862 of Fan & Lv, 2008.

Simulation II: ‘dependent features’. The scenario with dependent fea-
tures considers three settings with (n,p,s) equal to (200,1000,5), (200,1000,8)
and (800,2000,14), s denoting the number of non-zero coefficients. The three
p-vectors [ are generated in the same way as in simulation I. Let’s set (G,a)=(1,
2-log(n)/n\'/?), (1.5, 4-log(n)/nV/?)), 2, 4-log(n)/n'1/?)). In particular,
the I,-norms ||B|| of the three simulated models are 3.618, 6.696 and 6.788.
To introduce correlation between predictors, an s X s symmetric positive defi-
nite matrix C was generated with condition number about n(!/2) /log(n); sam-
ples of s predictors Xj, ..., X, are then generated from A[(0,C). The re-
maining predictors are taken as X; = Z; + (1 —r)X;, i =2s+1,...,p, with
r=1—4-log(n)/p,1—=5-log(n)/pand 1 —5-log(n)/p, being Zs\1,...,Z, ~
A(0,1,—s). For each model 100 data sets are simulated; the size of the pro-
jected space d is set to 10, B;=500, B,=50. Figure 2 includes the distribution of
the minimum number of selected variables that is required to include the true
model: compared with the independent case, the algorithm requires a larger
model size; however, such number is still very limited, particularly if com-
pared with that of SIS (see Figure 6 (a)-(b), page 863 of Fan & Lv, 2008).
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Scenario II: dependent features
s=8 s=14
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Figure 2. Scenario 2, Distribution of the minimum number of selected variables that is
required to include the true model when (a)-(b) n =200 and p = 1000 and (c) n = 800
and p = 2000.

4 Conclusions

This paper present a novel approach to sparse linear regression via Random
Projections that accounts for partial correlation between predictors; as the sim-
ulation studies highlight, the proposed method improves upon SIS which only
considers marginal correlations. The optimal choice of the tuning parameters,
B1, B, d, and the estimation of s are object of ongoing research.
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ABSTRACT: Random projections (RPs) have shown to provide promising results in
the context of high-dimensional supervised classification. In this work, we address
the unsupervised classification issue by exploiting the general idea of RP ensemble.
Specifically, we generate a set of low dimensional independent random projections
and we perform a model-based clustering on each of them. The top B* projections,
i.e. the projections which show the best grouping structure, are then retained. The
final partition is obtained by aggregating the chosen classifiers via consensus. The
performances of the method are assessed on a set of both real and simulated data.

KEYWORDS: high-dimensional clustering, random projections, model-based cluster-
ing.

1 Introduction

It is well known that, when dealing with high dimensional data, most of the
classical multivariate methods for unsupervised learning cannot be applied or
give unreliable results; in order to overcome this problem, often dimension
reduction procedures are applied before carrying out any clustering.

A recent method for dimension reduction that has been gaining increasing
attention is based on Random Projections (RPs) and consists in mapping at
random the original high-dimensional data onto a lower subspace by using a
matrix with orthogonal columns of unit length. Regardless of the original data
dimension, the final solution preserves the global information almost perfectly;
such a result is guaranteed by the Johnson and Lindenstrauss’ Lemma (1984).

Specifically, in the context of supervised classification, Cannings and Sam-
worth (2017) proposed a very general method for high dimensional classifica-
tion, based on careful combination of the results of applying an arbitrary base
classifier (like Linear Discriminant Analysis, k-NN, ... ) to random projections
of the feature vectors into a lower dimensional space. Such combination refers
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to the aggregation of the results of the base classifiers that yielded the smallest
estimate of the test errors. Inspired by their original idea for supervised clas-
sification, we propose to extend the procedure to the context of unsupervised
learning. Our idea is to generate a set of B low dimensional independent ran-
dom projections and to apply a Gaussian Mixture Model (GMM) on each of
them. Our Random Projection Ensemble Clustering (RPE Clu) algorithm then
obtains the final partition by combining via consensus the clustering results
from the top B* projections, i.e. the projections which show the best grouping
structure according to a given criterion.

In this work, we exploit the general idea of RP ensemble for high dimen-
sional clustering. In particular, our novel proposal consists in applying a Gaus-
sian Mixture Model (GMM) to carefully chosen random projections of the
original data, and in using the GMM properties for both projection selection
and consensus aggregation.

2 Random projection ensemble clustering

Random projections have shown to provide promising results for the analy-
sis of high-dimensional data. The main inconvenience is that they are highly
unstable; as a consequence of that, results from distinct configurations of the
same data can be dramatically different: some projections indeed can induce
a clear group structure in the lowered data, whilst some others can derail any
hope of learning by confusing all the groups together. That is the reason why,
in order to address this issue, the most successful proposals on RPs resort to
ensembles.

In principle, we search for the solution that maximizes the log-likelihood
of the GMM fitted on the original data, penalized by the number of free pa-
rameters. In practice, in order to avoid the drawbacks associated with the high-
dimensional spaces, a feasible solution consists in considering the following
variable partition

Y*=1r,Y] = [XA|XA],

where X € R™7 is the original high-dimensional data matrix, A € RP*¢
is the random projection matrix and A € R?*(P=9) is its orthogonal comple-
ment. The basic idea is to perform model-based clustering on the reduced data
Y = XA, assuming that the underlying group structure may be well approxi-
mated by the one in the d dimensions of the block matrix Y*. The projected
solutions are then ranked according to the goodness of the partition they in-
duce, measured by a specific transformation of the BIC, say BIC*.
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The final partition is obtained through the following steps:

1. Generate B independent d-dimensional random projections A, b=1,...,B,
according to a specific measure, e.g. the Haar measure;

2. Compute the BIC* for the partition C;, induced by the GMM fitted on the
projected data ¥ = XA;

3. Among the B possible solutions, select the B* projections that exhibit the
highest values for the BIC*: A = [A1;A;...;Ap+];

4. Aggregate the cluster membership vector of the best B* projections via
consensus (Hornik, 2005).

On the basis of the numerical evidence, we suggest B = 1000 and B* = 100
as good choices. A value for d equal to O(10log G) works pretty well; higher
values of d do dot noticeably improve the final performance.

3 Numerical Study on Gene Expression

The performances of the proposed method have been assessed on a set of both
real and simulated data; in order to validate the results, we compare them with
those of other clustering algorithms, such as the ‘standard’ Gaussian Mixture
Model, the K-means algorithm, the Ward’s method agglomerative hierarchical
clustering, the Partition Around Medoids, the Spectral clustering and the Affin-
ity Propagation algorithm. A further comparison is with the variable selec-
tion methodology for Gaussian model-based clustering (see Raftery & Dean,
2006). Due to space constraints, we illustrate the performance on real data
only.

The lymphoma dataset (taken from the R package spls) contains the ex-
pression levels of p = 4026 genes for n = 62 patients. The study reports that 42
subjects have diffuse large B-cell lymphoma (DLBCL), 9 follicular lymphoma
(FL), and 11 chronic lymphocytic leukemia (CLL).

The objective of the analysis is to group patients according to the corre-
sponding lymphoma diagnosis, by using the information on their gene expres-
sion levels. RPE Clu procedure is performed with B = 1000, B* = 100 and
d = |10log3 + 0.5] + 1 = 12; the number of groups is taken as known and
set equal to 3 for all the methods. Clustering results in terms of ARI are re-
ported in Table 1. As can be seen, the random projection ensemble clustering
algorithm is capable to perfectly detect the grouping structure identified by
the diagnosis. Mixture of Gaussians, K-means and hierarchical agglomerative
clustering with Ward’s method provide exactly the same (good) result, up to a
label switching.
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Table 1. ARI for the Gene Expression Data.

Method ARI
RPEClu 1.00
GMM 0.95
k-means 0.95
h-ward 0.95
pam 0.84
Clust VarSel 0.49
Specc 0.95
AClust 0.85

4 Conclusions

This paper present a novel approach to cluster high-dimensional data via Ran-
dom Projections; as the numerical results highlight, the proposed method im-
proves upon the other clustering methods. Estimating the number of clusters
is left for future work.
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ABSTRACT: In high reliability standards fields such as automotive or avionics, the
detection of anomalies is crucial. An efficient methodology for automatically detect-
ing multivariate outliers is detailed. It takes advantage of the remarkable properties of
the Invariant Coordinate Selection method.
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tion.

1 Mahalanobis distance and PCA

Detecting outliers in multivariate data sets is of particular interest in indus-
trial, medical and financial applications. Among the many existing method,
some classical detection methods are based on the Mahalanobis distance and
its robust counterpart (Rousseeuw & Van Zomeren, 1990), or on robust prin-
cipal component analysis (Hubert et al., 2005). One advantage of the Ma-
halanobis distance (MD) is its affine invariance while Principal Component
Analysis (PCA) is only invariant under orthogonal transformations. For its
part, PCA allows some components selection and facilitates the interpretation
of the detected outliers.

2 Invariant Coordinate Selection

We propose an alternative to MD and PCA in a casewise contamination con-
text when the number of observations is larger than the number of variables.
The method we consider is the Invariant Coordinate Selection (ICS) as pro-
posed by Tyler et al., 2009. The principle of ICS is quite similar to Principal
Component Analysis (PCA) with coordinates or components derived from an
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eigendecomposition followed by a projection of the data on selected eigenvec-
tors.

However, ICS differs in many respects from PCA. It relies on the simulta-
neous spectral decomposition of two scatter matrices instead of one for PCA.
While principal components are orthogonally invariant but scale dependent,
the invariant components are affine invariant for affine equivariant scatter ma-
trices. Moreover, under some elliptical mixture models, the Fisher’s linear
discriminant subspace coincides with a subset of invariant components in the
case where group identifications are unknown (see Theorem 4 in Tyler ef al.,
2009). This remarkable property is of interest for outlier detection since out-
liers can be viewed as data observations that differ from the remaining data
and form separate clusters.

Compared to the MD which has some limitations in a context where the
dimension of the data is large, ICS makes it possible to select relevant com-
ponents which removes the limitations. Owing to the resulting dimension re-
duction, the method is expected to improve the power of outlier detection rules
such as MD-based criteria. It also greatly simplifes outliers interpretation.

3 Practical guidelines for using ICS

We propose practical guidelines for using ICS in the context of a small propor-
tion of outliers which is relevant in high reliability standards fields. The choice
of scatter matrices together with the selection of relevant invariant components
through parallel analysis and normality tests are addressed. The use of the reg-
ular covariance matrix and the so called matrix of fourth moments as the scatter
pair is recommended. This choice combines the simplicity of implementation
together with the possibility to derive theoretical results. Further details and
results can be found in Archimbaud et al., 2018.
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ABSTRACT: We consider the issue of estimating the effect of schools on student
achievement when a pre-test is available. Based on Invalsi data, our focus is on the
causal effect of the lower secondary school type (public versus private) on test scores
at the 8th grade (post-test), accounting for the student test scores at the Sth grade (pre-
test). The causal effect can be estimated by either adjusting for the pre-test score (i.e.
conditioning) or by using the difference between post-test and pre-test scores (gain
score) as response variable. The performance of the two approaches, in terms of bias
and efficiency, depends on several factors, such as pre-test reliability and validity of
the common trend assumption. We compare the two approaches by an application
using Invalsi data and by a simulation study.

KEYWORDS: causal effect, Invalsi achievement tests, multilevel model, random
effects model.

1 Introduction

We consider the problem of estimating the school effect on student achieve-
ment, when a pre-test is available. Our work is inspired by Invalsi achievement
tests implemented at the 5th grade (end of primary school) and 8th grade (end
of lower secondary school) in Italy. We merge students with scores on these
two grades to assess the school value added based on the progress from grade
5th to grade 8th. Specifically, we aim to evaluate if the school effect is different
between public and private schools.

Two main methodological approaches have been considered in the litera-
ture to deal with the estimation of a causal effect when pre-test measures of
the outcome are available (Kim & Steiner, 2019). The first approach consists
in estimating the effect of the variable of interest on the post-test score, condi-
tionally on the pre-test score (conditioning approach). In the second approach,
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the analysis is conducted on the gain score, namely the difference between the
post-test and the pre-test scores (gain score approach).

In the causal inference literature, the conditioning approach is implemented
via regression models or matching on the pre-test score, which can be re-
garded as methods to remove confounding, when conditioning on the pre-test
score is sufficient to make the unconfoundedness assumption plausible (Arpino
& Aassve, 2013). On the other hand, the gain score approach is related to
difference-in-difference methods, which are devised to remove the effect of
unobservable confounders under the assumption that such confounders have
a time invariant effect, known as common trend assumption. In such a case,
taking the first difference of the outcome removes confounding (e.g., Lechner,
2011).

Recently, Kim & Steiner, 2019 reconsidered the choice between the con-
ditioning and gain score approaches. They consider a linear data generating
model with constant effects across units. The treatment variable Z affects the
post-test score Y, while an unobservable ability A affects both Z and Y. Thus,
A is an unobserved confounder. In addition, the ability A affects the pre-test
score P. If P is a reliable measure of A (i.e. the Cronbach alpha is high),
conditioning on P removes most of the confounding effect of A. On the other
hand, a low pre-test reliability suggest to consider the gain score approach,
which is not affected by the reliability. However, the gain score approach is
based on the common trend assumption. The authors derive formulas for the
bias of the causal effects estimators under the two approaches, highlighting
the assumptions required for unbiasedness. They also consider other scenar-
10s, in particular a direct effect of the pre-test score on the treatment variable,
which makes more problematic the assessment of the bias under the gain score
approach.

In this contribution, we compare the two approaches, based on condition-
ing and gain scores, in a more complex setting with hierarchical data. Specifi-
cally, we consider students (level 1 units) nested within schools (level 2 units),
where ability, pre-test and post-test scores are level 1 variables, while the treat-
ment is a level 2 binary variable (public vs private school). Moreover, we
investigate through a simulation study the performances of the estimators in
terms of both bias and efficiency.

2 Case study

We aim at evaluating the effect of the Italian lower secondary schools on stu-
dent achievement measured by Invalsi tests, focusing on the differences be-
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tween public and private schools. To this end, we alternatively apply the con-
ditioning and the gain score approaches, outlined in Section 1.

The data set collects information on a cohort of students that participated to
the Italian language and mathematics Invalsi tests at grades 5th and 8th (i.e., the
last year of the primary school and the last year of the lower secondary school,
respectively). The data set has been obtained by merging data on students who
attended the 5th grade in school year 2013-2014 with data on students who
attended the 8th grade in school year 2016-2017. We retain data on students
present in both occasions. The resulting data set consists of 436889 students
who took part on both occasions: 427950 participated to both occasions of the
language test, 427256 participated to both occasions of the math test. A subset
of 418330 students participated to both occasions of both tests.

The students are nested in 5777 Italian schools. The average number of
tested students per school is 103.91 with a standard deviation of 54.97 (min
= 1; max = 334).

Each of the two achievement tests is composed of a set of items measur-
ing the unobservable ability in language and mathematics, respectively. Items
are dichotomously scored, with value 1 for a correct answer and value O for a
wrong answer. The selection of the set of items relies on internationally vali-
dated methods based on the Rasch model (Rasch, 1960). For this reason, the
ability level of a student is measured by the raw score (i.e., the total number of
correct answers to the test items). As the number of items is different across
subject areas (language and mathematics) and grades, we divide the raw scores
by their maximum so that they are normalised in the range 0-100.

Several background variables are available both at student and school lev-
els. Student covariates include gender, citizenship, and marks in language and
mathematics resulting from the school reports. Data also include information
about the parents educational level and job condition, which are exploited by
Invalsi to define an index of the socio-economic status. In addition, a wide
set of indicators measured at the end of the 5th grade provides information on
student material deprivation, motivation and interest in learning, and relations
with the class mates. School characteristics include information on the geo-
graphical location (municipality, urban area, altimetric area, and population
density), the average number of students per class and the type of school (pub-
lic vs private). Other school level variables are obtained averaging the student
level characteristics (e.g., proportion of immigrants per school).

We specify a multilevel model (Goldstein, 2010) with students at level
1 and schools at level 2. In order to compare the conditioning and the gain
score approaches, we specify two versions of the model. In the first version,
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the response variable is the post-test score (8th grade test), while the pre-test
score enters as a covariate. In the second version, the response variable is the
gain score (difference between the 8th and 5th grade tests), while the pre-test
score is omitted from the covariates. Both versions of the model include the
treatment variable, that is the indicator of the type of school (public vs private),
as well as student and school characteristics.

3 Simulation study

The results of Kim & Steiner, 2019, described in Section 1, are based on a
very simple setting that may be unrealistic in some circumstances. For exam-
ple, in our application on Invalsi data (Section 2) the treatment variable is bi-
nary rather than continuous and the data have a hierarchical structure requiring
random effects modelling. In such type of setting, it is not possible to obtain
analytical results in closed form, thus we perform a simulation study to inves-
tigate the properties of the causal effect estimators under the conditioning and
gain score approaches. The performance of the two approaches in terms of bias
and efficiency of estimators is evaluated under different conditions depending
on: pre-test reliability, validity of the common trend assumption, heterogeneity
of the causal effects, and direct effect of the pre-test on the treatment variable.
The simulation set-up mimics our case study on Invalsi data.
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ABSTRACT: The paper presents a series of robust parametric and non-parametric pro-
cedures for the transformation of positive and negative observations. The methods are
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1 Introduction

The parametric family of power transformations analysed by Box & Cox, 1964
is widely used for the transformation of non-negative responses to approxi-
mate normality. Advantages of such transformation include the availability of
software to analyse data from a wide range of models and the simplicity of
inferences based on the normal distribution. Non-parametric alternatives use
smoothing to find a transformation. Neither procedure is robust; the estimated
transformation can be strongly affected by outliers and influential observa-
tions. The purposes of the work of which this is an extended abstract are:

1. Todescribe extensions of the Box-Cox transformation to responses which
can be positive or negative.

2. To use the forward search, Atkinsehal., 2010, to provide a robust
method of data analysis in which outliers are detected.

3. To use a graphical display, the fan plot, to detect observations influential
for the estimated transformation.

4. To investigate two non-parametric methods: ACE - Alternating Condi-
tional Expectations, Breiman & Friedman, 1985 and AVAS - transforma-
tions for Additivity And Variance Stabilisation, Tibshirani, 1988.

5. To show the extension of the fan plot to investigating transformations
of positive and negative responses and to illustrate its use in checking
proposed transformations.
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6. To provide a robust analysis of ACE and AVAS by comparirggtwith
parametric transformations over values of the transfaongiarameter.

7. Tollustrate these methods on a set of well-behaved imer# fund data
and on the data with appreciable contamination.

2 Extended Parametric Transfor mations

The normalized form of the Box-Cox transformation is

(2 -1/ (N#£0); ylogy  (A=0), (1)

wherey is the geometric mean gfandJ, the Jacobian of the transfroamtion
is given by logl = n(A — 1) logy. The linear models is

Z(A) = XB(A) +¢, (@)

whereX isnx p, Bis ap x 1 vector of unknown parameters and the variance
of £ is 0%. For comparisons of estimates of parameters for differahies

of A, many authors, starting with Box & Cox, 1964, stress the irtggwe of
working with z(A).

Yeo & Johnson, 2000 extended the Box-Cox transformationb&eva-
tions that can be positive or negative by using different-Bmx transforma-
tions for the two classes of response. The normalized wamsttion for their
single parameter family is given by Atkinsehal., 2020, where the Jacobian
is now a more complicated function of the observations.

3 Robustness and the Fan Plot

We use a robust procedure, the Forward Search Atkiesah, 2010 to order
the data by closeness to the fitted model. The procedurs fiam a carefully
chosen subset afy = p+ 1 observations and moves forward increasing the
subset sizen by introducing the observation, not used in fitting, thatlcsest

to the fitted model, until all observations have been fitteditli€rs, if any,
enter at the end of the search. The outliers detection puoedd described,
for multivariate data, by Riargt al., 2009. The understanding of outliers is
helped by brushing linked plots.

Outliers in one value ok may not be so for some other values. We there-
fore need to repeat the forward search for a grid of values. ofFor each
resultant ordering of the data we monitor evidence for theectness of the
transformation asn increases. We avoid repeated calculatiorh dfy use of
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an approximate score statistic. Taylor series expansidinedinear model (2)
about the valu@ leads to the approximate model

Z(Ao) =X B+YyW(Ao) +&, ©)

where the constructed variablg\) = 0z(A) /0A. The approximate score statis-
tic for testing the transformation is thestatistic for regression om(Ao) in (3)
in the presence of all other variables.

Atkinson et al., 2020 derive constructed variables for the one-parameter
Yeo-Johnson transformation. They further derive constdicvariables for
testing whether positive and negative observations reghig same transfor-
mation. These come from the extended transformation inhvbie kind of
response has paramelet o and the othel. The test is fox = 0.
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Figure 1. Investment fund data, fan plots from Yeo-Johnson transformation. Upper
panel, fan plot for single parameter distribution indicating the overall transformation
A = 0.7; lower panel, extended fan plot for A = 0.7 suggesting different transforma-
tions for positive (upper trajectory) and negative responses

4 Some Data Analysis
As a brief illustration of the fan plot and its extension weega small part of

the analysis of the performance of 309 investment fundsf @hich have neg-
ative performance. The purpose is to relate the medium temformance to
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two indicators. The upper panel of Figure 1 suggests an bwenasformation
with A = 0.7. The horizontal bands are the 99% confidence intervals for the
score test. Although the value of 0.7 is acceptable at theoétite search it is
rejected aroundh = 200. The lower panel of the figure indicates that different
transformations are needed for positive and negative wésens.

The strategy now is to try sets of pairs of values of the patarador
transformation of the positive and negative valigsandAy. When we have
found the correct transformation, the fan plot of the transied data indicates
that no further transformation is required; that is we attle@ valueh = 1 in
this fan plot. The analysis of extended fan plots with thiategy led to the
valuesAp = 1 andAy = 0, which is not the log transformation for negative
variables. With this transformation all three trajectsria the extended fan
plot are close together, lying within the bounds throughtbet search. This
is also the strategy we apply to evaluating the transfoonatfrom ACE and
AVAS.
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ABSTRACT: We introduce mixtures of multivariate leptokurtic normal (LN) ¢
tributions as a tool for robust model-based clustering in the presence of mild ot
Compared to the normal distribution, the LN has an additional parameter and, ac
geously with respect to the existing elliptical heavy-tailed distributions, the addri
parameter directly corresponds to the quantity of interest, namely, the excess k
We outline an EM algorithm for maximum likelihood estimation of the paramete
the mixture. As an illustration, we analyze the well-known Old Faithful geyser d

KEYWORDS: Leptokurtik normal distribution, mixture models, EM algorithm.

1 Themod€

A d-variate random vectoX follows a leptokurtic normal distribution wit
mean M, covariance matrixZ, and excess kurtosifd, in symbols
X~ LN 4 (W Z,B), ifits density is given by

fx (GWZP) =qtB) oK), xeRY 1)

where@(-; 1, Z) is the density of a-variate normal random vector with p
rametergtandZ, andq(t; B) is defined as follows

B 2 51
tB)=14+4—7—1|t°—2 2t 2 t=(X—W)'X 1.
6B =1t ggg 2 [ 2@ +2t+dd+2)], == (x—W)
(2)
The kurtosis ofX ~ LA 4 (W, Z,B) is d(d+2) +B. So, B directly repre-
sents the excess kurtosis. Such a parameter must satisfy the corfstee
[0,min(4d,4d(d + 2)/5)], which is the intersection of two constraints:
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i) Be€[0,4d], which assures thdk (-; 4, Z, B) is a positive elliptical density;
i) Be[0,4d(d+2)/5], which guarantees thdk(-; W, Z, ) is unimodal.

For ad-variate random vectdX, a finite mixture of MLN distributions can
be written as

K
pPx8) = mf(xu Zj,B), 3)
=

whereT; is the mixing proportion of thgth component, withi; > 0 and
le(zl'r[j =1, f is defined as in (1), anft contains all the parameters of the
mixture. As a special case, wh@n= 0 for eachj = 1,...,k, we obtain clas-
sical mixtures of multivariate normal distributions.

2 An EM algorithm for maximum likelihood estimation

Let X1,...,X, be a random sample from model (3). To find maximum likeli-
hood (ML) estimates for the parameters of our model, we adopt the classical
expectation-maximization (EM) algorithm. We need to introduce an indica-
tor vectorz, = (z1,...,zx)’, wherez = 1 if X, comes from componerjtand

zj = 0 otherwise. The values af; are used for the definition of the following
complete-data log-likelihood

n k n k
0®) =3 5 zin(m)+3 3 aiin[f (k0] (4)
I=1]= I=1]=

which is the core of the EM algorithm. The EM algorithm iterates between
two steps, one E-step and one M-step, until convergence.
The E-step on théq+ 1)th iteration requires the calculation of

By (2 %] =77 =¥ 1 (x: W, 27, 87) /p(x:89). ()

Then, by substituting;; with zfj‘” in (4), we obtain the conditional expectation
of the complete-data log-likelihood, s&)(8) = Q1 (1) + Q2 (), where the
two terms on the right-hand side are ordered as the two terms on the right-hand
side of (4), beingt= (Ty,..., k) andp =9\ T

The M-step on the same iteration requires the calculatid®fY as the
value of & that maximizesQ(9). As Q;(m) and Q. () have zero cross-
derivatives, they can be maximized separately. MaximiZagm) with re-
spect tam, subject to the constraints on those parameters, yields

n
V=549 /n j=1.. .k (6)
A
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Maximizing Q2 () with respect tap is equivalent to independently maximize
each of th&k weighted log-likelihood functions

Q; (u,-,z,-,Bj);Zla(ﬁ)m[f(xi;u,-,z,-,Bj)], (7)

with respect tqy;, Zj, andBj, j = 1,...,k. Details about the maximization of
Q>j can be found in Bagnatet al. (2017).

3 Application: Old Faithful Geyser

We analyze thgeyser 2 data set accompanying theust package foRR, a
bivariate ¢ = 2) data set containing the eruption lengths and the corresponding
previous eruption lengths for= 271 eruptions of the Old Faithful Geyser.

We provide a comparison with (unconstrained) finite mixtures of some
well-established multivariate elliptically contoured distributions. In particu-
lar, fork =1,...,6, we estimate: 1) mixtures of multivariate normal distri-
butions (MNMs), 2) mixtures of multivariate distributions (MMs; Peel &
McLachlan, 2000), 3) mixtures of multivariate contaminated normal distri-
butions (MCNMs; Punzo & McNicholas, 2016), 4) mixtures of multivariate
power exponential distributions (MPEMSs; Zhang & Liang, 2010), anchix}
tures of multivariate leptokurtic normal distributions (MLNMs).

Table 1 compares the best BIC value, and the associated vdtupéach
of the competing models. The best model is the MNM wita 5 components,

Table 1. Best BIC values, and associated value of k, for the fittedungist

MNM MtM MCN MPEM MLNM

k 5 4 3 3 4
BIC -1113.080 -1118.659 -1139.531 -1145911 -1115.995

while the worst is the MPEM withk = 3 components. However, the clustering
provided by the former model (see Figure 1(a)) is not as expectedrang®
group seems to be composed by two well-separated subgroups, beio§ one
them very overlapped with the blue group. Motivated by these results,ake lo
for a different model. The second best MNM, having B¥C-1128001, has

k = 3 components; compared with the BIC values in Table 1, this MNM is
no more the best one. So, the overall second best model is the MLNM with
k=4 components (see Figure 1(c) for the obtained clustering). For theemblec

MLNM, the estimates of the excess kurtosis for the four componen{3;are
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9.768- 108 (refer to the black bullets in Figure 1(cPp = 1.282- 1076 (red
bullets), [33 = 2.339 (green bullets), anﬂ4 0.972 (blue bullets); therefore,

it seems that two of the obtained clusters need heavier tails than the normal
ones. For completeness, Figure 1(b) displays the clustering resultsambtain
for the MLNM with k = 3 components (BIG- —1119837). As we can note

by the green bullets in Figure 1(b), the small cluster on the left-down corner
is captured by the tail of the MLN distribution located on the cluster on the
right-down corner; this is confirmed by the estimated excess kurtosis bf suc
a component which is almost 6.4, which is the maximum excess kurtosis the
MLN distribution can reach in the bivariate case.

(8) MNM: k=3 (b) MLNM: k=3 () MLNM: k=4

Figure 1. Clustering results for some MNM and MLNM models.
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ABSTRACT: This paper outlines a way for finding the consensus ranking minimizing
the sum of the weighted Kemeny distance, using positional weights. The weighted Ke-
meny distance, introduced by Garcia-Lapresta and Pérez-Roman, meets the original
Kemeny-Snell axioms and it is fully applicable in treating weak orderings. A differ-
ential evolution algorithm is ad-hoc defined in order to detect the consensus ranking,
namely that ranking that best represents the preferences expressed by a set of individ-
uals.

KEYWORDS: preference rankings, genetic algorithms, consensus ranking, weighted
distance.

1 Introduction

Preference data are analyzed in several fields, such as political and social sci-
ences, behavioral sciences, economics, and computer science. They are gen-
erally expressed through either ordering (when a person places in order a set
of items according to his/her preference), or rank vectors (when an individual
assigns a rank to each item). Even though their meaning is different, these
terms can be used interchangeably (Marden, 1996).

In the specific, m judges could express their preference on n items by as-
signing values from 1 to n, where 1 represents the most preferred item and
n the object in the last position. If the whole item set is judged and a judge
assigns a different rank to the items, a full ranking is furnished. When a judge
assigns the same value to two or more items, the resulting ordering is called
tied (or weak) ranking. Lastly, if judges express their preference for an items
subset only, the ordering is called partial ranking (D’ Ambrosio et al. , 2017).
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Often, the goal is to find the ranking that best represents the preferences
stated by the individuals. This goal is known as consensus ranking problem, or
Kemeny problem, or rank aggregation problem. When there is a large number
of objects to be ranked, the solution of the stated problem can be really com-
plex, falling in fact into the category of Non-deterministic Polynomial-time
(NP) hard problems (Bartholdi III et al. , 1989). The solution is indeed carried
out in a space of dimensions equal at least to the number of all possible per-
mutations of items. Note that if there are tied rankings, the searching space is
larger and larger than the space of permutations (D’ Ambrosio ef al. , 2019).

In order to carry out the search for the ranking that is most in agreement
with the others, it is possible to follow two aggregation approaches: the ad hoc
methods (de Condorcet, 1785) and distance-based methods.

This paper focuses on the distance-based approach to find the consensus
ranking that is the ranking that minimizes the sum of a given distance between
itself and all the orderings in a data matrix. Several distance measures for rank-
ings have been defined. The most used measures are based on the geometric
representation of the permutation set, that is called permutation polytope. It is
a convex hull of a finite set of points in R”, whose coordinates are the permu-
tations of n distinct numbers (Thompson, 1993). The permutation polytope is
an (n— 1) dimensional object and for such reason it can only be represented
for n = 3 or with n = 4 (D’ Ambrosio et al. , 2015). The distance between
two vertices corresponds to the minimum number of transpositions of adjacent
objects needed to transform one ranking into another (Heiser, 2004).

Probably, the most known distance for rankings is the Kendall distance
(Kendall, 1938), which is the natural measure defined on the permutation poly-
tope. For two rankings, it is equal to the total number of steps to migrate from
the first to the second ordering by reversing adjacent pairs of objects (Heiser,
2004). If ties are allowed, it is better to use the Kemeny distance (Kemeny &
Snell, 1962), which counts the number of interchanges of couples of elements
that are required to transform one (partial) ranking into another (Emond &
Mason, 2002). Kemeny and Snell defined the median ranking as that ranking
S that minimizes the sum of the distances between itself and all the other m
rankings R:

§:argmin2d(S,R,-), (D
Sez" =

where Z" represents the universe of rankings with n items.
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2 Weighted Kemeny distance and Differential Evolution algorithm

Garcia-Lapresta and Pérez-Romén (2010) introduced the possibility of weight-
ing the discrepancies between weak orderings. They demonstrated that the Ke-
meny distance doesn’t consider whether the judges’ choices diverge in relation
to the objects classified in the first positions rather than in the last ones.

Let A and B be two rankings of n items. Let w be a set of (n — 1) positional
weights, which equal for both rankings with the restriction that wy > wp > ... >
wy—1 and };w; = 1. Let a;; and b;; be the elements of the score matrices (Ke-
meny & Snell, 1962) associated with the rankings A and B. Garcia-Lapresta &
Pérez-Romdn, 2010 defined the weighted Kemeny distance that can be formu-
lated as follows:

d"(A,B) = % ( Y, wilal - b}j‘)‘ + Y, wila] —b) D G
i<j=1 i<j=I

where the subscripts (A) and (B) mean that the orderings B and A are ordered

with respect to rankings A and B, respectively.

Recently, D’ Ambrosio et al. , 2017, proposed a Differential Evolution al-
gorithm aimed at the detection of the consensus ranking for complex problems
(i.e., with n > 200) called DECoR. Here, we modify the DECoR algorithm so
that we can find the solution by minimizing the weighted Kemeny distance.
The behavior of the algorithm is checked through both a simulation study and
applications to well-known data set.

The goal of the experimental evaluation is understanding the role of the
positional weights in detecting the consensus ranking and, at the same time,
providing a flexible tool for complex problems in which the (weighted) con-
sensus ranking detection is the starting point for other kinds of analysis, as in
recursive partitioning methods (Plaia & Sciandra, 2017).
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ABSTRACT: This work introduces a multi-group Principal Component Analysis, in
analogy with the linear predictor as in the general linear mixed model approach.

Estimating PCs simultaneously in different groups provides a joint dimension re-
duction solution (Flury, 1988, Hirdle and Simar, 2015), representing the so-called
Common Principal Components (CPC). The literature proposes two types of CPC -
one for independent groups (Flury, 1984), and the other for dependent groups (Neuen-
schwander and Flury, 2000).

The CPC basic assumption is that the space spanned by the eigenvectors, that
leads to a joint eigenstructure across the structure, is identical across groups, but in
practice variances associated with the components are allowed to vary. Some re-
cent approaches address this issue incorporating the analysis of the differences among
groups in the Structural Equation Modeling (SEM) framework (Bechger et al., 2014).
Gu and Wu ()2016) propose to exploit a state-space model analysis (Dolan et al, 1999).

We present a model-based solution to some of the issues of the multi-group PCA.
We refer to this approach as Predictive PC (PPC) as the PC loadings and scores are
based on the results of a Singular Value Decomposition of the matrices of a linear
model predicted values. The empirical predictor is given by an extension of the
distribution-free variance least squares method to an iterative multivariate response
algorithm.

KEYWORDS: Principal components, linear mixed model, empirical best linear unbi-
ased predictor, variance least squares.
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ABSTRACT: One of the major developments in the last two decades in the field of recursive
partitioning was the use of “hybrid” tree models. These methods have the structure of a
traditional non-parametric decision tree, but a parametric regression model is fitted within
each node of the tree, instead of a constant value. The aim of the present work is to illustrate
the use of a new class of flexible model-based trees for count data, where the novelty is to
allow different regression models to be fitted in different nodes. In each node, partitioning is
performed using the model which better locally fits, instead than the one which better
globally fits. A performance-complexity assessment of this method on simulated data is
reported, comparing the proposed flexible model-based tree for count data to the standard
model-based tree that uses the same model in each node.

KEeywoRDs: model-based trees, count regression, regression trees, model selection.

1 Rationale and aim of the research

Since their introduction in the mid 60’s, but mostly following their diffusion in the
mid 80’s, recursive partitioning methods are widely used in applied research. A
major advantage is the interpretability of their decision tree structure, which gives
the potential to easily communicate the result of the statistical analysis.

One of the major developments in the last two decades in this field was the use
of “hybrid” tree models (Loh, 2014). These methods have the structure of a
traditional non-parametric decision tree, but a parametric regression model is fitted
within each node of the tree, instead of a constant value (e.g. the arithmetic mean).
This gave birth to a new class of recursive partitioning methods - which in this work
are named model-based trees — aimed at finding subgroups that have different values
of a model’s parameters. Indubitably, this gives the possibility of a great
customization of the splitting criteria, since researchers can specify a domain-
specific regression model and perform recursive partitioning with respect to one or
more of this model’s parameters. The key point is setting a model’s equation which
leads to the estimation of parameters that have a straightforward and relevant
interpretation, with respect to the scope of the analysis. Some recent proposal of this
kind were made, among others, in the field of medical and health statistics. These
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were focused on the identification of subgroups of patients that have differential
treatment effects in randomized and observational clinical trials (Seibold et al.,
2016) (Loh et al., 2015) and also in individual-level meta-analysis of clinical trials
(Fokkema et al., 2018).

Despite the fervent research activity in this field, the current available model-
based trees are mainly based on fitting the same model in all nodes of the tree. In
particular, the same distribution for the response variable is assumed, and the
model’s independent variables are often kept fixed. However, since to find different
data patterns is a goal itself in recursive partitioning, the use of a fixed model in all
nodes has not to be considered as the only possibility. Instead, it could be possible
that different model, e.g. models that suppose different distribution for the response
variable, can fit better in different subsets of data, during the recursive partitioning
procedure. Hence the need for the study and assessment of the possibility of
selecting different models in different nodes of a model-based tree.

Therefore, based on these considerations, the aim of the present work is to
illustrate the use of a new class of flexible model-based trees, where the novelty is to
allow different regression models to be fitted in different nodes. In particular, the
work is focused on the study of these flexible model-based trees for a count response
variable, as this latter can be described by several alternative statistical distributions.

2 Flexible model-based trees for count data

In the model-based tree literature, one of the most promising methods for
exploratory analysis of subgroups which differ for the values of a model’s
parameters is the Model-Based Recursive Partitioning (MOB), which was
exhaustively described in (Zeileis et al., 2008).

This general, unbiased and broadly applicable recursive partitioning method is
based on a class of parameter instability tests - M-fluctuation tests - for detecting
different values of a model’s parameters. Given the flexibility and adaptability of
this method, several researchers have proposed the use of particular classes of
models for use within the MOB algorithm. Some examples are: the generalized
linear model-based tree described in (Rusch & Zeileis, 2013); the generalized linear
mixed model-based tree in (Fokkema et al., 2018); the beta model-based tree in
(Grun et al., 2012); the Rasch model-based tree in (Strobl et al., 2015).

All of these implementations share a common principle, which is to use the same
model across all nodes. Define M(Y, X, 8) as the chosen regression model to be
fitted in the nodes, where Y is a count dependent variable that follows a fixed
parametric distribution, X is a vector of independent variables and 8 is a vector of
regression parameters. The traditional model-based tree seek for a partition of the
covariate space, where each subgroup has an associated model and a node-specific
vector of parameters. The result of such a model-based tree T can be seen as a
segmented (or piecewise) model:

M*(Y,X,0%), t=1,..,|T|
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where M*(Y, X, 87) is the parametric regression model fitted in generic node 7, 67 is
a vector of node-specific regression parameters in node t, T is the subset of terminal
nodes of T and |T| is the cardinality of the tree (the number of its terminal nodes).

Regarding the general structure of the newly proposed flexible model-based tree,
this is the same of MOB, preceded by a preliminary model choice step in each node.
It then consists in five steps, which are iteratively performed: 1) to fit D >
1 different regression models to all observations in the current node 7 and to select
the best fitting one among them; 2) to fit the selected regression model to all
observations in the current node, in order to estimate 6%; 3) to assess whether the
parameter estimates 8 show parameter instability; 4) to detect the partitioning
variable which is associated to the maximum parameter instability; 5) to find the
best binary split. The five steps are repeated recursively until stopping or pre-
pruning criteria occur. The first step is the novelty proposed in this work, whereas
those that follow are the original steps of MOB. The results of such a procedure is
not a segmented model in its previously described form, because of the different
underlying distributions. However, provided that the different models are expressed
in terms of parameters with the same interpretation, the result of the flexible model-
base tree is a segmented model of the form:

M (Y, X,0%%), 7=1,..,|T|

where M™% (Y, X,0%9) is the best-fitting parametric regression model d, in the
generic node 7 and 8%% is a vector of node-specific regression parameters estimated
from the best-fitting model d in node t.

In the present work, the attention was focused on a flexible model-based tree for
count data. Four models (D =4) of common use in count data analysis are
considered in each node: Poisson, Negative Binomial (NB), Zero-Inflated Poisson
(ZIP) and Zero-Inflated Negative Binomial (ZINB) models. Each of these models is
nested within another one - with ZINB being the more general case. As a
consequence, the splitting criterion always looks for differential values of 6,
whatever model is used to estimate it. The partitioning criteria are therefore coherent
across all nodes, even if the models are different. Recursive partitioning via this
method is still based on the search for differential model’s parameters, like the
standard model-based trees; rather, these parameters are estimated in each node
according to the model which better locally fits, instead than from the one which
better globally fits.

3 Planning of an experimental design for performance-
complexity comparison of model-based trees on
simulated data

The proposed flexible model-based trees for count data are compared to the standard
model-based trees that use a fixed count data model in each node. This is a
performance-complexity comparison, where the statistical performance is assessed
as a function of the complexity of the tree (the number of terminal nodes). In order
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to do that, a sequence of nested subtrees Ty 2 T; 2 - D Ty, |Tol > |Ty| > -+ >
T, m + 1 < |T| is identified via post-pruning of the model based-trees, following
a bottom-up procedure.

The comparison is carried out by assessing performance-complexity curves on
simulated datasets in the field of medical and health statistics.
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ABSTRACT: The main goal of the article is to discuss methods based on the Euclidean
distance which can be used during the identification of financial frauds. The methods
enable assessing data conformity to Benford’s Law, within the primary tests of this
law. After discussing techniques based on the Euclidean distance, an example of
accounting fraud detection is presented.
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1 Introduction

Benford’s Law deals with the probability of the occurrence of significant digits in
numbers. The law was discovered by S. Newcomb (1881) who noticed that there are
more numbers that start from lower digits than from the higher ones. Exactly the
same observation was also made by F. Benford (1938).

Let D, be the first significant digit of a number. The probability that a number
has the first significant digit d, is calculated in the following way:

P(D; = d;) =log;o(1 +d7h), @
where d, € {1, 2, ..., 9}.

Similarly, let D, D, denote the first two significant digits of a number. Then, the
probability that the first two significant digits of a number equal d,d, is calculated
as follows:

P(D,D, = did;) =logio(1 + (d1d2) ™), )
where d,d, € {10, 11, ..., 99}.

One of the applications of Benford’s Law is to use it as a tool in fraud detection
procedures. M. Nigrini (2012) classified Benford’s Law tests into three main
categories: the primary tests, the advanced tests, and the associated tests. The idea of
the primary tests is to verify whether an empirical distribution of digits in numbers
conforms to Benford’s Law or not. Some of the methods employed in this kind of
evaluation are very popular (e.g. the Kolmogorov-Smirnov test, the chi-square
goodness of fit test), while other techniques (e.g. tests based on distance measures),
are less known.
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The main objective of the article is to present methods based on the Euclidean
distance which can be applied during the assessment of data conformity to Benford’s
Law in the process of detecting financial frauds. Moreover, an example of detecting
irregularities in accounting data is presented.

2 Methods based on Euclidean distance

W.K.T. Cho and B.J. Gaines (2007) proposed the following measure based on the
Euclidean distance when checking data conformity to Benford’s distribution;

211/2
d= [231=1(Pd1 - Wdl) ] ) (3)
where: p,, is the probability of appearance of digit d,, resulting from Benford’s
Law (see: equation (1)), w,, denotes the observed relative frequency of digit d, in a

data set consisting of n records.

Dividing d by the maximum possible distance between two distributions, one of
which is Benford’s distribution and the other is the distribution where only digit 9
appears (i.e. a digit which is expected to occur the least often according to Benford’s
Law), W.K.T Cho and B.J. Gaines obtained:

d* = d/[38,.1p%, + (1 = po)?]" = d/1,0363. )

The measure d* can take on any value from 0 to 1. The lower the value of d*, the
higher conformity to Benford’s Law.

Deliberations presented in (Cho and Gaines (2007)) concentrate on the first

significant digit. However, it is possible to extend them to the first two significant

digits case. Thus, we have:
1/2

d = [Z?i?dzﬂo(pdldz - Wdidz)z] ’ ©)
and

d* = d/[538 ay10Pha, + (1~ Poo)?]"” = d/1,0041, (6)
where pg, 4, and wg, 4, are the probability of appearance of digits d,d, (resulting
from Benford’s Law; see: equation (2)) and the observed relative frequency of digits
d,d, in a data set consisting of n records, respectively.

J. Morrow (2014) introduced the measure (3) to a hypothesis-testing framework.
So as to verify the null hypothesis that the first significant digit distribution stays in
accordance with Benford’s distribution, against the alternative hypothesis that the
first significant digit distribution does not conform to Benford’s distribution, one
uses the statistic:

2
D‘l’l = \/ﬁ\/zzlzl(wd1 - pd1) ' (7)
In his paper, J. Morrow gives also critical values for the above written statistic.

An analogous statistic, but this time focused on the first two significant digits
distribution analysis, takes the following form:

2
Dy = V52 s Wty = Psas)’ ®
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D.W. Joenssen and T. Muellerleile (2015) created in R environment the package
‘BenfordTests” which enables, among others, the analysis of the first significant
digit distribution and the first two significant digits distribution.

3 Example

In our study we used data set A which contained 12,104 foreign revenues from the
sales of finished products in 2016 in a certain company. The conducted analysis was
based on the examination of the first two significant digits distribution. In the case
of the statistical test based on the Euclidean distance, the p-value was calculated by
means of the bootstrap technique, assuming 10,000 replicates.

Since the company’s financial statements for 2016 were accepted without any
reservations by an auditor, the expectation was that the financial data, including the
foreign revenues, was the result of the proper accounting process, and therefore the
data should follow Benford’s distribution. Indeed, at the 0.05 level of significance,
the Euclidean distance test did not permit to reject the null hypothesis stating that
the distribution of the first two significant digits of foreign revenues conforms to
Benford’s distribution (D,, = 1,0736, p-value = 0,1653).

Next, a certain accountant (who did not know Benford’s Law) was asked to
commit fraud by adding 121 falsified records to data set A. Thus, a new data set
(data set B) contained 12,225 foreign revenues. The results of the Euclidean distance
test (D,, = 1,1472, p-value = 0,0470) led to the conclusion that at the 0.05 level of
significance, we accept the alternative hypothesis stating that the distribution of the
first two significant digits of foreign revenues does not conform to Benford’s Law.
For this reason, the foreign revenues from data set B resulted from the improper
accounting process.

Table 1 presents the results of checking data conformity to Benford’s Law for
both analyzed data sets, taking into account the first two significant digits and using
the measure d*. The analysis of foreign revenues was made for the whole data sets
(the last row of the table), and for five subsets of the data.

Table 1. Outcomes of the assessment of data conformity from data sets A and B to
Benford’s distribution.

. A B

Foreign revenues (PLN) " PL " ’L
10.00 to less than 100.00 51 0.2066 51 0.2066
100.00 to less than 1,000.00 2,201 0.0814 2,213 0.0820
1,000.00 to less than 10,000.00 6,340 0.0271 6,443 0.0280
10,000.00 to less than 100,000.00 3,336 0.0757 3,337 0.0757
100,000.00 to less than 1,000,000.00 176 0.2315 181 0.2304
10.00 to less than 1,000,000.00 12,104 0.0097 12,225 0.0103

The obtained results allow to formulate the following main conclusions. Firstly,
data set A is characterized by a higher level of agreement with Benford’s Law than
data set B. Secondly, the poorest fit for both data sets is observed for [10.00, 100.00)
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and [100,000.00, 1,000,000.00) intervals. Such a situation is caused by a small
amount of numbers in these two intervals. Thirdly, the introduction of 121 falsified
records into data set A resulted in: (a) the decline in the level of conformity to
Benford’s Law in the case of five- and six-digit revenues, (b) the increase in the
level of conformity to Benford’s Law in the case of eight-digit revenues, (c) no
change (or a very small change) in the level of conformity to Benford’s Law in the
case of four- and seven-digit revenues.

4 Conclusion

The article discussed methods based on the Euclidean distance which are employed
when assessing data conformity to Benford’s Law. The outcomes of the conducted
study indicated that these techniques can be a useful tool in the process of financial
fraud detection. Although J. Morrow described the statistical test based on the
Euclidean distance, there is still an open problem which deals with determining the
distribution of the statistic D,,.
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ABSTRACT: A dynamic analysis of purchases in the Italian market of sparkling
wines is conducted by using scanner data derived from a consumer panel. We
propose a continuous-time hidden Markov model that allows the transitions between
states at any point in time. Results identify consumers’ profiles in terms of type of
purchases and socio-economic characteristics and describe the dynamics, and its
determinants, across market segments. The findings improve the understanding of
the market and provide useful evidences to design successful marketing strategies.

KEYWORDS: consumers’ profiles, hidden Markov model, market dynamics,
consumer panel.

1 Introduction

We study the dynamics of consumers’ behavior in the Italian market of sparkling
wine. In the last decade, the strong increase in the sparkling wines market has been
coupled by a growth in brands, appellations, price range as well as other attributes
(e.g. packaging), to catch consumers’ attention. While in many countries the market
tends to be dominated by Champagne, Cava or Prosecco, in Italy there is a greater
fragmentation due to the preponderance of numerous domestic products and their
complex denomination of origin classification. The consumption occasions for
drinking sparkling wines have changed. Italian drinkers have started to drink and
buy sparkling wine throughout the year rather than at specific seasons (e.g.
Christmas); for this reason, the market is growing and it is expected to grow,
offering more opportunities for sparkling wine producers.

In 2017 in Italy 31.6 million people (64% of adults)' consumed sparkling wine at
least once; the majority of purchases is made in supermarkets; some specific

'https://www .wineintelligence.com
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appellations, especially Champagne, are bought also in wine shops. Brand
awareness, promotional offers and friends and family recommendations are the most
important drivers of choice. Other relevant wine attributes for preferences are the
method of production (Charmat, like Prosecco vs. Classic or Champenoise),
appellations, especially the Controlled Denomination of Origin (DOC) and the
Guaranteed Controlled Denomination of Origin (DOCG), the producer brand, the
label, and its location.

The market of sparkling wines is relatively young, therefore the literature focusing
on this topic is quite scarce. It mainly reports works on technical and sensorial
aspects (Culbert et al., 2017) or on consumer’s behavior and preferences (Cohen et
al.,2012). With the proposed study of the market dynamics and of the factors that
favor it we provide important information for designing successful marketing
strategies. By using information collected on a panel of Italian families with
purchases in stores we aim at identifying typical customers’ profiles and analysing if
and how they change acquisition behavior within two years of time. We also
evaluate the effects of the characteristics of the consumers and the families on
purchases.

2 Data and method

Data concerns a panel of 9,000 Italian households who registered their purchases in
2015 and 2016. The sample is representative of the Italian population with reference
to the area of residence, number of components, monthly per capita income, age of
the person responsible for purchases, type of the family. The survey collects
longitudinal data with continuous time, each household may perform multiple
purchases in the reference period. We observe a total of 22,362 purchases in
unspecialized stores, made by 5,155 households, they make from 1 to 230 purchases
in the reference period.

The dynamics of consumers’ behavior is analyzed by assuming that preferences
can be represented by an underlying latent variable U = (U,,...,U;) for each
customer i = /,...,n, at occasion ¢, ¢ = I,...,T, where each ¢ refers to the purchase time
period. The latent process follows a continuous-time hidden Markov chain with
discrete states, initial and transition probabilities parameterized with covariates
(Bartolucci et al., 2013). We propose a multivariate hidden Markov model (HMM)
for the vector of categorical responses Y, = (¥....,Y.,) where the responses observed
for every customer are: the value of each purchase in Euros, denomination and type
of wine. The main assumption is that the latent process fully explains the observed
customer behavior and the time-fixed and time-varying customer socio-demographic
characteristics describe the dynamics of the underlying latent preferences. The
conditional probabilities of the responses are assumed constant over time to stabilize
the customer’s profiles. The Expectation-Maximization algorithm is employed to
maximize the log-likelihood. The suitable number of latent states is selected by
using the Bayesian Information Criterion.
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3 Results

Five clusters of homogeneous purchases are identified as reported in Table 1. The
first latent state identifies consumers that spend no more than four Euros for an
ordinary sparkling wine, with no specific appellation. We refer to this segment as
that of customers with low quality purchases, concerning 19% of the population.
Latent state 2 defines customers with low quality purchases preferring sweet wine,
this concerns 34% of the customers. Latent state 3 defines customers with mainly
purchases of Prosecco wine both with DOC and DOCG, of dry or extra dry type,
and the amount spent per purchase is over three Euros; we define this profile as
Prosecco (20% of the population). Latent state 4 denotes the profile of sophisticated
customers, not choosing Prosecco since they select mainly prestigious
denominations such as Franciacorta, Asti, Brachetto D’Aqui, Oltrepo Pavese (13%
of the customers). Latent state 5 denotes the profiles of sparkling wine connoisseurs,
since they show purchases with the highest purchasing power, over six Euros, for
brut classic sparkling wine with appellations such as Franciacorta, Trento and
Champagne (14% of the customers).

Table 2 lists the average transition probabilities among each segment. The
percentage of customers who do not change purchase behavior can differ quite a lot
across states. Purchases of types 1, 2 and 3 are more stable than those of type 4 and
5. However, a non-negligible percentage of customers, greater than 12%, tend to
move towards segment 1. The state from which there is the highest mobility is 5,
these are purchases with the highest amount of money spent and the most
prestigious appellations: this reveals as an occasional consumption behavior.
Concerning the effects of the covariates we mention that purchases in segment 3 of
Prosecco refer with higher probability to middle-age consumers, living mainly in the
North-east of Italy and Lazio region, with a medium-level income.

4 Conclusions

We propose a dynamic analysis of the Italian market of sparkling wines estimating a
hidden Markov model on scanner data from a consumer panel. Latent states identify
five homogenous types of purchases according to prices, type of wine and
appellation. A non-negligible proportion of consumers perform purchases of
different types, the most unstable segment is that with the highest price. Consumers
tend to move to a segment of lower quality wine for their subsequent purchase and
consumers’ characteristics act as drivers of preferences.
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Table 1. Latent states’ profiles

Response variables Estimated conditional probabilities
Average purchase in Euros
<2.99 0.22 0.51 0.03 0.05 0.00
2.99-3.98 0.30 0.21 0.19 024 0.00
3.99-5.68 0.19 0.13 0.26 030 0.01
5.69-8.98 0.18 0.10 0.28 027 022
>8.98 0.11 0.05 0.24 0.14 0.76
Type of wine (sugar content)
Brut 0.78 0.07 0.07 0.00 097
Extra dry 0.14 0.02 0.59 0.02 0.00
Dry 0.08 0.04 0.34 0.00 0.00
Sweet 0.01 0.88 0.00 098 0.00
Denomination

No appellation 0.69 0.95 0.04 001 001
Prosecco DOCG 0.06 0.01 0.41 0.00 0.00
Prosecco DOC 0.11 0.00 0.58 0.00 0.01
Franciacorta DOCG 0.00 0.00 0.00 0.16 040
Asti DOCG 0.00 0.03 0.00 039 0.00
Trento DOC 0.00 0.00 0.00 0.00 042
Brachetto DOCG 0.00 0.00 0.00 028 0.00
Oltrepo DOCG 0.04 0.00 0.00 0.06 0.00
IGT 0.07 0.00 0.00 0.00 0.01
French appellation 0.00 0.00 0.00 0.00 0.14
Other 0.01 0.00 0.00 0.07 0.00

Table 2. Average transition matrix

State 1  State 2 State 3 State 4  State 5

State 1 0.74 0.06 0.11 0.04 0.04
State 2 0.12 0.66 0.09 0.09 0.04
State 3 0.12 0.08 0.72 0.04 0.05
State 4 0.14 0.18 0.11 0.52 0.05
State 5 0.18 0.11 0.15 0.10 047
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ABSTRACT: Modern likelihood asymptotics make available several inferential meth-
ods that can be applied to a large class of statistical models. In this contribution we
summarize some of such methods, and provide an illustration by means of an applica-
tion to a hierarchical nonlinear regression model. The methodology presented can be
readily applied by the R package 1ikelihoodAsy.
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1 Background and theory

Modern likelihood asymptotics is a well established theory for inferential meth-
ods in parametric statistical models. The relevant literature is large, with sur-
veys of the main results given in Severini, 2000 and Skovgaard, 2001, among
others. The recent expository paper by Pierce & Bellio, 2017 tracks some of
the developments, with an effort to make them accessible to a wider audience.
The paper has an accompanying R package, named 1ikelihoodAsy (avail-
able at the CRAN repository), which implements some of the methods.

The starting point is a parametric statistical model for the sample y =
(¥1,---,¥n), given by a density p(y;0), indexed by a p-dimensional parame-
ter 0. Let £(6;y) = logL(0;y) the log likelihood function and 0 the maximum
likelihood estimate.

The main methodology concerns inference about a scalar smooth function
of the parameter 0, defined as y(8). For testing the hypothesis y(8) = v, the
recommended approach relies on the directed deviance

ry(y) = sgn(y —y) [2 {f@;y) —f@w;y)H v ,

*This research is partially supported by the Italian Ministry for University and Research
under the PRIN2015 grant No. 2015EASZFS_003.
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where 6\1/ is the maximum likelihood estimate of 0 for fixed y. The key theo-
retical result is the *-formula (see for example Severini, 2000)

Pr{ry(Y) <ry(y):0:9(0) =y} =2{r;(} {1+0(n" ")}, (D
where r* = ry,(y) is a modified directed deviance and ®(-) is the standard nor-
mal cdf. The formula improves on the usual first-order version employing
®{ry(y)} for the probability on the left-hand side, and it provides a fairly ac-
curate approximation to the distribution of the directed deviance. This can be
readily used for computing confidence intervals and p-values for y(0).

Some remarks on (1) are in order.

(1) The computation of r* is challenging, but code in 1ikelihoodAsy
provides a fairly accurate approximation to it, with protection for large devia-
tions (see Skovgaard, 2001). The code requires the user to supply a function
implementing the log likelihood function and a function to generate a data
set from the model. The latter is used for computing certain expected values
entering the r*-formula by a Monte Carlo approach.

(ii) A remarkable feature of the code is that the interest parameter y(6)
need not be a coordinate of the parametrization employed for the model.

(iii) Pierce & Bellio, 2017 provides a detailed account on the nature of
(1). Moreover, results cited in the article show that inferences based on (1) are
quite close to those of the most accurate parametric bootstrap method, which
simulates a large number of bootstrap samples from p(y;@w).

Code in the package includes also routines for computing the modified pro-
file likelihood, which is the inferential tool suitable for inference on multidi-
mensional parameter of interest y accounting for nuisance parameters. Namely,
Im(V) = lp(y) +logM(y;y) is returned, where ¢p(y) is the profile log likeli-
hood for y and M(y;y) an adjustment term, whose computation entails a task
similar to that required for ry, (y).

2 Application to a nonlinear regression model

For an illustration of the scope of the methodology, we summarize here the
analysis of the theophylline data, already considered by several authors. In par-
ticular the data are thoroughly analyzed in the monograph by Pinhéiro & Bates,
2000, and made available in the R package n1me associated to the book. The
data are about a longitudinal study on 12 patients, each observed on 10 time
points. The response is the theophylline concentration, for which a nonlinear
regression model is adopted (see Pinhéiro & Bates, 2000, p. 351)

vij = f(0isdi tij) +€ij . 2

76



Here i is the index for subject and j for time point, d; a time-invariant dose and
t;j the j-th time point for the i-th subject. The model assumed is

cditi) =di exp(91; + 92 — 93)
Foisdoty) {exp(2:) —exp(d1:)

This is a one-compartment model, with two subject-specific parameters (exp(®;)
and exp(dy;)) and one common parameter (exp(¢s); the exponential form for
them is introduced for numerical stability. In what follows, we take the clear-
ance of the model as the parameter of interest, defined as Yy = exp(93).

At first, we follow a fixed-effects approach, treating the subject-specific
coefficients as model parameters, and assuming a normal distribution for the
error term with subject-specific standard deviation. Implementation in R is
straightforward, due to the independence assumption, yet the resulting model
has 37 parameters for a sample with 120 observations. This is a setting where
the r* statistic may be useful, since this typically occurs in settings with either
very small sample size or with many nuisance parameters.

7 [exp{—exp(d1;)i; } —exp{—exp(¢2)t;}] -
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Figure 1. ry(y) and ry,(y) as a function of y = exp(03) for a fixed-effects model (left)
and a random effects model (right). The P-values are the one-sided error rates given

by 1= ®{[ry(y)[} or 1 = &{|ry(y)[}-

This fact is represented in the left panel of Figure 1, which shows the values
of ry(y) and ry(y) as y varies along a grid of values around y=0.038. Con-
fidence intervals are read off the plot, and correspond to W-points where the
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curves intersect the normal quantiles for the level of interest. The adjustment
performed by the r*-formula is noticeable, with the 95% confidence interval
which is about 25% wider than that based on the first order solution.

A more customary modelling approach would treat ¢1; and ¢,; as normal
random effects, and integrate them out to obtain the likelihood function. This
entails a more challenging implementation, which is doable by recourse to the
TMB package for automatic differentiation (Kristensen et al. , 2016). This has
been done for a simpler version of the model, assuming homoscedasticity for
&), obtaining Yy=0.040. A close agreement between ry(y) and ry(y) is found,
as shown in the right panel of Figure 1. Indeed, the random effects models has
only 6 parameters and the nuisance parameters adjustment is small. Finally, in
the random effects model ¢y;(y) can be used to estimate the variance compo-
nents in a REML-like fashion. This gives a 10% inflation for the estimates of
random effects standard deviation.

3 Conclusion and ongoing research

Modern likelihood asymptotics has the potential to supplement standard anal-
ysis for models currently used in applications in several fields. The availability
of suitable software appears to be the key factor. To this end, some develop-
ments of the 1ikelihoodAsy package may involve the inclusion of further
methods, such as the multidimensional tests (Skovgaard, 2001). Further ex-
tension would involve closer integration with the TMB package, which seems
a promising route for targeting more realistic and complex models.
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ABSTRACT: The ontology-based classification of multilingual documents is the main problem
discussed in the paper. The system proposed here is focused on the issue of cluster analysis of
large sets of job offers prepared in various languages, but the method has universal character
and can be used for analysis of documents related to a specific domain. Taking into account
computational requirements, the authors propose to conduct all calculations in the cluster
environment.

KEeywoRDs: cluster analysis, exploratory analysis of multilingual documents, computational
infrastructure, analysis of competencies.

1 Introduction

Ontology-based approach in computational text analysis allows to explore large
corpuses of documents related to a specific domain. This technique appeared in the
literature about twenty years ago (cf. Hotho et al, 2002) and has been used in different
areas. Analysis of competencies expected by employers constitutes one of the most
important field of application for this approach. However, it is worth emphasizing that
all solutions developed in the area related to competencies have universal character
and can be applied to other types of documents.

The issue of competencies appeared in the research literature in the 1960s (White,
1959) and has been being developed in many further publications (Boyatzis, 1982),
(Levy-Leboyer, 1996), (Bengtsson, 1996). The problem of competency development
is also widely discussed in the context of education, cf. (Lambrechts et al., 2013) or
Oczkowska et al., 2017).

Employers’ expectations towards competencies of candidates for employment are
being considered by managers, experts responsible for education, individuals thinking
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about their future career, employees or politicians. This fact justifies the necessity of
building IT solutions for labour market monitoring. Two systems belonging to this
area were presented in (Lula et al., 2018) and (Belov et al., 2018).

However, it seems that globalization processes and swelling migration flows
create the need for analysis of competencies in a context wider as national labour
market which that takes into account the situation prevailing in many countries at the
same time. Job offers published online on different labour markets can be treated as
very important source of information on employees’ competencies. Its universality
and ease of access is a key advantage. Nevertheless, their analysis may cause many
difficulties due to the lack of a uniform format of offers, the ambiguity of expressions
used in their contents and multilingual nature of advertisements.

In the context presented above, the main goal of this study can be stated as the
development of a system for analysis of job offers with particular reference to three
issues: automatic exploration of offers prepared in various languages, cluster analysis
of offers and performing required calculation in cluster environment.

2 The methodology

Let’s assume that the O is a set of job offers:
0=1{0,,0,,..,0y}
and C is a set of competencies:
C ={C,C;, ..., Cyl.
The main goal of the analysis as performing a cluster analysis of objects belonging
to the set O with respect to competencies taken from the set C.
The process of a job offer analysis can be divided into two parts:
1. analysis of job offers’ contents and their transformation into a form suitable
for cluster analysis,
2. cluster analysis of objects representing job offers’ contents.

2.1 The analysis of job offers’ contents

It was assumed that the system proposed here should process job offers prepared in
various languages (the current version can analyse offers prepared in English, Italian,
Polish, Russian and Serbian language) and that modules designed for different
language versions should recognise the same set of competencies. Otherwise the
scope of the further analysis would be seriously limited.

Past experiences of the authors presented in (Lula et al., 2018) and (Belov et al.,
2018) and literature survey indicates that the schema of analysis presented in the
Figure 1 can be used.
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Figure 1. The schema of ontology-based analysis of job offers

The process of analysis of a given job offer allows to identify main competencies
expected by an employer. During the analysis the significance of every competency
is estimated for every phrase occurring in an offer. Next, significant coefficient
calculated for every phrase can be aggregated to express the importance of a given
competence in a whole job offer.

2.2 Cluster analysis of job offers

Cluster analysis of job offers should identify their homogenous groups. It seems that
model-based approach can find formal description for every group (Ingrassia et al.,
2015). The authors would like to find answers to research questions concerning
similarities and differences between clusters identified in various countries. Also it
may be interesting to compare formal descriptions of profiles of the most popular
positions with respect of countries, employers, sectors and offer’s language.

3 Implementation

All algorithms presented in the paper were implemented in R and Python languages.
Raw data is being gathered from the publicly available sources (hunting agencies, job
seeking sites, governmental organizations) using the following methods: web
scraping, archives download, using sites’ application programming interfaces. For the
further processing to provide scalability and affordable speed, the technology stack of
Big Data is used (Zaharia et al, 2012). Among the variety of products involved to
build the processing pipeline, it is worth to mention Apache Spark which is used as a
core platform to organize the computational part of the whole system (Armbrust et al,
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2015). The infrastructure is based on the university cloud with application of Docker
containerisation approach to ease the processing chain management.
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ABSTRACT: The analysis of longitudinal and cross-sectional data requires taking the
dependence of observations and the heterogeneity of measurement units into account.
A very flexible tool to account for unobserved heterogeneity are fixed effects models
because they do not make assumptions on the distribution of effects. On the basis of a
fixed effects model, we propose a recursive partitioning method that identifies clusters
of units that share the same effect. The approach reduces the number of parameters
to be estimated and is beneficial in particular if one is interested in identifying clus-
ters with the same effect on the outcome variable. The usefulness of the approach is
illustrated in an application using data from CTB/McGraw-Hill.

KEYWORDS: clustered data, fixed effects model, recursive partitioning, tree-structured
regression.

1 Fixed Effects Models

Consider clustered data given by (yij,xij,zij),i=1,...,n, j=1,...,n;, where
yij denotes the response of measurement j for unit i. There are two sets of
predictive variables x; = (1,xij1,-..,Xijp) and z; = (1,zj1,---,Zijq) including

p and g covariates, respectively. In a fixed effects model the mean response
ij = E(yij|xij,zij) is linked to the explanatory variables in the form

8(uij) =Mij = x;;B + 2B (1)

where x;; is a vector of covariates that has the same effect 3 across all units and
z;j contains the covariates with effects that vary over units. With regard to z;;
each measurement unit has its own parameter vector B; = (B, .., Big). The
specification of one parameter vector per unit results in a very large number
of parameters which can affect estimation accuracy. Moreover, typically there
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is not enough information to distinguish between all units. To address these
issues, one can assume that there are groups of units (i.e. clusters) that share
the same effect on the outcome.

2  Tree-Structured Models

Consider the fixed effects model with unit-specific intercepts, only. In the
simplest case in which all intercepts are equal the linear predictor has the form
nij = x;B + Bo. If there are two clusters, the corresponding linear predictor is
given by
k
nlj:x;;B+Bl(0)7 k:1727 (2)

where k denotes the membership to a group and Bl%() is the corresponding effect
for the group. A simple test, for example a likelihood ratio test, for the hypoth-

esis Hy : Bl%) = Bg) can be used to determine if the model with two groups
is more adequate for the data than the model in which all the intercepts are
equal. By iterative splitting into subsets guided by test statistics one obtains a
clustering of units that have to be distinguished with regard to their intercept.

In general, a tree is built by successively splitting one node A, that is al-
ready a subset of the predictor space, into two subsets A; and A; with the split
being determined by only one variable. In a fixed effects model, when specify-
ing intercepts for each unit, the unit number i € {1,...,n} itself can be seen as
a nominal categorical covariate with n categories. The partition has the form
ANSy, ANS,, where S| and S, are disjoint, non-empty subsets S; C {1,...,n}
and its complement S, = {1,...,n}\ S;. Using this notation another represen-
tation of model (2) is given by

Nij = 5B+ B 1(i € S10) + B 1(i € Sx0) 3)

where I(-) denotes the indicator function with I(a) = 1, if a is true and I(a) =0
otherwise. After several splits one obtains a clustering of the units {1,...,n}
and the predictor of the resulting model can be represented by

mo

Ny =xiB+ Y. B I € So), )
k=1

where Sio,...,Sm0 is a partition of {1,...,n} consisting of mqg clusters that
have to be distinguished in terms of their individual intercepts. To determine
the optimal number of splits (i.e. to decide when to stop) our strategy is to
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Figure 1. Analyis of the CTB data. Paths of coefficients of school-specific intercepts
against all splits. The paths build a tree that successively partitions the schools. The
optimal number of splits is marked by a dashed line.

check if the heterogeneity of measurement units is already modeled sufficiently
in each step. To decide for the first split one has to examine the null hypothesis
Hy : Bio = P20 = ... = Buo, which corresponds to the case of no heterogeneity.
The hypothesis is tested by a likelihood-ratio test with significance level o and
n— 1 degrees of freedom. After several splits only differences of units within
already built clusters are tested. In the ¢ —th step n — ¢ differences have to
be tested because £ — 1 splits are already performed. If a significant effect is
found the selected split is performed, otherwise splitting is stopped.

3 Analysis of the CTB Data

We consider a data set from CTB/McGraw-Hill, a division of the Data Recog-
nition Corporation (DRC). For a description of the original data, see De Boeck
& Wilson, 2004. The data includes results of an achievement test that mea-
sures different objectives and subskills of subjects in mathematics and science.
For our investigation we used the results of 1500 grade 8 students from 35
schools. They had to respond to 56 multiple-choice items (31 mathematics, 25
science). The outcome y;; was the overall test score of student j in school i,
defined as the number of correctly solved items. The main objective was to ad-
equately describe the heterogeneity of the 35 schools. As additional covariate
we included the gender of the students (male: 0, female: 1). There were 761
males and 739 females achieving an average test score of 34.

The coefficient paths of the school-specific intercepts obtained when fitting
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Figure 2. Analysis of the CTB data. Comparison of the estimated distribution of a
linear mixed model (LMM) and the school-specific intercepts of the tree-structured
model (TSC). The distribution of the fixed effects is quite different from the normal
distribution obtained for the random effects model.

the tree-structured model are shown in Figure 1. The coefficient paths build
a tree that successively partitions the schools in terms of the performance of
students. The optimal number of splits that was selected by the algorithm,
is marked by the dashed line. It is seen that estimates changed strongly in
the first steps, but after about ten splits the estimates were very stable. A
graphical comparison of the estimated normal distribution of the random ef-
fects when fitting a classical linear mixed model with R package 1me4 (Bates
et al., 2015) and the distribution of the school-specific intercepts of the tree-
structured model is shown in Figure 2. It illustrates the main advantage of the
tree-structured model. There is no distributional assumption on the school-
specific intercepts, especially no assumption of symmetry. The number of
schools in each cluster were quite different and not symmetric. The coef-
ficient estimate for covariate gender was Bgender = —0.088 (95%-Bootstrap-
CI: [-0.478; 0.313]), which showed no evidence for an effect.
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ABSTRACT: Mixtures of experts models provide a framework in which concomitant
variables may be included in mixture models. In this paper, we present a method to
allow for flexible specification of the mixing proportions, as smoothing functions of
these covariates. We propose a data augmentation algorithm for sampling the param-
eters from their posterior distribution within a Bayesian framework. The proposed
methodology is investigated via a simulation experiment.

KEYWORDS: mixtures of experts models, data augmentation, bayesian P-splines.

1 Introduction

Mixture models are the basis of many model-based clustering methods. The
use of a model-based approach to clustering allows for any uncertainty to be
accounted for in a probabilistic framework. Mixtures of experts (ME) models
provide a way to extend mixture models, and allow the parameters to depend
on concomitant covariate information. In particular, in Jacobs et al. (1991)
the components’ weights are modeled as a logistic function of the covariates.
Estimation of mixtures of experts models can be achieved within the Bayesian
paradigm, using a Markov chain Monte Carlo (MCMC). Friihwirth-Schnatter
et al. (2012) exploit data augmentation based on the differenced random utility
model (ARUM) representation, thus introducing a set of auxiliary variables.

In this paper, we consider a more flexible specification of these auxiliary
variables. More specifically, part of the linear predictor is substituted with a
sum of smooth functions of each covariate, as in a generalized additive model.
In order to achieve a parsimonious representation of these smooth functions,
we use Bayesian P-splines as suggested by Lang & Brezger (2004).
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2 Model specification

Consider an independent and identically distributed sample of outcome obser-
vations {y;}, withi = 1,...,n, from a population modelled by a G components
finite mixture model. Each component g (for g = 1,...,G) is modelled by
the probability density function f(y;|6,) with parameters denoted 6,, and has
weight pg , such that Zgzl pg = 1. Observation i has J associated covariates
X; = (1, Xily «ovs XiJo—1y XiJty XiJt 41y ooy xl-J), of which the last J — J* are met-
rical, with J* € [1,J]. The simple mixtures of experts model extends the finite
mixture model by allowing the distribution of the latent variable to depend on
the concomitant variables:

yt’Xz Zpg Xz YZ|9 (D

Jacobs et al. (1991) model the components’ weights using a multinomial logit
regression model, which can be represented following Friihwirth-Schnatter &
Frithwirth (2010) as a binary logit model conditional on knowing the regres-
sion parameters of the remaining categories.

Denote by v, and B . the vectors containing the parameters respectively as-
sociated to the linear and nonlinear part of the predictor for the g-th component

g=1,....G—1)

In Py (%) =MNgi = Z YejXij + Z Z BejoBjp (xij) (2)

pG(Xl ] J*+1p

where Bjy(-) (for j=J*,....J and p = 1,...,m = r +4) is a B-spline basis
function for a cubic spline with r knots. Lang & Brezger (2004) suggest a
number of knots between 20 and 40 to ensure enough flexibility, and to define
the priors for the regression parameters [3,; in terms of a random walk:

Bejp = Bejp—1 +ugjp 3)

with ugjp ~ N (O,’cg ]) The amount of smoothness is controlled by the addi-
tional variance parameters ’ré j» Which correspond to the inverse smoothing pa-
rameters in the classical approach. The presence of the smoothing parameter
‘c§ ; protects against possibile overfitting if a large number of knots is chosen
Then, we can write the above-described binary logit model in the partial

dRUM representation (Frithwirth-Schnatter & Frithwirth, 2010):

Zgi = Mgi —log (Z Mi) + &, Dgi =1(z4i > 0) “)
h#g
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Figure 1. True (solid line) and estimated posterior effects (with 95% posterior point-
wise confidence bands) of the concomitant covariates on the log-odds of mixing pro-
portions. Dotdashed and dashed lines are obtained using a linear predictor and an
additive predictor, respectively.

where z,; is a latent variable, Ay = exp(T,;) and €, are i.i.d. errors following
a logistic distribution.

Given Ay, ..., Ag; and the latent indicator variables Dy;, ..., Dg;, the latent
variables (zy;,...,z¢i) follow exponential distributions and can be easily sam-
pled in a data augmented implementation. To avoid any Metropolis-Hastings
step, Friihwirth-Schnatter et al. (2012) approximate, for each &, the logistic
distribution by a finite scale mixture of normal distributions with zero means
and parameters drawn with fixed probabilities. Regarding the parameters of
each component, appropriate full conditionals can be exploited in order to sam-
ple from the posterior distribution. Observations can be allocated into the G
components using the maximum-a-posteriori rule.

3 Simulation study

The performances of the proposed approach are investigated in a simulated
environment. Although this application concerns latent class analysis, the
proposed methodology can be easily adapted to any other type of response
variables, by chosing an appropriate form for f(y;|8,). We generate 100 in-
dependent datasets, with n = 1000 from a 2-components mixture distribution
for 5 categorical manifest variables. The components’ weights are assumed to
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depend on 2 uniformly distributed covariates x; and x;.

Figure 1 shows the nonlinear effects of x; and x, on the additive predic-
tor Ny; (solid line), along with the estimated effects obtained on one of the
simulated dataset using both our method (dashed lines) and by restricting the
additive predictor to be linear in x| and x> (dotdashed lines). For comparison
purposes, also Bayesian latent class (BLCA) models are considered, that ig-
nore the effects of x; and x, on the components’ weights. For each dataset, we
run the three algorithms setting the number of components equal to 2, 3 and 4.
For all the simulated datasets, our method estimated the best model in terms
of AICM (Raftery et al., 2007). In particular, the AICM suggests G = 2 for
95 datasets when an additive predictor with smooth effects is considered. We
also fixed the right number of classes (G = 2) and investigated classification
for each method, by comparing it to the true group membership. The aver-
age adjusted Rand index with our approach is 0.840, against a 0.797 by our
competitors.
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ABSTRACT: A measure of interrater absolute agreement was recently proposed capi-
talizing on the dispersion index for ordinal variables proposed by Giuseppe Leti. The
new measure is not affected by restriction of variance problems and does not depend
on the choice of a particular null distribution. In this presentation an unbiased estima-
tor of such a measure is proposed and its variance is evaluated.

KEYWORDS: ordinal variables, interrater agreement.

1 Introduction

Ordinal rating scales are frequently developed in study designs where several
raters (or judges) evaluate a group of targets. For instance, in language studies
new rating scales before their routine application are tested out by a group
of raters, who assess the language proficiency of a corpus of argumentative
(written or oral) texts produced by a group of writers. The main interest is in
analysing the extent that raters assign the same (or very similar) values on the
rating scale (interrater absolute agreement), that is to establish to what extent
raters evaluations are close to an equality relationship.

Bove et al., 2018 proposed a new procedure to measure absolute agreement
for ordinal rating scales by using the dispersion index proposed by Leti, 1983
(pp- 290-297). Such an index is given by

K—1
D=2Y F(l-F) (1)
k=1

where K is the number of categories of the variable and Fy is the cumulative
proportion associated to category k. The index D is nonnegative and it is easy
to prove that D = 0 if and only if all the observed categories are equal (ab-
sence of dispersion). For a moderately large number of observations (N), the
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maximum of the index can be assumed equal to D, = (K —1)/2 (all the ob-
servations are concentrated in the two extreme categories of the variable).Then,
a measure of dispersion normalized in the interval [0, 1] is given by

D
D max .

d= (2)

The present proposal is advantageous if compared to measures of absolute
agreement in LeBreton & Senter, 2008 for two reasons. It does not depend by
the formulation of a null distribution for normalization. It can never be out of
the range [0, 1].

2 An unbiased estimator of Leti index

A sample of ng raters and a sample of ny targets are drawn by simple random
sample without replacement. Let us denote by X;; the score given by the jth

rater to the ith target, for j = 1,...,ng, i = 1,...,n7. X;;s are independent
categorical random variables having K categories with p,((” ) = P(X;j = k), for
j=1,....ng, i=1,...;np and k= 1,...,K. In the sequel we assume that

both the targets and the raters are homogeneus (targets-raters homogeneity
assumption), this implies that the probability p,(clj ) = pr,for j=1,... ng, i=
1,....,nrandk=1,...,K.

As a consequence of homogeneity assumption, the variables X;; are inde-
pendent and identically distributed. As an estimator of d we consider

~ D 1 (1
d= = — ) D, 3)
Dyax Dmax (nT ; l>

where D; is given by

Di=2Y F'1-F") 4

and I?k(’) is the empirical cumulative distribution function computed on ith tar-
get.

Proposition 1 The estimator d has expectation

M@:O—l>d (5)
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and variance

Var@z( : >2V ©)

max nr
where
1 1 2 2
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K K 2
62 = Var(X,-j) == Z kzpk - Z kpk (8)
k=1 k=1

K K
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As a consequence of Proposition 1, from (5) an unbiased estimator of d can be

defined as follows
Tk nR T
7 ( ) i (10)
nR — 1

3 An application on real data

In this section the ratings obtained in a research conducted at Roma Tre Uni-
versity are analyzed (Bove et al., 2018). The aim of the study was to investigate
the applicability of a six-point Likert scale for functional adequacy (an aspect
of language proficiency) developed by Kuiken & Vedder, 2017 to texts pro-
duced by native and non-native writers in three different task types (narrative,
instruction, and decision-making tasks). The scale comprises four subscales,
corresponding to the four dimensions of functional adequacy identified by the
authors of the scale: content, task requirements, comprehensibility, coherence
and cohesion. In the study ng = 7 raters evaluated the text produced by ny =40
targets: 20 native speakers of Italian (L1) and 20 non-native speakers of Italian
(L2). For our purposes, we have selected ratings concerning only the narrative
task and the subscale comprehensibility.

The results of the interrater agreement analysis for the subscale are sum-
marized in Table 1, where the intraclass correlation /CC(A, 1) and the average
values of e deﬁged as in LeBreton & Senter, 2008, the coefficient of vari-
ation CV, d and d* are shown for L1, L2 and total groups. The intraclass
correlation ICC(A, 1) provides a low-moderate level of agreement for the to-
tal group (0.67). The results for the average values of CV (12.16%), d (0.22)
and d* (0.25) seem in accord with ICC(A, 1), while the average value of ry¢
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(0.87), highlights a higher level of agreement. When the analysis focuses sep-
arately on the two subgroups of L1 and L2 students, results regarding the L1
group deserve particular attention. Interrater agreement measured by intraclass
correlation is very low in the L1 group (ICC(A,1) = 0.14). Analysing the dis-
persion of the ratings due to this subgroup, it comes out that most of the raters
used almost exclusively levels 5 and 6 of the scale. Such a range restriction
caused the very low value of the intraclass correlation, despite the substantial
agreement among the raters that scored all the L1 texts in the same high levels.
This problem does not regard the results for the other three indices of Table 3
(rwg = 0.90; CV = 8.12%; d= 0.17; d* = 0.19) that show a very good level
of absolute agreement.

Table 1. ICC(A, 1) and average of ryg, CV, d and d* for the comprehensibility sub-
scale in the L1, L2 and the Total groups

| Group | N [ 1cC(A1) [ rwg [ CVR | d | & |
LI [20] 014 [090] 812 [0.17 [ 0.19
L2 |20 | 063 |084]|1620 028|032
Total |40 | 0.67 | 0.87 | 12.16 [ 0.22 | 0.25
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ABSTRACT: Tensor analysis is also known as multi-way analysis. It allows analysing
and visualizing more complex data than possible in multivariate analysis. Rather than
being limited to matrices, tensor analysis allows analysing e.g. ‘boxes’ of data, called
third-order tensors or three-way arrays. And the analysis extends easily to higher
orders as well. There are several models and decompositions available for tensor data
and they provide insights that are not possible to obtain with standard multivariate
tools (Smilde, Bro et al. 2004).

For example, some models allow unique decomposition that completely obliviate
the need for rotations towards simplicity because there is no rotational freedom what-
soever (Kruskal 1989). In particular, the PARAFAC (Harshman 1970) and PARAFAC2
(Harshman 1972) are interesting data analysis models with properties that allow solv-
ing otherwise impossible problems. For example, they allow making predictions of
concentrations of chemical compounds where other methods would fail or allow to re-
solve completely mixed chemical signals. That is, they allow unscrambling scrambled
eggs figuratively speaking.

In this presentation, we will showcase some of the interesting properties of tensor
methods on a variety of data. We will mainly focus on chemical data such as fluo-
rescence spectroscopic data for checking adulteration of food products or gas chro-
matography with mass spectrometry detection for untargeted chemical profiling of

food products.
KEYWORDS: PARAFAC, PARAFAC2, Tucker, uniqueness.
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ABSTRACT: A boxplot for data lying on the surface of spheres is proposed. The
notion of statistical depth function for directional data is adopted in order to extend
the circular boxplot to spherical spaces.

KEYWORDS: Angular data depth, bagplot, graphical tool.

1 The spherical boxplot

The univariate box-and-whiskers plot (or simply the boxplot) introduced by
Tukey (1977) is a well known graphical tool in exploratory data analysis. It
was extended to the bivariate case by Rousseeuw et al. (1999), who introduced
the “bagplot” by exploiting the notion of halfspace depth function (Tukey,
1975).

Here, after the boxplot for circular variables (Buttarazzi et al., 2018), and
in analogy with the bagplot of Rousseeuw et al. (1999) we propose a box-
plot for spherical data which is based on the notion of angular depth function.
Specifically, the angular Mahalanobis (Ley et al., 2014) and angular Tukey’s
depths (Liu & Singh, 1992) will be considered.

Drawing a spherical boxplot is a non-trivial task because of the peculiar
features of spherical data. Spherical data arise in many scientific fields such
as Earth sciences, biology, medicine and physics. They lay on the surface
of a (d — 1)-dimensional unit sphere in three dimensions, that is on §? =
{xeR?:||x|]| =1}, where [|x|| = (x"x) /2 is the usual Ly-norm of the vec-
tor x.

The center of the spherical boxplot will be given by the angular median
corresponding to the depth function adopted (i.e., the point at which the depth
is maximized). A bag containing the 50% of the data having highest depth
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values will be depicted. Fences will be obtained by enlarging the bag by a
multiplying factor. Whiskers will be a bag including all the observed points
lying within the fences area. Points outside the whiskers will be marked as far
out values.

As with the univariate boxplot, the proposed spherical boxplot will allow
displaying information on location, spread, and shape of a spherical distribu-
tion. Outliers may also be revealed.

For the aim of our work, we need to consider that: (i) the support of a spher-
ical distribution is bounded, and hence the boxplot multiplying factor should
be carefully chosen; (ii) a proper tool for spherical data must be rotationally
invariant; (ii7) the data spherical convex hull coincides with the whole sphere
in case the data set does not lie within a hemi-sphere, and hence the extension
of the ideas behind the bagplot should be carefully considered.
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ABSTRACT: This research addresses the problem of predicting the trends of two
stocks and two stock indexes for the American stock market. In this study, the predic-
tive performance of four machine learning models, are compared. The models inves-
tigated include Artificial Neural Networks (ANN), Support Vector Machine (SVM),
Random Forest and Naive-Bayes. Supervised models training is performed through a
10-fold CV approach repeated 3 times, using 10 of the main indicators and oscillators
of technical analysis as input. The experiments conducted show that among the 4,
the Naive-Bayes model gives the worst predictive performance, the Random Forest
obtains discrete results, while the SVM and the ANN are the best performing models.

KEYWORDS: machine learning, technical analysis, ann, svm, random forest.

1 Introduction

The task of predicting the evolution of stock prices and stock indexes is not
easy, due to the uncertainty that characterizes this type of variables. Before
buying or selling securities, analysts perform two types of analysis: fundamen-
tal analysis and technical analysis. In the fundamental analysis, the investment
decision depends on the study of the variables referred to the intrinsic share
value, such as the capital soundness, the ability to convert technology into
value, the performance of the economic sector to which the company belongs,
the political-economic climate, and so on. On the other hand, the technical
analysis aims to determine the future share prices by studying the statistics
generated by market activity, such as past prices and volumes. Technical an-
alysts use stock charts and statistical tools to identify patterns, trends, cycles,
which may suggest how the movement of stock price will behave in the future.
The technical analysis is based on the Efficient Market Hypothesis (EMH) of
Malkiel & Fama, 1970, according to which stock prices are an expression not
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only of fundamentals but also of all systemic variables. Therefore, if the in-
formation obtained from the prices with efficiently and appropriate algorithms
is dealt, then it is possible to forecast the evolution of the stock prices and
the stock indexes. For several years, in order to predict the stock performance
many techniques have been developed and tested. Initially, the classic lin-
ear regression models were used, but over time more appropriate techniques
such as non-linear machine learning methods were preferred (see Hastie et al.
, 2017 for an overview). This research resumes general experimental setup that
is found in the literature and it is inspired by the paper Predicting stock and
stock price index movement using Trend Deterministic Data Preparation and
Machine Learning techniques by Patel et al. , 2015. The goal of this experi-
ment is to compare the forecast performances of Artificial Neural Networks,
Support Vector Machine, Random Forest and Naive-Bayes Classifier on the
time series of two stock indices and two stocks of the American stock market.
Over ten years of data are used to compute ten technical parameters used as
input for the aforementioned models. Both the securities and the indexes have
a high trading volume, therefore they better express the general trading activ-
ity of the American market. The models are validated using a 10-fold Cross
Validation approach repeated 3 times, which made it possible to find the best
combination of parameters which minimize the forecast error. The final results
showed not only the best performing models and the differences with respect
to the less successful ones, but also how the predictive performance changes
considerably depending on whether we consider stocks or indexes. The suc-
cess or failure of a trading operation is related to the market timing and to the
taken position, long or short. This work aims to help traders to move in the
same direction of the market, identifying the moment in which to carry out a
transaction.

2 Literature

In this section, we review some studies that focused on the application of statis-
tical learning methods to financial time series data. Patel et al. , 2015 attempt
to predict the direction of the trends of two stocks and two stock indices of
the Indian Stock market. The study compares four prediction models, Artifi-
cial Neural Networks (ANN), Support Vector Machine (SVM), Random For-
est and Naive-Bayes. Two different input approaches are presented. The first
one involves the calculation of ten technical parameters using the daily trad-
ing data (opening prices, max price, min price, and closing price), while the
second one consists in representing the technical parameters as deterministic
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trend data. The authors evaluate the accuracy of each model with respect to the
two input approaches. The assessment is carried out over 10 years of histor-
ical data, from 2003 to 2012, considering two securities, Reliance Industries
and Infosys Ltd, and two stock indices, CNX Nifty and S&P Bombay Stock
Exchange (BSE). The experimental results show that, when the ten technical
indicators are used as continuous values, the Random Forest exceeds the other
three models in terms of overall predictive performance. The research also
shows that the performances of all 4 models improve significantly when the
technical parameters are transformed into trend deterministic data.

Sezer et al. , 2017 propose a trading system in which a set of technical analysis
parameters are optimized using genetic algorithms and subsequently are used
as inputs of a MultiLayer Perceptron (MLP), whose outputs are buy-sell-hold
signals. The model was trained on the historical series of daily stock prices be-
longing to the Dow 30 index for the period 1996-2016 and was subsequently
tested between 2007-2016. The results suggest that the optimization of tech-
nical indicators not only improves trading performance but also provides an
alternative model to other standard technical analysis approaches.
Moghaddam et al. , 2016 study the predictive ability of Artificial Neural Net-
works (ANN) on the NASDAQ stock index. Several feed-forward Neural Net-
works trained through the back-propagation algorithm were evaluated. The
NASDAQ series was considered over a period of 100 days: the first 70 days
(from 28/01/2015 to 7/03/2015) were considered as training set and the last 29
days were used to test the model forecasting ability. The authors experiment
with different combinations of layers and numbers of hidden units, leading to
configurations that show rather high predictive performance.

3 Results and Conclusion

We split our data into an in-sample period (training set, 10 yrs.) and a out-
of-sample period (fest set, 6 months), keeping the beginning Up/Down propo-
sition and each model is selected using /0-fold Cross Validation repeated 3
times. To evaluate the predictive performances, the Accuracy, Sensitivity and
Specificity measures were used.

The experiments showed that the Naive-Bayes model performs worse than
all, with an average accuracy of 68,15% on the training set and 58,93% on
the test set. Support Vector Machines and Artificial Neural Networks showed
the highest average performance, with an accuracy of 85.09% and 83,74% on
the training set and 71,83% and 72,03% on the test set respectively. Whereas,
Random Forest stood in the middle between the unlucky Naive-Bayes and the
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performing SVM and ANN, with an average performance of 80.33% on the
training set and 69.45% on the test set. In general, all four models worked
better for indexes than for securities.

Complete results (not tabulated) show that: (i) The SVM and ANN models,
which on average perform better, have also a greater "horizontal” variabil-
ity, i.e. the variability calculated between the estimates that each model has
produced for each asset; (i7) There are so many cases of overestimation and
underestimation and sometimes the differences are far from marginal. The dif-
ferences in absolute value and in percentage between the average performances
obtained for the in-sample and the out-of-sample periods w.r.t. Accuracy, Sen-
sitivity, and Specificity give an idea of overestimation and underestimation er-
rors on average. A further summary measure is represented by the average of
the Accuracy percentage differences: Err = 0.1416. On average, the models
overestimate the accuracy, or underestimate the forecast error of 14.16%. Fi-
nally the average accuracy is computed on the training set and on the test set,
considering the performances of the four models: Accuracyrp = 79.33%;
Accuracyrp = 70.06%.
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ABSTRACT: The paper discusses a new technique for growing trees for ordinal
responses in the model-based framework The class of CUB mixtures is considered
which is particularly appropriate to model perceptions, judgments and evaluations,
as it designs the response process as the combination of two components: a personal
feeling which is related to the subject’s motivations and it may be a direct measure
of agreement, worry, satisfaction and an uncertainty component which expresses the
inherent fuzziness of a discrete choice.

In the proposal, the partitioning process is based on the local estimation of CUB
regression models to profile respondents according to feeling and uncertainty.
Alternative splitting criteria which feature both inferential and fitting issues are
implemented in the devoted R package which is illustrated showing how the chosen
modelling framework also allows for advantageous visualization of the classification
results. Various applications to real data from official surveys are presented.

KEYWORDS: Ordinal responses, Model based trees, CUBREMOT.
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ABSTRACT: Three important issues are often encountered in Supervised Classifica-
tion: class-memberships are unreliable for some training units (Label Noise), a pro-
portion of observations might depart from the bulk of the data structure (Outliers) and
groups represented in the test set may have not been encountered earlier in the learn-
ing phase (Unobserved Classes). The present work introduces a Robust and Adaptive
Eigenvalue-Decomposition Discriminant Analysis (RAEDDA) capable of handling
situations in which one or more of the afore described problems occur. Transductive
and inductive robust EM-based procedures are proposed for parameter estimation and
experiments on real data, artificially adulterated, are provided to underline the benefits
of the proposed method.

KEYWORDS: model-based classification, unobserved classes, label noise, outliers de-
tection, impartial trimming, robust estimation.

1 Motivating Problem

In a standard classification framework a set of trustworthy learning data are
employed to build a decision rule, with the final aim of classifying unlabelled
units belonging to the test set. Therefore, unreliable learning observations can
strongly undermine the classifier performance, especially if the training size
is small. Additionally, the test set may include classes not previously encoun-
tered in the learning phase. For jointly overcoming these issues, we introduce
a robust generalization of the AMDA methodology (Bouveyron, 2014) that
accounts for outliers and label noise by detecting the observations with the
lowest contributions to the overall likelihood employing impartial trimming
(Gordaliza, 1991).

The rest of the paper is organized as follows: in Section 2 the notation
is introduced and the main concepts about the model framework are summa-
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rized. Section 3 outlines the EM-based procedures proposed for parameter
estimation. In Section 4 we employ the designed methodology in performing
classification, adulteration detection and new class discovery in a food authen-
ticity context of contaminated Irish honey samples.

2 RAEDDA Model

Consider {(x1,1;),..., (xy,ly)} a complete set of learning observations, where
X, denotes a p-variate continuous outcome and 1, its associated class label,
such that /,, = 1 if observation n belongs to group g and O otherwise, g =
1,...,G. Further, denote y,,, m = 1,...,M the set of unlabelled observations
with unknown classes z,,, where z,, = 1 if observation m belongs to group ¢
and O otherwise, c = 1,...,C. Note that only a subset G C C of classes might
have been encountered in the learning data, with # set of “hidden” classes
in the test such that C = GU #. Given a sample of N training and M test
data, we construct a procedure for maximizing the trimmed observed data log-
likelihood:

N G
Etrim(tal‘hz‘X)Yul) = Z C(xn) Z lng IOg (Tg¢(Xn;ﬂg,2g))+
n;l g=1 . (1)
+ Z N(ym)log (Z ch)(Ym;FcaZC)>
m=1

c=1

where q>(-;pg,>:g) represents the multivariate Gaussian density, T, denotes the
probability of observing class g and (-), () are O-1 trimming indicator func-
tions such that a fixed fraction o; and o, of observations, respectively be-
longing to the training and test data, is unassigned by setting Y, {(x,) =

[N(1—ay)] and Yy n(ym) = [M(1—0u)].

3 Estimation Procedure

Transductive and inductive EM-based procedures are proposed for parameter
estimation and a robust model selection criteria is used for selecting the actual
number of classes.

The transductive approach works on the union of learning and test sets:
both samples are used to estimate model parameters. This mechanism would
be equivalent to robust semi-supervised classification if C = G, but here we
allow the procedure to also look for extra classes in the test.
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The inductive approach consists of a robust learning phase and a robust
discovery phase. The former performs a robust version of supervised discrim-
inant analysis estimating model parameters for the known groups using only
the training set. The latter assigns unlabelled observations to the known groups
whilst searching for new classes; therefore, only the parameters for the C — G
extra classes need to be estimated.

In both approaches, we protect the parameter estimation from spurious
solutions considering a restriction on the ratio between the maximum and the
minimum eigenvalue of the group scatter matrices (Ingrassia, 2004).

4 Detect extra adulterant in samples of contaminated Irish Honey

We consider a dataset of Midinfrared spectroscopic measurements of 530 Irish
honey samples recorded in the wavelength range of 3700 nm and 13600 nm
(Kelly et al. , 2006). The experiment is carried out splitting observations in a
training set composed by 145 pure honey and 60 beet sucrose adulterated sam-
ples; and a test set of 145 pure, 60 beet sucrose-adulterated and 120 dextrose
syrup-adulterated honeys. In addition, 10% of beet sucrose adulterated units
in the training set are wrongly labelled as pure honey. The final aim of the
experiment is then three-fold: detect the wrongly labelled units in the training,
discover the extra adulterant in the test and finally classify unobserved units to
the correct class they belong.

The Adjusted Rand Index (Rand, 1971) is used to validate the classification
accuracy in the test set for popular model-based classification methods: results
for 50 random splits in training and validation are reported in Table 1. Clearly,
methods that adapts to unobserved classes (i.e., AMDA and RAEDDA, esti-
mated using either transductive or inductive approaches) display higher ARI,
however the performance of AMDA is intensely affected by the presence of
label noise in the learning set.

Table 1. Adjusted Rand Index (ARI) computed on the test set for popular model-based
classification methods: Eigenvalue Decomposition Discriminant Analysis (Bensmail
& Celeux, 1996), Robust Mixture Discriminant Analysis (Bouveyron & Girard, 2009),
Adaptive Mixture Discriminant Analysis via transductive and inductive approaches
(Bouveyron, 2014), and the methods proposed in this article. Average results for 50
random splits in training and validation.

EDDA RMDA AMDAt AMDAi RAEDDAt RAEDDAI
ARI  0.321 0.317 0.633 0.451 0.843 0.831
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Our proposal successfully identifies the previously unseen adulterant as
a hidden class and, furthermore, beet sucrose units erroneously labelled as
pure honey in the training set are correctly detected by the impartial trimming
99.7% of the times in each scenario. That is, honeys that present label noise
are not accounted for in the estimation procedure, enhancing the discriminating
power of the classification rule.

Our methodology seems promising in effectively dealing with challenging
supervised tasks, where both labelled and unlabelled units exhibit uncommon
and hidden patterns. Particularly, as the application showed, practitioners in-
volved in domains like food authenticity may benefit from the proposed ap-
proach. As a further research direction, a robust wrapper variable selection for
dealing with high-dimensional problems is currently under development.
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ABSTRACT: In the framework of nonparametric clustering, clusters are defined as
the domains of attraction of the modes of the density function assumed to underlie the
data. To identify clusters, an estimate of the density is then needed, with kernel density
estimator taking the lion’s share. When resorting to these methods a fine tuning of
the amount of smoothing, governing the modal structure of the density, is required.
While thoroughly analyzed in the context of density estimation, this issue has been
scarcely studied for clustering purposes. In this work the problem is addressed from
an asymptotic perspective. A sensible distance among groupings is introduced and its
asymptotic expression is derived and exploited in order to obtain a bandwidth selection
procedure specifically tailored for nonparametric clustering.

KEYWORDS: modal clustering, kernel estimator, gradient bandwidth, mean shift.

1 Introduction

Density-based clustering pursues the aim of providing a statistical formaliza-
tion to the widespread, yet ill-posed, problem of finding groups in a set of data.
According to the nonparametric - or modal - formulation, clusters are seen as
the domains of attraction of the modes of the density assumed to underlie the
data, usually estimated by nonparametric methods. Linking the notion of clus-
ter to the features of the underlying density frames the problem into a standard
inferential context. As a consequence the concept of induced clustering, the
partition implied by the characteristics of the density itself, is defined with the
ideal population clustering being the one induced by the true density.

Regardless of the specific nonparametric density estimator adopted, the se-
lection of a smoothing parameter is required. This choice represents a relevant
issue since under- or over-smoothed estimates may lead to deceiving indica-
tions about the modal structure of the density, and hence about the number of
groups.
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The selection of the amount of smoothing is usually addressed via the
minimization of some measure of distance which quantifies the discrepancy
between the estimate and the target density. Standard references are the Inte-
grated Squared Error and its expected value (MISE), or its asymptotic coun-
terpart. While for the explicit task of density estimation, the distance criterion
is usually selected to provide good estimates in a global sense, the same may
be suboptimal in a clustering framework, where a focus on the local character-
istics of the density would be more adequate to identify the modal regions.

The aim of this work is to address the problem of nonparametric density
estimation for the final purpose of modal clustering. Density estimation is per-
formed via the minimization of an appropriate metric relying on the compar-
ison between the partitions induced by the estimated distribution and the true
one, i.e. the ideal population clustering. A manageable asymptotic approxima-
tion of the considered metric is provided, which allows to define the optimal
amount of smoothing for nonparametric clustering when a kernel estimator is
adopted.

2 Optimal bandwidth for the asymptotic distance in measure

Let us assume that the observed data X = {x,-},-:17.._,n, are sampled from a
random variable X with unknown density f. For mathematical tractability, in
the following we restrict our attention to the univariate case, i.e. x; € R.

A standard choice to estimate f is to resort to the kernel estimator

(agE

fu(x) = (1/nh) Y K[(x—x:)/h]

I
—_

where K is a kernel function and / > 0 is the bandwidth which controls for the
amount of smoothing and, then, the modal structure.

To tailor the choice of /4 for clustering purposes, we consider the distance
in measure (Chacén, 2015) between (, = {C‘l . ,C‘,}, the clustering induced
by fu, and Gy = {Co.1,...,Co}, the ideal population one, induced by the true
f:

r S
d(Gi, G) = lmin Y P(CACo5))+ Y, P(Cos) ¢ - (D
2oen | i i=r+1
where % is the set of permutations of {1,...,s}, CACy = (CNC{) U (C°NCp)
and with possibly » <'s. This distance can be seen as the minimal probability
mass that needs to be moved to transform one clustering into the other. Be-
ing sample-specific, the distance in measure is subject to a random variability.
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Hence, the Expected Distance in Measure EDM(h) = E[d(,, ()] is alterna-
tively considered as a non-stochastic error distance. The optimal bandwidth is
then defined as hgpy = argminy . (EDM(h).

Under some regularity assumptions, it can be proved (Casa ef al., 2019)
that EDM(h) is asymptotically equivalent to

r—1 mi
AEDM(h) = ; f{z()(’;)j)W(;,UZ(K)JCG)(mj)hz,R(K(l))f(mj)(nh3)l) @)

where y(u,6%) = (Z/E)I/Z{Gef“z/(zcz) + |y fOIWG efzz/zdz}, m; is the j" lo-
cal minimum of f, g!) denotes the I"* derivative of a function g, uy(K) =
[ x*K(x)dx, and R(K"V) = [= KU (x)2dx.

Since neither the EDM(h) nor the AEDM(h) admit an explicit represen-
tation of their minima, the idea is to rely on a tight upper bound. The study

of the behaviour of y(-,-) allows us to introduce two different upper bounds,
whose minimizers can be computed explicitly. It follows that

1/7
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Note that, since the derived bandwidths are depending on some unknown quan-
tities, from an operational point of view we need to resort to plug-in strategies.

3 Some results and conclusions

In this section we present an excerpt of the numerical results obtained in one-
dimensional setting in order to evaluate the performances of the proposed se-
lectors as well as the quality of the introduced asymptotic approximations.
The top panel of Table 1 shows the quality of the derived approximations
to the EDM, as a function of the bandwidth, when all the involved quantities
are known. The approximations improve as the sample size increases and they
appear to behave satisfactorily especially around the value of 2 minimizing the
EDM. In the bottom panel we can see the results, in terms of EDM, of the
data-based bandwidth selectors over B = 1000 synthetic samples, along with
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Table 1. Top panel: true density (left)) EDM, AEDM and the bounds vs h for
n = 1000, 10000 (middle and right panels). The vertical dashed line is associated
to the gradient bandwidth. Bottom panel: EDM estimates (and standard errors) at the
optimum h according to the AEDM, the two bounds, and the gradient bandwidth.

n=1000 n=10000
Density EDM approximation
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h h

DM estimate

haepm 0.015 (0.018) 0.005 (0.003)
hapi 0.013 (0.010) 0.005 (0.003)
hapo 0.014 (0.011) 0.005 (0.003)

hGrap 0.013 (0.009) 0.005 (0.003)

the performances of the gradient bandwidth, representing a sensible competi-
tor in this framework, obtained via MISE minimization. The proposed selec-
tors hapy and g led to more accurate clusterings than hygpy, with a slight
preference for the former. The gradient-based bandwidth, in turn, not only
produces competitive results, but its Monte Carlo average distance in measure
appears lower than the one produced by the asymptotic EDM minimizers. In
fact, a deeper insight into the standard errors of the obtained distances shows
that hagpu, as well as fisg; and hago, produce more variable results, due to a
higher sensitivity of the minimizers to the plugged in pilot estimates.

For a complete exposition of the results, alongside with a multivariate gen-
eralization, see Casa et al., 2019.
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ABSTRACT: Significant changes have affected currently internal mobility in Italy. We try to
understand what are the variables that allow a place to attract population. This work focuses
on the foreign population and aims to detect the factors that push immigrant population
towards Italian municipalities. We want to verify whether the action is different between
movements of foreigners already resident in Italy and of immigrants coming directly from
abroad. Data on flows, stock of populations and socioeconomic variables on lItalian
municipalities from Istat, Ministry of Economy and Sole 24 were exploited. Methods used are
regression analyses enriched with spatial factors with reference to the possible action of
spatial variables through the building of OLS, spatial lag and spatial error models.

KEeywoRDs: Foreign immigration, pull factors, internal mobility, regression, spatial analysis.

1 Background and aim

Significant changes have affected the current internal mobility in Italy. Foreign
immigration, the repopulation of internal or marginal areas are important
phenomena that may have played a role in the capacity of an area to attract
population. We try to understand what are the variables that allow a place to attract
population. Some results of a previous work (Natale, Santacroce, Truglia, 2016)
show an unexpected absence of a link between the "attraction" variables identified
for Italians and also those designed for foreigners. The reasons that lead natives
(Italian citizens) to move within the country seem different from those of
immigrants (Foreign citizens). This work focuses on the foreign population and aims
to detect the capability of the foreign population already resident in the Italian
municipalities to attract further flows of immigrants originated either from other
municipalities or directly coming from abroad. In other words the paper tries to
detect the factors underpinning the network effect due to foreign population resident
in Italy.
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2 Materials and methods

We analyze in this first phase only four Italian regions: Piedmont, The Marches,
Apulia and Calabrial. Three sources of data are used. We consider the data
concerning foreigners enrolled in the municipality population registry (demographic
balance data supplied by Istat, the Italian Statistical Institute) in the about 2000
municipalities of the four regions examined. We took into account both the series
recently made available by Istat, beginning with the Census data (8mila Census),
and statistics on per capita income obtained from studies carried out by the Ministry
of Economy and Finance.

We first calculated the foreign immigration rate FR; for a generic municipality i
observed in the years 2012-2014. The rate is defined as:

FRi12-14= (Fi2012 + Fi2013 + Fi,2014)/3 / (FPi,1.1.2012 + FPi31.12.2014)/2

where F, is the sum of foreign inflows coming from other municipalities or from
abroad, FP is the foreign resident population. Then we calculated two further
measures: internal (regarding flows of foreigners resident from other Italian
municipalities) and external (foreigners from abroad) foreign immigration rates
(respectively, IFR; and EFR;).

In order to detect the effect of various factors and patterns of spatial association,
autoregressive models are used (Anselin, 1988 and 1995). In particular, OLS, spatial
lag and spatial error models are estimated. In this paper only the results concerning
this strategy of analysis are showed. Anyway the results obtained with the second
model are quite similar.

3 Main Results

In the four Regions the internal immigration rates are not so different (around 4-
6%: see Table 1).

Table 1 Total, internal and external foreign immigration rates (%) in Piedmont, The
Marches, Apulia and Calabria. Italy, 2012-2014.

Regions Total Immigration Rate|Internal Immigration Rate External Immigration Rate
Piedmont 11,5 6,3 5,2
The Marches 11,3 59 54
Apulia 14,8 5,0 9,9
Calabria 13,7 38 9,9
Total Regions 12,2 58 6,4

Source: own elaboration based upon Istat Resident Population Balance

A less capability of the resident foreign population to pull further flows coming
from the rest of the country (the rate is equal to 3,8%) clearly emerged in Calabria.

! The four areas were chosen for the sake of comparison with a previous research conducted in the same
Regions with reference to the attraction of Italian population: see Natale, Santacroce and Truglia (2016).
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Apulia, the other Southern Region, shows low level of IFR as well. Regarding the
external pull force the situation is reversed: EFR is higher in the Southern Regions
(about 10% in the three years examined), well above the rates observed in the
Centre-North Regions (value around 5%)2. Total immigration rates are clearly
influenced by this different pattern: rates range from 11.3 (The Marches) to 14.8
(Apulia)®. Concerning the rate observed at municipal level the variability is very
high, showing a surprising range of very different levels inside the same Region (see
Map 1).

Map 1 Total Foreign Immigration Rate by municipalities. Italy, 2012-2014.

The autoregressive models are used prove to be useful for the analysis of the
factors underlying a high or low attraction capacity of the foreign population in the
municipalities chosen. The results of the preliminary analyses seem to suggest
adoption both of a model with lag of the variables used and a model with
autoregressive spatial disturbances (Table 2). This results are not new in the
literature (see, for instance, Cracolici et al, 2009; Arbia, 1993; Truglia, 2013).

Some relevant variables are associated with IFR and EFR. Percentage of foreign
population has a negative association with the pull force of the municipalities. It
seems to be an evidence of the existence of a scarce network effect: in other words

2 In the two Southern Regions a slight increasing presence of immigrants from African continent is
observed in the 2012-2014 period: in Italy the percentage increased by 12%, in Apulia and Calabria by
25%. However to include this effect in the model didn't significantly improved the results obtained. The
higher EFR in Apulia and Calabria could be also linked to the capacity of foreign population already
resident in ltaly to attract other components of the household from abroad. This capacity is inversely
linked to the duration of stay in the country of arrival. In the Southern Regions the percentage of long
sojourn residents is lower than in the Piedmont and The Marches.

3 Regarding Italian resident population it is important to note that both the rates are below the levels
observed for foreign population: nearly zero concerning the flows of Italians from abroad, more or less
one third with reference to the internal migration.
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municipalities with an high percentage of foreign population exert a weak force in
attracting foreign flows. This could be in accordance with a theory of spatial
assimilation in which foreigners tend to disperse in the territory. Unemployment has
a negative effect only with reference to EFR®. It is interesting to note that some
variables act in a different way on the two mobility measures used: in the areas with
high percentage of high percentage of poor household the IER is low, the contrary
happened with reference to the EFR. It is important to say that the presence of a
neighbour effect emerged in the models considering spatial effects. These effects are
obviously neglected by using OLS model.

Table 2: Test to determine the goodness of the model.
Internal Migratory Rate | External Migratory Rate

Test
Statistic Sig. Statistic Sig.
Moran's | (error) 5,10 0,00 8,90 0,00
Lagrange Multiplier 17,41 0,00 55155 0,00
Robust LM (lag) 0,43 0,51 2,91 0,09
Lagrange Multiplier (error) 22,71 0,00 72,76 0,00
Robust LM (error) 5,74 0,02 20,14 0,00
Lagrange Multiplier (SARMA) 23,14 0,00 75,67 0,00

In sum the level of the attractiveness of the foreign population in Italy is linked to
the levels of the municipalities around, so that this pull force tends to be clustered in
the Regions used. An extension of these results to the whole nation could lead to
further interesting results.
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ABSTRACT: Manifold multidimensional concepts are explained via a tree-shape struc-
ture by taking into account the nested hierarchical partition of variables. The root of
the tree is a general concept which includes more specific ones. In order to detect the
different specific concepts at each level of the hierarchy, we can identify two differ-
ent features regarding groups of variables: the internal consistency of a concept and
the correlation between concepts. Thus, given a data positive correlation matrix, we
reconstruct the latter via an ultrametric correlation matrix which detects hierarchical
concepts by looking for their internal consistency and the correlation between them
measured by relative indices.

KEYWORDS: ultrametric matrix, hierarchical latent concepts, correlation matrix, par-
tition of variables.

1 Introduction

Many relevant multidimensional phenomena are represented via a tree-structure
(for example well-being, sustainable development, poverty, climate change).
We can hypothesize a Dimensionality Reduction model with a hierarchical
structure that goes from disjoint sets of Manifest Variables (MVs) to the Gen-
eral Concept (GC). In other words we build a parsimonious hierarchy of classes
of variables starting from a reduced number, (i.e., latent dimensions) which
measure specific concepts describing the main components of the phenomenon
under study up to the definition of the GC. Each cluster of MVs may be related
with a factor which best represents its dimension. This is not new in many
fields of research, for instance Revelle (1979) introduced a hierarchical clus-
ter analysis method very useful to detect clusters of variables in a hierarchical
approach. Our proposal can be considered into the Dimensionality Reduction
framework for its ability of summarizing a big quantity of information by way
of many steps of aggregation. In order to detect the hierarchy of variables, i.e.,
the different specific concepts at each level of the hierarchy, we identify two
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different features regarding clusters of variables: the internal consistency (i.e.,
reliability of the concept) and the correlation between concepts. Thus, given a
data correlation matrix, we reconstruct the latter via an ultrametric correlation
matrix which detects hierarchical concepts with the highest internal consis-
tency and with the highest correlation between them in order to justify their
fusion. The internal consistency of concept (i.e., variable cluster), is the global
consistency of MVs based on their correlations within cluster. This is also
called internal reliability and it is commonly measured by Cronbach’s alpha
(Cronbach, 1951). On the one hand, the reliability is connected to the con-
cept of unidimensionality, which, on the other hand, evaluates to what extent
a single latent indicator has been measured with a set of MVs. Reliability and
unidimensionality are more realistic for specific dimensions, whereas, when
considering a general factor, we have to hypothesize the presence of a GC
(Cavicchia & Vichi, 2019). A common error is to interpret a measure of re-
liability as a measure of unidimensionality. Although being connected, they
cannot consider as the same thing. Unidimensionality involves the homogene-
ity of a set of items, and internal consistency is certainly necessary for homo-
geneity, but it is not sufficient. We can see that, therefore, the improving of
the internal consistency leads to an improvement of unidimensionality as well,
but we cannot use the same index to measure both. By supposing that no vari-
able can belong to two clusters at the same time, such that, all the clusters are
disjoint at each level, we can consider another important feature which is the
correlation between clusters of variables. This latter represents a function of
the pairwise relationships between the items of the two groups and determines
the bottom-up agglomerations of variable clusters. Hence, we are supposing a
nested hierarchy where, starting from Q clusters of variables, all the possible
combinations are taken into consideration in order to identify the aggregations
which best detect reliable concepts at all levels.

2 Internal Consistency and Correlation Between

2.1 A Measure of Internal Consistency

The internal consistency of a cluster of MVs is the ability of all variables to
measure the same latent concept. It is usually measured by indices based on the
correlations between the MVs within the cluster. Many measures of internal
consistency are reviewed by Revelle & Zinbarg (2009). In our framework, by
starting from Q variable clusters at the bottom level, we have % clusters
along the hierarchy, and as many internal consistency indexes. For each level
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q=0,...,1, the (J x ¢) membership matrix V,, where J is equal to the total
number of MVs, tells us for each cluster which variable belongs to. Given
V,, Cavicchia et al. (2019) proposed a measure of internal consistency for
non-negative data correlation matrices, arranged in a (g X ¢) diagonal matrix
as follows:

ﬁ:v = diag(dg(V,(R—1,)V,))[(V,V,)* =V, V,]7". (1)

In Eq. 1 Rrepresents the (J x J) observed correlation matrix and I, is the iden-
tity matrix of order J; furthermore dg(-) produces a vector whereas diag(-)

builds a diagonal matrix. It is important to notice that lAlq has g non-zero el-

ements which are the internal consistency measures, one for each cluster. ﬁ;v
corresponds to the Least Squares solution for reconstructing R via an ultra-
metric correlation matrix composed by a matrix which explains the internal
consistency of concepts and a matrix which explains the correlation between

concepts. Each value w7, (I=1,...,q) of lA{ZV belongs to the interval [0, 1],
recalling that R has all non-negative values, thus it may be considered as a

. . .. sSW
relative index. An important characteristic of the values of R, is that they are
not function of the number of MVs of each cluster, thus they are not affected
by the size of clusters.

2.2 A Measure of Correlation Between Clusters of Variables

In order to detect all the levels of the hierarchy, it is crucial to define the corre-
lation between clusters of MVs, each one representing a latent concept.

For each level ¢ = Q,..., 1 it is possible to compute the correlation between
clusters of variables, and the internal consistency within clusters as well, but
it is important to stress the fact that the Q-level (i.e., the level with Q variable
clusters at the bottom level) is the optimal one in order to reconstruct the data
correlation matrix R. Given V, and the diagonal matrix of internal consistency

~W N .
measures R, , Cavicchia et al. (2019) proposed a measure of correlation be-
tween clusters of MVs for non-negative data correlation matrices, arranged in
a (g x q) correlation matrix as follows:

~B . _ 1
R, = (V,V,) 'VIRV,(V,V,)"". 2)

In Eq. 2, R=R—V/R; V,+diag(dg(V.R} V,)) =1, + V/IpV,. The off-

. ... BB .
diagonal values within R, are the between-concepts correlation whereas the
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. B . .
diagonal elements are equal to one. R, is the LS solution with respect to the
. . . . sw
matrix which explains the correlation between concepts. As for R, , each value

s (k=1,...,¢; f=1,...,q; k# f) of ﬁs belongs to the interval [0, 1] and
it turns out to be a relative index.

3 Conclusions

A correlation matrix R may be reconstructed via a ultrametric hierarchical
structure which highlights two crucial characteristic regarding clusters of vari-
ables: the internal consistency and the correlation between clusters. In order
to detect the ultrametric structure of the latent concepts, it is important to in-
vestigate in depth the reliability of each cluster of MVs and all the relations
among them. For correlation matrices R which are composed only by non-
negative elements, as common in psychometric applications, Cavicchia et al.
(2019) presented a model that considers two main matrices, the first one which
contains non-zero element only on the diagonal, that is the internal consis-
tency measure for the related cluster, and the second one which is a correlation
matrix with the off-diagonal elements that represent the correlation between
clusters. The Dimensionality Reduction model with a hierarchical structure
that goes from disjoint sets of Manifest Variables (MVs) to the General Con-
cept (GC) is given by detecting consistent clusters and by following correlation
between them.
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ABSTRACT: Selecting an optimal clustering solution is a longstanding problem. In
model-based clustering this amounts to choose the architecture of the model mixture
distribution. Decisions to be made pertain to: cluster prototype distribution; number of
mixture components; (optionally) restrictions on the clusters’ geometry. Classical pro-
posals address this issue via penalized model selection criteria based on the observed
likelihood function. In this study, we compare these techniques with the less explored
cross-validation alternative, which is rather popular for many other data-driven opti-
mized methods. We analyze both classical methods such as BIC, AIC, AIC3 and ICL,
and several cross-validation schemes where the risk is defined in terms of minus the
log-likelihood function. Selection methods are compared by using the Iris dataset.

KEYWORDS: model based clustering, model selection, penalized likelihood, cross-
validation.

1 Introduction

In model-based clustering it is assumed that data are generated from a fi-
nite mixture distribution with density f(-; 8) = Y& | pefi(- ; ax), where 8 =
(p1,-- pk,ai, - ,ag), is the unknown parameter vector. Here f; are densi-
ties representing the k-th cluster, 0 < p; < 1’s are mixing proportions, so that
ZkK: 1 Pk = 1, ay is the parameter vector describing the cluster shape under fj.
Henceforth, fi(-; ax) is the Gaussian density with mean i, and covariance
matrix Xz, thus a; = (ux,Xx). The definition of a member of the set of candi-
date models M requires: (i) definition of K, (ii) eventually a parameterization
for the covariance matrices L. Let ar, = (ux, Xk n) be the parameters of the
k-th component according to a certain parameterization # of the covariance
structure. Celeux & Govaert, 1995 proposed to decompose X , into parame-
ters describing geometrical notion of clusters’ volume, orientation, and shape
to reproduce different levels of model complexity.
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Let 8(m) be the parameter vector representing a candidate model m € M .
In most situations, the practice is : (i) estimate each member of M based on
maximum likelihood (ML); (ii) choose a model m*, and its implied clustering,
based on some optimality notion. In the context of Gaussian model-based clus-
tering the choice of m™* is typically performed by optimizing an information-
theoretic statistic, based on the log-likelhood function. Section 2 introduces
these and other methods. Section 3 provides a comparison of on real data.

2 Methodology

Let X;, = {x1,---,x,} be a sample of n data points. Let z; be the unobserved
assignment, where z;; = 1 if x; belongs to the k-th cluster and 0 otherwise. Let
K(m) and h(m) the values of K and h according to m € M. Define

n K(m)

1(8(m)) =Y Y log(prfi(xi, apm)) (1)
i=1 k=1
n K(m)

cl(0(m) =Y. Y zixlog(pifi(Xis apom))) (2)
i=1 k=1

where /() is the sampling log-likelihood function under m, and c/(-) is the so
called complete log-likelihood function. Let 6(m) the ML estimate of 0(m),
and let Z; x be the maximum a posteriori estimates of z; ;. Replacing é(m) and
%4 into (1) and (2) the corresponding sample estimates /() and cl(m) are
obtained. Let v,, be the number of free parameters in the model m, where
V,, increases with both K(m), and the number of parameters required by the
covariance parametrization A (m). We now introduce sampling approximations
of the Bayesian Information Criterion (BIC) of Schwarz, 1978, the Akaike
Information Critirion (AIC) of Akaike, 1973, the modified version of the AIC
(AIC3) of Bozdogan, 1983 and the Integrated Complete Likelihood Criterion
(ICL) of Biernacki et al. , 2000. They are defined as:

AIC(m) = 2[(m) —2V,,,  BIC(m) = 2[(m) —log(n)Vp,
i

AIC3(m) = 2[(m) —3v,,, ICL(m) = 2cl(m) —log(n)vy,.
A model m* is selected in order to maximize one of the previous quantities.
These criteria, although derived from different perspectives, have all the fol-

lowing form: “log-likehood at the MLE — penalty”, where the penalty in-
creases with model complexity, and sometimes decreases with n.
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Figure 1. x-axes show models m € M, ordered in terms K(m) first, and then by the
number of free parameters required by the covariance structure h(m) (increasing com-
plexity). E.g. “G2” means K(m) = 2. For CV plots, 95%-confidence bands for the
average CV (m) are shown as well.

Another proposal, that is less explored, but still based on likelihood-type
statistics, is the cross-validation (CV) method of Smyth, 2000. In CV a risk
measure CV (m) is computed out-of-sample by splitting the available data, and
a model m* is chosen in order to optimize CV(m). For a given m the CV
works as follow: (i) a partition of X, into a training-set X", and a test-set
X is obtained; (ii) o (m) is estimated using the sample points in X"; (iii)
CV(m) = ["(m)/n is computed, where [*" is the estimated /(1) computed on
X< using 6 (m). In order to reduce the bias/variance of the CV, multiple
splits are performed and the averaged value of CV (m) is maximized. A model
is selected in order to maximize the so computed CV (m).

3 Comparing methods on real data

The comparison uses the famous Iris dataset (Fisher, 1936), a four dimensional
dataset with n = 150 observations of Iris species, divided in three different
classes/groups. The analysis employs the mclust R package (Scrucca et al. ,
2017) for parameters estimation. M includes finite Gaussian mixture models
with K =1,2,...,10, and the covariance parametrizations of Celeux & Gov-
aert, 1995, for a total of 140 models. For cross-validation we compare two
splitting methods: (i) 10-fold CV': the data set is randomly partitioned into 10
non-overlapping subsets (the folds), each used once as test-set while setting the
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remaining 9 folds as training-set; (ii) Monte Carlo CV (MCCV): the dataset
is partitioned 7 = 100 times into two halves, one is used as training-set, the
other is used as test-set. Results for the 6 methods are summarized in Fig-
ure 1. There are two winning solutions. BIC, ICL and MCCY, select K = 2,
ellipsoidal structures for both clusters with varying volume and orientation.
This solution merges the overlapping groups corresponding to versicolor and
virginica species, which might be still reasonable. AIC3 and 10-fold CV se-
lects a solution with K = 3 and covariance structure as before. This solution
achieves an adjusted Rand index = 0.9 (see Hennig et al. , 2015) where 3.3%
of the points are misclassified in the strongly overalpping region between the
versicolor and virginica species. Here we conclude that AIC3 and 10-fold CV
have a superior performance. This is an interesting evidence that encourages
further investigations.
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ABSTRACT: The work presents a robust approach to labor share analysis. The esti-
mate of labour share presents various complexities related to the nature of the data sets
to be analyzed. Typically, labour share is evaluated by using the discriminant analy-
sis and linear or generalized linear models, that do not take into account the presence
of missing values and possible outliers. Moreover, the variables to be considered are
often characterized by a high dimensional structure. The proposed approach has the
objective of improving the estimation of the model using robust multilevel regression
techniques and data transformation.

KEYWORDS: labour share, robust multilevel regression, data transformation.

1 Introduction

The analysis of the labor share is a field of analysis which involves both the
macro and the micro level. The relevance of this issue indeed is mostly related
to the empirical analysis of the level and evolution of the aggregate labor share.
A large share of the theoretical literature however has studied the dynamics of
the determinants of the labor share at the micro level. This contradiction has
been solved converging to a paradigm where the macro level was concealed
with the micro level by assuming that a representative firm is operating in the
economy. This approach characterizes most of the literature. In particular
since the seminal analysis of Bentolila & Saint-Paul, 2003 where, the theoret-
ical determinants of the labor share are summarized in the definition of the SK
schedule, several studies have tried to provide an explanation for the persistent
declining trend of the labor share identifying different causes for it. Most of
these causes have to do with the behaviour of the representative firm, and thus
concern the micro level. They include the elasticity of substitution between
labor and capital (Bentolila & Saint-Paul, 2003; Lawless & Whelan, 2011)
capital deepening (Piketty & Zucman, 2014; Karabarbounis & Neiman, 2013).
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The present paper focuses on the micro level and analyzes the determinants of
the labor share using a large set of firm-level data with the main aim to inves-
tigate the issues that in the empirical analyses at the macro level are discarded.
In particular we will discuss the role of the elasticity of substitution between
productive factors and its interactions with fundamental structural factors as
firm size and the sectors where the firm operates. The results of our analysis
contribute to the well established empirical literature studying the aggregate
labor share by providing new insight on how differences between firms affect
the labor share and how its determinants interact at the micro level.

2 The dataset and variables

Our main sample of firms is composed of more than thirty thousand firms in
a timespan of ten years going up to year 2017, representative of the manufac-
turing sector and extracted from the Buerau Van Dijk’s AIDA data base that
contains comprehensive information on capital companies in Italy. A rich set
of information is collected by this survey, including firm-specific characteris-
tics, investment and (international) trade activities. The model variables are as
follows: Y: Labour share proxied by the ratio of labour cost to value-added;
This indicator is an alternative version of the ratio of wage to total company
assets. Using the added value instead of total assets, this variable can assume
negative or positive values. X1: The ratio of tangible fixed assets to added
value. The book-value of gross investments of this year has been adjusted to
account for inflation using a measure of vintage. Then the deflated value of
investments in the next years has been added using sectoral deflators for gross
fixed capital calculated by the ISIC/ATECO assuming year 2007 as the base
reference. X2: The ratio of intangible assets to total assets: this ratio measures
the percentage of investments on intellectual capital, research and develop-
ment and other intangible assets over the company total assets. X3: The ratio
of industrial equipment to total asset: this variable measures the theoretical
productive potential of the firm and is one of the primary drivers of company
value. X4: Return On Sales, (ROS), that measures firm operating profitability
proxied by the ratio of operating margins to sales. We expect a negative effect
on the default risk, as the higher a firm’s profitability the higher the flow of
internal resources available to cover debt exposure should be; X5: measures
the firm’s interest burden, proxied by the ratio of firm total asset to net capi-
tal; high interest burden may worsen the financial risk associated with external
finance. X6: Sales, X7: Age of the firm.
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3 Results

Table 1 first column shows the results of the application of the multilevel re-
gression model on the original data. We used the method described in Naka-
gawa & Schielzeth, 2013 for deriving R? in multilevel framework. The R? of
the multilevel model is high, but the significance of B coefficients is always
near critical values, except for the intercept. The main reason of this behaviour
lies in the presence of extremely high leverage points in the data that are af-
fecting the 3 estimates in the linear model; this effect is well know in statistical
literature and was first pointed out by Sastry and Nag, 1990 which summarized
it in a theorem that states that R> — 1 as the remoteness of the leverage units
increases. Table 1 4th column shows the results of the application of the multi-
level regression model after removing these outlying observations by means of
the forward search, a procedure that detects multivariate outliers, Atkinson &
Riani, 2000. The new pseudo R? is very low, near 0.01 even if the significance
of the B estimates improves considerably and most of them are now significant.

B Burrs Burrsar
Variable Estimate p-value Estimate p-value Estimate p-value
intercept 0.44924 | 6.9299¢-05 0.68786 | 2.9993e-163 0.35525 | 2.5439e-239
TFA/AddVal 0.055476 0 0.018411 1.0344e-05 -0.051072 | 7.5262e-179
IA/TA -0.65996 0.16129 -0.10365 0.29107 -0.66183 | 3.0051e-57
IE/TA 0.29917 0.78016 0.20128 0.59472 -0.49701 0.001858
ROS 0.00039737 0.95317 -0.02762 | 6.4095e-79 -0.094043 0
Debt ratio 0.00042643 0.70808 0.001237 0.10774 | 0.0019641 | 1.4619e-09
Sales -1.3991e-08 0.97737 | 7.3252e-06 0.1368 | -5.2079e-05 | 1.0936e-137
Age 0.0041725 0.29412 | 0.0020498 0.012091 0.0089754 | 3.1016e-148

Table 1. B comparison between non robust regression, robust regression and robust
regression after data transformation

The analysis of the distribution of the regression residuals leads us to think
that transformation of the response is required. To this purpose we use the
non parametric conditional expectation methods (i.e. ACE and AVAS), Tib-
shirani, 1988, Breiman & Friedman, 1985. Applying the transformations on
the cleaned dataset we were able to dramatically improve the goodness of fit,
R? =0.33. The analysis of the results still shows the presence of several regres-
sion outliers, therefore we performed again the Forward Search to remove the
atypical units. Table 1 6th column shows the results of the regression model
applied on the clean transformed data. The new value of the pseudo R? = 0.39,
all the variables are now highly significant and the signs of the coefficients are
in agreement with those suggested by the economic theory. Note that this goal
was reached removing a small percentage of units that were biasing the model

126



estimates.

4 Discussion and conclusions

The present paper studies the determinants of labor share dynamics using the
approach developed by Bentolila and Saint-Paul (2003), which characterizes
a one-for-one relationship between the labor share and the capital output ra-
tio, the SK schedule. The sign of the relationship depends on the elasticity of
substitution between labor and capital. An elasticity larger than unity implies
a negative relationship, an elasticity smaller than unity implies a positive re-
lationship, and unit elasticity implies that the labor share is constant. In the
present context, the coefficient multiplying the capital output ratio, measured
as the book-value of tangible assets on value added, highlighting that, as in
most of the literature using micro-data, the productive factors capital and labor
are largely substitute.
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ABSTRACT: This article proposes an innovative model, based on a mixture distribu-
tion, for ordinal time series data. The method is illustrated by its application to the
qualitative perceptions of inflation in Italy.
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1 Introduction

Repeated surveys about opinions, perceptions or attitudes of the interviewees
are regularly carried out by national statistical offices. This is the case of the
surveys concerning the qualitative assessment or anticipations on price level
that ISTAT carries out every month. Earlier studies of perceived and expected
inflation focussed either on quantifying the observed ordinal data in order to
derive indices of perceived (or expected) inflation or on searching explicative
models that could describe data in terms of economic explanatory variables
(Simmons & Weiserbs, 1992). In this article, we discuss an innovative model
for time series ordinal data, that extends the well established CUB model (Pic-
colo et al., 2018) to allow for time varying parameters. For illustrative purpose
the method is applied to consumers’ perceptions of inflation in Italy.

2 The methodology

Let {Y;,t =1,...,T} be a collection of random variables describing ordinal data
observed at different time points. We assume that at time ¢, the variable ¥, is
characterized by the following GeCUB distribution:

—1 em— 1
P(Yt :y|lzwv) :StDtTL(l*St) |:nt ( ,;1_1 ) (lf‘tvt)y l‘tvt y+(linl)% ))
y=12,...,m.
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where z;, w, and v, are explanatory variables, I, is the set of information
concerning each of these variables until time (r — 1). Moreover, D; is a de-
generate distribution such that: D, =1 for the shelter category and D, =0
for the remaining categories; B = (Bo,P1,...,B,)" and Y= (Yo,V1,..-,¥s)’, and
o = (0,0, ..., 0) are the parameter vectors. The model can be easily gener-
alized to the case when each GeCUB parameter is affected by several explana-
tory variables. When the shelter effect is not present the model (1) collapses
to the CUB formulation. Let us denote with [fi,, fa, ..., fue] the relative fre-
quencies from a random sample of n observations drawn from Y;. We propose
to estimate the model by minimizing the sum of the Pearson’s chi-square dis-
tances (see, Harris & Kanji, 1983 and references therein) between the observed
relative frequencies and the probabilities implied by the model:

m

O{‘ B 'Y Z Z flt pzt /plt (2)

t=1i=1

where p;, = P(Y; = ) The goodness of fit of the model is assessed by com-
paring Gmm = G(qQ, B 7) with the distance Gy, evaluated using the probability:
pir =m ", V(i,t). The uniform distribution, in fact, reflects pure ignorance

about the ordinal data distribution at time ¢.

3 The empirical study

As an illustration, we have considered data from the survey on consumer qual-
itative perception and expectation of inflation, carried out by ISTAT every
month among about 2000 individuals. The link between inflation perceptions
and actual inflation had been quite strong before 2002, but it collapsed fol-
lowing the euro cash changeover in 2002 in all EU countries. In Italy, this
gap was exceptionally large and persistent, and a similar gap also affected per-
ceived and expected inflation. Only towards the end of 2009, after the global
economic crises, the distance between those measures disappeared as shown
by the pattern of the balance statistic for the expectations and perceptions in
Figure 1. We have applied model (1) to ordinal data originated by the question
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Figure 1. Balance statistic of perceived (solid line) and expected (dashes) inflation

concerning the perception of past price development in the above mentioned
survey: How do you think that consumer prices have developed over the last 12
months? They have: risen a lot; risen moderately; risen slightly; stayed about
the same; fallen. The analysis refers to observations from 1994.01 to 2018.12.
The categories have been recoded from 1 (fallen) to 5 (risen a lot). The ini-
tial points for explanatory variables have been derived from previous surveys.
In particular, we have specified the dynamics of the GeCUB coefficients as
follows:

1 1 1
&

TdeTovwt” T 1 L eBoBiz1” T 4 e v

3)

where, for any ¢:

e the parameter & depends on w;_1, the mean of the price past trend per-
ceptions (this is simply the mean of the observed ratings) at time ¢ — 1;

e the parameter T, depends on z;_;, the mean of the expectations about
future price level at time ¢ — 1;

e D, =1 for the category: stayed about the same, and 0 otherwise. The
corresponding coefficient §, depends on v, = w,_| — z_1, the gap be-
tween price trend perceptions and future trend expectations. When this
gap is small, the perception that prices stayed about the same becomes
stronger (see Greitemeyer et al., 2005 for a discussion of the influence of
expectations on price level judgements).

Table 1 illustrates the estimated coefficients of the model with their stan-
dard errors in /Parenthesis. Figure 2 shows the pattern of the time varying esti-
mates (gt,/ﬁ,, &;). When the perceptions and expectations start having a diver-
gent pattern (from 2002 onwards) the weights 7, and &, show a rapid change.
They both increase, whereas the weight of the shelter category rapidly falls to
zero. As matter of facts the GeCUB distribution is left skewed because a great
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Table 1. Estimation results (standard errors in parenthesis)

%= 3.581(0.199) % = —1.229(0.054) | Fitting measures

A~

Bo=—0.819(0.883) Bi = 0.658(0.282) | Gyuin =46.78
Q= 2213(0.116) & = —1.050(0.250) | Gy = 157.32

02 03 04 05 06 07 08 09

N

0w ol
{

Figure 2. Time varying coefficients: T, (solid line), & (short dashes), &; (long dashes)

part of respondents believe that inflation has increased. For sake of space, it
is not possible to comment further these results, but it is worth pointing out
that the proposed model provides a very parsimonious formulation that well
describes the perceptions of inflation in Italy in the considered years.
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ABSTRACT: Discovery of disease sub-types is one of the fundamental problem in
clinical applications. This is usually accomplished by grouping patients based on
gene expression data. However, microarray data sampling is terribly noisy, and this
undermines the possibility to reach scientific consensus on the empirical evidence. In
this work we discuss the need of robust data analysis methods for gene expression
data. We introduce and discuss recent proposals of clustering methods and algorithms
that can handle noise effectively, and that can scale scale with the typical dimension
of microarray data. The methods and algorithms are tested on a selection of data sets
obtained from the well known “The Cancer Genome Atlas” repository.

KEYWORDS: clustering, high-dimensional data, gene expression, otrimle, snf.

1 Introduction

Sub-typing is the precision medicine task of identifying sub-populations of
similar patients that can lead to more accurate diagnostic and treatment strate-
gies (see Saria & Goldenberg, 2015 and references therein) . Sub-typing has an
enormous practical impact in clinical practice because it allows to refine prog-
nosis for similar individuals, and this reduces the uncertainty in the expected
outcome of a medical treatment.

The main technique to sub-type patients is to use statistics and machine
learning methods to identify clusters of individuals with similar genetic pat-
terns. The problem is particularly difficult for several reasons. First, sub-
typing is to find clusters which is an unsupervised task, therefore the underly-
ing group structure is totally unobservable. Second, there are various sources
of genetic information from different omics data types (miRNA, methylation,
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etc), all these data types have huge dimensionality while few sample units are
usually available. Moreover there is no guarantee that each data types carries
the same information about the same groups, so there is even a difficulty to
choose which data types to look at. Third, although high-throughput omics-
technologies have progressed substantially, these type of data remains terribly
noisy (Marshall, 2004).

In Section 2 we review recent noise-free clustering methods for patient
sub-typing. In Section 3 we discuss applications to cancer data, and we outline
the main conclusions.

2  Clustering methods

There is an abundance of clustering methods used in genomics. Some of these
methods are specifically designed for gene expression data, other methods con-
sists in tuned versions of classical methods (e.g. k-means, hierarchical meth-
ods, etc.). A recent systematic review is given in Kiselev et al. , 2019. How-
ever, none of the classical tools used in this field is noise-resistant. It is well
known that genomic data is terribly noisy, and research have made terrible ef-
forts to cure data acquisition technologies. Despite the huge progresses, this
type of data remain dramatically subject to noise, contamination, and heavy-
tailedness (see Serra et al. , 2018). In this paper we introduce and discuss two
recent additions that, although built from completely different perspectives,
both are designed to be noise-resistant, and both established remarkable per-
formances in benchmark cancer data sets.

SNF ALGORITHM. Wang et al. , 2014 introduced the Similarity Network
Fusion algorithm (SNF). The SNF integrates many different types of measure-
ments (e.g. mMRNA expression data, DNA methylation, miRNA expression,
etc.). A similarity network is built for each data input, and a final single data
set is built performing network fusion. Working in the sample network space
allows SNF to overcome the twists caused by different scales, data acquisition
bias, and noise that strongly varies across data input types. The fused network
sample is clustered based on Spectral Clustering. The SNF algorithm has sev-
eral input tunings, however it is shown (experimentally) that the method is not
too sensitive to them. The SNF algorithm gained a wide popularity and it is
considered the state-of-the-art method for genomic data integration and patient
sub-typing.
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Figure 1. Survival curves for the "Lung Cancer Data” for the OTRIMLE-based
method (left), and the sNF method (right).

OTRIMLE-BASED ALGORITHM. This was introduced by Coretto et al.
, 2018, and integrates several ideas from robust data analysis and clustering.
Differently form the SNF, this methods does not integrates different data types.
It uses only two data inputs: (i) gene expressions (e.g. mRNA expressions), (ii)
patients survival data. A typical situation may be that observe about p = 3,500
genes on n = 100 patients, but much higher concentration ratios p/n are not so
unusual. The correlation structure is captured based on the Robust and Sparse
Correlation matrix estimator (RSC) of Serra et al. , 2018. As for PCA, the
original high-dimensional data gene expression data matrix is projected over
the direction of m << p eigenvectors of the RSC matrix. The OTRIMLE al-
gorithm of Coretto & Hennig, 2016 and Coretto & Hennig, 2017 recovers the
Gaussian-shaped clusters over the projected subspace. The OTRIMLE adapts
to the noise level, but it needs an input parameter, that is the eigen-ratio con-
straint 7, which restricts the relative discrepancy between clusters’ elliptical
shapes. The method looks for several clustering solutions based on different
values of m and . The final solution is chosen in order to minimize a criterion
(called RLEDMIN) which measures the overall separation of the cluster-wise
survival curves.

3 Results and conclusions

The two algorithms are extensively compared in Coretto ef al. , 2018 on five
distinct experimental data sets from the TCGA database*. For 4 cancer data
sets out of 5, the OTRIMLE-based method outperformed the state-of-the-art
SNF in terms of survival patters separation. As an example in Figure 1 we

*Available at https://portal.gdc.cancer.gov/
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report the results for the LUNG cancer data set. The figure shows how the
OTRIMLE-based method can lead to well distinct survival patterns across the
recovered clusters. Of course this is due to the fact that the OTRIMLE-based
method is optimized in order to achieve the best separation in terms of sur-
vival curves. However, in comparative studies survival separation is always
used as the ultimate validation criterion. And in fact the main advantage the
OTRIMLE-based algorithm is to optimize the procedure on a data space, the
survival data, different from that where the clusters are assumed to belong.

The method introduced in Coretto et al. , 2018 deserves further investi-
gations. For example one may change the dimensional reduction technique
(projection using the RSC matrix), or the clustering technique (OTRIMLE) in
the clustering step. However, this is for future researches.
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ABSTRACT: In recent years, computer-assisted diagnostic systems have gained increasing
interest through the use of deep learning techniques. In this work we show how it is possible
to classify X-ray images through a multi-input convolutional neural network. The use of
clinical information together with the images allowed to obtain better results than those
present in the literature on the same data.
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1 Introduction

In recent years, the deep neural networks (DNN) and in particular the deep
convolutional neural networks (DCNN) have attracted the attention of the
researchers for their great ability to analyse images. One of the most fascinating and
advantageous branches for the application of these models is medicine. Thanks to
them we can now imagine a future in which doctors are helped by computers to
recognize diseases and make diagnoses. Furthermore, it could be a drastic
improvement in the underdeveloped countries where the availability of doctors is
problematic and pathologies such as pneumonia are still one of the main causes of
death.

In the classical context of image recognition, the goal is to classify what is
contained in an image, however, in the analysis of medical images, the challenge is
quite different. In fact, to emulate the role of the doctor, the model needs much more
information that cannot be deduced from the analysis of radiographic images only.
Therefore, it is also necessary to consider many other information collected on the
patients such as clinical and demographic details.

The correlation of certain pathologies with age or smoking is well known, for
example. Other diseases may have genetic predispositions and many diseases can be
related to each other. Usually, doctors can obtain and use all this information and it
is advantageous to provide them also to the predictive model.

From the technical point of view, the goal of including more inputs of different
nature, images and numerical values, has been achieved using a multi-input neural
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network architecture. Through this model we were able to obtain a very accurate
classification, as it is shown in the following sections.

2 The X-ray data and the previous works

The availability of large medical databases containing both images and clinical
information is scarce. Currently, the largest database is the ChestX-ray14, chosen for
this application. It was released by the United States National Institutes of Health
(NIH) and contains over 112,000 radiographic frontal chest images of 30,805
patients. Each of them can be healthy or sick, with one or more of the following 14
diseases: Atelectasis, Cardiomegaly, Consolidation, Edema, Effusion, Emphysema,
Fibrosis, Hernia, Infiltration, Mass, Nodule, Pleural thickening, Pneumonia,
Pneumothorax. Furthermore, a "no finding" category represents the images in which
none of the previously mentioned diseases have been detected.

As can be understood by analysing the database, for many patients are available
multiple results of the tests, which can be useful for capturing the progress of
diseases over time.

The labels, corresponding to the pathologies identified in each image, were
extracted from radiological reports using natural language processing techniques
with an accuracy that is declared by authors over 90% (Rajpurkar et al. 2017).
Therefore, we cannot fully trust the labelling process and, furthermore, some
researchers have raised many doubts about the correctness of the labels. The
criticism of the radiologist Luke Oakden-Rayner (2017) that, after observing the
images, states that there are incorrect labels. Finally, it should be noted that many
diagnoses present more concomitant diseases.

LAY LT

Fig.1 — Some images of the database ChestX-ray14

TR

This dataset has been already used by many other researchers. Surely, the best-
known work was made by a Stanford’s team (Rajpurkar et al. 2017). They proposed
an architecture called CheXNet based on the usage of the DCNN architecture called
DenseNet121 (Huang et al. 2017). This work represents, at this moment, the state-
of-the-art results in terms of AUC scores.

Other important works are the one of Yao et al. (2017) and the one of Wang et
al. (2017). The first is mainly based on an architecture consisting of a DenseNet as
encoder and on a recurrent neural network as decoder. Wang tries to apply some of
the most famous CNN architectures (excluding DenseNet), achieving the best results
with ResNet-50. Other interesting and more recent works are the ones of Baltrushat
(2018) and Guendel (2018). Baltrushat based his work on a ResNet-50 to analyze
the images, supported by the use of age, gender and view position.
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3 The proposal and the results

Inspired by the work of the Stanford team, we decided to improve the model by
exploiting the few clinical and demographic information available with these
images. We have considered age, sex, sight position and 14 new variables
containing the patient's information obtained from previous pathological history
present in the same data.

The goal was therefore to improve the DenseNet121 model with another parallel
neural network, with two small dense layers (32 and 16 neurons), which processes
the non-image characteristics. The two independent networks are then concatenated
and connected to the output layer based on 14 neurons with sigmoid activation
function, whose task is to estimate the probability of the presence of each disease in
the X-ray image. The final network has a complex structure with 123 ‘main’ layers
and 7,053,182 parameters. We used the pretrained weights of DenseNet121 on
Imagenet as initialization of the network.

To solve this multi-input multi-class problem, we have employed a weighted
binary cross-entropy loss function with data augmentation.

Our results provide an interesting improvement of the state-of-the-art,
confirming our intuition of the architecture’s power. Following the literature, we
have adopted the AUC index as main tool to evaluate the quality of the predictions.
In the table 1 we can see the comparison of the performances of our model with the
best results obtained by other researchers in terms of the mean AUC scores.

Nang et al. Yao et al. CheXNet Our Multi-

(2017) (2018) (2017) input
Official split Yes No No Yes
Atelectasis 0.716 0.772 0.809 0.816
Cardiomegaly 0.807 0.904 0.925 0.925
Effusion 0.784 0.859 0.864 0.867
Infiltration 0.609 0.695 0.735 0.731
Mass 0.706 0.792 0.868 0.897
Nodule 0.671 0.717 0.780 0.827
Pneumonia 0.633 0.713 0.768 0.776
Pneumothorax 0.806 0.841 0.889 0.927
Consolidation 0.708 0.788 0.790 0.801
Edema 0.835 0.882 0.888 0.893
Emphysema 0.815 0.829 0.937 0.946
Fibrosis 0.769 0.767 0.805 0.881
Pleural Thickening 0.708 0.765 0.806 0.827
Hernia 0.767 0.914 0.916 0.963
Average 0.738 0.803 0.841 0.863

Table 1. Comparison of the AUC on test data.
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We have chosen the subdivision suggested by the data authors, and we have also
verified that the previously proposed approaches with different splits still obtain the
same results with this subdivision. The size of the test-set on which the AUC was
measured has dimensions greater than 25,000 and therefore guarantees a great
stability of the results with respect to the possible subdivisions. It is evident in the
table that the average AUC has been significantly improved by our approach and,
for most classes, we have clearly outperformed previous jobs.

4  Conclusions

The results of this application have confirmed the validity of our approach: a
multi-input neural network architecture can significantly improve predictions.
Clearly, the idea of combining different sources of heterogeneous information can
be applied in other fields of medicine, as in the analysis of MRI scans. Whenever the
patient's clinical and/or demographic information is available, it is possible and
fruitful to apply this approach. Similarly, this technique can be used in other
application areas.
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ABSTRACT: Urban green infrastructure such as parks, gardens and trees, provide several
ecosystem services and benefits. Particularly trees provide a broad amount of services in
urban areas, such as improving air quality, mitigating carbon pollution and heat-island effect,
attenuating storm-water floods, reducing noise and serving as habitat for different species
among others. Likewise, urban trees provide different social (i.e., social cohesion), economic
(i.e., increase in property value), psychological (i.e., stress reduction) and medical (i.e.,
increase in longevity of life) benefits (Landry, 2009; Roy et al., 2012; Battisti et al., 2019).
Although it is well documented that trees are essential for the well-being and health of urban
areas and their inhabitants, trees are not evenly distributed in urban areas. Previous studies
have found that urban residents with a deprived socioeconomic status are associated with low
coverage of urban trees in their communities (Hernandez and Villasefior, 2017; Park and
Kwan, 2017; Wang and Qiu, 2018). Therefore, environmental justice seeks to ensure that
green infrastructure and its benefits are distributed equally throughout the territory
(Anguelovski, 2013; Gould and Lewis, 2017). The objective of this study is to determine
whether the distribution of urban trees in the city of Guadalajara, Mexico is distributed
equally or not among its colonies and urban districts. The information is obtained from the
first and only tree census conducted in the city on June 2018 and treated with geographic
information systems (GIS). The attributes of the tree dataset include their location (urban
blocks, streets, parks and gardens), heights and diameters of their canopy (Government of
Guadalajara, 2019). For the analysis and due to the compositional nature of the data,
compositional analysis techniques are applied (see Aitchison, 1986; Pawlowsky-Glahn, et al.,
2015; Filzmoser et al., 2018). With this novel approach, we contribute to the existing
literature. Additionally, Principal Component Analysis (PCA) and cluster analysis are
performed to identify the distribution of trees in the city. Likewise, to observe the relationship
between trees and socio-economic variables, a multivariable linear regression is carried out
respecting the compositional nature of the data. The results from PCA and cluster analysis
show a clear differentiation in the distribution of trees between the East-West of the city,
mainly in the compositions with respect to their height and diameter. Likewise, from the
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multivariate linear regression, considerable significance (p<0.05) is found in socio-economic
variables.

KEYWORDS: compositional data analysis, environmental justice, trees, Guadalajara.
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ABSTRACT: In this paper we explore a new strategy to jointly use factorial methods
and blockmodeling to analyse affiliation (two-mode) networks. Among the methods
that group simultaneously and directly individuals and variables for binary matrices,
we propose using cluster correspondence analysis, in order to (i) look at the way
network positions can be incorporated in the cluster CA; (ii) verify if cluster CA is
apt to represent specific network structures. Finally, an empirical application on an
affiliation network of stage co-productions will be provided.

KEYWORDS: affiliation networks, blockmodeling, cluster ca, data classification.

1 Introduction

Affiliation networks are a special case of two-mode networks which consist
of two disjoint sets: a set of actors and a set of events in which those actors
are involved. One of the main concerns in studying such networks is to es-
tablish equivalent classes of actors that are similarly embedded in the whole
network, following some criterion of equivalence, such as structural equiva-
lence. Blockmodeling, with its recent extensions (Doreian et al., 2005), allow
to perform a clustering of the affiliation network units.

However, other methods proved equally apt to find relational patterns within
affiliation networks. Factorial methods, such as Multiple Correspondence Anal-
ysis (MCA) (Greenacre & Blasius, 2006), permit to synthesize, analyse and
graphically represent the relational structure in a metric space. Thanks to the
relationships between MCA and blockmodeling, as for the measures that cap-
ture structural similarities in the network (D’Esposito et al., 2014a; D’Esposito
etal.,2014b), a joint approach has been proposed to apply a clustering method,
i.e. blockmodeling, along with a given factorial method - but not simultane-
ously (Serino et al., 2017; Ragozini et al., 2018).
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Hence, in this paper we propose using another method, namely cluster
correspondence analysis (cluster CA) (van de Velden et al., 2017), that groups
simultaneously individuals and variables for binary matrices and also permits
to evaluate the relations among groups in terms of proper distances. We present
an application of this approach by analysing the affiliation network of the stage
co-productions released in Campania (Italian region) during the 2012/2013
season.

2 Factorial methods and blockmodeling for analysing affiliation
networks

Recently, a joint approach has been proposed that uses MCA and blockmod-
eling for affiliation networks, relying upon the relationships that exist between
factorial methods and blockmodeling. The network positions (i.e. the clusters),
as derived from the blockmodeling, are incorporated in the analysis made by
MCA as supplementary variables and represented in the metric space (Serino
et al., 2017; Ragozini et al., 2018). In this approach, clustering and factorial
methods, albeit jointly used to analyse the network structure, are kept sepa-
rated in the analytic process. In this paper, as an advancement of such research
line, we propose using a factorial method that performs simultaneously a clus-
tering of individuals and variables for binary matrices, the latter being no less
than the type of variable concerned with event affiliations (participation or
non-participation to a given event).

The method we propose using in this work, namely cluster CA, combines
cluster analysis and CA and allows to obtain both a low-dimensional represen-
tation of clusters and attributes and a clustering of individuals relying on the
profiles related to the categorical variables(van de Velden et al., 2017). There-
fore, it permits to obtain dimension reduction and clustering of categorical data
simultaneously (van de Velden et al., 2017).

3 Applying cluster CA and blockmodeling to affiliation networks

An affiliation network G can be represented by a triple G (V;,V2, R) composed
of two disjoint sets of nodes, V| and V, of cardinality n and m, and a set of edges
or arcs, R C V| x V,. By definition V| NV, = 0, the two disjoint sets V| and V;
refer to different entities i.e. the set V| = {a;,ay,...,a,} represents the actor
set whereas the other, Vo = {e1,ez,...,en}, represents the set of m relational
events. The edge rij = (a;,ej), rij € R, is an ordered couple, and indicates
if an actor a; attends an event e;. The set V| x V, can be fully represented
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by a binary matrix, the affiliation matrix, F(n x m), with element f;; = 1 if
(ai,ej) € R and 0 otherwise.

In affiliation networks the structural equivalence principle states that two
actors are equivalent if they participate exactly to the same events (Pizarro,
2007). Formally, given two actors a; and ay, structural equivalence property
= states that: a; = ay if and only if r;; = ry; Vj. If two actors a; and a; are
structurally equivalent they are indistinguishable, and one equivalent actor can
substitute for the other one because the two relational patterns are the same.

In order to discover the relational structure embedded in F, it is possible
to consider it as an usual case-by-variable matrix and, than, apply a factorial
method like the MCA. In the latter application the indicator matrix Z is de-
rived from the matrix F through the full disjunctive coding. Given that each
relational event e; is a dichotomous variable, the indicator matrix Z contains
two columns for each e, namely e? and e, where e;r is the value of a dummy

variable coding the participation to the event, and ¢; is the value of a dummy
variable coding the non participation. As all the variables in F are dichoto-
mous, the corresponding indicator matrix Z turn to be a doubled matrix.

Given our affiliation matrix F and the (doubled) indicator matrix Z derived
from the former, and following the approach proposed by van de Velden ef al.
(2017), we aim to find Zg, i.e. the indicator matrix of dimensionality n x K
which includes the cluster membership considered as a categorical variable
such that F¢ = Z/xZ is the table cross-tabulation that includes the associations
between the cluster membership and the binary variables coding the participa-
tion (and non-participation) in events.

Following the iterative procedure described by van de Velden et al. (2017),
skipping its technical details, we propose to apply the algorithm for cluster CA
as follows: 1) generate an initial cluster allocation Z; 2) find category quan-
tifications by using the usual CA algorithm; 3) construct an initial configura-
tion of the relational patterns for the actors Y (as defined by van de Velden et al.
(2017)); 4) update the membership matrix Zg by applying a clustering meth-
ods to Y; 5) repeat the procedure (i.e. go back to step 2) until convergence. In
the original paper the first solution has been proposed to be randomly assigning
while the clustering algorithm is the k-means. In this paper we compare the
performance of such method with the use of blockmodeling to provide both the
initial cluster allocation Zg and their updating. In this way, the network po-
sitions should be optimally separated with respect to the distributions over the
events and, simultaneously, events with different participation patterns should
be optimally separated (van de Velden et al., 2017).

Hence, our main goals are i) to look at the way network positions, as they
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result from blockmodeling analysis, can be incorporated in the cluster CA
method, and to assess the advantages of this strategy with respect to the one
provided by Ragozini et al. (2018) (see also Serino et al., 2017); ii) to analyse
specific network structures (e.g. core-periphery and/or segmentation) and to
verify if cluster CA is able to reveal and clearly represent such structures. The
proposed approach will be shown by analysing an affiliation network made of
45 co-productions that 44 theatre companies located in the Campania Region
(Italy) jointly released during the 2012/2013 season. In this data structure,
where the rows represent the companies and the columns represent the stage
co-productions, thanks to this approach we expect to find groups of theatre
companies that share similar participation patterns and that are involved in co-
productions with similar characteristics (i.e. belonging to the same genres). At
the same time, we attempt to evaluate the structural similarities between the
groups of companies on the basis of their projections in the metric space.
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ABSTRACT: Network data are relational data recorded among a group of individuals,
the nodes. Multiple relations observed among the same set of nodes may be repre-
sented by means of different networks, using a so-called multidimensional network,
or multiplex. We propose a latent space model for network data that enables clustering
of the nodes in a latent space, with clusters in this space corresponding to communities
of nodes. The clustering structure is modelled using an infinite mixture distribution
framework, which allows to perform joint inference on the number of clusters and the
cluster parameters. An application to terrorist network data will be discussed.

KEYWORDS: multidimensional network, mixture model, latent space model.

1 Introduction

A network is defined by a set of nodes, among which a relation can be es-
tablished. Binary networks record relations that are either present or absent
between nodes, with presences corresponding to edges linking pairs of nodes.
When multiple relations are recorded for a constant set of nodes, a multidi-
mensional network, or multiplex, arises, where different relations coincide
with different networks. Observed connections in network data are hard to
interpret, due to the complexity and potential high dimensionality of networks
themselves. Latent space models (Hoff et al., 2002) are a class of models
which aims at explaining the connections observed in network data in terms
of unobserved similarities among the nodes. In distance latent space models
(Hoff et al., 2002), such similarities are modelled as distances between unob-
served nodes coordinates in a latent space. A sub-class of latent space models
(Handcock et al., 2007) addresses the issue of clustering of the nodes, by clus-
tering nodes latent coordinates.
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We propose an extension to the Latent position cluster model (Handcock et al.,
2007), which allows clustering of the nodes both for single and multidimen-
sional network data. An infinite mixture distribution framework is adopted, so
that joint inference on both the number of clusters and the cluster parameters
can be performed.

2 The model

2.1 Latent position cluster model

The model introduced by Handcock et al., 2007 postulates that nodes have
latent coordinates in a p-dimensional Euclidean latent space, z;, i = 1,...,n,
drawn from a mixture of G spherical Gaussian distributions,

i~

G
g=

TeMVN, (g, 031), g=1,...,G,
1

where g, ¢ = 1,..., G, denote the mixture weights and g, G§ the component-
specific means and variances.

2.2 Infinite latent position cluster model

We propose to extend the model by Handcock et al., 2007 assuming that the
latent coordinates are distributed according to an infinite mixture of p-variate
Gaussian components:

Zi~ Z T M VN, (P’g72g)’
g=1

where X, is the covariance matrix of the g'" component and component param-
eters are taken to be realizations of a Dirichlet process.

In general, for K-dimensional network data, the probability of observing an
edge between any two nodes i and j in the k' network (k = 1,...,K) is mod-
elled as a function of their distance, d(-), and some other parameters (D’ Angelo
etal.,2019):

PO |l B, g, 2p) = PO —BYd( )
ij ) 3 &0y & 1+exp (Oc(k)*B(k)d(Z,‘,Zj))

The above equation simplifies to that of edge probabilities for single networks
when K = 1. Inference for this model is performed within a hierarchical
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Figure 1. Noordin Top data. The networks.

Bayesian framework, where estimates of model parameters and latent coor-
dinates are obtained using an MCMC algorithm.

3 Noordin Top multiplex data

To illustrate the proposed model, we have used it to analyse the Noordin Top
multiplex data. The data concern four different relationships recorded among
members of the Noordin Top terrorist organization, active in Indonesia in the
early 2000s (see Figure 1).

An Infinite latent position cluster model with diagonal covariance matrices was
estimated, and four different components were found in the latent space for
the Noordin Top data, see Figure 2. Also, Noordin Top was positioned close
to Azahari Husin, who was believed to be Noordin Top right-hand man (“star”
coordinates in Figure 2). Both terrorists are assigned to the same component,
which is also the largest.

4 Discussion

We have introduced an Infinite latent position cluster model to perform clus-
tering of the nodes in network and multidimensional network data, by means
of clustering of their latent coordinates in a latent space representation of the
data. Thanks to the infinite mixture framework, and differently from previ-
ous methods (Handcock et al., 2007), the proposed model is able to perform

148



02

2 3 N s 6
. 20 -t

5 -0 05 00 05 10

Figure 2. Noordin Top data. Estimated posterior distribution of the number of com-
ponents and estimated nodes latent coordinates and mixture components.

joint inference on the latent coordinates, the component parameters, and the
number of mixture components. Applying this model to the Noordin Top mul-
tiplex data we were able to recover four different components, among which a
larger one (the green component in Figure 2) included the organization most
influential members. From Figure 2, we may also notice that few nodes latent
coordinates are located quite distant from the center of the components they
were assigned to. Such issue may be addressed using a different specification
of the components covariance matrices X,. Another possible solution for la-
tent coordinates that would still be located far away from components centres
could be to investigate whether such coordinates should be clustered at all. In-
deed, some nodes may not exhibit a clustering behaviour, either because they
connect to only few others or because they connect randomly across different
networks in a multiplex. Such nodes should not be forced to belong to one of
the Gaussian components, as these correspond to social groups in the data. An
extra component, arising from a different distribution (as for example a Uni-
form distribution), could be added to the infinite mixture framework, with the
purpose of grouping together “poorly interacting” nodes.
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ABSTRACT: Road sectioning plays a crucial role in Road Asset Management Systems and
High Speed laser-based devices are able to collect a huge amount of data on pavement surface
characteristics. However, this implies a high computational effort in identifying road
homogeneous sections following a long and meticulous post processing analysis. The
Geostatistic methodology, in terms of Variogram scheme has been applied for characterizing
road surface: “Range” and “Sill” values, deriving from the Variogram application, have been
proposed as macrotexture synthetic indices to characterized different road surfaces. Then a
dynamic sectioning procedure has been employed to detect homogeneous road pavement
sections. Preliminary results seem to highlight that the Variogram variables can be promising
in identifying homogeneous sections in terms of pavement surface macrotexture.

KEYWORDS: pavement management, road surface macrotexture, dynamic sectioning,
geostatistics variogram scheme, spatial data analysis.

1 Introduction

The quality and the quantity of the data collected by high speed laser-based (HSL)
texture measuring devices for pavement road monitoring and programming of
maintenance interventions, open new challenge to Pavement Managers in fact, in
this context, new skills for filtering, analysing and interpreting of data are requested.

In order to apply the Pavement Management Systems (PMS) principles, an
identification of homogeneous sections for subdividing road network is needed.
These homogenecous sections can be defined as road sections in which the
parameters, that generally affect the maintenance strategies, can be considered as
almost constant. Usually the road profile texture data, collected by HSL (here from
now on called HSL data), can be described as "time series" characterized by
information on position and height with a fixed sampling frequency on a straight
alignment. HSL data usually undergo to a pre-processing (filtering) procedure in
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order to remove noise and invalid readings (as spikes or drop-outs) according to
several approaches [Losa & Leandri 2011; D'Apuzzo et al. 2015].

Relevant macrotexture descriptive indexes, such as Estimated Texture Depth
(ETD) evaluated according to [ASTM E1845], can be derived from road surface
filtered profiles, although more reliable macrotexture synthetic indexes have been
recently proposed [D'Apuzzo et al. 2015].

In this paper an innovative approach to describe the macrotexture of road surface
employing the Geostatistical method applied to characterized 2D road profiles by
means of the Variogram scheme, is proposed. Transformed data so obtained undergo
to a sectioning procedure, in order to identify the homogeneous pavement sections.

2 Methodology

Geostatistics is a field of the Statistics focused on the study of spatial or regionalized
phenomena, which are characterized by a spatial correlation. Thanks to this
peculiarity, several applications within environmental aspects have been performed
[Chilés & Delfinet 1999; Spacagna et al. 2019] and encouraging results have been
achieved from preliminary attempts for the road profiles analysis [M. Ech et al.
2007]. The spatial law can be defined by means of the Variogram, which describes
the relation between two point at “h” distance and it presents the following structure:

N(R)
V(8 = g D (26 + ) = 20)°
=1

Where:

v(h) = Variogram;

h= distance between couple of points;

N(h) = number of couple of points at h distance;
Z(x;) = value at x point;

Z(Xi+n) = value at x+h point.

In the literature, different Variogram models are presented [Chiles & Delfinet,
1999] and, in this study, the Spherical model has been used.

In general, the Variogram is characterized by two values the Sill and the Range.
Within the Range, Z(x) and Z(x+h) values are related, outside are independent. For
these reasons it is possible to define the Sill and the Range as the measure of the
maximum variability and the distance where the variables are correlated,
respectively.

Applying the Variogram to the filtered pavement profile, two new "time series",
the Sill and the Range profiles, are produced and, to identify the homogeneous
pavement sections, a dynamic sectioning process must be performed. Several
methods, such as Bayesian methods, Cumulative Sum or Difference (CUMSUM)
methods, Dichotomic method, minimum standard deviation based methods
(MINRMS) and Linear models with Multiple Structural Change (LMSC), are
available to identify homogeneous pavement sections from a series of measured
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data, and an interesting benchmarking has been previously proposed [D’Apuzzo et
al., 2012]. In this paper the Dichotomic Method has been employed.

3 Case Study and Data Analysis

Pavement profiles measurements have been collected at the Virginia Smart Road,
(Blacksburg, Montgomery County, Virginia) where more than 15 different
pavement types and mixes have been laid. HSL device, which performs dynamic
measurements on a straight alignment, with a laser spot of 0.2 mm and a sampling
frequency of 64 kHz, has been used for the profile measurements. An example of
pavement profile collected by HSL device along the entire Smart Road track (about
2300 m) has been reported in the Figure 1a.
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Figure 1: a) Measured profile; b) Sill and Range representation and Dichotomic
sectioning restitution.

Following the profile cleaning phase, then the Variogram, with lag = 0.5mm and
nlag = 40 (20mm), has been calculated, the Spherical Model has been applied and,
on a window of Im, Sill and Range have been evaluated with an autofitting process.
In particular, 1 m long window has been identify as an optimal trade-off between
precision sectioning needs in pavement asset management and computational effort
required.

Graphical result has been summarized in the Figure 1b. As it is possible to see,
the "time series" describe two different features of the same measured profile thus
providing additional information on structural changes that can be used by
sectioning methods. The Dichotomic method, with significance level (o) = 5% and
sample size of 50, has been used for the identification of the homogeneous pavement
road sections, and the results has been represented in the Figure 2b.
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4 Conclusion

A Variogram scheme has been applied to the filtered road profile, measured by
means of the HSL Device. Preliminary results show that Sill and Range can be
considered as effective macrotexture indices since they can better highlight changes
in pavement type and mixes. Dynamic sectioning by means of Dichotomic Method
has been applied, yielding an identification rate of about 90% of real break points.
Further studies are needed, nevertheless the developed methodology seems
promising.
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ABSTRACT: The aim of the paper is to propose a new approach to preference map-
ping by exploiting quantile regression. The proposal consists into a multi-steps proce-
dure combining principal component analysis, least squares and quantile regression.
Results of the procedure on a case study show how the classical preference map can
be enriched by information on the variability along the direction of the most preferred
products. Such an additional information is obtained by the use of quantile regression.

KEYWORDS: preference mapping , least squares regression, quantile regression.

1 Introduction

Preference mapping (PREFMAP) exploits multivariate statistical techniques to
analyze consumer acceptance of products. It consists of a two step procedure
combining principal component analysis (PCA) and least squares regression
(LSR) (Ne&s et al. , 2011). In the first step, a perceptual map of the products
is obtained through a PCA of the product-by-attribute sensory matrix, and the
obtained principal components are called key sensory dimensions. In the sec-
ond step, a regression model is used to fit the liking of each consumer in the
perceptual space. The main assumption is that the preference of each con-
sumer depends linearly on the sensory attributes. Furthermore, as the method
is grounded on LSR, it focuses on the average effects of sensory dimensions.
Evaluating the effect of the sensory dimensions on the whole distribution of
the liking can be a relevant challenge. At this aim, quantile regression (QR)
(Koenker, 2005) has been recently introduced in consumer study for relating
liking to consumer factors (Davino et al. , 2015), and for handling consumer
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heterogeneity (Davino et al. , 2018). Note that QR estimates as many models
as the number of selected quantiles (Davino et al. , 2013, Furno & Vistocco,
2018). The aim of this study is to extend the use of QR to the PREFMAP
in order to provide additional information on the variability along the direc-
tion of the most liked samples for each consumer. This is the most interesting
direction in the perceptual space from a marketing perspective. The proposed
approach will be discussed through a case study from consumer analysis based
on the liking of yogurts. Specifically, 8 samples were profiled by a sensory
panel according to 21 attributes: six odour attributes, three taste attributes, six
flavour attributes and six texture attributes. The same samples were evaluated
by a consumer panel consisting of 101 consumers on a scale from O=dislike
extremely to 100=like extremely. The details of the experiment can be found
in (Nguyen et al. , 2018).

2 Quantile regression in preference mapping

The proposal consists into a multi-step procedure. In the first step a PCA
of the product-by-attribute sensory matrix is used to obtain a perceptual map
of the products. The score and the loading plots on yogurt data are shown in
Figure 1. Along the first component, one can notice a clear distinction between
the samples on the right side (P3, P4, P7, P8) and the ones on the left side (P1,
P2, P5, P6). The second component is mostly related to distinguishing product
7, characterized by sickening odour and flavour, from product 2 characterized
by fullness and thickness.

Variables - PCA
Sipkening_o

Individuals - PCA Sweet t Sicke! f _f
I

N -
. P7

Astringent Sandy

Acidic_t

o
3
Dim2 (20.2%)
|
w3
U
J Q
f
i
i
i
|
\
g
a
d
a
B
2
L}

Dim2 (20.2%)
)
@

ick

Full

.
P4

P2
.

0.0 25 0 10 05 0.0
Dim1 (62.3%) Dim1 (62.3%)

Figure 1. Sensory scores and loadings

In the second step, a regression model is used to fit each consumer in the
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perceptual space. Let Y be the matrix of liking values (I X J), where the entry
Vir 1s the measured liking value of product i and consumerj (j =1,...,J). The
liking values for each consumer are regressed onto the first sensory dimen-
sions, most often the first two PC’s:

vij = Bjiti + Byt + fij (D

where #;; and t;; comes from the PCA model, the ’s represent the regression
coefficients (also called consumer loadings) and f;; represents the residuals.

The intercept can be avoided here since the variables are centered.

In the third step, the direction of the most liked samples is identified by the
Bj regression coefficients. Here, each sample i is projected onto the direction
identified in the previous step (in the 7, #, space):

AT~ \—L AT
Sij = (BJ [3]> Bj t; where t;= (tilatiZ) 2)

Finally, a QR is exploited to evaluate if the distribution of liking is wider
or narrower in the direction of increased liking. Specifically, two quantile
regression models are estimated for 6 = 0.25 and 6 = 0.75:

3ij (8) =PBjo (8) +B;j(0)si; 3)

For each consumer the two QR lines can diverge or converge as a func-
tion of s thus providing information on the variability of the liking along this
direction. Consumers can then be classified according to whether the vari-
ability is larger for the most liked area in the sensory space than for the least
liked samples. In order to measure the degree of such variability, the distance
between fitted values at 6 = 0.25 and 6 = 0.75 has been computed at two
fixed values of the s regressor corresponding to the first and third quartiles. In
case the two distances between the fitted values differ not more than a fixed
threshold the lines are considered parallel (the choice of the threshold is data
driven). Based on this, we decided to consider 3 consumer categories, parallel,
diverging and converging. Figure 2 depicts the consumer loadings plot from
standard PREFMAP, but now the size of the points is proportional to the vari-
ability measure previously computed (based on the two values of s) and the
shape is related to the distribution around the regression line in the direction
of preference (converging, diverging, parallel). Three consumers C57, C75
and C87 are highlighted as they show different tendencies (C75 is represented
by a very small star above a close diverging consumer). As can be seen from
Figure 2, there is a relatively clear tendency of more convergence to the left
and divergence to the right. In other words, for the sensory region represented
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by samples P3, P4 and P8 in Figure 1, the liking is more ‘flexible’ than in the
opposite direction. With the exception of a few, the parallel consumers seem
to be quite centrally positioned, i.e. most of them are consumers with low or
moderately strong preference pattern (coefficients moderately large).
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Figure 2. Consumer loadings plot where the size of the points is proportional to the
OR variability measure.
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ABSTRACT: Investigating how classifiers perform under some data contaminations
is an important issue in robustness studies. While some research is available on the
robustness of classifiers, a little is known about directional classifiers. This work thus
investigates the robustness of the cosine depth distribution classifier, a classification
technique recently introduced for directional data. This latter is a non-parametric
method and it is based on the distribution function of the cosine depth.
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1 Introduction

Directional data occur when observations are recorded as directions. They
can be described as unit vectors on the surface of the (d — 1) dimensional
hypersphere §~1) := {x: xTx = 1}. This kind of data can be found in many
scientific areas such as medicine, astronomy, biology and geology, to cite a
few. Applications include cases with d = 2 (circular data), d = 3 (Mardia &
Jupp, 2000) and in higher dimensions (Buchta et al., 2012).

In this work, we consider the problem of classifying directional data ac-
cording to some supervised classification technique, and in particular on a
technique which relies on data depth.

Data depth functions provide basis for nonparametric inference given that
they aim at ordering data in a d-dimensional space according to some centrality
measures. The particular properties of directional data and the complexity of
the sample space imply the need of specific methods to analyze them.

Within the framework of classification, the use of data depth has been
extensively investigated and successfully applied. The max depth classifier
has been firstly developed (Ghosh & Chaudhuri, 2005, after Liu et al., 1990).
Later, the idea has been extended and the DD-classifier has been introduced
(Lietal., 2012).
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A recent interest arises on the use of depth based classifier for directional
data: the use of the directional max-depth classifier based on some new depth
functions has been investigated (Pandolfo et al., 2018a), and the DD-plot clas-
sifier for circular data has been discussed (Pandolfo et al., 2018b).

Even more recently, a depth based distribution classifier was introduced in
the framework of supervised classification to assign points lying on the surface
of hyper-spheres (spherical data) to groups (Demni et al., 2019). It was based
on the cosine depth, and called the cosine distribution depth classifier. Simu-
lation results showed that the cosine depth distribution classifier outperforms
the max depth classifier in term of average misclassification rate also in many
settings.

In supervised classification, the presence of anomalous observations in the
training set can greatly reduce the effectiveness of the classification method
adopted (Vencalek & Pokotylo, 2018). For this reason, it is always of interest
to investigate the robustness of these kind of techniques. Several works dealt
with robust based classifiers (see Dutta & Ghosh, 2012; Li et al., 2012). Pan-
dolfo investigated some robustness aspects of the DD-classifier for directional
distributions (Pandolfo, 2017).

Here, the focus will be on the cosine depth distribution classifier. By means
of a simulation study, it will be investigated to what extent this classifier is able
to deal with contaminated training sets. The rest of the work is organized as
follows. Section 2 introduces the directional cosine depth distribution classi-
fier, while in Section 3 the simulation scheme that will be used to assess its
robustness is provided.

2 The cosine depth distribution classifier

Directions in d-dimensional spaces can be represented as unit vectors x on the
sphere §©~1) := {x : xTx = 1} with unit radius and center at the origin. A
distribution H with support Q C S~ is called a directional distribution. By
definition, the cosine depth of a point x € §@=1) with respect to H is given by:

Dcos(xaH) = 2_EH[(1 —)C/W)],

where E|.] is the expected value, and W is a random variable from H.
The cumulative distribution function of the cosine depth function F (x) is
given by:
FY (x) := P(Dcos(X,H) < Deog(x, H))
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Suppose now observations come from either the distribution (group) H; or
H,. Then, the directional depth distribution classification rule (Demni et al.,
2019) is given by:

Flf "(x) > Fg ?(x) = assign x to population 1
Fi(x) < X (x) = assign x to population 2,

where H refers to the empirical distribution.

If Fgl (x) = ng (x), the classification rule will randomly assign the obser-
vation to one of the two groups with equal probability.

3 A simulation scheme to study the robustness of the cosine depth
distribution classifier

To investigate the robustness properties of the cosine depth distribution classi-
fier for directional data, the following simulation setting will be used.

Let H; and H, be two von Mises-Fisher distributions (vMF). That is, their
corresponding density functions /() are given by

o\ 421 1 ,
h(x;p,c) == <n> mexp{cﬂ X},

where ¢ > 0, ||u|| = 1, and I, denotes the modified Bessel function of the
first kind and order v. The parameters p and ¢ are the mean direction and the
concentration parameter, respectively.

The training set size will be 1000 (500 from each group), while the size of
the testing set will be 500. The number of replications will be set equal to 150
times. For the concentration parameters c¢; and ¢ of H; and H,, we consider
two cases: equal concentration (c; = ¢ = 5), and different concentration (¢; =
2 and c; = 6).

The location parameters for u; and u, are set to be equal to (0,0,1),
(1,0,0) in dimension d = 3, respectively. The training observations from H;
are contaminated with observations generated from VmF with location param-
eter equal to 4 = (0,0, —1) and concentration parameter ¢ = 8.

The location parameters are set to be equal to it; = (0,0,0,0,0,0,0,0,0,1),
and u, = (1,0,0,0,0,0,0,0,0,0) in dimension d = 10.

Contaminated observations are generated from VmF with location parameter
u=(0,0,0,0,0,0,0,0,0,—1) and concentration parameter ¢ = 8.
Finally, the contamination levels will be set equal to 0%, 10%, 20%.
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ABSTRACT: One of the most debated questions in scientific network analysis is the
impact of collaboration on scientific performance, that is the effect of actors’ em-
beddedness in co-authorship networks on their individual research outputs. Recent
literature showed that specific centrality measures (e.g., closeness, betweenness) are
correlated with indicators of scientific performance. This contribution intends to ex-
plore the influence of actors’ embeddedness in co-authorship networks in a longitu-
dinal framework. By adopting a Stochastic Actor-Oriented Model, we will model
scientific performance (and its measurement) and authors’ collaborative behaviour as
a particular mechanism of ‘social influence’ over time.

KEYWORDS: scientific collaboration, co-authorship networks, SAO models, social
influence.

1 Introduction

Several studies have shown that scientific productivity depends, among other
factors, on scientists’ attitudes towards collaboration in research (see Lee &
Bozeman, 2005 and Wuchty et al., 2007). In their collaborative interactions,
scientists can benefit by both methodological and technological complemen-
tarity and synergy, improving the quality and quantity of their research out-
put. In this stream of research, Social Network Analysis (SNA) has become
the privileged theoretical and statistical approach to study the typical collab-
oration patterns within disciplines (for instance, see De Stefano & Zaccarin,
2016, Ferligoj et al., 2015). Collaboration among scientists can be represented
as a network, in which the actors are scholars and ties may be represented by
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various forms of scientific collaboration among them. The most frequent way
of specifying such networks is to take into account formal research activities,
especially co-authorship (i.e., co-production of scientific publications, Bellotti
et al., 2016). One of the most debated questions in collaboration network
analysis is the impact of collaboration on scientific performance, that is the
effect of actors’ embeddedness in co-authorship networks on their individual
research outputs (Abbasi et al., 2011).

In the light of these findings, our contribution intends to add new empirical
evidence on the topic of the impact of collaboration on scientific performance,
exploring the influence of actors’ embeddedness in co-authorship networks in
a longitudinal framework. We will model scientific performance (and its mea-
surement, e.g. h-index) as a particular mechanism of ‘social influence’ over
time. To this end we will use performance and co-authorship data on Italian
statisticians in convenient time periods before and after the two Italian research
evaluation exercises (VQR1 and VQR?2 respectively on products published in
the periods 2004-2010 and 2011-2014).

2 Theoretical framework

Several studies recognized research collaboration as a key element in knowl-
edge advancement because it facilitates interactions, exchanges, sharing meth-
ods and techniques — even from different fields — allowing a fertile ground for
the development of new ideas. A further aspect of research collaboration, in-
vestigated in empirical studies, is the association with scientific performance,
especially at individual level.

Melin, 2000 underlined the increase on knowledge and quality deriving
from collaboration. Baker, 2015 documented its crucial role in individuals’
job mobility and academic success. Other authors found that collaboration is a
strong predictor of publishing productivity (Lee & Bozeman, 2005) although
with controversial results depending on the choice of the productivity mea-
sure, while other authors (Abbasi et al., 2011) found evidence of a positive
correlation between performance and several network measures.

Combining co-authorship data from different sources (ISI-WoS, Current
Index to Statistics, and publications in nationally funded projects), De Stefano
et al., 2013 and De Stefano & Zaccarin, 2016 analysed the impact of collab-
oration on scientific performance of the Italian academic statisticians. Their
findings show that specific centrality measures (e.g., closeness, betweenness)
are correlated with indicators of scientific performance, even if this impact is
affected by heterogeneity depending on the discipline and on the data source
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used to construct the co-authorship networks.

3 Data and modelling

The research hypothesis of the present contribution relies on the idea that
across the two evaluation exercises the community under study — Italian aca-
demic statisticians — tends to change their collaboration behavior. Our aim is
to analyze the relation between co-authorship network indicators across the
two VQR exercises in the period 2004-2010 and 2011-2014 and how authors’
position in the co-authorship network affects their scientific performance in a
longitudinal perspective.

In particular, we analyze the co-authorship networks across these two pe-
riods as retrieved from the scientific production of the Italian academic statis-
ticians. That is, those scientists classified as belonging to one of the five sub-
fields established by the governmental official classification: Statistics (Stat),
Statistics for Experimental and Technological Research (Stat for E&T), Eco-
nomic Statistics (Economic Stat), Demography (Demo), and Social Statistics
(Social Stat).We recover the scientific production and the bibliographic meta-
data of the Italian academic statisticians from the novel IRIS platform for pub-
lications data storage (https://www.cineca.it). From the retrieved
metadata we will compute ad hoc indicator for measuring individual scien-
tific performance. Then, we will treat authors’ performance as a behavioral
variable in a Stochastic Actor-Oriented Model (SAOM) in order to disentangle
how co-authorship affects performance (‘behavior’) and viceversa.

SAOM approach allows to model if and what type of local network config-
uration is associated to the increase or decrease of the individual scientific per-
formance. The comparison between different periods will consider explicitly
the temporal dimension. The SAOM describes the development of a network
through time as a result of the relational choices of a set of individual actors
in order to maximize their utility Snijders ef al., 2010. It is a combination of
random utility model, continuous time Markov model and simulation. When
actors change their personal network they may face several options, for exam-
ple, to create a new collaboration tie, dropping an existing one or leaving ties
unchanged. Under certain condition, the probability of these choices can be
specified as a multinomial logit model with the utility functions being the lin-
ear cores. The utility function expresses the characteristics of actors’ personal
networks toward which the actors seem to be attracted.

Adding to longitudinal networks the so-called behavior consists in consid-
ering one or more changing nodal variables — performance measures in our
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case — that are also treated as dependent variables. The network will influence
the dynamics of the behavior, as well as the behavior will influence the dynam-
ics of the network. Roughly speaking, this means to consider the co-evolution
of networks and behavior. In particular, by means of this approach we will
model the change in authors’ performance indicator (for instance the propen-
sity to publish in high impact journals) depending on the embeddedness in the
co-authorship networks between the two VQR exercises periods.
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ABSTRACT: Several approaches exist to avoid singular and spurious solutions in
maximum likelihood (ML) estimation of clusterwise linear regression models. We
propose to solve the degeneracy problem by using a penalized approach: this is done
by adding a penalty term to the log-likelihood function which increasingly penalizes
smaller values of the scale parameters and the tuning of the penalty term is done
based on the data. Another traditional solution to degeneracy consists in imposing
constraints on the variances of the regression error terms (constrained approach). We
will compare the penalized approach to the constrained approach in a broad simulation
study and an empirical application, providing practical guidelines on which approach
to use under different circumstances.

KEYWORDS: clusterwise linear regression, penalized likelihood, scale constraints.

1 Introduction

Let y,...,y, be a sample of independent observations drawn from the re-
sponse random variable Y;, each observed alongside with a vector of J ex-
planatory variables Xj,...,X,. Let us assume Y;|x; to be distributed as a finite
mixture of linear regression models, that is

& 2 & 1 (yi—xﬁﬁg)z
1) = Y, pti(yites. 0% Be) = Y pg—p—exp [~ Y XR]
=1 =1 2n0§ Og

(1
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where G is the number of clusters and p,, B, and G§ are the mixing proportion,
the vector of J + 1 regression coefficients that includes an intercept, and the
variance term for the g-th cluster. The set of all model parameters is given by
v={(p1,...,p:Bo,...,BG:0%,...,05) e RIOTVTUFNGHC . oy i =
1,pg>0,0; >0, forg=1,...,G}.

The likelihood function can be specified as

w Y 1 (¥ —X?Bg)z] }
tw=I1 {g;pg o P [ i @
which we maximize to estimate Y either by means of direct maximization or
with the perhaps more popular EM algorithm (Dempster et al., 1977). How-
ever, there is a well-known complication in ML estimation of this class of mod-
els: the likelihood function of mixtures of (conditional) normals with cluster-
specific variances is unbounded (Kiefer & Wolfowitz, 1956; Day, 1969).

A traditional solution to the problem of unboundedness is based on the
seminal work of Hathaway (1985) which, in order to have the likelihood func-
tion of univariate mixtures of normals bounded, suggested to impose a lower
bound to the ratios of the scale parameters in the maximization step. The
method is equivariant under linear affine transformations of the data. That is,
if the data are linearly transformed, the estimated posterior probabilities do not
change and the clustering remains unaltered. Recently, in the multivariate case,
Rocci et al. (2018) incorporated constraints on the eigenvalues of the compo-
nent covariances of Gaussian mixtures that are tuned on the data based on a
cross—validation strategy. These constraints are built upon Ingrassia (2004)’s
reformulation and are an equivariant sufficient condition for Hathaway’s con-
straints. Estimation is done in a familiar ML environment Ingrassia & Rocci
(2007), with data—driven selection of the scale balance. Di Mari et al. (2017)
adapted Rocci et al. (2018)’s method to clusterwise linear regression, further
investigating its properties.

Another possible approach for handling unboundedness is to modify the
log-likelihood function by adding a penalty term, in which smaller values of
the scale parameters are increasingly penalized. Representative examples can
be found in Chen & Tan (2009); Chen et al. (2008); Ciuperca et al. (2003).

In this work we review the constrained approach of Di Mari et al. (2017)
and develop a data-driven equivariant penalized approach for ML estimation.
Next, we sketch the bulk of the methodologies.
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2 The methodology

2.1 The constrained approach

Di Mari et al. (2017) proposed relative constraints on the group conditional
variances Gg of the kind

o; 1
Vesg< (3)
or equivalently
1
6°\c < o, — 4
Ve< \ﬁ “4)

The above constraints are equivariant and have the effect of shrinking the
variances to a suitably chosen G2, the target variance term, and the level of
shrinkage is given by the value of ¢. This constraints are easily implementable
within the EM algorithm (Ingrassia, 2004; Ingrassia & Rocci, 2007), which is
fully available in closed-form, and the selection of c is based on the data.

2.2 The penalized approach

An alternative to the constrained estimator is the penalized approach, in which
a penalty S,,(G%, .. ,G%;) is put on the component variances and it is added
to the log-likelihood. Under certain conditions on the penalty function, the
penalized estimator is know to be consistent (Chen & Tan, 2009). A function
s, that satisfies these conditions is

5a(07,. =—x):< +1log(c )) 5)

where &2, the farget variance, can be seen as our prior information on the
scale structure and A is the penalizing constant that is selected based on the
data. Thus, the penalized log-likelihood can be written as

pl(W) = L(Y) +s4(07,...,0¢) (6)

and the set of unknown parameters is found by ML with computation done by
means of an EM algorithm that is available in closed-form. As well as with
the constrained approach, the penalized approach is equivariant with respect to
linear transformation in the response.
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ABSTRACT: The problem of estimating a circular regression when the predictor is
contaminated by errors is studied. Other than some estimators, we also present a
novel smoothing degree selection rule.

KEYWORDS: deconvolution, measurement error, Simex.

1 Introduction

Statistical regression models are generally based on the assumption that the
independent variables have been measured exactly. However, sometimes the
regressors are, for some reason, not directly observable or measured with er-
rors. When this is the case specific models, known as errors-in-variables or
measurement error models, have to be taken into account.

Formally, suppose that we are interested in estimating the regression of Y
on X*, denoted as m, and that our data are realizations from variables X =
X*+mand?,say (x1,y1),.-.,(%s,yn). A general model for this case could be

yi=m(xj)+ G (D
X=X +M;
fori=1,...,n, where X* and Y respectively refer to the predictor and response

variable, {;s are observations of the random error term {, 1;s are realizations
of 1. The unobserved variable X* is always referred as latent or true vari-
able. Usual assumptions include that  is independent from both X* and 7, the
distribution of { is unknown but has mean 0 and constant variance, while the
distribution of 1 is known.
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Let fx, fx- and f; respectively denote the probability density function of
X, X* and 1. Basic theoretical considerations suggest that fy is the convolution
between fx+ and fy:

S ) = [ el =)y (). @

where F;, denotes the distribution function of 1. As the consequence, the es-
timators of the free-error model are clearly not consistent. In such a context
there are two approaches to obtain accurate estimates: deconvolution methods
and explicit bias estimation and correction.

In this paper we address the measurement error case when data can be
represented as points on a circumference. Specifically, we present a non-
parametric deconvolution estimator along with a rule for smoothness selection.

2 Circular data

Angular or circular data are collected whenever observations are measured by
means of a periodic scale. They are usually represented as points on the cir-
cumference of a circle with unit radius. Classical examples of such data are
wind directions, animal movements, any phenomenon measured by the 24 h
clock, etc. Once a zero direction and a sense of rotation have been arbitrarily
chosen, these observations can be expressed as angles. Due to their periodic
nature, circular data cannot be analysed by standard real-line methods, there-
fore in the last decades great attention has been devoted to circular statistics.
For a comprehensive account, see the survey paper by Lee, 2010, and the ref-
erences therein.

3 The estimator

Consider a pair of random angles (®,A), i.e. variables taking values on [0,27).

Given the random sample (®1,A;),...,(P,,A,), we can write model (1) as
A= (m(@l) +8,')m0d(27€), 3)
D; = 0; +u;,

where ©;s are independent copies of the circular latent variable ©®, the €;s are
i.i.d. random angles independent of the ®;s, with zero mean direction and finite
concentration, and the u;s are realizations of the random angle U independent
of the ©;s.
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A local estimator for m at € [0,27) can be defined as
m(0;K) = atan2(m,(0;K), M (0;%)), 4)

with

(ngE

Mg (8;K) = Y sin(A;)Lc(®; —0),

1

s

e (0;K) = . cos(A;)Lc(®; —8),

Il
—

where the function atan2(y,x) returns the angle between the x-axis and the
vector from the origin to (x,y), and L is a circular deconvolution kernel func-
tion depending on ,(x) and A;(ky ) which are, for £ € Z, respectively, the (th
Fourier coefficient of the periodic weight function Ky and the error density fy
whose concentration parameter is Ky :

Le(6) = {1+2i ¥e(x) cos(ee)}. )

27 = Mi(xy)

4 Smoothing degree selection

In the context of measurement error the standard cross-validation criterion for
the selection of the smoothing degree K is not suitable. Indeed, if we knew the
values @y, ...,0, in addition to (P;,Ay),...,(P,,A,) then we could compute
the conventional cross-validation smoothing degree ko = argminCVy(x), with

-

CV()(K> = (1 —COS(A,‘—I’ﬁ,,’(@,’))), (6)

S| =

i=1

where mi_; denotes the version of /i computed by omitting the ith pair of the
sample. However, since ®;s are unknown above criterion is not attainable.

However, a cross-validation idea could still be employed through a SIMEX
(simulation-extrapolation) approach proposed by Delaigle and Hall, 2008 by
following the steps listed below:

1. Generate two i.i.d. samples from U denoted as uj, ..., u, and u7™,... u;".
Then, fori =1,...,n, define ®] = ®; +u; and ®;* = &; +u; +u;" and
consider the problem of estimating two regression functions, m; and m;,

respectively from the contaminated data (®},A;) and (P;*, A;).
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2. Define the objective functions CV*(x) and CV**(x)

CV* (k) = - Y (1—cos(A — (@)

™=

—_

1
CV* () = —

n;

D=

(1 —cos(A; —rp—i(D7)))

I
—_

in order to obtain K} = argminCV*(x) and K" = argminCV**(x).
3. The dependence of kj on ®; and k3" on ®;* can be removed by averaging
over a large number, say B, of CV* and CV** for different simulated

sequences of u},...,u, and u}™, ... u;":

1 B
cvi==Y cvy

Bb:l

1 5 kk
CV, = El,;CV”

4. Then, we define, for j =0,1,2,
K; = argminCV;(x). @)

Now, ®** approximates ©* in the same way that ®* approximates ¢ and
@ approximates ©. Therefore we expect that the relationship between Ko
and K is similar to that between & and K;. As the final result, we get

ko = ki /R (8)
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ABSTRACT: Quantile Composed-based Path Modeling complements the classical PLS Path
Modeling. The latter is widely used to model relationships among latent variables and between
the manifest variables and their corresponding latent variables. Since it essentially exploits
classical least square regressions, PLS Path Modeling focuses on the effect the predictors exert
on the conditional means of the different outcome variables involved in models. Quantile
Composed-based Path Modeling extends the analysis to the whole conditional distributions of
the outcomes. This paper proposes a procedure to estimate the conditional quantiles for the
manifest variables of the outcome blocks. Starting from the information related to a grid of
conditional quantiles, it is possible to define the most accurate model for each health indicator
and the best predictive model for each Italian province. The proposed method is shown in action
both on artificial and real data. The real data concerns the prediction of health indicators.

KEYwoRrDs: PLS Path Modeling, Quantile Composite-based Path Modeling,
Conditional Quantile Model-based Prediction.

1 Introduction

Partial Least Squares Path Modeling (PLS-PM) is a multivariate statistical method
for studying relationships among latent variables (LVs), each one represented through
a set of observed variables usually called manifest variables (MVs). The general
model consists of two sub-models: the structural model and the measurement model.
The measurement model relates each MV to its own LV, assuming that the conditional
mean of each MV is a linear function of the corresponding LV. The structural model
specifies the linear relationships between LVs. The estimation of the model
parameters proceeds through an iterative algorithm essentially based on a sequence of
simple and multiple Ordinary Least Squares (OLS) regressions. The obtained
coefficients measure the rates of change in the conditional mean of the dependent
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MVs and LVs as a function of changes in the correspondent set of predictors. The
same holds both in the measurement and structural model.

Theories behind the application of PLS-PM focus on the estimation of conditional
expected values, regardless of the distribution of response variables. Although PLS-
PM does not require any assumption about the distribution of LVs, MVs and error
terms, and it seems to be robust with respect to departure from normality, it is known
that heavy-tailed or highly skewed distribution may inflate standard errors obtained
from bootstrapping and that influential outliers affect the OLS regression estimates
(Hair et al., 2017). Moreover, modeling only the conditional mean may be inadequate
when the effects of the investigated relationships are expected to vary across the
different locations of the responses.

To this end, Davino and Esposito Vinzi (2016) introduced Quantile Composite-
based Path Modelling (QC-PM). This method exploits Quantile regression (QR)
(Koenker and Basset, 1978) and Quantile correlation (QC) (Li et al., 2014) in the
classical PLS-PM algorithm for estimating the model parameters. Conditional
quantile modeling provides a complete description of the relationship among LVs,
considering the whole distribution of the outcome variables (and not only their
conditional means). QC-PM is a complementary method to PLS-PM, used to
investigate if the relationships among LVs change across different parts of the
dependent LV distributions, when there are outliers in the data and when MVs
distributions are heavy-tailed or highly skewed. Furthermore, QC-PM can be used to
provide conditional quantile predictions of the MVs of the dependent blocks given the
explanatory blocks, which is the main objective of this paper.

2 Conditional Quantile Model-based Prediction for Health
Indicators.

The focus of the present work is on the performance of the QC-PM for predicting
the 6-th (0 <@ < 1) conditional quantile for the dependent MVs (i.e., the MVs related
to the endogenous LVs), given the values of all explanatory MVs.

The proposed approach is mainly based on the idea that using a dense grid of
quantiles, conditional quantiles offer more flexibility than the conditional mean in
capturing the unobserved heterogeneity among the statistical units. The use of
statistical models, tailored to discover, incorporate and exploit such an unobserved
heterogeneity, is an old and wide explored issue in the regression model framework
(Spath, 1979). Following the procedure proposed by Davino and Vistocco (2018) to
handle heterogeneity in quantile regression, the focus here is on the heterogeneity of
the dependent block variables and predictor block variables and its use to predict or
influence the different parts of the conditional distribution of dependent variables.

The merit of the proposed method will be illustrated through a study concerning
the relationships among three well-being domains (Education, Economic Well-being
and Health) measured on Italian provinces. The interest in such an application
concerns both advances in knowledge about the dynamics that determine the well-
being outcomes at local level (multiplier effects or trade-offs) and a more complete
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measurement of regional inequalities of well-being. At the province level, inequalities
can strengthen each other affecting multiple disadvantages or advantages. Therefore,
in assessing well-being outcomes the conditions within those outcomes are
determined should be properly considered. In the path model in figure 1, Health
variables are placed as response variables. The underlying hypothesis, supported by
literature and empirical studies, is that Economic well-being and Education affect
Health. We consider both the direct effects on Health and the interaction between
Economic well-being and Education (wealthy territories offer better job opportunities
and therefore attract higher skilled people; human capital is a factor of economic
growth).

X121
o1 Education
/' Y1
X31
Health Y2
X1
Eco Well-
X2 being

Fig. 1 A path model to predict Health outcomes from Education and Economic well-being at local level.

Y3

To provide a more in-depth assessment of Health inequalities, the specified path
model is estimated for a dense grid of equally spaced quantiles through QC-PM,
producing m estimates for each parameter of the model, where m is the number of
chosen quantiles. The conditional quantile prediction for each health indicator (i.c.,
the MVs belonging to the health block) can be estimated in correspondence of each
quantile 6, (0 < 8 < 1). The accuracy of prediction is evaluated through quantile
scoring based on the so-called pinball loss function, the loss function used as the
objective function in quantile regression (Grushka-Cockayne et al., 2017), the lower
the pinball loss, the more accurate the conditional quantile prediction. Moreover, a
modified version of the Conditional Quantile Plot (Wilks, 2005), a graphical approach
to evaluate the model performance for continuous measurements, will be used as a
diagnostic verification technique. This plot will show, for each MV, the joint
distribution between the estimated conditional quantiles (for the median, 25/75th and
10/90th quantiles) and the corresponding observed values. The estimated conditional
quantile distributions are compared to the 1:1 diagonal line representing perfect
prediction, to visualize which predicted conditional quantiles most agree with
observations across the full MV unconditional distribution.

Finally, the best predictive model for each Italian province and for each Health
indicator is defined as follows. Let y;,, i =1, . . ., 110), (p =1, ..., 3), denote the
observed value for province 7 on the health indicator p, the best predictive model is
identified by the quantile that best predict the observed value, namely through the
quantile which minimizes the absolute difference between the observed value and the
estimated value:
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where 8, % represents the quantile associated to the best predictive model for each

unit and each indicator, while 3, (glw) is the correspondent best prediction for y;,.
ip

The proposed procedure is used also to compare the best (i.c., optimal) conditional
quantile predictions for the Health outcomes, given the Education and Economic
Well-being levels, with the observed unconditional quantiles. A comparison for each
province between the conditional €** value and the unconditional quantile be very
informative. Best predictive model is obviously subject to overfitting, but this does
not actually matter here and in general when dataset contains all the population units
and the objective is not to generalize on different data.

Finally, the optimal conditional quantile predictions deliver a better prediction
accuracy than using a single quantile approach or estimating only the conditional
mean. This is obvious for a single regression model, but it is not for composite-based
path modeling, where a number of regression models is analysed simultaneously, and
the predictive model is a combination of two separate models, i.e., the measurement
and the structural model. First results are very promising and show that the predictive
model and the proposed procedure drastically improve the in-sample predictive
capability of models.

Disclaimer: The paper is the result of collaboration among the authors. Istat is not responsible for the
contents.
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ABSTRACT: Classification problems with imbalanced class distributions are perva-
sive in a plurality of real-world applications, such as network intrusion detection, fraud
detection and rare disease diagnosis. In this context, most of standard classification
models are heavily compromised, as they tend to focus on the majority class, yet the
minority class is often the one of greatest importance. To tackle the problem, we com-
bine XGBoost, a powerful and recent formulation of the gradient boosting, with a loss
function specifically derived to optimise the Area Under the ROC curve, an evaluation
metric more robust towards class imbalance.

KEYWORDS: AUC, boosting, classification, class imbalance.

1 Introduction

Class imbalance refers to all supervised classification tasks which suffer of
uneven class distributions. The issue has gained ground with some further
implicit assumptions, such that imbalanced data are expected to have rare in-
stances belonging to the class of greatest interest and a (relatively) large num-
ber of units from the other classes. An imbalanced class distribution may
severely affect the performance of classification algorithms, by interfering with
both model estimation and accuracy evaluation phases. Disregarding each
model own specificities, model estimation is typically driven by the optimi-
sation of a global loss function, which favours classification rules ignoring the
rare units as overwhelmed by the prevalent class. A number of techniques have
been developed to cope with imbalanced classes: data level approaches attempt
to re-balance the class distribution before building learning models, whereas
classifier level approaches aim to adapt existing algorithms to focus on the mi-
nority class. The latter group includes cost-sensitive techniques, methods that
replace the loss function with more meaningful measures and combinations of
classifiers, that follow the logic of boosting, bagging and random forests.

"Disclaimer: this document reflects authors’ views, not necessarily shared by ECB.
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Under imbalanced scenarios, assessing the performance of a classifier plays
a role that is at least as crucial as its estimation. Accuracy, which is the most
commonly used metric for classification tasks, is not sufficient, as it is gov-
erned by the majority class. Other performance metrics which account for the
class distribution are preferred in this context, as the G-mean, the F-measure,
and especially the Area Under the ROC Curve (AUC). See Menardi & Torelli
(2014) for a more comprehensive discussion about the imbalance problem.

Within the logic of the approaches at a classifier level, in this work we
derive a differentiable loss function that optimises the AUC to train a gradient-
based model within the boosting family, in order to extend the benefits of the
AUC as evaluation metric to the phase of model estimation. After presenting
the building blocks relevant for a full comprehension of the proposed method,
we discuss our contribution and show some numerical results.

2 Gradient boosting optimisation based on the AUC

Given a training set ‘7, containing n i.i.d. pairs (X;,y;), i = 1,...,n, where
x; € R? is a vector of attributes and y; € {90,971} is a response variable whose
classes are conventionally labeled as negative and positive respectively, a clas-
sifier H : X — R is a function that allows to predict the response variable y,
based on the observed x. The output # (x) measures the confidence of x be-
longing to the positive class, whereas the predicted label y is defined on the
basis of a threshold k € R such that § = 9§ if H (x) < k and § = 9] otherwise.
A non-negative loss function L(y,J), that measures the discrepancy between
observed and fitted values, is used either to optimize the classifier during the
learning process and to assess the performance of the model.

Even if not specifically developed to tackle the class imbalance problem,
the gradient boosting (Friedman, 2001) has showed to achieve competitive
results in this domain. In broad terms, it exploits the connection between Ad-
aBoost, the first applicable approach of boosting, that relies on the idea of
increasing the weight of the hardest to classify units, and a forward-stagewise
additive modeling approach. At each iteration of the algorithm, a functional
gradient descent optimisation is applied to a loss function, in the n-dimensional
space of the fitted values, and it is then approximated by some simple model.
The final rule is a linear combination of all the previous estimated functions.
A specific formulation of the gradient boosting is XGBoost (Chen & Guestrin,
2016), which, at each iteration, approximates the objective loss function by a
second order Taylor’s series expansion, and estimates a classification model
via its minimisation. This implementation easily supports different loss func-
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tions, as it is sufficient to provide the algorithm with its first two derivatives.
The rationale behind the proposed approach is to integrate into the XG-
Boost aloss function independent on the class distribution. In this perspective,
the AUC - its ones’ complement, in fact - represents a sensible candidate.
Let ny and n_ be the sample size of positive and negative observations re-
spectively, and assume that # (x;") and # (x; ) are the fitted scores respectively
for the i-th positive and the j-th negative 1nstances. The AUC is equivalent to

the normalized Wilcoxon Mann-Whitney statistic, in the form:
ny n_
ZZHOS —H(x;)), (1)
i=1j=
where [ps(¢) is 0 if 7 < 0, 0.5 if = 0, 1 otherwise. The AUC estimates the
probability that a positive unit receives a higher score than a negative one by
means of comparisons between instances belonging to different classes. While
the global accuracy of a classifier depends on the choice of a classification
threshold, the AUC evaluates its discriminating ability as the threshold varies
over all its range. This allows to cater for the presence of rare units as, by
construction, it does not place more emphasis on one class over the other.
Unfortunately, two issues prevent the expression (1) from being directly
used as a loss function: first and foremost, the function is non differentiable,
secondly, its argument is not the single observation but rather refers to pairs of
instances. To overcome the first limitation, we consider the following differ-
entiable approximation (Yan et al., 2003):

AUC =

nyn_ :

») X;)), where: )
n-—i= 1j=
- X[ )—H(x;7)—1)" i <) — H(x>
S ), H(x)) {(() (H(xF) - H(x7) 1)) Ofﬂi[r(w,is)e H(x) <,
(3)

for a given T € (0,1] and p > 1 selected by the user. A pair of observations
contributes to the loss function when the score of a positive unit exceeds the
one of a negative unit by T. The authors suggest to choose T € [0.1,0.7] and
p € {2,3}. The quantity U is then reformulated to refer to unique instances:

1
Z[ (yi=1) 25 +1y=-1) 25, }, where: 4)

n+n, -

U, =

.51-/+ = H(yi,:_1)5(7‘[(xi),7‘[( ,-/)) and Si/ = ]I(yi/zl)S(}[(X[/), }[(X,)) Once the
parameters are defined, the computation of the first two derivatives is straight-

forward and the method can be implemented.
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Empirical results reveal that the proposed approach outperforms many other
competitive classifiers, especially in scenarios of extreme rarity and nontrivial
data patterns. In the bidimensional setting illustrated in Figure 1, as well as in
its generalisation in 5 dimensions, rare units lie in small disjunct sets, over-
lapping with the majority class at the margins of each box. The results of the
analysis are outlined in Table 1. As expected, standard models as the logis-
tic regression and the classification tree fail in this domain. The algorithm
SMOTEBoost (Chawla et al., 2003), specifically developed to address the im-
balance, performs even worse than the original AdaBoost. Conversely, the
modified XGBoost achieves better results in the majority of the cases, includ-
ing the hardest.

Logistic Tree Ada- SMOTE- | Gradient | Modified

% dim. Reg. (Gini) Boost Boost boosting | XGBoost
2 0.500 0.500 0.772 0.602 0.782 0.790
06 (0.004) | (0.000) | (0.047) | (0.059) (0.043) (0.041)
E) ’ 0.500 0.500 0.721 0.563 0.712 0.736

(0.012) | (0.000) | (0.041) | (0.059) (0.040) (0.042)
0.500 0.501 0.830 0.632 0.838 0.833

(0.003) | (0.008) | (0.034) | (0.059) (0.030) (0.030)
0.499 0.501 0.786 0.609 0.777 0.790

(0.008) | (0.014) | (0.032) | (0.067) (0.030) (0.031)

Figure 1: Simulated data in the Table 1: Average AUC (and standard deviation) over 300 Monte

bidimensional space. Red dots Carlo samples of size 1000, with dimension 2 and 5, rare class fre-

represent the rare instances. quency of 0.6% and 1%. For boosting algorithms 200 iterations were
considered; for the AUC-based loss function T = 0.7 and p = 2.
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HOW TO MEASURE MATERIAL DEPRIVATION?
A LATENT MARKOV MODEL BASED APPROACH
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ABSTRACT: Material deprivation can be used to assess poverty in a society. The
status of poverty is not directly observable, but can be measured with error for instance
through a list of deprivation items. Given two unobservable classes, corresponding
to the poor and not poor, we develop a time-inhomogeneous latent Markov model
which allows us to classify households according to their current and inter-temporal
poverty status, and to identify transitions between classes that may occur year-by-year.
Households are grouped by estimating their posterior probability of belonging to the
latent status of poverty.

KEYWORDS: latent markov, material deprivation, EU SILC.

1 Introduction

Measurement of material deprivation has generally followed the “counting ap-
proach”, that is a parsimonious way of classifying a society according to the
number of zero-one deprivation indicators, that lead to a deprivation score. An
individual score of deprivation results from the (possibly weighted) sum of the
dichotomous indicators listed in Table 1. Two individuals with the same de-
privation score are treated equally, even though they do not necessarily lack
the same items. The cut-off, the list of items, and their associated weights
have been a matter of concern and dispute, since they can affect the results
and the consequent policy. To overcome such issues we develop a dynamic la-
tent state model able to classify individuals (or households) according to their
unobserved poverty status from their observed current and inter-temporal de-
privations and to estimate movements into and out of poverty during the whole
observation period (Dotto et al., 2019). In this dynamic perspective, the prob-
ability of being persistently poor is estimated as the joint probability of being
poor over the whole period and transitions between classes (poor and not poor)
that may occur year-by-year can be estimated.
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2 A sketch of the model

Individuals belong to the latent state of poverty with a probability that depends
on the presence/absence of a specific combination of deprivation items. More
formally, let Y;; = (Yi1,...,Ysr) be the outcome for the i-th individual at time
t is the R-dimensional configuration. Given the R-dimensional outcome mea-
sures, with error, let Uj; be a binary latent variable which represents for each
individual 7 an indicator of being in the poverty status in the simplest case of
k = 2, and an indicator of being in the j-th latent group at time ¢, j =1,...,k
in the more general case. Subjects are allowed to move from one latent state
to another between each measurement occasion, hence U; is not necessarily
constant over time. In what follows we assume the i-th subject has been mea-
sured at times 1,...,7;, with T = max; 7;, and that missing measurements are
not informative. In our analysis 7; = T = 4. The resulting likelihood function
is given by

T.

n k k k T; K
L(@)_H( Z Z Z PI'(U{])Ilpr(Uil‘Ui,t—l)HHPr(YiIV|Uﬁ)> )

i=1 Ui=1Up=1 U,TIZI t=1r=1

(1)
where, in (1), 0 is a short-hand notation for all parameters involved and s;, i =
1,---,n, the longitudinal sampling weights. To maximize (1) we use an EM-

type procedure whose details are outlined in Bartolucci et al., 2012. At con-
vergence of the algorithm, the obtained MLE for the parameters of interest can
be used for inference, prediction, and their interpretation is explained within
the next section.

3 Results

To validate the proposed methodology we use the 2013 longitudinal compo-
nent of EU-SILC (UDB SILC 2013 rev.2), released in August 2016. The unit
of analysis is the household. Table 1 reports the association between each item
r and the latent categorical variable. For each country, the first column indi-
cates the estimated probability of being poor (j = 2) in a specific item given
that the latent variable assumes the status of poverty, p»,, and it is a measure of
how sensitive the item is. The second column, instead, indicates the specificity
of each item r, 1 — py,, that is the probability of not lacking item r given that
the household is not poor. Ideally, item r should have sensitivity and speci-
ficity equal to 100%: whoever is poor lacks that item and whoever is not poor
does not lack that item. It can be seen that generally durable goods (telephone,
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Figure 1. Percentage of deprived households according to varying thresholds

TV, washing machine) are very specific, but not sensitive, attributes. The in-
capacity to afford a meal and to keep the house adequately warm are also very
specific but also quite sensitive. More balanced items, and on the whole more
discriminating, are the incapacity of having one week annual holiday away

from home and of facing unexpected expenses.

Table 1. Estimated probability (percentage) of lacking item r given that the latent state
is poverty ( par=sensitivity) and probability of not lacking item r given that the latent
state is non-poverty (1 — p1,=specificity). Greece, Italy, and UK separately and as a

whole: 2010-2013.

Greece Italy UK Pooled
Item deSCHpUOH P | 1=pir par | 1=pir b | 1=pir par | 1=pir
1| keep the house warm | 495 929 | 434 980 | 218 98.1 | 345 98.0
> | one week holiday 88.9 760 | 924 824 | 810 95.7 | 874 87.5
3 | afford a meal 317 990 | 308 989 | 209 99.8 | 258 99.5
4+ | unexpected expenses | 873 88.8 | 834 903 | 853 91.5 | 835 90.9
s | telephone 12 [ 1000 [ 08 [ 1000 [ 02 | 1000 | 07 | 1000
6 | colorTV 0.1 1000 | 08 1000 | 03 1000 | 05 100.0
7 | washing machine 25 997 | 09 [ 1000 [ 16 | 1000 | 13 | 1000
5[ car 155 976 |79 998 | 179 992 | 123 995
9 | _arrears 585 829 | 268 983 | 287 995 | 298 985
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Additionally, for each household i, we estimated the probability of being in
state of current deprivation based on the configuration of the vector of the nine
outcomes: p; = Pr(Yi|Uy = 1). These estimated conditional probabilities
allow to classify households into the state of deprivation or non-deprivation
according to a given threshold, T. Each household is not classified according to
an established cut-off, but with uncertainty. This does not prevent calculation
of the usual deprivation statistics such as the deprivation rate but leads to a
continuum of solutions represented by curves of the estimates, permitting an
evaluation of their robustness (comapre Figure 1).

4 Conclusions

Measurement of material deprivation which is a relative concept, is still chal-
lenging since involves both methodological and substantive issues. Herein we
proposed a latent Markov model for categorical longitudinal data able to solve
some of the issues raised in measuring deprivation. Our model is able to study
the evolution of individual characteristics that are not directly observable.
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ABSTRACT: Interval-based composite indicators are useful as subjectivities exist
in the choices leading to the construction of a composite indicator. The interval
shows the level of variation which is able to be determined by the different
factors considered on the construction of the composite indicator. We will
explore and analyze different results of the underlying composite indicators
computed on the Monte Carlo simulations using biclustering. The results offer
an understanding and explanation of the sensitivity of the composite indicator
outcomes to the inputs under consideration.

KEYWORDS: composite indicators, interval data, biclustering.

1 Interval-Based Composite Indicators

A relevant problem* in the construction of the composite indicators is the
existence of subjectivity in some relevant decisions (JRC European Commission
and OECD, 2008). For instance the choice of the different weights could be
subjective. A sensitivity analysis can be performed in order to evaluate the
robustness of the different results due to changes in the stated assumptions (for
instance the choice of the weights). The construction of a composite indicator
should take into consideration both sensitivity and robustness analysis in order
to validate the results. A possible solution is the use of interval data (Drago,
2017). These interval data take into account the different characteristics of
the different results by their features. A typical composite indicator can be
considered (Aiello & Attanasio, 2006)

Y = f[Ti(y1), 2(»2),- - -, Ts(¥s)] (1)

*Thanks to the anonymous referees for the useful suggestions and professor Filomena
Maggino and dr. Leonardo Alaimo for the productive discussions. Eventual mistakes are mine
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where y1,ys ...y, are some indicators and 77, 75 . . . Ty are transformation functions
of the data, and finally f is a specific aggregation function considered. From
the different combinations of possible inputs we can construct the composite
indicator. If we consider the entire set of the output of the composite indicator
considering all the changes on the underlying ¢ assumptions (for instance
weighting) we can have the interval of the different composite indicators (outputs):

Y] =YY ) ={Y eR: Y <y°<Y} (2)

where Y¢ and Y* are respectively the lower and the upper bounds for the
assumptions considered ¢ for ¢ = 1,...,C. It is important to note that it is
possible to take into account the center

|-
Ycenter = 5 (XC +Y ) (3)
and also the radius |
Yradius - E (YL - XC) (4)
At this point it is of great importance to interpret the different intervals constructed

by considering the different blocks obtained.

2 Decomposition of the Interval Composite Indicators

It is possible to decompose the interval composite indicator into different intervals
which can be contained in the original one.

1 2 c
[ﬁv Yj1]7 [ia sz]v R [ia YJC] (5)
where ¢ for c = 1,...,C are the different assumptions considered , le and Y7
are the lower and the upper bounds for each statistical unit j with j =1,...,J.

We can start from the general matrix A of the simulations obtained. Each
simulation returns a single composite indicator for the each statistical unit
and a rank. At this point we can consider an approach of biclustering in
order to analyze in more depth the different results obtained from the different
simulations (the different simulations returning different outputs or composite
indicators are in columns whereas the statistical units are in the rows). In
particular we are interested in comparing the different simulations used assuming
different weightings or changing the structure of the composite indicator. We
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can validate the biclusters obtained by examining the Jaccard index (Kaiser &
Leisch, 2008):

JI(B1,B2) = |B10 82|

|B1|+ |B2| — |B1 N B2
where B1 and B2 are two bicluster results. In this way, from the consideration
of the biclustering results it is possible to decompose the interval of the composite
indicator. In fact we are able to analyze and explore the different results of the
factor which cause the variation of the composite indicator. This result is very
important for the operational use of the composite indicator (we are interested
in both in the score of the composite indicator and also in its variability).

3 Analysis of the Criminal Rates in the United States

We consider a composite indicator useful to measure the level of crime in the
US by combining the information of the different criminal indicators. The data
are in McNeil, 1977 and consist of statistics relating to the arrests for assault,
rape and murder in the US (year 1973). The data are related to the 50 US
states. All the different data are per 100,000 habitants. So in this sense we
firstly standardize the different indicators, then we consider the construction
of the interval based composite indicator. The analysis of the matrix of the
simulations is visualized and analyzed by a heatmap (figure 1). Then we apply
the biclustering approach in order to analyze the simulation matrix. Overall
the variables tend to vary much more in the composite indicators than in other
factors such as the weights. We used the biclustering algorithms developed in
Kaiser et al., 2018.

Figure 1. Simulations for the Interval Based Composite Indicator (in columns the
different inputs considered; in rows the statistical units).
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4 Conclusions

Composite indicators are often characterized by assumptions which call for

some subjective choices. In this sense it is usually relevant to perform a

sensitivity analysis in order to evaluate the robustness of the composite indicator
constructed. Interval composite indicators allow to take into account all possible
variation sources on a single interval outcome based on all the possible outputs

obtained by the different inputs. In this context biclustering can be usefully

applied so as to detect groups of statistical units which do not vary on the

same simulations. The interval decomposition allows the evaluation and the

exploration of the variability patterns relating to the inputs and more specifically
where inputs lead to higher variation outcomes.
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ABSTRACT: We propose an approach to the cluster ensemble problem based on piv-
otal units extracted from a co-association matrix. It can be seen as a modified ver-
sion of K-means method, which utilizes pivots for careful seeding. Different criteria
for identifying the pivots are discussed, as well as preliminary results concerning the
comparison with alternative ensemble methods.
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1 Introduction

Ensembles methods have recently emerged as a valid alternative to conven-
tional clustering techniques and have shown to effectively improve the quality
of clustering results and achieve robustness (see, e.g., Strehl & Ghosh, 2002,
Jain, 2010). Such methods require a strategy to generate multiple clusterings
of the same data set (the ensemble) and then combine them into a consensus
partition (presumably superior), by following the idea of evidence accumu-
lation, i.e., by viewing each clustering result as an independent evidence of
data structure. A common way to do this is to obtain a new pairwise simi-
larity matrix, or co-association matrix, by taking the co-occurrences of pairs
of points in the same group across all partitions (Fred & Jain, 2005). Then, a
similarity-based clustering algorithm can be applied to this matrix to yield the
final partition.

We propose to use the co-association matrix to find some specific units
(hereafter, pivots) which are representative of the group they belong to (be-
cause they never or very rarely co-occur with members of other groups). Vari-
ous criteria for detecting the pivots are proposed in Section 2. Section 3 illus-
trates the use of pivotal methods for data clustering, and compare the proposed
approach with classical K-means and other common ensemble methods.

Pivotal methods and related clustering procedures are implemented via the
R package pivmet, available from the Comprehensive R Archive Network at
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http://CRAN.R-project.org/package=pivmet.

2 Pivotal methods based on co-association

Let Y = (y1,...,y,) be a set of n observations, where y; € R?. Consider a set
?={P' P2 ... ,P"} of H partitions of the data points into K disjoint clusters,
derived from an arbitrary clustering algorithm. Note that the number of groups
is pre-specified and equal for all P". P can be summarized via the n x n co-
association matrix C with generic element

1 H
cij=— Y [P"0i)=P'(y))l, (1)
Hh:I

where |- | denotes the indicator function, and P"(y;), P"(y;), represent the clus-
ters of the objects y; and y; in P", respectively. Clearly, units which are very
dissimilar from each other are likely to have zero co-occurrences; as a conse-
quence, C is expected to contain a non-negligible number of zeros. Given a
large and sparse 0-1 matrix, the Maxima Units Search (MUS) algorithm seeks
those elements, among a pre-specified number of candidate pivots, whose cor-
responding rows contain more zeros compared to all other units (Egidi et al.,
2018c). Define a reference partition, Gy,...,Gg of yi,...,y, obtained by ap-
plying, for instance, an agglomerative hierarchical algorithm into K groups.
The MUS procedure takes C as input and outputs a set of K units—one for each
group of the reference partition—that exhibit the highest degree of separation
(Egidi et al., 2018b). As an alternative approach, the pivot y; for group Gy
can be chosen so that it is as far as possible from units that might belong to
other groups and/or as close as possible to units that belong to the same group,
according to one of the following objective functions

(a) max Z Ciy,j (b) m_in Z Cir,j (C) max Z Cip,j — Z Cir,j> (2)

"k jeGy J#Gi kK jEG j#Gi

where ¢; ; is defined as in (1). Ideally, the K x K submatrix of C with only the
rows and columns corresponding to iy, ...,ix will be the identity matrix. In
practice, it may contain few nonzero elements off the diagonal.

3 A simulation experiment

In order to illustrate the proposed algorithm, we simulate bivariate data from
a mixture of three Gaussian distributions with mean vectors g; = (1,5), p, =
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Figure 1. Mixture of three Gaussian distributions (sample size n=620). Cluster cen-
ters and/or pivots for each method are marked via asterisks and triangles, respectively.

(4,0), u; = (6,6), and the 2 x 2 identity matrix as covariance matrix. The
components have sample size 20, 100 and 500, respectively (see Figure 1, top-
left panel). The K-means algorithm with random seeds is used to generate a
cluster ensemble of H = 1000 partitions, and obtain the co-association matrix
C. For each simulated dataset, we proceed as follows:

1. For a given number of clusters K, obtain a partition of the data Gy, ...,Gg
(reference partition);

2. Apply the MUS algorithm or one alternative criterion in (2) to the matrix
C to find K (distinct) pivots y;,, ..., Vig;

3. Run the K-means algorithm using the pivots as initial cluster centers.

The proposed modification of the standard K-means technique introduces a
pivot-based initialization step with the aim of reducing the effect of random
seeding (see also Egidi et al., 2018a). An alternative approach to careful seed-
ing can be found in Arthur & Vassilvitskii, 2007. Figure 1 shows the solu-
tion from K-means, using K = 3, and by pivotal methods MUS and criterion
(b) in Eq. (2), where Average-Linkage (AL) agglomerative clustering is used
to obtain the reference partition. The results of consensus clustering using
PAM (Partitioning Around Medoids) method and AL-agglomerative hierar-
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chical clustering (agnes) are also shown (Single Linkage (SL) and Complete
Linkage (CL) give similar results). Table 1 reports the comparison between
the different methods in terms of Adjusted Rand Index (ARI), used to quantify
the agreement between two partitions. The mean value is considered for 1000
simulations. Preliminary results suggest that the pivot-based approach out-
performs the competing similarity-based ensemble methods and the standard
K-means, which gives a mean ARI of 0.659.

Table 1. 2D Gaussian data: mean ARI (1000 simulations) between the final clustering
and the true data partition. Ensemble methods use dissimilarities 1 —c; j.

Pivotal MUS () (b) (©
methods 0.857 0.865 0.883 0.779
Ensemble agnes (AL) agnes (SL) agnes (CL) PAM
methods 0.512 0.535 0.514 0.506
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ABSTRACT: We propose a model-based clustering procedure for mild and gross out-
liers. Our mixture model is based on heavy-tailed components (e.g., the contaminated
normal distribution), but it is assumed to apply only to a subset of the data. Conse-
quently, a proportion of observations is trimmed. We propose a penalized likelihood
approach for estimation and selection of the proportions of mild and gross outliers,
where the penalty parameter is fixed by formal optimality arguments. We conclude
with an original real data example on the identification of the source from illicit drug
shipments seized in Italy and Spain.

KEYWORDS: tclust, contaminated normal, penalized likelihood.

1 Introduction

In clustering based on the normal mixture model there are two main approaches
to deal with contamination. One is based on the use of heavy-tailed or skewed
component distributions. A recent example in this direction, preserving el-
liptical contours of clusters, are mixtures of contaminated normal (CN) dis-
tributions (Punzo & McNicholas, 2016). Component-wise methods are well
suited to work with mild outliers (Ritter, 2015), and are sometimes labeled as
weakly robust. A separate body of literature has instead worked with outliers
in more general position, including gross outliers, and has usually proceeded
by discarding or at least downweighting a proportion of the observations (Far-
comeni & Greco, 2015). A good example is tclust (Garcia-Escudero et al.
, 2008), where a fixed proportion of observations is trimmed and the rest is as-
sumed to follow a normal mixture model. These procedures have often formal
robustness properties, e.g., positive breakdown point asymptotically.

In this work we merge the two approaches above by estimating a CN mix-
ture after trimming a fixed proportion of gross outliers. Our model can be
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seen from two different perspectives. On the one hand, clusters having a dis-
tribution with slightly heavy tails might be desired in order to assign as many
observations to clusters as possible. In this case, it is indeed assumed that
clean observations arise from, for example, a CN model. On the other hand,
the trade off between mild and gross outliers is exploited in order to increase
efficiency: some (mild) outliers are assigned to a cluster and contribute to cen-
troid estimation, therefore decreasing the final mean squared error (MSE).

In this work we tackle also an additional open problem with trimming pro-
cedures, that of selecting the trimming proportion. Our proposal is based on
a penalized likelihood approach, where the trimming proportion is in prac-
tice substituted by a penalty parameter. The advantage is that we can iden-
tify a heuristic but theoretically justified way of choosing an optimal penalty
level, and therefore an optimal trimming proportion. Our fixed-penalty ap-
proach in some sense solves the issue of selecting the trimming proportion
both for our model and the special case of trimmed normal mixture models
(tclust). The methodology proposed in this paper has been implemented
in R functions which can be downloaded from https://github.com/
afarcome/cntclust.

2 Methodology

Let xy,...,xi,...,x, be a sample of n observations in d dimensions. Moreover,
let ap > 0 denote a trimming proportion of outliers which shall not be used
to estimate model parameters. We assume data arise from the contaminated
spurious outlier model

k

[T mfon(xisu;, 25, 0,m5) [ ] gi(xi), (1)

iR j=1 iR
where R denotes a set of non-trimmed observations of cardinality | (1 — o) 7]
and g; are pdfs generating the outliers in general position. Let fx (-;u,X) de-
note the probability density function (pdf) of a d-variate normal (N) distribu-
tion with mean vector u and covariance matrix X. In (1), fon (x4, 2,0,M) =
(1 —a) fin (6, X) + afn (s u,mE) denotes the pdf of a d-variate CN distribu-
tion with mean vector y, scale matrix X, proportion of mild outliers o € (0, 1),
and degree of contamination n > 1.

To estimate the parameters, we optimize the profile likelihood

k k
(@)=Y ) (%= Zl ZR [Inm; +1n fon (xispy 2 05,m5) ] ()
Jj=lieR;

j=lieR; ‘
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where R; denotes the set of observations assigned to the j-th cluster. To make
maximization of (2) a well defined problem, we adopt the classical eigenvalue
ratio constraint proposed by Garcia-Escudero et al. , 2008.

Model (1) involves the difficult choice of 0, &y, ..., 0, where oy controls
the proportion of gross outliers and o; the proportion of mild outliers in the j-
th cluster. We propose a LASSO-type penalized likelihood approach enforcing
a sparse model selection in which some values in the set (0, 0y, . . . , 0t ) might
be set to zero. A general form of penalized log-likelihood is given by

g(ﬁ)+P(0€070€1,---700k)> (3)

and we propose using P(Ql,...,04) = —log(n) le‘.zovjocj. In order to reduce
the number of penalty parameters, we set Vo = nv and v; = v for j > 0.

The choice of the penalty parameter v has got direct consequences on
the estimated trimming proportion 0. If also o,...,04 are included in the
penalty, it also affects their estimates. Surprisingly enough, mapping the prob-
lem of selecting contaminating proportions to the scale of the likelihood gives
an asymptotically “optimal” fixed value, v = v/2d, which under certain as-
sumptions guarantees that observations outside a chi-square type ellipse from
a bulk of the data are trimmed.

Maximization of (2), and for fixed v of (3), is carried out using a classifica-
tion expectation-conditional maximization (CECM) algorithm, where eigen-
value ratio constraints are activated at the conditional maximization step is
needed,

3 Example about clustering illicit drug shipments

We analyze data about n = 151 seizures of shipments of cocaine and heroin in
Italy and Spain. They were sent to the forensic laboratories for checking the
nature of the substance and quantifying the absolute and relative contents of
each of several chemical compounds. In modern forensics it is believed that
the contents of certain solvents might be useful for identifying the source, that
is, clustering packages with respect to the illicit laboratory where the drug was
processed. We verify this assumption by focusing on d = 3 compounds: hex-
ane, acetone, and 2-propanol. We fix k = 2 and estimate a classical normal
mixture model and a contaminated normal mixture model without trimming
first. Then we use robust clustering methods: tclust and the contaminated-
normal mixture model with trimming. In Table 1 we report, for values of the
trimming level chosen using our penalized likelihood approach, the adjusted
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Rand-index (ARI) showing the agreement between the class labels and the
true underlying Italy/Spain location of seizure. With no or insufficient trim-
ming one might conclude that there is no relationship between solvent con-
tents and seizure location. On the other hand, after trimming the agreement
becomes fairly high. As expected we note that the optimal trimming level us-
ing tclust is slightly larger than those using CNTCLUSTO. While in our
low sample size example this might not have strong consequences in terms of
MSE, [151(0.066 —0.053)] = 2 seizures will not be attributed to a location
using t clust, which can have forensic consequences.

Table 1. Adjusted Rand-index (ARI) for location of drug seizure and clustering. In
parentheses the trimming level. NM: normal mixture, CNM: contaminated normal
mixture, tclust: trimmed NM, CNTCLUSTO: trimmed CNM, CNTCLUST: penal-
ized trimmed CNM with v = \/2d and fixed trimming level. The trimming level se-
lected with our fixed-penalty approach is indicated with 8.

Method ARI Method ARI
NM 20.076 CNTCLUSTO(G = 0.053)  0.660
CNM -0.069 CNTCLUST(G = 0.053)  0.658

tclust (6o =0.066) 0.657
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ABSTRACT: Effective statistical modelling under complex designs for functional data
is still under development and requires innovative theories. In this work, we discuss an
approach for modelling multivariate dependent functional data, where the dependence
can arise via multiple responses, temporal or spatial effects. Specifically, we consider
bivariate functional data and illustrate the proposed methodology in the frameworks
of spatial patterns detection and curve prediction. To account for dominant structural
features, we rely on the theory of Gaussian Processes (GPs) and extend hierarchical
dynamic linear models for multivariate time series to functional data setting. An inter-
esting feature of the proposed framework is that it allows to leverage knowledge from
one process when solving an inferential task for another and to use derivative data for
curve prediction. This framework also leads to the notion of derivative principal com-
ponent analysis, which complements functional principal component analysis, one of
the most popular tools of functional data analysis and facilitates the use of multivariate
statistical techniques..

KEYWORDS: Gaussian processes, functional data, derivative process.
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ABSTRACT: Integration consists in a multidimensional process, which can take place in
different ways and in different times in relation to each single economic, social, cultural, and
political dimension. In this paper, we aim at providing a methodological proposal based on
PLS-SEM to build a composite immigrant integration indicator.
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1 Measuring immigrant integration

Integration consists in a multidimensional process, which can take place in different
ways and in different times in relation to each single economic, social, cultural, and
political dimension. It aims at pursuing mutual respect of ethno-cultural differences
and peaceful coexistence among populations within a historical and social reality. Its
goal cannot be reached once for all but must be continuously pursued distinguishing
different integration processes at economic, cultural, social, and political level. A
high economic integration level may be quickly achieved, indeed, along with scarce
or no social or political integration. Each single dimension, diachronically
positioned over time, generates different integration levels. Hence, examining
each single dimension is important as well as building composite indexes
simultaneously comprehensive of all dimensions in order to obtain a full description
of a complex phenomenon and to convey a suitable set of information.

According to the literature (Entzinger, 2000), the concept of integration can be
broken down into different dimensions. Firstly, the socio-economic dimension refers
to housing conditions, work conditions and income. Including mostly the theme of
citizenship, also the legal-political dimension takes into account two sub-
dimensions. The other sub-dimension concerns the rights of political participation -
from the freedom of association to the voting right - which in some countries can be
used at local government elections even without having achieved the citizenship
status of the host country. Finally, the cultural and social dimension considers
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several elements, among which knowledge of the Italian language, free times
activities and access to information.

In this paper, we aim at providing a methodological proposal to build a
composite immigrant integration indicator, able to measure the different aspects
related to integration, such as employment, education, social inclusion, and active
citizenship. With this in mind, we analyse the data collected from European Social
Survey (ESS), Round 8, on immigration by the Partial Least Squares Path Modelling
(PLSPM) approach (Tenenhaus et al., 2005). The PLSPM models are Structural
Equation Modelling suitable to estimate interaction and main effects among multiple
sets of latent variables. In the present study we use a simultaneous non-hierarchical
clustering and Partial Least Squares Modelling, named Partial Least Squares K-
Means (PLS-KM)), recently proposed by Fordellone and Vichi (2017). In this model,
centroids are laying the reduced space of the latent variables, ensuring the optimal
partition of the statistical units on the best latent hyperplane. Estimating the
measurement relations by the SEM pre-specified model, the latent structure is
defined.

2 ESS data

The data from the eighth iteration of the survey for ESS are until now available from
18 of the 24 countries, which undertook fieldwork in 2016. The 18 countries
included in this initial release are: Austria, Belgium, Czech Republic, Estonia,
Finland, France, Germany, Iceland, Ireland, Israel, Norway, Netherlands, Poland,
Russia, Slovenia, Sweden, Switzerland and United Kingdom. The included
questions asked in every round since 2002 on topics including crime, democracy and
politics, human values, immigration, media consumption, national and ethnic
identity, perceived discrimination, religion, social exclusion, social trust/trust in
institutions, subjective wellbeing and socio-demographics and public attitudinal data
towards welfare, climate change and energy security, personal norms, efficacy and
trust and energy preferences. The data must be weighted to adjust for different
selection probabilities, for sampling error and non-response bias as well as different
selection probabilities. The table 1 shows the topics covered by the survey in the
collection of questions, classified into two main parts: a core section and a rotating
section. The core module contains items measuring a range of topics of enduring
interest to the social sciences as well as the most comprehensive set of socio-
structural variables of any cross-national survey. The rotating modules are carried
out by multi-national teams of researchers selected to contribute to the design of
survey.
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Table 1 - Topics and items of ESS.

Items Topics
Core A1-A6 Media use; internet use; social trust
Core B1-B43 Politics, including: political interest, trust, electoral and

other forms of participation, party allegiance, socio-
political orientations, immigration

Core C1-C44 Subjective wellbeing, social exclusion, crime, religion,
perceived discrimination, national and ethnic identity,
test questions (sect. 1), refugees

Rotating D1-D32 Climate change and energy, including: attitudes,
perceptions module and policy preferences
Rotating E1-E42 Welfare, including attitudes towards welfare provision,

size of module claimant groups, attitudes towards service
delivery and likely future dependence on welfare, vote
intention in EU referendum

Core F1-F61 Socio-demographic  profile, including household
composition, sex, age, marital status, type of area,
education and occupation, partner, parents, union
membership, income and ancestry

Core Section H Human values scale

Core Section 1 Test questions
Source: www.europeansocialsurvey.org.

The ESS sampling strategy is based on the design and implementation of
workable and equivalent sampling plans in all participating countries, following key
principles:

[J  samples must be representative of all persons aged 15 and over (no upper
age limit) resident within private households in each country, regardless of their
nationality, citizenship or language

[ individuals are selected by strict random probability methods at every stage

[ sampling frames of individuals, households and addresses may be used

[  all countries must aim for a minimum 'effective achieved sample size' of
1,500 or 800 in countries with ESS populations of less than 2 million after
discounting for design effects

[J  quota sampling is not permitted at any stage

[J  substitution of non-responding households or individuals (whether
‘refusals', 'non-contacts' or 'ineligibles') is not permitted at any stage.

In the present paper, we use ESS Multilevel Data resource in order to analyse the
ESS-respondents with reference to the context they live in. The resource contains
data about:

0 individuals (the ESS respondents)

(1 regions (mainly data collected from EUROSTAT)

[ countries (data collected from different sources)
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3 Methodology

Given the nxJ data matrix X, the n*xK membership matrix U, the KxJ centroids
matrix C, the JxP loadings matrix A = [Ay, Ap], and the errors matrices E, Z, D,
the Partial Least Squares Structural Equation Modelling K-Means approach can be
written as follows (Fordellone and Vichi, 2017; Fordellone et al., 2018):

H=HBT +ErT + Z,
X = EAf + HAT + E,
X = UCAAT = UCA-4AY + UCALAT + D, (1)

under constraints: (i) ATA =1I; and (ii) U € {0,1}, U1l = 1,,. Where, H is the nxL
matrix of the endogenous LVs with generic element 7; ;, & be the nxH matrix of the
exogenous LVs with generic element &;,, B is the LXL matrix of the path
coefficients f;; associated to the endogenous latent variables, I is the L xH matrix
of the path coefficients y;, associated to the exogenous latent variables, Ay is the
JxH loadings matrix of the exogenous latent constructs with generic element A, p,
and Agis the JxL loadings matrix of the endogenous latent constructs with generic
element A;;. Thus, the PLS-SEM-KM model includes the SEM estimated via Partial
Least Squares (PLS) and the clustering equations. The simultaneous estimation of
the three sets of equations will produce the estimation of the pre-specified SEM
describing relations among variables and the corresponding best partitioning of units

There is a relevant aspect to considerate in the application of PLS-SEM-KM
procedure: when we applying PLS-SEM-KM, the number of groups is unknown and
the identification of an appropriate number of K clusters is not straightforward.
Then, often you need to rely on some statistical criterion. In particular, the PLS-
SEM-KM algorithm includes the choice of the number of clusters K classes
according the gap method criterion (Fordellone and Vichi, 2017).
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ABSTRACT: The recognition of spatial heterogeneity through spatial techniques is
essential to guide decision-making regarding biodiversity conservation. Many eco-
logical studies concerning a spatial approach for biodiversity have focused only on
species richness or evenness, leading to a partial overview of this complex concept.
For this reason, we propose a spatial functional approach to diversity profiles for as-
sessing spatial biodiversity and identifying groups of curves which are similar in spa-
tial patterns. Specifically, the distance-based LISA algorithm has been extended to the
case of functional diversity profiles in lattice, after smoothing the discretized curves
and specifying a suitable distance measure.

KEYWORDS: spatial FDA, spatial lattice data, LISA map, diversity profile.

1 Introduction

The identification of spatial patterns in species diversity represents an essential
issue to establish conservation strategies and monitoring programs (Hernndez-
Stefanoni et al., 2011). Specifically, mapping biodiversity is crucial to inves-
tigate spatial variations in natural communities. Although spatial patterns of
richness and diversity indices are among the most-studied patterns in ecology,
they do not provide a reliable biodiversity representation as they neglect the
multivariate nature of this complex concept. The use of diversity profiles has
been recommended in the literature to solve this issue (Patil & Taillie, 1982).
Indeed, they provide a graphical representation of a collection of indices be-
longing to the same parametric family. Since diversity profiles are presented as
curves, they have been analyzed in a functional framework (Di Battista et al.,
2016, Di Battista & Fortuna, 2017, Maturo & Di Battista, 2018). However,
these studies have focused on independent curves, which is not a reasonable
assumption in the environmental fields.

For this reason, we propose a spatial functional approach to diversity profiles
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for identifying groups of curves which are similar in spatial patterns and eval-
uating the possibility of improving the accuracy of biodiversity maps. Specifi-
cally, a distance-based LISA map (Delicado & Broner, 2008) has been applied
to functional diversity profiles in a spatial finite lattice. The main advantage
of our approach is that it allows to identify spatial patterns by jointly consid-
ering the two fundamental aspects of biodiversity, that is the richness and the
evenness. Moreover, regarding the data as functions has the advantage of over-
coming some of the problems that are associated with irregularly spaced or
sparse data (Haggarty et al., 2015).

2 Unsupervised spatial classification of functions in lattice

Following Delicado et al. (2010), a spatial functional process can be defined
as follows:
{fs(x):seﬂ)CRd,xGXCR} (D

where s is a generic data location in the d-dimensional Euclidean space, F;(x)
are functional random variables, which are defined as random elements taking
values in an infinite dimensional space, x € X is the domain of the functions,
and the set D C R? can be fixed or random. The realization of a spatial process,
S (), [, (), eeees f5, (%), 5 € D, i = 1,2,...,n, constitutes a set of functional
spatial data. The nature of the set D allows to classify spatial functional data
(Cressie, 1993) in geostatistical functional data, functional marked point pat-
tern and functional areal data. We focus on the latter case, that is on functions
observed on a regular grid containing a finite number of sites whose whole
constitutes the entire study region. To detect for the existence of spatial de-
pendence and identify spatial clusters among curves, the distance-based LISA
maps algorithm (Delicado & Broner, 2008) has been applied. It is a general-
ization of the well-known LISA maps for univariate data in lattice (Anselin,
1995) and can be applied to a wide range of data types, provided that a dissim-
ilarity measure can be defined between any pair of observations.

In the functional context, for each location, a number of noise-corrupted raw-
data, say {y;(x j)}§:1, are sampled form a random trajectory F;(x) at J equi-
spaced points of the functional domain. Indeed, functional data are recorded
only for discrete values of x € X; thus, for each i-th site, a linear approximation
of the observed discretized trajectory can be computed using spline functions
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(Ramsay & Silverman, 2005) as follows:
fi, (x Zc,bq)b )=cl®(x), i=1,2,...,n )

where ¢; = (ci1,¢i, ...,cip), is the coefficient vector, which defines the linear
combination and ®(x ) = (01(x),02(x), ..., 05(x)) is the vector of basis func-
tions (Ramsay & Silverman, 2005). In our case, f;,(x) is a diversity profile,
which represents a summary function of the biodiversity of the s; area. A spa-
tial cluster is defined as a set of areas that are close to each other having similar
observed values for the variable of interest. This kind of clusters would exist
when the functional variable ¥ (x) presents spatial dependence at local level.
To summarize the spatial relationship among n spatial units, a n X n spatial
weight matrix W is specified. It is often defined by neighboring information,
thus its elements w;; are equal to one if s; and s; are neighbors and zero other-
wise. Once the neighborhood matrix W has been defined, the distance-based
LISA algorithm can be applied, after introducing a distance measure among
the n observed functions. In the L?(X) space, a suitable distance is the L2

norm:
A(50.5,00) = [ (10~ 1,0) e )

which can be written as follows.

dij = \//X(Ci—cj)TM(ci—cj) “4)

where M = [, ®(x)® (x)dt is a symmetric square matrix of order equal to
the number of basis functions, and ¢; and c¢; are the coefficients of the basis
expansion for f;,(x) and f;,(x), respectively. Then, the distance-based LISA
maps algorithm consists into five steps (Delicado & Broner, 2008):

e Step 1: Detect global outliers.

e Step 2: Mark tracts significantly similar to (and significantly different
from) their neighbors.

e Step 3: Mark non-marked tracts that are similar to a neighbor marked
tract.

e Step 4: Identify spatial clusters by applying any standard clustering al-
gorithm to the ares marked at Steps 2 and 3.

e Step 5: Draw the map.

Regarding the clustering step, standard unsupervised classification algorithms
can be applied to the coefficients of basis functions.
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ABSTRACT: Due to its mathematical tractability, the Gaussian mixture model holds
a special place in the literature. However, in a clustering scenario, using a Gaussian
mixture model when skewness or outliers are present can be problematic. As a result,
in recent years, many different methods have been proposed to account for skewed
clusters. The two most prevalent methods in the literature are modelling skewness
directly by using skewed distributions, and performing clustering alongside a suitable
transformation. Although both these methods have been studied extensively in the lit-
erature and compared for select datasets in terms of relative performance, no extensive
study has been performed to motivate in which situation to use one method over an-
other. Using many different real datasets, and looking at their underlying properties,
such as measures of overlap between clusters, skewness, and kurtosis, we aim to pro-
vide more insight as to when one method - i.e., transformation or a skewed distribution
- might be preferable to another. Simulated data and a large number of multivariate
datasets will be considered.

KEYWORDS: skewed distributions, transformations, mixture models, clustering.
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ABSTRACT: In model based clustering, there are two main distinct approaches de-
pending on whether the mixture or the classification likelihood function is used. It is
well known that both likelihoods are unbounded without any constraint on the cluster
scatter matrices. Constraints also prevent traditional EM and CEM algorithms from
being trapped in (spurious) local maxima. Controlling the maximal ratio between the
eigenvalues of the scatter matrices to be smaller than a fixed cowstaftis the
traditional way for setting such constraints. In this paper we discuss other types of
constraints and extend them to the family of the parsimonious Gaussian clustering
models.

KEYWORDS: clustering, mixtures, EM algorith, CEM algoritm.

1 Introduction and notation

The traditional approach of unsupervised learning assumes multivariate nor-
mal components and adopts a maximum likelihood approach for clustering
purposes. With this idea in mind, well-known classification and mixture like-
lihood approaches can be used.

In this work, we denote with symbai-; i, Z) the probability density func-
tion of a p-variate normal distribution with megnand covariance matrix.

In the classification likelihoodapproach, given a sample of observations
{X1, -+, % } INRP, we search for a partitiofHs, ..., H} of the indices(1, - - - ,n},
centrequ, - - -, lk in RP, symmetric positive semidefinifgx p scatter matrices
31, --, 2k and positive weightsy,, - - -, T with le(:ﬂ'[j =1, which maximize

k
log (T50(%; 1, Z)) - @y

J=1i€H;

On the other hand, in thmixture likelihoodapproach, the idea is to maxi-
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mize the expression below

3 log (in,-cm;uj,zn) , @
i= =

In this latter approach, a partition inkogroups can be also obtained, from the
fitted mixture model, by assigning each observation to thetel-component
with the highest posterior probability.

It is well-known in the statistical literature that the m@kkation of “log-
likelihoods” like (1) and (2) without constraints on the matrices is a math-
ematically ill-posed problem, e.g. Day, 1969. It is possitd appreciate this
problem takingy = X1, Tk = 1 and|Zx| — 0 making (2) to diverge to infinity
or (1) also diverge withd; = {1}.

A simple way of tackling the lack of boundedness is to condineal max-
ima of the likelihood target functions. However, a lot of &solutions are
often found and it is difficult to know which are the most imsting ones.
See McLachlan & Peel, 2000 for a detailed discussion of g8sd. In the
literature, non-interesting local maxima are named “sug’ solutions. They
usually are formed by some, almost collinear, observateorsare often de-
tected by the Classification EM algorithm (CEM), traditibtpapplied when
maximizing (1), and by the EM algorithm, traditionally ajgal when maxi-
mizing (2). A paper which tackles this problem together veitiygestions for
reducing spurious solutions can be found in Garcia-Esousteal., 2018.

The use of constraints on the relative sizes of the detemhiofithe X
matrices may be seen as a simple and useful way to overcose degener-
acy issues and to apply affine equivariant constraints. dpsoach has been
proposed by McLachlan & Peel, 2000 and lies behind the EV\idegol-
ume, variable shape and orientation) parametrizationinvitie well-known
Gaussian parsimonious clustering models Celeux & Govaéaz; Banfield
& Raftery, 1993. In the following section we show this apmtoaloes not
fully avoid the detection of degenerate (spurious) sohgidMoreover, differ-
ent clustering approaches can be defined depending on #dreyttrof these
two, determinant and shape, types of constraints.

2 An approach based on deter minant-and-shape constraints

We have seen thaX ;| — 0, for anyj, may be problematic. We could therefore
consider the maximization of (1) and (2) but under

209



Determinant constraintswe force

..... . 3)

.....

for a given fixed constant; > 1.

The particular case; = 1 forces all the determinants of the scatter matrices
to be equal, i.e.|Z;| = ... = |Z|. This case corresponds to the approach in
McLachlan & Peel, 2000 and to the EVV (equal volume, variasiape and
orientation) parametrization within the Gaussian parsiimas family. When
considering 1< ¢; < o, we relax the exact “equal determinant” assumption
without leaving determinants completely free.

Notice that (3) implies that if any of the determinafE$| goes to O then alll
the other determinants also have to go to 0 and this soluionti interesting.

It is also trivial to see that this type of constraints is affaquivariant.

However, even when all the ;| determinants are kept away from 0, de-
generacy troubles still may take place, because some eilgesvof theZ;
matrices may still go to 0. More in detail, let us consider tial-known
decomposition for the covariance matriégs

1/p
% =\/Po;riq,

whereQ;j is an orthogonal matrix of eigenvectofs; is a diagonal matrix with
ITj| = 1 and with elementsy;s,...,yjp} in its diagonal (proportional to the
eigenvalues of th&; matrix) and|X;| = A;. Thesd; matrices are commonly
known as “shape” matrices, because they determine the sifape fitted
cluster components. Notice that (3) can be rewritten as

.....

To see that degeneracy problems may still happen, even wittradled de-
terminant sizes, it is enough to set= 2 and takey, = X1, T4 > 0, Ay = 1,
Yia = C andyie = 1/C. The remaining-; matrices,j = 2,...,k, are arbitrarily
chosen but satisfyingz,| = ... = |2x| = 1. Note that the smallest eigenvalue
of Z; converges to 0 whe@ 1 « and, then, one of the fitted components can
be made arbitrarily close to a degenerate normal component.

In order to tackle the above explained source for degengnacynay con-
sider, besides (3), an additional type of constraint whimhtiols the elements
of the “shape” matrices as:
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Shape constraintsconsider the following constraints:

ma . .

D=LooVil o0 for j=1..k (4)
min=1_.. pYil

wherec, > 1.

Notice that (4) imposelsindependent set of constraints, one for each shape
matrix, and nothing relates the shape matrix elements oEomgponent to the
other components.

The combination of different combinations of andc, values, with the
constraints K ¢; < o and 1< ¢, < o, enables us to consider different clus-
tering approaches throughout their associated constiairaximizations.

Note that with a very large, value (e.g.c, = 10'°) we are virtually affine
equivariant. That choice would constitute just mild coaistis on the scatter
matrices “condition numbers” (ratios between the largest smallest eigen-
values). This type of constraint has to be considered astaoonvenient
“computational precision” protection especially when dimgion increases. In
the extended version of the paper the above concept areedppleach mem-
ber (when necessary) of the family of Gaussian parsimorstustering mod-
els.
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ABSTRACT: Testing uniformity of a sample supported on the hypersphere is one of
the first steps when analyzing multivariate data for which only the directions (and not
the magnitudes) are of interest. In this work, a projection-based class of uniformity
tests on the hypersphere is introduced. The new class allows for extensions of circular-
only uniformity tests and introduces the first instance of an Anderson—Darling test
in the context of directional data. A simulation study corroborates the theoretical
findings. Finally, a real data example illustrates the usage of the new tests.

KEYWORDS: circular data, directional data, hypersphere, Sobolev tests, uniformity.

1 Setting

Testing uniformity of a sample X, ...,X, of a random vector X supported on
the hypersphere Q, := {x € R?*! : x'x = 1} of R?"!, with ¢ > 1 is one of the
first steps when analysing multivariate data for which only the directions (and
not the magnitudes) are of interest — the so-called directional data. This kind
of data arise in many applied disciplines, such as astronomy, biology, etc.

The inspiration for this contribution comes from the projection-based test
of Cuesta-Albertos et al. , 2009, which is based on the fact that the distribution
of X is determined by that of a one-dimensional random projection, YX. For
each y (uniformly distributed on Q, and independent of the sample), Cuesta-
Albertos et al. , 2009 considered a Kolmogorov—Smirnov test statistic on the
projected sample Yx,...,Yx,. This test clearly depends on vy, which Cuesta-
Albertos et al. , 2009 mitigates by taking k random directions v, ...,V and
combining the p-values associated to each of the k tests.
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2 Results

Differently from Cuesta-Albertos et al. , 2009, we consider for each v the well-
known weighted quadratic norm by Anderson & Darling, 1954:

2 w(F, (x)) dF, (x), (1)

1

agi=n [ (Fuaw) = F()
where w is a weight function, F, y and F; are the empirical cumulative distribu-
tion function and the cumulative distribution function of the projected sample,
respectively. In addition, instead of drawing several random directions and
aggregating afterwards the outcomes of the associated tests, our statistic itself
gathers information from all the directions on €,: it is defined as the expecta-
tion of (1) with respect to y. The new class of uniformity tests is thus the one
indexed by the weights w.

Using this formulation, simple expressions for several test statistics are
obtained for the circle and sphere, and relatively tractable forms for higher
dimensions. Despite their different origins, the proposed class and the well-
studied Sobolev class of uniformity tests (see Prentice, 1978) are shown to be
related. Our new parametrization proves itself advantageous by allowing to
derive new tests for hyperspherical data that neatly extend the circular tests
by Watson, Ajne, and Rothman, and by introducing the first instance of an
Anderson—Darling-like test in such context. The asymptotic distributions and
the local optimality against certain alternatives of the new tests are obtained.
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ABSTRACT: In this paper we apply graph theory techniques on real data visitors’
paths recorded during an exhibition to detect clusters of stands. We consider in partic-
ular the dominant set clustering technique, which finds complete heavy subgraphs in
weighted undirected graphs. The resulting overlapping clusters could be used to set a
travel recommendation system, identify market segments and assess stand assignment
effectiveness.

KEYWORDS: trajectory clustering, dominant set, graph theory, fuzzy method.

1 Trajectory unsupervised classification

The spreading of new location referencing systems in smartphones and other
personal devices is favouring the collection of huge amounts of trajectory data.
As showed by Zheng (2015), nowadays many algorithms can be used to extract
interesting insights from these path information. Different techniques have
been used to: preprocess and manage raw data, mine patterns, detect outliers,
classificate trajectories and transform them into graphs, matrices and tensors.
Given the quantity of data collectable and the strict privacy policies spreading
worldwide (that often do not permit to analyze jointly trajectory data and other
information about users), unsupervised classification methods (clustering tech-
niques) are particularly interesting. The main objectives of these techniques in
trajectory data mining are to: identify representative paths or subpaths, find
the most popular route, find the most likely route, detect underlying problems
in a network, calculate similarity between users, discover cluster of locations
with denser connections, calculate user’s interest in unvisited location and set
a travel recommendation system.

*This research has been carried out in collaboration with Veronafiere S.p.A. and funded by
Regione Veneto with the European Social Fund (1695-29-11-2018, DGR 11/2018).
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Figure 1: Raw trajectory (left) and undirected graphs (right).

In this paper we apply the dominant set clustering technique (Pavan &
Pelillo, 2003), a state-of-the-art unsupervised classification algorithm, to ana-
lyze trajectories recorded during an exhibition. Based only on the information
embedded in the trajectories, we propose a method that can be used to detect
if the visits of certain stands can give information about logistics, provide a
next visit recommendation system for visitors and identify market segments of
stand exhibitors.

The raw information we started working on is a pilot collection of trajec-
tories recorded during a four days marble exhibition through an accurate real-
time positioning technology using Bluetooth Low energy signal from smart-
phones and HAIP Locators mounted on the ceiling of six exhibition halls,
along an area of approximately 58 thousands sqm. The raw data consisted
of 1,192 trajectories defined by a sequence of datetime, latitude and longitude
information, with a theorical capture of one registration per second per device
(see an example of a trajectory in Figure 1 (left)). In total we counted about
1,946 thousands points. However, not all this information has beed used since
permanence at stands showed to be very poor, mainly due to smartphone sleep
settings and open air areas presence. To analyze these data, we transformed
the raw trajectories into undirected edge-weighted graphs with no-self loops:
G = (V,E,w), where V = (1,...,n) is the set of nodes representing stands vis-
ited for more than 2 seconds in a given trajectory (stay points), ECV x V
is the edge set, each edge representing that at least one visitor passed by both
stands in the connected nodes and stayed there for more than 2 seconds, and
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w:E — R is the positive weight function, counting the number of trajectories
including both stands. A representation of the resulting graphs is shown in Fig-
ure 1 (right), where different colours identify nodes (stay points) belonging to
the six exhibition halls. The graphical representation gives an immediate idea
of some possible clusters. However, this representation does not distinguish
between edges with different weight and does not identify complete subgraphs
(in which each node is connected to each other node in the subgraph). These
problems call for the use of a trajectory clustering algorithm.

2 Dominant set algorithm for clustering

Graphical theoretic algorithms basically consist of searching for certain struc-
tures in the graph, such as a spanning tree, minimum cut or maximal com-
plete subgraph. Pavan & Pelillo (2003) proposed an optimization function
and an easy algorithm to find maximal complete subgraphs (dominant set) in
weighted undirected graphs. Basically, the idea is to find a cluster defined by
a set of vertices with higher edge-weights on average. To detect this dominant
set of vertices, they first calculate each node importance, compared to a given
set of vertices, in terms of average edge-weight. If this value is positive (con-
nection higher than average) the node becomes part of the maximal complete
subgraph, otherwise it is kept out. The initial specified set of vertices has to
be changed and calculations must be repeated till convergence. Given a sym-
metric nonnegative n X n matrix A (called weighted adjacency matrix), with
elements equal to w(i, j), if i,j € E and 0, otherwise, they demonstrate that
finding the dominant set is equivalent to find the local maximum x of

f(x) = x" Ax, with x in the standard simplex A of R", (1)

where x is an n-dimensional positive vector representing the participation of
each node to the cluster, the function f(x) represents the cohesiveness of the
cluster and the standard simplex constraint serves to normalize x. They solved
this optimization problem using replicator dynamics taken from evolutionary
game theory (more details about the optimization algorithm can be found in
Pavan & Pelillo, 2003). In order to detect more than one dominant set they also
proposed an iterative procedure which alternates the search of the dominant set
in the graph and the deletion of its edge-weights.

The application of the dominant set algorithm to the marble exhibition
trajectory data allowed to identify overlapping clusters of stands. An example
of three dominant sets located in the sixth exhibition hall is shown in Figure 2
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Figure 2: Example of overlapping clusters of visits inside an exhibition hall.

(left and right): one cluster of stands is represented by the blue dots (mainly
cave owners), another by the red dots (mainly natural stones traders) and a third
one by the green dots (mainly design products sellers). The stand represented
by a three colours dot in the bottom right of the exhibition hall (Figure 2, left)
belongs to the three different clusters.

This clustering can be used, for example, to suggest visitors of stands A
and C to visit stands B and D (ordered by edge weights), setting a travel rec-
ommendation system. Moreover, it can be used to enhance stand assignment
by detecting if visitors stop by stands belonging to the same dominant set, but
located in different buildings. Further, the belonging of a stand to different
clusters might be exploited to characterize segments of visitors.

We chose this approach for our clustering problem as it does not supply a
full dendrogram (which is burdensome in the case of huge amounts of data),
and does provide a flexible number of clusters. Moreover it offers a natural
measure of within cluster’s cohesiveness (average edge-weight) and an evalu-
ation of nodes participation to each cluster (corresponding node value in the x
vector), which are desirable features in an exhibition context.
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ABSTRACT: In this contribution we give a survey of our results on analyzing graph
clustering results of graphs with more or less symmetry. These results fall into two
different classes. The first class is purely mathematical: What is the impact of symme-
try on the uniqueness and the stability of optimal partitions? And, how do we compare
optimal partitions of symmetric graphs? The second class is empirical: Are these re-
sults relevant for applications of graph clustering in real life or are they just I’art pour
art?

KEYWORDS: graph clustering, automorphisms, pseudo-metric spaces, invariant par-
tition comparison measures.

1 Introduction

In this contribution we give a survey of our results on analyzing graph cluster-
ing results of graphs with more or less symmetry. These results fall into two
different classes. The first class is purely mathematical: What is the impact of
symmetry on the uniqueness and the stability of optimal partitions? And, how
do we compare optimal partitions of symmetric graphs? The second class is
empirical: Are these results relevant for applications of graph clustering in real
life or are they just I’art pour ’art? To answer these questions, we investigated
the presence of symmetries in large sample of graphs from an Internet repos-
itory and the effect of symmetries on the uniqueness and stability of optimal
graph partitions computed by the randomized greedy algorithm.

2 The Automorphism Group a Graph

Graphs with symmetry have non-trivial automorphism groups which are finite
permutation groups (Wielandt, 1964). Recent advances in the implementa-
tion of algorithms for the analysis of the automorphism group of a graph (e.g.
Darga et al. , 2008 and McKay & Piperno, 2014) allow the extraction of the
set of generating permutations of the automorphism group of a graph.
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The existence of such a non-trivial automorphism group of a graph implies
that isomorphisms between at least some graph partitions exist. Given a parti-
tion, the set of all partitions that is generated by the automorphism group of the
graph forms an equivalence class of graph partitions for this partition. When
analyzing graphs with symmetry, we consider the pseudometric space of the
equivalence classes generated by the automorphism group of the graph.

Whenever the equivalence class of the optimal partition of a graph cluster
algorithm contains more than one element, the clustering solution is unstable
and not unique. This solves the analysis of multiple optimal graph partitions
which result from symmetry (see Geyer-Schulz & Ball, 2013). While this is a
progress, this still leaves open the automatic analysis of multiple optimal graph
partitions which are structurally different.

The problem of comparing graph partitions of symmetric graphs has also
been introduced at the CLADAG 2013 conference. We now present its solu-
tion: We start with a minimal example which demonstrates problems of the
Rand Index. Then we prove that this problem affects all existing graph par-
tition comparison measures: They do not work for partitions of graphs with
non-trivial automorphism groups.

As aremedy, we present three ways of building invariant graph comparison
measures based on Hausdorff’s and von Neumann’s construction of invariant
measures on a pseudo-metric space. By a combination of a pseudo-metric and
a metric space we provide a measure decomposition which separates an invari-
ant part which captures the structural difference and a part which is attributed
to the action of the graph automorphism group on the partitions compared. See
Ball & Geyer-Schulz, 2017, and, especially, Ball & Geyer-Schulz, 2018c.

3 Toy Examples: The Karate and the Petersen Graph

We finish the mathematical part with two examples: We show that for Zachary’s
Karate graph the optimal solution is not affected by symmetry, before we turn
to the Petersen graph (Holton & Sheehan, 1993) which is a fully transitive
graph. As far as we are aware, this is the first full analysis of clustering a fully
transitive graph. For doing this, we use an extended version of the random-
ized greedy clustering algorithm (see e.g. Stein & Geyer-Schulz, 2013) and its
ensemble variant (see Ovelgénne & Geyer-Schulz, 2013) and invariant mea-
sures for partition comparison (see Ball & Geyer-Schulz, 2018d and Ball &
Geyer-Schulz, 2020).
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4 Investigations of Graph Symmetry in Real-World Graphs

However, there remains the question of the relevance of the analysis of symme-
try for applications in practice. Or as one reviewer has put it: This research is
completely irrelevant for practical applications and it will never be published
in this journal. For network sciences, for example, in social sciences, com-
puter science and data science, only a few small-scale and restricted studies
of the symmetry of complex real-world graphs exist. These studies show the
existence of symmetry, but not the effects of symmetry e.g. on the stability of
optimal partitions.

In the following, we report on our research on the existence of symmetries
in real-world graphs, and the effects of symmetries on modularity-optimal so-
lutions of real-world graphs.

The answer to the question of existence of symmetries is published in Ball
& Geyer-Schulz, 2018a. In this study an analysis of over 1500 graph datasets
from the meta-repository networkrepository.comhas been carried out
and a normalized version of the network redundancy measure has been pre-
sented. It quantifies graph symmetry in terms of the number of orbits of the
symmetry group from zero (no symmetries) to one (completely symmetric),
and improves the recognition of asymmetric graphs. Over 70% of the an-
alyzed graphs contain symmetries (i.e., graph automorphisms), independent
of size and modularity. Therefore, we conclude that real-world graphs are
likely to contain symmetries. This contribution is the first larger-scale study of
symmetry in graphs and it shows the necessity of handling symmetry in data
analysis e.g. by the mathematical tools presented in the previous section.

The second study (Ball & Geyer-Schulz, 2018b) investigates the effect of
graph symmetry on modularity optimal graph clustering partitions and it gives
an insight to the effects of symmetry on optimal graph partitions. The key find-
ing is that there actually exists an impact of graph symmetry, as more than 22%
of the analyzed graphs have an unstable partition. The results are based on an
empirical analysis of 1254 symmetric graphs, which are a subset of the 1699
graphs that were analyzed by Ball & Geyer-Schulz, 2018a. For each graph a
modularity optimal partition is computed by one of the leading graph cluster-
ing algorithms. Additionally, generators for the automorphism group of each
graph are obtained. All computed partitions are tested for stability (see Ball &
Geyer-Schulz, 2018d), which means that the symmetry that is captured by the
automorphism group does not change this partition. Furthermore, definitions
that allow to distinguish local and global symmetry of graphs are presented.
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ABSTRACT: The aim of this study is to understand whether Bayesian networks are an
appropriate tool to analyse and improve the performance of a microcredit initiative. This
technique is employed to study simultaneously all the interactions between variables and
perform what-if analyses. The analysed dataset originates from an important microcredit
initiative aimed to help damaged firms, after the earthquake struck Italy in 2009. The model
appears to provide a clear picture of the subject matter and seems to be appropriate to both
assess risk connected to microcredit and support its development.

KEeywoRDS: Bayesian network, microcredit, NPC algorithm.

1 Introduction

Modern microfinance was born in the 1970s as a financial instrument of social and
economic integration, but rapidly spread all around the world. The first Italian law
concerning microcredit was introduced in 2010, following Directive 2008/48/EC.
The laws on the subject evolved during the years. The resulting regulation defines a
financial instrument tailored on the needs of small firms and individuals, facing
social and economic vulnerability. The amount of the loan is low but, together with
every microcredit granted, the lender must provide some supplementary services,
such as a business plan for firms and a help on how to manage the family budget for
individuals. This is a very important component of Italian microcredit, since it
addresses specific needs of the beneficiary and can consistently diminish credit risk.
A study from Borgomeo&co (2016) highlights that in Italy, from 2005 to 2014,
individuals and firms are increasingly resorting to microcredit to access financial
resources. However, performance studies related to recent microcredit programs, are
barely available to date. It is crucial to start to analyse data, to understand strengths
and weaknesses of entrepreneurial microcredit, as regulated by the new legislation.
Bayesian networks (BN) are proposed as a tool to perform the mentioned
analysis. BNs are causal networks in which the strength of the relation is defined by
probabilities and they are an effective instrument when reasoning under uncertainty.
Through BN analysis, beneficiary and loan characteristics will be studied, in order to
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understand their role in determining the performance of a microcredit provision. The
results can be useful to promote a healthy development of microcredit regulation and
help microcredit firms evaluating credit risk.

2 Motivating data

The dataset used to fit the model is connected with an Italian microcredit initiative
which took place between 2011 and 2017 and was promoted by an Italian firm
called MXIT. The initiative targeted firms affected by the earthquake which struck
Italy in 2009. The dataset consists of 21 variables and around 1000 units. Variables
are divided into groups and put in a causal/logical order. Every box, shown in Figure
1, contains a different group of variables whereas arrows represent the direction of
causal/logical relations between groups. The proposed configuration originates from
interviews with MXIT and schematises previous knowledge on the subject. The
structure summed up in Figure 1, will help defining the skeleton of the model, since
it will be assumed that each variable can potentially affect only variables contained
in its group, or in groups situated to the right of the considered variable group.

Demographic Firm variables |Financial Rejection |Repayment |Performance
variables variables variables |variables variables
Age Economic sector |Guarantee Rejected? |Loanage  [Performance
Gender Legal status Lending bank Paid in full?

Continent Loan term

Artisan Loan instalment

City dimension Interest rate

Firm age

Family firm T ™ - i ™

Italian region

Earthquake

Firm peculiarity

Figure 1. Logical groups of variables

The first group of variables contains demographics and some basic
characteristics of financed firms. The second group consists of specific firm-related
variables, whereas the third group contains the main financial characteristics of the
credit. Fourth and fifth contain variables which operate a distinction between
rejected and granted credit applications, or between partially and fully repaid credits.
The variable performance, contained in the last box, indicates if all the instalments
were paid on time and is used as a measure of the performance of the loan.

3 Bayesian network

A BN consists of a directed acyclic graph, where nodes and directed edges
respectively identify variables and relations between variables. Each variable must
have a finite set of mutually exclusive states. When a directed edge points from
variable A to variable B, A is called parent of B. The strength of these relations is
described by conditional probability tables assigned to each variable given its
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parents. Nodes without parents, are instead associated with marginal probability
tables (Kjeerulff and Madsen, 2013). Probability tables are a crucial element of a BN
and can be either computed through a dataset or derived from experts of the
analysed phenomenon. The structure of the BN is learnt through the necessary path
condition algorithm (Kjeerulff and Madsen, 2013). This algorithm first discovers the
undirected graph performing conditional independence tests between variables, then
assigns the direction to the unoriented edges. It also provides the user with the
possibility of introducing further subject matter knowledge into the model, allowing
to determine the presence and the direction of some arcs of the graph, if more than
one solution is available.

Family Loan
firm instalment

Continent Earthquake LEES
rate

_
' Rejectzd? -

Italian
region

Genldb

%
U</

Figure 2. Bayesian network built on the dataset

Lending
hank

Guarantee

The software Hugin has been used. The obtained BN (Figure 2) shows several
connections between variables, which are coherent with the mechanics of the
provision of microcredit. Every group of variables listed in the previous section is
identified by nodes of a different colour. Nodes of the graph will be indicated with
teletype font. Demographics variables are connected between them and with
financial and firm-related variables, coherently with what expected. For example,
City dimension affects Economic sector and Italian region IS
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connected with Lending bank. Each variable of the network shows a direct or
indirect connection with Performance. This could suggest that every variable
plays a role in determining the probability of paying all the loan instalments on time.

Once the network has been estimated, the associated inference engine enables
the users to efficiently make inference on the probability tables. The network can
thus be interrogated, and what-if analysis can be carried out: different scenarios are
simulated and their impact on the target variable is evaluated in terms of change in
probability tables. The algorithms used for propagating evidence and updating the
marginal probability tables are based on the junction tree (Kjerulff and Madsen,
2013). The efficiency of the propagation algorithms with the easy-to-read graphical
representation of the relations among the variables, are the main reasons why BNs
are increasingly used as a tool to support decision under uncertainty. In the obtained
model for example, if we enter evidence about a firm hit by the earthquake and run
by an adult male, after propagating the evidence throughout the network, we find a
probability of 57.65% associated to the scenario where all the instalments are paid
on time. If we consider the same situation, with a female entrepreneur, the same
probability drops to 52.91%. The observed decrease could be due to the gender
inequality that female entrepreneurs still face when running a business. What-if
analysis can also be performed backwards, for instance by entering evidence about a
specific state of performance, to find out the most probable profile of
entrepreneur associated to that state.

4 Conclusion

BNs seem to provide a clear picture of how all the selected variables interact in
the provision of microcredit. What-if analysis allows to study the strength and the
effects of these interactions, in order to assess the risk connected to a specific
microcredit provision. On the other hand, it allows to analyse which kind of
microcredit provision is more suitable to a particular beneficiary, to promote a
healthy development of the instrument. Existing BN could be also enlarged with
additional modules accounting for new variables that are important in the light of the
fast evolution of microcredit. For example, it will be very interesting to study how
supplementary services affect performance results and which kind of service works
best in a certain situation. The flexibility of the model, its clear graphical interface,
the possibility to take into account subject matter knowledge and its efficient
inference engine could make BN an appropriate model to analyse and improve the
performance of entrepreneurial microcredit in the future.
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ABSTRACT: Factor analysis is a well-known model for describing the covariance structure
among a set of manifest variables through a limited number of unobserved factors. When the
observed variables are collected at various occasions on the same statistical units, the data
have a three-way structure and standard factor analysis may fail to discover the interrelations
among the variables. To overcome these limitations, three-way models can be adopted.
Among them, the so-called Parallel Factor (Parafac) model can be applied. In this article, the
structural version of such a model, i.e. as a reparameterization of the covariance matrix, is
studied by discussing under what conditions factor uniqueness is preserved.

KEeYwWORDS: three-way factor analysis, maximum likelihood, factor uniqueness property.

1 Introduction

Factor analysis (FA) (Bartholomew et al., 2011) is a well-known method
explaining the relationships among a set of manifest variables, observed on a sample
of statistical units, in terms of a limited number of latent variables. In FA data are
stored in a matrix, say X, of order (I x J) being | and J the number of statistical units
and variables, respectively. Thus, FA deals with two-way two-mode data, where the
modes are the entities of the data matrix, i.e., statistical units and manifest variables,
and the ways are the indexes of the elements of X, i.e.,i=1,...,landj=1,...,J. In
many practical situations, it may occur that the scores on the same manifest
variables with respect to a sample of statistical units are replicated across K different
occasions, e.g. time, locations, conditions etc. In this case, there are three sets of
entities (statistical units, manifest variables and occasions), hence three modes and
the available information is stored in the so-called array, or tensor, usually denoted
by X of order (I x J x K). Its generic element is X, i=1, ..., ,j=1, ..., Jand k=1,
..., K, expressing the score of statistical unit i on manifest variable j at occasion k.
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Therefore, the elements have three indexes and the array three ways. For all of these
reasons data are three-way three-mode (see, e.g., Kroonenberg, 2008).

The basic FA model is not adequate to handle three-way three-mode data. It has
been extended in order to take into account and exploit the increasing complexity of
three-way three-mode data. The most famous three-way three-mode extensions of
FA are the Tucker3 (Tucker, 1966) and Parafac (Harshman, 1970) models, where
the latter can be seen as a particular case of the former with a useful property of
parameter uniqueness (Kruskal, 1977). Such extensions were born as suitable
generalizations of Principal Component Analysis (PCA) and are mainly devoted to
fit the model to the data according to a certain criterion. Some authors revised these
proposals as structural models for the covariance structure of the manifest variables
(e.g., Bentler et al., 1988). In this paper, after recalling the main features of the
Parafac model following the above-mentioned two approaches, a structural
extension of Parafac is considered and its uniqueness property is analysed when
some specific factors are correlated across occasions, or variables.

2 The Parafac model

The Parafac model (Harshman, 1970) summarizes the three-way three-mode
tensor X by looking for a limited number of components for the modes. Let Xa be
the matrix of order (I x JK) obtained by juxtaposing next to each other the frontal
slabs of X, i.e. the standard two-way two-mode matrices Xy (k =1, ..., K) of order (I
x J) collected at the different occasions. The Parafac model can be formulated as

Xa=A(C*B)’ + Enp, @

where the symbol ‘¢’ denotes the Khatri-Rao product of matrices, i.e., it is C*B =
[ci®by, ..., cs®bsg], where bs and cs are the s-th columns of B and C, respectively (s
=1, ..., S), being S the number of components for the modes, and the symbol ‘®’
denotes the Kronecker product of matrices. The matrices A, B, C have order (I x S),
(J x S), (K% S), respectively, and give the scores of the entities of the various modes
on the components. Like Principal Component Analysis, the parameter estimates are
found in the ordinary least squares (OLS) sense by minimizing the sum of squares of
the error term Ea. For this purpose, alternating least squares (ALS) algorithms can
be applied.

The most interesting feature of Parafac is that under mild conditions the factors
are essentially unique. This point has been deeply investigated by Kruskal (1977),
who has found the following result. Let us denote by k-rank(Z) the so-called k-rank
of a matrix Z. It is defined as the largest number k such that every subset of k
columns of Z is linearly independent. Moreover, let (A, B, C) and (Ar, Br, Cy) be
two optimal Parafac solutions. Kruskal (1977) has shown that if

k-rank(A) + k-rank(B) + k-rank(C) > 2S + 2 2)

then, by considering (1),

227



A(C*B)’ = Ar(Cr*B1)’ 3)

implies that there exists a permutation matrix P and three diagonal matrices Da, Dg
and Dc, for which DaDgDc = 1, such that

AT = APDA, BT = BPDB, CT = CPDc. (4)

Starting from the original formulation in (1) we can derive what is the
corresponding covariance structure. We limit our attention to the i-th row of Xa, say
Xai', pertaining to the i-th statistical unit. Xa;’ is the vector of length JK containing the
scores of statistical unit i on the J manifest variables during the K occasions. By
explicitly considering a vector of intercepts and rewriting the model in terms of
column vectors, we get

Xai = p + (C+B)ai + eai. ®)

As usual in standard FA, we assume that the common factors a; and the specific
factors eai are random with E(a;)) = 0 and E(ea) = 0, without loss of generality
because of p, and E(aiea’) = 0. If E(aa’) = ® and E(eaiea’) = ¥ are positive
definite, then the covariance matrix of X, is given by

L = E[(xai — p)(xai — n)']1 = (C-B)®(C+B)" + ¥. (6)

The generic element of the matrix X (of order JK x JK), oy, holds the covariance
between manifest variable j at occasion k and manifest variable j’ at occasion k' (j, j’
=1,...,J;k k=1, ..., K). Bearing in mind the standard FA model, it should be
clear that the Parafac model is a constrained version of standard FA. If we set A =
(C-B), then (6) coincides with the oblique FA model where A is the matrix of factor
loadings having a particular form depending on the three-way three-mode structure
of the data. Maximum likelihood theory is used for estimating the parameters of the
structural Parafac model assuming that the vectors xa;, i = 1, ..., I, are independent
and identically distributed as a multivariate normal.

3  Results

In this work we analyzed whether the constraints A = (C+B) affect the parameter
identifiability under different covariance structure of the specific factors. In
particular, we proved that the Parafac model in the structural formulation maintains
the uniqueness property when, as in the standard FA model, the specific factors are
assumed to be uncorrelated, i.e. the matrix ¥ is diagonal, and when the specific
factors of the different variables are correlated within the same occasion, i.e. the
matrix ¥ is block-diagonal, i.e.,
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Y= diag(‘I’ll, ey ‘I’kk, ey ‘I’KK), (7)

where Wi« denotes the covariance matrix of order (J x J) for the specific factors at
occasion k, k = 1, ..., K. The Parafac covariance model in (6) with the correlation
structure of the specific factors given in (7) represents a more realistic model able to
fit reasonably well in many practical three-way three-mode studies. It is important to
note that what follows can be extended to the case where the specific factors of the
same variable are correlated across the different occasions. Such an extension can be
easily obtained by exploiting the symmetry of the model with respect to variables
and occasions. When ¥ is diagonal, the proof is based on Theorem 5.1 of Anderson
& Rubin (1956). When ¥ is block-diagonal, the conditions of Anderson & Rubin
(1956) cannot be longer applied. To prove the uniqueness, the results of Browne
(1980), formulated in the context of the FA model for multiple batteries of tests, is
considered. For further details, see Giordani et al. (2019). During the meeting, we
show how the factor uniqueness property hold in the above described cases.
Moreover, we illustrate the effectiveness of the proposal by means of a real-life
example in the multitrait-multimethod analysis framework.
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ABSTRACT: A method for variable selection and structure discovery in the context
of nonparametric regression in high dimensions is proposed in a forthcoming paper,
where a small subset of variables are relevant and may have nonlinear effects on the
response. The proposed method, called the GRID, is an extension of the RODEO
method of Lafferty & Wasserman, 2008 (which only makes variable selection). In
this paper we briefly describe the method and present the main theoretical founda-
tions of the two stages of the procedure: (i) variable selection with linear/nonlinear
classification of the covariates and (ii) identification of interactions.

KEYWORDS: Variable selection, nonparametric regression, high dimension.

1 The GRID method

In this paper we describe a new method, called the GRID method, for simulta-
neous variable selection, classification of the relevant covariates between linear
and nonlinear, and estimation of the low-dimensional structure of the regres-
sion function. This method is an extension of the RODEO method proposed
by Lafferty & Wasserman, 2008 and it is proposed and deeply investigated in
a forthcoming paper by Giordano et al., 2019. To briefly describe the method-
ology, consider the nonparametric regression model

Y, =m(Xy) +¢&, t=1,...,n, (1)

where the X; represents the R?-valued covariates and the errors €, are iid with
zero mean and variance 62. The errors €, are independent of X;, and are as-
sumed to be Gaussian, as in Lafferty & Wasserman, 2008. Here m(X;) =
E(Y,]X,) : R? — R is the multivariate conditional mean function. We use the
notation X; = (X;1,...,X;4) to refer to the covariates. We assume that the num-
ber of covariates d — o but only r of these covariates are relevant for model
(1), where r < d 1is considered bounded or unbounded.
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The acronym GRID derives from Gradient Relevant ldentification of Deriva-
tives, meaning that the procedure is based on testing the significance of partial
derivative estimators (derived by the Local Linear Estimation methodology).
We now illustrate the idea behind the GRID procedure with the following ex-
ample: let d = 10 and let the true model be given by

Y, = 2X1 + X3 X3 4+ 10X4X;5X6 +exp(X7)Xn +€, t=1,....n. (2

The first stage of the GRID procedure identifies (the indices of) the follow-
ing sets of covariates (variable selection and classification).

C={2,7}, A={1,3,4,56}, U=1{8,9,10}.

The selected variables are automatically classified by the procedure as linear
(denoted by the set A) and nonlinear (denoted by the set C). The other ones
constitute the set U of irrelevant variables.

The second stage of the GRID procedure derives (the indices of) the fol-
lowing sets of interactions

={1}, P = {2,3,7} P=1{3,2}, I*=1{4,5,6}, > = {5,4,6},

=1{6,4,5}, I' ={7,2},

where I/ includes the interactions of variable j with other covariates. By de-
fault, each set I/ automatically includes the index j (self-interaction). There-
fore, if the set I/ has the only component j, then X ; appears in the model as an
isolated additive covariate, like X in model (2).

2 Theoretical basis for the two stages of the GRID algorithm

Local linear estimation (LLE) is a nonparametric method for estimating the
regression function m(-) in (1) (cf. Ruppert & Wand, 1994). To estimate m(-)
at x = (x1,...,x4), the LLE performs a locally weighted least squares fit of a
linear function. Let

B(x;H) = argmlnz {Y, —Bo—B1 (X } Ky (X, —x), (D

0.1 /=

where the function Ky (1) = |H|~'K(H~'u) gives the local weights with a d-
variate product Kernel function K (u) = Hf: 1 K1(u;). The bandwidth matrix H
controls the bias and the variance of the resulting LLE of m(x). For simplicity,
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we shall suppose that H = diag(hy,...,hy) is a diagonal matrix with strictly
positive entries. The estimator 3(x) can be written in a closed form as:

Bx:H) = (WD) 'T7wr, 2)
where Y = (V7,...,%,)" and

1 (X —x)7 Ky(X;—x) ... 0
i (Xnix)T O KH(X:,,—x)

Note that B(x; H) gives estimators of the function m(x) and its gradient:

A Bo (x; H) < ri(x; H) )
xH)=| % =( a . 3)
Pes) (Bloc;m B(xH)
The theoretical foundations of the GRID procedure are based on the following
assumptions and the theorem below.

Al) The bandwidth H is a diagonal matrix with strictly positive diagonal entries:
H =diag(hy,...,hq), with ¢y < hjfor j=1,...,d for some c| € (0,00).

A2) The d-variate kernel function K is a product kernel, based on a nonnegative and
symmetric univariate kernel density function K; € C 1 [—c2,¢2] for some ¢; >0
such that 0 <x; —c2hj <xj+chj <lforall j=1,...,d.

A3) All the partial derivatives of the function m(x) up to and including order five are
bounded.

A4) X is uniformly distributed on the unit cube (0,1)<.

Theorem 1 Under model (1) and assumptions Al1-A4, we have:

p{PE], L {80 i L

ahj 0 otherwise
oD (x;H) ., 0, £0 ifiell jeC
E{ oh; AF It = { 0 otherwise +op(1) (5)

fori,j=1,...,d andi# j, where , ={X,;:t =1...,n} and the exact expres-
sions for 0 and ©;; can be derived following Giordano et al., 2019.

Note that Theorem 1 can be used to identify the relevant (nonlinear!) covari-
ates and interactions, by using a proper threshold technique on 6y; and 6;;,
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d=20 d=n/2 d=12n

n R C | 1(6,7) R C | 16,7 R C | 1(6,7)

Xs | 300 | 0.975 | 0.330 | 0.900 | 0.855 | 0.335 | 0.720 | 0.630 | 0.330 | 0.365
500 | 1.000 | 0.610 | 1.000 | 0.990 | 0.595 | 0.985 | 0.810 | 0.480 | 0.620

1000 | 1.000 | 0.910 | 1.000 | 1.000 | 0.915 | 1.000 | 0.910 | 0.835 | 0.815

X; | 300 | 0.940 | 0325 | 0.900 | 0.875 | 0335 | 0.720 | 0.580 | 0.250 | 0.365
500 | 1.000 | 0.370 | 1.000 | 0.995 | 0.635 | 0.985 | 0.765 | 0.515 | 0.620

1000 | 1.000 | 0.935 | 1.000 | 1.000 | 0.890 | 1.000 | 0.835 | 0.815 | 0.815

X0 300 | 1.000 * - | 1.000 * -] 0995 | 0.035 -
500 | 1.000 * - | 1.000 * - | 1.000 * -
1000 | 1.000 * - | 1.000 * - | 1.000 * -

Table 1. Simulation results for different dimensions d and sample sizes n. The values show
the proportion of times that a given covariate X; is classified as a relevant covariate (R), as a
nonlinear covariate (C), and as part of an interaction term (I). The symbol (%) denotes a value
< 0.025 while the symbol (—) means zero.

as suggested in Lafferty & Wasserman, 2008 and Giordano ef al., 2019. How-
ever, this theorem cannot be used to identify the linear covariates. To overcome
this, we consider an auxiliary regression where all those covariates that have
not been selected in the first pass, are to be transformed, so that the linear
covariates of the original model become nonlinear in the auxiliary model.

3 Some simulation results

The Monte Carlo simulation is based on 200 iterations. The covariates are
uniformly distributed. We consider the model Y, = m(X;) + ¢, with m(x) =
xgx% +x10 and & ~ N(0,1) for all z. The additive components of the model are
standardized so that they all have variance equal to one, to make them compa-
rable each other. The Kernel function is K () = 1/C) (5 —u?) Lij<y3)> as in
Lafferty & Wasserman, 2008, where C; is a scale factor to make the integral
equal one. The simulation results are shown in Table 1.
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ABSTRACT: Part-of-speech (POS) tagging is the basis of many Natural Language
Processing tasks and, nowadays, there exist several algorithms able to determine the
POS tag for a specific word. However, the increasing usage of Internet and the explo-
sion of blogs and microblogs changed the way people communicate, and POS taggers
trained on structured corpora lost the ability to catch this new tendency. The proposed
algorithm is an auxiliary POS tagger which aims at predicting unknown POS tags. It is
based on the Bayesian Networks and it uses information regarding POS tags that pre-
cede and follow the unknown POS tag. The well-known Brown Corpus and the more
recent Ark dataset are the datasets over which the proposed methodology is tested.

KEYWORDS: microblogs, part-of-speech tagger, bayesian networks.

1 Introduction

Part-of-speech (POS) tagging is the basis of many Natural Language Process-
ing (NLP) tasks and there are several algorithms able to determine the POS tag
for a specific word. However, the increasing usage of Internet and the explo-
sion of blogs and microblogs changed the way people communicate, involving
an increasing usage of slang, abbreviations, symbols and emoticons, creating
the so called cyber-slang. To extract and analyze such novel information from
Web2.0 is a pretty new challenge for many NLP tasks, as POS taggers. In
fact, traditional POS taggers, trained on structured corpora, lost their ability
when applied to blog and microblog data. POS tagging’s earlier works were
mainly based on grammar rules and morphemes. Thanks to the progress in
computational technology and the growing interest in machine learning mod-
els, new research has been done focusing, for example, on Markov Models
and their variants (Cutting et al., 1992) and deep learning algorithms (Plank e?
al., 2016). Some research tried to extend traditional POS tagger to blogs and
microblogs data, obtaining poor performances, as shown for example in Nand
and Perera (2015). Following the limitations of existing POS taggers for blogs

234



and microblogs, this paper wants to propose a novel approach to assign a POS
tag to unknown words based on the information deriving from the POS tag
sequence. The proposed method can be interpreted as an auxiliary POS tagger
because it intervenes after the initial POS tagging step of the corpus, predict-
ing the remaining unknown POS tags that, for any reasons, do not match any
vocabulary. It uses a Bayesian Network as predictor of the probability distri-
bution of the unknown POS tag.

2 The proposed approach and preliminary results

In order to predict the unknown POS tag, the proposed approach needs to
identify a suitable Bayesian Network (BN). The BN is a model that explicits,
through a Directed Acyclic Graph (DAG), a set of (conditional) dependence
and independence properties among the variables under study (Kjaerulff &
Madsen, 2008). A DAG G is composed by a set of nodes V, which cor-
responds to a set of random variables Xy indexed by V, and a set E of di-
rected links between pairs of nodes in V. A BN is composed by the pair
(G,P), where G is a DAG and P is the set of conditional probabilities in-
volved in the factorization, according to G, of the joint probability distribution
P(Xy) = [Tvev P(Xy|Xpa(v)), Where X,,,y) denotes the set of parent variables
of the variable X, for each node v € V. A BN can be used, for example, to
compute the effect of a new piece of information on one or more target vari-
ables, computing the corresponding posterior distribution (Koller & Friedman,
2009). In order to construct a BN, firstly the DAG is identified, then the joint
probability distribution is computed, estimating the set of conditional prob-
ability distributions P(Xy|X)4(v)). Several algorithms have been proposed to
automatically find the structure of a BN. In this paper two score-based algo-
rithms, including Hill Climbing (HC) and Tabu search, were evaluated, consid-
ering the Bayesian Dirichlet equivalent uniform score (BDE) and the Bayesian
Information criterion (BIC) as possible scores.

In order to predict the unknown POS tag, denoted by rag;, it is necessary
to identify the most suitable length of the tag sequence and to extract the pre-
dicted attribute from the probability distribution given by the estimated BN.
Most of the previous works only rely on the information linked to the two pre-
ceding POS tags, however, in the subsequent analysis three possible sets of
information were investigated:

Tag,_ /1 = {tagi-1,tag;,tagi1},
Tag,_ )y = {tag; 2,tag;1,tag;,tagiy1,tagi2},
Tag, ;3 = {tag;—3,tag;—2,1ag;—1,1ag:,1agr+1,1ag+2,1Agr+3}-
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t —i (t +1) indicates the position of the tag that precedes (follows) tag;.

Regarding the way in which the predicted probability distribution of the
unknown POS tag can be summarized in a predicted POS tag, three criteria
were evaluated, including the Mode criterion, the Max. Dist. criterion, which
consists in computing the difference between the predicted POS tag proba-
bilities and the corresponding sample frequencies and choosing the attribute
corresponding to the maximum difference, and the Hybrid criterion, which
uses the Max. Dist. criterion when each frequency associated with the modal
attribute is less than 0.5, and the Modal criterion otherwise.

The identification and estimation of a suitable BN was performed with bn-
learn R package (Scutari, 2010), making use of the Brown Corpus, which is a
classical and widely used POS tagged dataset. Its predictive performance was
evaluated through the following metrics: Area Under the Curve (AUC) of the
Receiver Operating Characteristic curve, average accuracy (Av Acc), macro
precision (M Prec), macro-averaging F1-score (MAF1) and overall accuracy
(Acc) (Sokolova & Lapalme, 2009, Witten et al. 2016). A 10-fold cross-
validation procedure was applied to select the best information set combina-
tion, predictive criterion and BN, resulting in the following choice: Tag; /.3
set of variables, Max. Dist. criterion, and BN obtained applying the HC algo-
rithm with BDE score (iss=5000). Figure 1 shows the chosen BN.

Figure 1. The chosen BN

The predictive performances of the best BN in estimating the unknown
POS tags were evaluated on the Brown Corpus and the Ark Dataset, which
comprises POS tagged Twitter messages. Moreover, a domain adaptation anal-
ysis was performed, consisting in using the Brown Corpus as a training do-
main, and the ARK dataset as a target domain. The choice to perform the do-
main adaptation analysis is due to the fact that few and relatively small labeled
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datasets for Twitter and Web 2.0 data are available. Table 1 reports the results
in terms of evaluation metrics for the Brown Corpus, the ARK Dataset and the
domain adaptation case obtained by computing the metrics on each fold of a
10-fold cross validation procedure, and then averaging the 10 outcomes. The

Table 1. Evaluation metrics

AUC AvAcc MAF1 MPrec Acc
Brown — Brown 0.731 0.444 0.533 0.344  0.624
ARK — ARK 0.629 0.355 0.364 0.259 0474
Brown— ARK 0.613 0.337 0.318 0.242  0.399

results obtained on the Brown Corpus are overall better than the ones on the
ARK dataset. Comparing the performances of the models that used only the
ARK dataset (ARK — ARK) with respect to the cross domain setting (Brown
— ARK), one notices a slight decrease of the evaluation metrics.
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ABSTRACT:

The model-based clustering framework provides well established methods that
uncover sub-groups of observations in data. Such methods bestow several desirable
benefits: reproducibility due to their statistical modelling basis, objectivity through the
availability of principled model selection tools and interpretability through the provi-
sion of parameter estimates and their associated uncertainties.

However, model-based clustering approaches begin to lose traction as data di-
mension increases, whether in terms of number of observations, variables, timepoints
etc. This loss of applicability is often due to stability issues associated with high di-
mensional covariance matrices, optimisation difficulties and/or the expensive nature
of computing the likelihood function.

Here we consider recent advances in model-based methods to clustering data
where the number of variables p is large. In particular, we explore developments
in factor analytic approaches, which are well known models for big p data, and recent
work utilising composite likelihood methods that facilitate computation of intractable
likelihood functions. The utility of such methods is illustrated through benchmark and
real data sets.

KEYWORDS: high dimensional data, factor analytic models, composite likelihood.
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ABSTRACT: This work gives a contribution to the emerging literature on the use
of regression trees for hierarchical data to increase the flexibility and the predictive
ability of random effects models. The proposed procedure extends random effect re-
gression trees considering a random effect model with both a tree component and a
linear component. Moreover, it is suggested to decompose the effects of predictors
within and between clusters. The performance of the proposed procedure is evaluated
through a simulation study and an application to INVALSI data on students achieve-
ment.

KEYWORDS: CART, hierarchical data, random effects.

1 Introduction

Mixed or multilevel models (Snijders & Bosker, 2012) are useful tools to deal
with hierarchical data. In general, hierarchical data are composed by level 1
units nested into level 2 units (clusters), such students within schools (indi-
vidual cross-sectional data) or children growth evaluated at several time points
(repeated measures). Model specification is a challenging task in mixed mod-
els. A worthwhile approach exploits regression trees (Breiman ef al., 1984) to
capture nonlinear fixed effects. This technique has been extended to clustered
data by modelling fixed effects with a decision tree, while accounting for ran-
dom effects with a linear mixed model in a separate step (Hajjem & Larocque,
2011; Sela & Simonoff, 2012). It is shown that random effect regression trees
are less sensitive to parametric assumptions and provide improved predictive
power compared to linear models with random effects and regression trees
without random effects. The literature has grown with variants and extensions
(e.g. Hajjem & Larocque, 2014; Miller & Lubke, 2017).

Our proposal extends random effect regression trees in two directions: (i)
incorporating a linear component in the final random effect model, and (ii)
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allowing a decomposition of the effect of a given predictor within and between
clusters.

2 A tree embedded linear mixed model

To take into account both non-linear and interaction effects and cluster mean
dependencies, we are proposing here a random effect model, called Tree em-
bedded linear mixed model, where the regression function is piecewise-linear,
consisting in the sum of a tree component and a mixed effect linear compo-
nent. The proposal is the mixed effect version of the semi-linear regression
trees (Vannucci, 2019; Vannucci & Gottard, 2019).

The prosed model can be ideally divided into three parts: a fixed effect
linear part, a fixed effect non-linear part based on a tree and a random effect
part. In this work, we limit our attention to the case of random intercept mixed
models, but the extension to random slopes is straightforward. The resulting
model can be formulated as

Yij=XiiB+Zy+T(Xij,Zj) +Uj+¢; (1

where Y;; is the response variable for level 1 unit i belonging to level 2 unit j,
X;; is the vector of the level 1 predictors, B the associated fixed effect coeffi-
cients, Z; is the vector of the level 2 predictors, 7y the associated fixed effect
coefficients. Then, T(X;;,Z;) is the tree based predictor depending on some
or all the level 1 and the level 2 explanatory variables. Finally, U; ~ N(0,02)
is the random intercept for level 2 unit j and g;; ~ N(0,02).

The model is additive in its components where the tree-component acts as
a region-specific intercept. As an alternative, the model can be written as

M
Yii =XiB+Zy+ Y wnl{(Xij,Z;) € Ru}+U;+ei, 2

m=1
where Ry,...,Ry is the partition of the predictor space corresponding to the

tree-component. When the unknown regression function can be assumed to be
quasi-linear (Wermuth & Cox, 1998), the number of leaf nodes M can be kept
small to avoid overfitting.

To disentangle the within and between effects of an level 1 predictor, say
W;;, we decompose W;; into the cluster mean W; = (1/n;) Y’ W;; and the
deviation W;j = W;; — W ;. Then, we include W in Z; and the deviation W;; in
X (Snijders & Bosker, 2012).
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Model fitting is obtained by the iterative procedure described in Algorithm
1. This procedure is based on the backfitting algorithm (Breiman & Friedman,
1985), and recently applied in semilinear regression trees (Vannucci, 2019;
Vannucci & Gottard, 2019). The convergence of the algorithm is evaluated

Algorithm 1: Backfitting algorithm for tree embedded linear mixed
models

Data: (Y;;,X;;,Z;),i=1,...,nj, j=1,....J

Result: Fitting of the tree embedded linear mixed model (2)
Initialization step: The tree is initialized at depth 0: 7'(X;; L) =Yj;
Iteration step: repeat

Compute the tree-based residuals Y = ~T(X; i Lj);

AW N =

Fit a linear random intercept model of Yl’; on X;; and Z; and
compute the predicted ?ﬁe (fixed part + U s

5 Compute the model- based residuals: ¥;j* =Y;; Yff,

6 Fit the regression tree of ¥;;* on Xj; and Z; and compute the

predicted values 7'(X; J,Z );

until convergence criteria is met;

8 Estimation step: Estimate the parameters of model (2) using the
partition selected by the tree at convergence.

2

comparing the mean square error in two successive iterations. At the final
step, model (2) is fitted using the partition associated to the tree selected at
convergence. The leaf node parameters i, are estimated jointly with the other
model parameters B, ¥, 62, 62. Algorithm 1 is implemented in a user written
R code.

The main difference of our procedure with respect to previous proposals
(Hajjem & Larocque, 2011; Sela & Simonoff, 2012), is the inclusion of the
linear component X;;B + Z ;¥ in the random effect model (2). This inclusion
allows to avoid overfitting and helps interpretation. Moreover, since the i, are
jointly estimated in the final step, standard hypothesis tests and confidence in-
tervals can be used for model selection and evaluation, together with the mean
squared error computed on a test data set for prediction accuracy evaluation.

We will show via a simulation study and an application to INVALSI data on
students achievement that our proposal improves the predictive performance of
the model in presence of quasi-linear relationships (Wermuth & Cox, 1998),
avoiding overfitting and facilitating interpretation.

u’
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ABSTRACT: This contribution deals with robust estimation of mixtures by develop-
ing a weighted likelihood methodology, which relies on a suitable modification of the
EM (or Classification EM) algorithm. In the proposed algorithm, the likelihood equa-
tions in the M-step are replaced by weighted likelihood estimating equations, which
are characterized by the presence of data dependent weights aimed at downweighting
outliers. The weights are based on the Pearson residuals and the residual adjustment
function. Formal rules for robust clustering and outlier detection can be defined based
on the fitted mixture model. Mixtures of multivariate Gaussian components and re-
gression models will be considered.

KEYWORDS: classification, EM, mixture, outliers, Pearson residuals.

1 Introduction

It is well known that maximum likelihood estimation (MLE) is likely to lead
to unreliable results when the sample data are contaminated by the occurrence
of outliers. In mixture modeling, in the presence of such data inadequacies,
the bias of at least one of the component parameters estimate can be arbitrarily
large and model based clustering strategies become unfeasible in recovering
the true underlying grouping structure in the data at hand. Actually, the oc-
currence of outliers could lead to find spurious clusters and/or merge together
genuine separate groups. The reader is pointed to the book by Farcomeni &
Greco, 2015 for a gentle introduction to robustness issues with a particular
emphasis on multivariate problems and cluster analysis.

Here, in order to take into account the possible presence of outliers, it
is suggested to replace maximum likelihood by weighted likelihood estima-
tion. Maximum likelihood estimation of mixture models is commonly ob-
tained by resorting to the EM algorithm. An alternative strategy is given by
the (penalized) Classification EM (CEM) algorithm. Weighted likelihood es-
timation of mixture models can be achieved by developing a modified ver-
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sion of the EM (or CEM) algorithm. Actually, in the M-step, the likelihood
equations are replaced by a different set of estimating equations whose sin-
gle term contributions are attached a weight aimed at downweighting out-
liers. In particular, weighted likelihood estimation is achieved by evaluating
weights stemming from Pearson residuals (Markatou et al. , 1998). The Pear-
son residual gives a measure of the agreement between the assumed model
m(y;T) and the data, that are summarized by a non-parametric density estimate
i, (y) =n~ ' Y7 k(y;yi, h), based on a kernel k(y; ¢, ) indexed by a bandwidth
h, that is ()
mp\y
30) = 1 (n
with 8 € [—1,e0). In regression and multivarate problems, the Pearson residuals
can be evaluated as

5(y) = (803 7)
m(y)
where g(y; ) is an appropriate pivotal transformation: (standardized) residuals
in regression (Agostinelli & Markatou, 1998, Alqallaf & Agostinelli, 2016)
and Mahalanobis distances in multivariate estimation (Agostinelli & Greco,
2018 ). The weight function is defined as

[AGB() +1]"
8(y) + 1

-1, 2)

w(d(y)) = : 3)

where [-]* denotes the positive part and A () is the Residual Adjustment Func-
tion (RAF, Basu & Lindsay, 1994). When the model is correctly specified, the
Pearson residual function (1, 2) evaluated at the true parameter value converges
almost surely to zero, whereas, otherwise, for each value of the parameters,
large Pearson residuals detect regions where the observation is unlikely to oc-
cur under the assumed model. The RAF plays the role to bound the effect
of large residuals on the fitting procedure, as well as the Huber and Tukey-
bisquare function bound large distances in M-estimation and we assume is such
that [A(8)| < |8]. One can consider the families of RAF stemming from the
Symmetric Chi-Squared divergence, the family of Power divergence or Gen-
eralized Kullback-Leibler divergence measures. The resulting weight func-
tion (3) is unimodal and decline smoothly to zero as 8(y) — —1 or 8(y) — co.
Hence, those observations lying in such regions are attached a weight that de-
creases with increasing Pearson residual. Large Pearson residuals and small
weights will correspond to data points that are likely to be outliers.
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2 Weighted EM and CEM

Lety = (y1,y2,.-- ,yn)T be a random sample of size n from the mixture model

K
m(y:t) =Y mp(yi:6k) ,
k=1

where T = (my,..., pig,01,...,0k), 6 denotes the vector of component spe-
cific parameters and K is the number of groups, that is assumed to be fixed in
advance. The weighted EM (WEM) algorithm iteratively alternates between
the standard E-step, in which posterior probabilities uy o< ;. p(y;;6x) are ob-
tained, and a weighted M-step in which one solves the estimating equations

n k a
Yy uij 5 [logm; +logdp (yii), Xj)]wi; =0, 4
i=1j=1

where w;; denotes the weight for the i-th unit with respect to the j-th com-
ponent. In the weighted CEM algorithm (WCEM), after the E step, let k; =
argmaxuj, then uy, = 1 and uy = 0 for k # k;. Therefore, in the modified
M-step one is allowed to compute one single weight per unit, conditionally on
the current cluster assignments, in equation (4), i.e w;; = wi,.

The WCEM automatically provides a classification of the sample units,
whereas a Maximum-A-Posteriori criterion can be used for cluster assignment
after running the WEM algorithm. Such criteria lead to classify all the obser-
vations, both genuine and contaminated data, meaning that also outliers are
assigned to a cluster. Actually, we are not interested in classifying outliers and
for purely clustering purposes outliers have to be discarded. Outlier detection
should be based on the robust fitted model and performed separately by using
formal rules. Outlyingness of each data point is measured conditionally on the
final assignment. For instance, for a mixture of Gaussian components, a com-
mon rule is to flag outliers when di2/<,- > X,z,; |_o» Where djy, is a robust distance

and X??; |_q is the (1 —o)-quantile of a Xf, variate. In the case of mixtures of
linear regressions, in a similar fashion, the outlier detection rule can be based
on standardized residuals and their reference standard normal distribution.

Let us consider a couple of illustrative examples on synthetic data. Figure
1 displays the results stemming from the WEM algorithm for a mixture of
bivariate normal distributions (left) and a mixture of linear regressions (right)
in the presence of outliers. The cluster assignments and the detected outliers
are also given. The classical procedures fail, whereas the proposed methods
lead to robust solutions with a satisfactory accuracy in fiitting, clustering and
outlier detection.
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Figure 1. Fitted mixture of bivariate normal distributions with outliers (left). Fitted
mixture of linear regressions with outliers (right). Clusters are denoted by using dif-
ferent colors and symbols. Outliers are represented as circles (left) or crosses (right).
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ABSTRACT: We introduce a representation called canonical representation of multiblock
methods from a factorization lemma for partitioned matrices. We show that this canonical
representation highlights the strategy adopted by these methods for analyzing multiblock data.
This strategy involves two analyzes: (i) a global analysis described by a factorization of the
whole data matrix. (ii) a block analysis described by the factorization of each block. The link
between parameters of these two analyses is simple and will be presented in detail. The
interpretation and visualization of parameters are based on the same principle as the usual
Principal Component Analysis.

KeywoRrbps: multiblock data analysis, matrix factorization, principal component analysis.

1 Introduction and motivation

Extracting relevant information from multiblock data by reducing dimensionality,
summarizing the information in an understandable way or visualizing multiblock data
for interpretation purposes, are challenges often raised in chemometrics. When K data

blocks denoted X, (1S k< K) are available and each data block X, reflects the

measurements of P, quantitative variables on n individuals, several multiblock

methods are proposed in the literature. We limit ourselves to five methods widely used
in chemometrics as listed in Table 1.

Table 1. List of widely exploratory multiblock methods used in chemometrics

HPCA Hierarchical Principal Component Analysis [1,2]

CPCA Consensus Principal Component Analysis [1,2]

MCOA Multiple Co-inertia Analysis [5,6]

CCSWA | Common Components and Specific Weights Analysis [3,4,5]
STATIS Structuration de Tableaux A Trois Indices de la Statistique [7,8]

Linking these methods to each other aims to have a comprehensible picture. This
issue was modestly studied in the literature. A monotony property of HPCA was
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disclosed and an optimization criterion was exhibited [10] pinpointing the equivalence
between HPCA and CCSWA. In the same manner [9], new properties of CPCA were
disclosed and pinpoint its connection to MCOA and PCA of the whole blocks. Indeed,
CPCA and PCA of the whole blocks are equivalent and the main difference between
CPCA and MCOA being in the deflation step. In addition, a new formulation of
CCSWA was introduced [11] by means of a new criterion which brought it closer to
MCOA and CPCA.

Despite these important clarifications, the access to these methods by users
continues to be difficult. One of the reasons resides in the heterogeneity of the outputs
which makes evaluation of methods difficult. From one method to another, the outputs
have neither the same aspect nor the same form. The user is often lost.

The present paper introduces a "canonical representation” of multiblock methods
listed in table 1 in order to harmonize their outputs. Several data sets will be used to
show how canonical representation of methods listed in table 1 makes easy the
evaluation and comparison of these methods.

2 Main contribution

The main idea of canonical representation of multiblock methods takes its origin
in the following factorization lemma of a partitioned matrix.

Let X, bea matrix of dimension (n, p) partitioned by columnsin K blocks X,
with dimension (n, p, ), there exist a matrix V,, K matrices U, and (K +1)
diagonal matrices D, , D, (1<k < K) such that:

X, =V.D,U] (1<k<K),

X,=V,D,U]
with V,V] =1, diagonal(V, V] ) = diagonal(U, U} ) =1, (L <k <K)
and ris the rank of X, .

The decomposition of data blocks X, (1 <k < K) as described by the lemma

is called: canonical representation. It will be shown that multiblock methods listed in
table 1 looking for a factorization as presented in the above lemma. In other words,
the matricesV,,U, 1<k <K),D, 1<k<K) and D, are the main
parameters of these methods. Although the parameters differ from one method to

another the representation of the parameters remains the same through the
factorization.
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X, =VD, U’
X, =VD,U?

Figure 1. Highlighting the main parameters of multiblock methods through their
canonical representation

Also, canonical representation highlighted the strategy adopted by these methods.
This strategy involves two analyses: (i) a global analysis described by the factorization
of X,, (ii) a block analysis described by the factorization of X, . The link between
parameters of these two analyses is simple and will be presented in detail. The
interpretation and visualization of parameters are based on the same principle as the
usual Principal Component Analysis.
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NUMBER OF CLUSTERS

Christian Hennig!

I Department of Statistical Sciences “Paolo Fortunati”, University of Bologna,
(e-mail: christian.hennig@unibo.it)

ABSTRACT: I propose a general approach for estimating the number of clusters in a
model-based setting. The idea is to choose the smallest number of clusters that pro-
vides an “adequate” model, where “adequacy” means that according to one or more
suitable criteria, the dataset to be analysed looks like a (more or less) typical dataset
generated from the model. Parametric bootstrap can be used to generate datasets from
the model, and adequacy can then be assessed by bootstrap tests. For finding mean-
ingful clusters, it may often not be required that the model fits perfectly, so adequacy
could be assessed based on smaller than the actually available sample sizes to allow
for imprecise fits. Adequacy criteria and application to some model-based clustering
methods are discussed.

KEYWORDS: Model-based clustering, parametric bootstrap, OTRMLE, k-quantiles
clustering.

1 Introduction

A problem with standard methods to estimate the number of clusters in model-
based clustering such as the BIC is that they are critically dependent on the
model assumptions. For example, for Gaussian mixtures, if clusters are not
exactly Gaussian and datasets are big enough, the BIC will often fit more than
one Gaussian distribution to every cluster.

The proposal introduced here is to choose the smallest number of clus-
ters that provides an “adequate” model. The principle of adequacy goes back
to Davies, 1995. The idea is that a model is “adequate” for a dataset if the
dataset cannot be distinguished from (more or less) typical datasets generated
from the model by some criteria that are relevant to the application. Davies &
Kovac, 2004 applied the approach to density estimation; they tried to find the
density with the smallest number of modes that is “adequate” in terms of the
Kolmogorov distance between the fitted and the observed distribution.

The assessment of adequacy relies on criteria measuring the quality of
approximation. In cluster analysis, it is often of interest to find meaningful
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clusters that do deviate slightly from the model assumptions. When fitting a
Gaussian mixture, some unimodal and fairly symmetric data subsets should be
counted as a single cluster even if they could be fitted slightly better by two
or more very close Gaussian mixture components. Therefore, very high preci-
sion of approximating the dataset by the fitted model is not required. Rather
the modelled clusters should correspond to meaningful clusters in the data.
This can be reflected by appropriate quality criteria. Some imprecision in the
fit that makes it possible to tolerate clusters for which the model assumption is
only roughly appropriate can be achieved by basing the adequacy assessment
on a number of observations that is lower than the number of actual observa-
tions. Given an adequacy criterion, adequacy can be assessed using parametric
bootstrap testing.

2 The adequacy algorithm

Here is an outline of the general adequacy approach.

1. Apply a model-based clustering method to dataset D for a range R of
numbers of clusters G € R.

2. Forall G € R, generate B datasets Dg 5, b=1,...,B from the fitted mod-

els (parametric bootstrap).

Apply the clustering method to D, b =1,...,B, fixing G.

4. Compute statistics S that measure the quality of the clustering for all
fitted clusterings on the real data and on the bootstrapped data.

5. G is adequate if S(D,G) is not significantly worse than the distribution
of S(Dgp,G).

6. Choose the smallest adequate G.

et

3 Clustering methods, outliers

The adequacy principle can be applied to all model-based clustering methods,
and even to clustering methods that are not model based, as long as a model
can be specified and fitted to generate the parametric bootstrap datasets (see
Hennig & Lin, 2015 for the use of parametric bootstrap with non-model based
clustering methods). In case of model-based clustering, the model to be used
is obviously the fitted model.

Two methods for which up to now no other methods have been proposed
to estimate the number of clusters are k-quantiles clustering (Hennig et al. ,
2018), based on a fixed partition model with asymmetric Laplace distributions,
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and the Optimally Tuned Robust Improper Maximum Likelihood Estimator
(OTRIMLE, Coretto & Hennig, 2016; Coretto & Hennig, 2017), which fits
a Gaussian mixture allowing for noise and outliers. In the latter case, some
observations are not assigned to any cluster, and better clustering of the non-
outliers can be achieved if more observations are classified as outliers. This can
be taken into account by looking for the adequate clustering with smallest G +
%, where fty is the estimated proportion of outliers, and py is the borderline
proportion of outliers that the user is willing to trade in for a model with one
cluster more.

4 Clustering quality measures

Many clustering quality measures can be used as statistic S. Using multiple
testing corrections (Davies, 1995), even more than one statistic can be used
(see Hennig, 2017 for some proposals).

Here is one proposal that measures to what extent the found clusters are
unimodal. The measure is first defined for one-dimensional data; for more
dimensions variable-wise (or principal component-wise) measures can be ag-
gregated.

Apply the following to every cluster with j € {1,...,G} being the current
number of clusters:

(a) Compute a kernel density estimator at g equidistant points y; <y, <...<
¥4 covering a large probability range (say 99%) under the fitted model,
yielding 7(y1),.... f(vg).

(b) Separately sort those on the left and those on the right side of the mode
of the fitted model: fl(l) <...< fAl(q’), fr(l) >...> fr(q"), q=q+q

(d) Compare with kernel density left and right of the mode of the fitted

model:
qi o

si= Y. (foi) — )2,
i=1
q A A(i)
Sr = Z (f i) = fr )2’

i=q+1

1
7}'(y1,--~,yq)= 6(S1+Sr)~

In case of unimodality where the mode is as close as possible to the fitted model
mode, this yields 7; = 0. It may be advisable to standardise 7; by its mean and
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variance under the assumed model in order to make clusters of different sizes
comparable.
The resulting measures 7; need to be aggregated over clusters:

A version that averages pairs of density values and aggregates the same density
values on the left and right side of the mode can be defined if clusters are meant
to be symmetric.

5 Conclusion

The algorthm introduced in Section 2 with S as defined in Section 4 can be used
to find the smallest G so that the empirical within-cluster distribution does not
deviate significantly from the quality S as expected if the fitted model is in fact
true; i.e., clusters look as unimodal (and symmetric, if required) as generated
by the fitted model.
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ABSTRACT: In classification tasks with geochemical of chemometric data, it fre-
quently happens that observations are of relative (compositional) nature. It means
that the relevant information is contained in ratios rather than in the absolute values
of components due to the possible influence of the size effect. The logratio approach
to compositional data analysis offers a concise methodology replacing the original
scale invariant positive data by reasonable real variables, which are formed by ratios
of the components or their amalgamation, prior to further statistical processing. The
preferred type of such logratio variables corresponds to orthonormal coordinates with
respect to the Aitchison geometry of compositional data, and particularly to such a
coordinate system, where the first coordinate aggregates all logratios with the specific
part of interest and can be thus linked to that component - we refer to so-called pivot
coordinates. However, including all respective logratios into the first pivot coordinate,
specifically those logratios reflecting differences between groups to a coordinate cor-
responding to a non-biomarker, may lead to an artificial occurrence of false positive
biomarker detection. Accordingly, biased picture concerning sources for classifica-
tion of groups can be expected. Therefore, in the contribution, we propose a method
excluding aberrant logratios so that the coordinate which is afterward considered to
be the pivot one in the resulting coordinate system contains already just the cleaned
information about the relative dominance of the specific component. Importantly, the
alternative choice of pivot coordinates, which we suggest to call selective pivot co-
ordinates, does not influence the quality of classification itself since both coordinate
systems are just rotations of each other. The effect of such a choice of coordinates
will be presented with the partial least squares regression - discriminant analysis of
metabolomic data.

KEYWORDS: compositional data, logratio coordinates, partial least squares regres-
sion - discriminant analysis, biomarker detection.
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ABSTRACT: Multivariate data are typically represented by a rectangular matrix (ta-
ble) in which the rows are the objects (cases) and the columns are the variables (mea-
surements). When there are many variables one often reduces the dimension by prin-
cipal component analysis (PCA), which in its basic form is not robust to outliers.
Much research has focused on handling rowwise outliers, i.e. rows that deviate from
the majority of the rows in the data (for instance, they might belong to a different
population). In recent years also cellwise outliers are receiving attention. These are
suspicious cells (entries) that can occur anywhere in the table. Even a relatively small
proportion of outlying cells can contaminate over half the rows, which causes rowwise
robust methods to break down.

In this paper a new PCA method is constructed which combines the strengths of two
existing robust methods, DetectDeviatingCells and ROBPCA, in order to be robust
against both cellwise and rowwise outliers. At the same time, the algorithm can cope
with missing values. As of yet it is the only PCA method that can deal with all three
problems simultaneously. Its name MacroPCA stands for PCA allowing for Missings
And Cellwise & Rowwise Qutliers. Several simulations and real data sets illustrate its
robustness. New residual maps are introduced, which help to determine which vari-
ables are responsible for the outlying behavior. The method is well-suited for online
process control. The function MacroPCA has been incorporated in the R package
cellWise on CRAN, which also contains a vignette with real data examples.

KEYWORDS: detecting deviating cells, outlier map, residual map.
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ABSTRACT: This contribution deals with effect measures for covariates in ordinal
data models to address the interpretation of the results on the extreme categories of
the scales. It provides a simpler interpretation than model parameters both in standard
cumulative models with proportional odds assumption and in the recent extension
of the CUP models, the mixture models to account for uncertainty in the process of
selection of the score. Visualization tools for the effect of covariates are proposed and
the measure of relative size and marginal effects based on rates of change are evaluated
by use of a case study.

KEYWORDS: cumulative link models, CUP models, extreme categories, marginal ef-
fects, uncertainty.

1 Background and Preliminaries

Traditional models for rating data analysis are Generalized Linear Models
(GLM) that employ nonlinear link functions to cumulative probabilities (Mc-
Cullagh, 1980). Recent attention on the uncertainty detected when a subject se-
lects a score on a rating question led to the alternative CUP models (Tutz et al.,
2017). They represent a special-case in the framework of the Generalized
Mixture with Uncertainty (GEM) models (Iannario & Piccolo, 2016) in which
CUB models are the starting point. Indeed, they are a Combination of two
components referred to the individual indecision (Uncertainty) expressed on
the selection or motivated by the context and to a deliberate choice of a re-
sponse category determinated by the Preference of the respondent.

As a consequence of the nonlinearity model parameters are not as simple to
interpret as slopes and correlations for ordinary linear regression. The model
effect parameters relate to measures, such as odds ratios and probits, may not
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be easily understood or can even be misinterpreted. Furthermore, the interest
in some specific fields to the correct interpretation of the effect of categories in
the extreme of the scale (the worst/best of the selection) motivates the present
contribution. Indeed it surveys simpler ways to interpret the effects of the
explanatory variables simplifying the interpretation of the models, describing
and visualizing average and global marginal effects. Section 2 is devoted to the
introduction of the model and marginal effects whereas Section 3 concludes
with a case study and some remarks.

2 Marginal effect measures for covariates in CUP models

In a cUP model (Tutz et al., 2017), the probability distribution of the ordi-
nal response variable R;, for i = 1,2,...,n, describing the rating assigned by
respondent i, is given by

P(R; = r|x;) = miPy(Y; = rlx;) + (1 =) P(Ui=r), r=1.2,....m,

where Py (Y; = r|x;) (Prefence part) is obtained via a cumulative link model
on an appropriate set of covariates, and a logit link is usually assigned on the
uncertainty parameter 7;. Here, the second component of the mixture P(U; =r)
follows a discrete Uniform distribution.

One natural way to interpret the effect of one explanatory variable is to
consider the corresponding marginal effects (MEs). A ME shows how a vari-
ation in one variable affects the outcome distribution, holding all the other
variables constant. We refer to Greene & Hensher, 2010 for a discussion of the
interpretation of marginal effects in ordered response models.

As an exemplification, the marginal effect of a continuous explanatory
variable on P(R = i) will be reported. The rate of change in P(R = 1) with
respect to a continuous variable x; involved in the preference part of the model
is the partial derivative of P(R = 1) with respect to x;

IP(Y = 1|x})

s = _ka(al —xi7)7
Xik

where f() is the density function corresponding to the examined cumulative
model, and the other explanatory variables having fixed values x;. In a similar
way we obtain the rate of change in P(Y = 1) with respect to y; involved in
the uncertainty part of the model

IP(R=1)

I = Bif(Bo+yuP1)(F (o —xy) —1/k).
YVik
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Here, F() is the cumulative distribution funnction. Further details are in Ian-
nario & Tarantola, 2019.

3 Example

Data was provided by the Survey of Health, Ageing and Retirement in Eu-
rope (SHARE) from wave 1, 2004. In this contribution, a rating concerning
the perceived Pain collected on a 4 points Likert scale (Never=1, Rarely=2,
Every Ones in a While=3, Almost Always=4) has been analyzed. Covariates
introduced for the analysis are Gender (0 = Male,1 = Female) and Body Mass
Index (BMI from 2.563 to 76.950, with average=26.592 and s.d.=4.310). The
sample of n = 3458 elderly people (average age=62) is overall overweight (av-
erage BM1=26.590)

Table 1. CUP models fitted to perceived pain assessment.

Bi (Gen) By (BMI) o 8 a3
0.770(0.089)  0.085(0.011) 1.992(0.334)  3.646(0.374)  5.468(0.476)

Estimated results of CUP models are reported in Table 1. It lists estimated
parameters 3;, j = 1,2 and cutpoints &;, j = 1,2,3 with asymptotic standard
errors (in parentheses). Here the AIC index is 8603.609 compared with a stan-
dard CUB model with AIC=8610.932 whereas the T parameter is 0.916(0.051)
with respect to Teyp = 0.789(0.022) highlighting the different role of uncer-
tainty in the selected model. Average ME are in Table 2. Given the sign con-
vention, as expected, it is possible to observe a positive effect on the Female
(Gen) (they perceived more pain) and on increasing level of BMI on perceived
pain. Group comparisons with relative marginal effects are in Figure 1. There
is evidence that the first category effectively thresholds those having absolutely

Table 2. Average Marginal Effect for CUP models - SHARE data.

ME.1

effect std.error z.value p-value
Gen -0.152 0.017 -9.002 0.001
BMI -0.017 0.002 -7.713 0.001
ME 4

effect std.error z.value p.value
Gen 0.041 0.006 7.470 0.002
BMI 0.005 0.001 7.537 0.005
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Figure 1. Group comparisons, Male (blue) and Female (red) versus BMI, for marginal
effects (First marginal effect on left panel, last in right panel). Top panel is about BMI
marginal effect, bottom panel on gender marginal effect.

no pain. The last one highlights the difference in gender groups.
An extended study has been planned to validate the efficacy of the proposal
and the impact of the results.
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ABSTRACT: The key role of a portfolio manager is to establish a suitable strategy of
asset allocation. The composition of a portfolio does not only depend on both return
and risk of each asset, but it is also influenced by various factors. The final decision
making belongs to a multiple criteria problem. Our aim is to apply a multi-criteria
approach to select the attractive securities for a portfolio according to the resulting
clustering of time-varying beta of the stocks. To reach this aim, we propose a two-
step approach that consists in applying before a k-means algorithm on the time-varying
beta computed on a suitable Capital Asset Pricing Model. Then, we rank these stocks
by a Multi Criteria Decision Making model.

KEYWORDS: CAPM, time-varying beta coefficient, P-spline, cluster analysis, MCDM.

1 Introduction

From the milestone work of Markowitz, 1952, Capital Asset Pricing Model
(CAPM) proposed by Sharpe, 1964 was the most famous model of financial
market equilibrium. The CAPM states a linear relationship between a stock
return and its risk, measured by a coefficient known as beta. It explains the
systemic risk that is related to market itself (thus not decreases by the diversi-
fication step). Under the (unrealistic) CAPM hypothesis, the beta coefficients
do not vary over time. This characteristic is very restrictive and not readily
found in the reality. In facts, the beta of the assets can vary at any point in
time depending on (among the other) the information available at the given
time about the financial markets, the overall economic conditions, the specific
firms. Taking into account all the above mentioned characteristics, the portfo-
lio selection problem belongs to a Multi Criteria Decision Making (MCDM)
framework (Xidonas et al., 2010). It consists of a set of different methodolo-
gies taking into consideration conflicting several criteria to support decision
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makers in solving a decision problem. MCDM are useful tools in portfolio se-
lection and management (see, e.g. Zopounidis et al., 2015). Within the MCDM
problems, the aggregation of all the evaluation criteria can be carried out by us-
ing different models (outranking relations, utility function or decision rules).
One of them is the Elimination and Choice Translating Reality (ELECTRE)
method proposed by Roy, 1968. The ELECTRE family in MCDM problems
consists of two steps: (i) the outranking relations are constructed then (ii) the
procedures of choosing, selection, sorting or ranking among the alternatives
are applied. During the years, the ELECTRE method evolved into a number
of other variants that are based on the same foundation, but they differ slightly.
Among these methods, ELECTRE III (Roy, 1991) was designed for ranking
problems, also providing different advantages in a decision making process.

2 The key idea
The static (with constant s) CAPM formulation is given by:

ri(t) = ry +Bilrm(1) = rp), (1)

where 7; is the return for asset i, ry is the risk-free rate (which is known), B;
is the sensitivity of the expected asset returns to the the market returns r,, (as
measured by a stock market index for example). To allow the risk factors to
vary over time, we follow the varying-coefficient model proposed by Hastie &
Tibshirani, 1993. The following relationship holds:

ri(t) = ry +Bi(t) (rm () = ry)- 2)

In this paper, we propose to model f3;() using P-spline (Eilers & Marx, 2002).
Equation (2) can then be formulated as

yi(t) = ao,i+diag{x(t)}Bai,i+£,-(t) = (IIU)OCI'—I-S,'(Z‘) = Qu; —I—Sl’(l‘), (3)

where €;(¢) is a zero mean error term with constant variance, y;(t) = ri(t) — ry,
x(t) =rm(t)—rs, 04 = (ag_i,alT’i)T, ap,; is an asset-specific intercept term, a; ;
is the vector of spline coefficients for the time-varying risk factor for asset
i, B is a B-spline matrix and U = diag{x(¢)}B with diag{x(r)} aligning the
predictors with the appropriate smooth slope values. If Q = (1|U), then the
penalized estimation problem for asset i becomes:

S; = |lyi(t) = Qo> + A || Dacs | )
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Figure 1. Beta varying coefficients clustered by k-means procedure with Pearson’s
correlation coefficient based distance. For each subplot the horizontal axis represents
the time and the vertical axis the systematic risk level. The gray lines reproduce the
beta series assigned to each cluster. The dots indicate the estimated optimal beta
coefficients for cluster center. The black solid lines indicate the center functionals.

where D, shrinks only the a; ; coefficients in o; and A; is a smoothing param-
eter. The solution of (4) is then

6= (Q'Q+NMD;Dy) 10 yi(t), S)

from which it follows that Bi(t) = Bdy ;.

We propose a two-step procedure combining hard clustering of risk factors
and ELECTRE III ranking procedure, for the selection of asset to compose an
investment portfolio by evaluating the associated systematic risk. In analogy
with Iorio et al., 2016, we propose to cluster the beta coefficients for a set of
assets. We model the risk indicators by means of P-spline whose coefficients
are clustered so that each group is characterized by stocks with similar sys-
temic risk profiles. Figure 1 shows the results of our proposal on a data set of
48 stocks constituent the S&P500 Index collected monthly from january 2006
to december 2010 (source yahoo.finance.com). In a second step, we compute
for each stock a series of risk-adjusted performance measures that are used as
criteria of ELECTRE III method to obtain a stock ranking useful for the asset
selection step. Then a portfolio manager can select the n < N top stocks ac-
cording to ranking, given the previous screening clustering based on different
profiles of systemic risk, ensuring a better diversification of portfolio.
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3 Conclusion

In this paper, we proposed a portfolio composition method within a multi-
criteria framework. The procedure is based on a cluster analysis of the time-
varying betas, estimated by using P-spline, so that each resulting group con-
tains different level of systemic risk. Then we computed some risk adjusted
performance measures for the stocks of the recognized clusters. Finally, we use
these indexes as input of the ELECTRE III method to obtain a stock ranking
useful for the asset selection phase.
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ABSTRACT: The paper deals with the clustering trajectories of moving objects. A
prototype-based clustering using Euclidean distance between piece-wise linear curves
is used. The main novelty of the paper is the opportunity of considering in the clus-
tering procedure two steps: a step that automatically weights the importance of sub-
trajectories of the original ones and an alignment step for expressing the prototypal
trajectory which uses the Dynamic Time Warping algorithm. The algorithm uses an
adaptive distances approach and a cluster-wise weighting. The algorithm is tested
against some workbench trajectory datasets.

KEYWORDS: trajectory clustering, adaptive distances, time warping.

1 Introduction

Nowadays, surveillance systems or the global positioning system (GPS) sen-
sors integrated into devices produce a huge amount of data about moving ob-
jects expressed as trajectories. The extraction of patterns from trajectories is
increasingly challenging and demanding. Clustering is a very useful tool for
extracting patterns and trajectory clustering has some peculiarities involving
spatial and time information.

Thus, the problem of clustering trajectories depends on how trajectories
are compared, or if a trajectory is considered as a set of sub-trajectories or not.
Depending on time, a trajectory can be considered as a two or three dimen-
sional time-series. Trajectories clustering looks for groups of trajectories, or
of sub-trajectories, such that they represent a movement pattern in the data.
The subject is surveyed in Yuan et al., 2017. In the literature, two main al-
gorithms are considered: the Lee et al., 2007 and the Nivan et al., 2013. In
Lee et al., 2007, a distance between sub-trajectories is defined and the algo-
rithm implements an extension of a density dased algorithm for grouping set
of sub-trajectories. In Nivan ef al., 2013, the idea is to estimate k predefined
vector fields that represent group of trajectories observed in a 2D space. This
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application, is inspired by the problem of monitoring and predicting storm or
hurricane paths. In a functional data analysis approach, a trajectory is consid-
ered as a curve in a 2D or 3D space. In order to be analyzed a smoothing,
interpolation, or alignment step is performed and then the trajectory are ana-
lyzed Sangalli et al., 2010.

In this paper, we consider a prototype based approach for grouping tra-
jectories. We show how to decompose the Euclidean distance between two
trajectories and use such a decomposition for explaining some aspects of the
compared trajectories. We enrich the algorithm with a step that automatically
assign a relevance weights to the aspects. Further, considering that trajecto-
ries may be misaligned in time, we introduce an alignment step for defining
a prototype of the cluster using Dynamic Time Warping (DTW). We remark
that, considering that DTW bassed distances do not allow convex optimization
problems, the proposed algorithm is only inspired to the classical k-means one
and we show its convergence to a stable result only empirically.

Finally, we show some preliminary results on some benchmark datasets.

2 Data and distances

A trajectory is a sequence of ordered space-time points (namely, a point has
two or three spatial coordinates and a time-stamp), where the order follows
time. A trajectory P; is a collection of ordered pairs of data (sf/, tj-), j=1,...,T,
sampled in T time-points where sé- is a spatial location (namely. a 2D or a 3D
vector of spatial coordinates) and t;- is a time-stamp. A set of N trajectories is
a collection of trajectories denoted as P;. We assume that each trajectory may
have a different number of sampled time-points 7;. Clustering is based on a
distance/dissimilarity measure between objects. In our case, the computation
of a distance between two trajectories may require a normalization step for
comparing them. Such a step, depending on the application domain and on the
aim of analysis, may be questionable.

The hypothesis that a trajectory is piece-wise linear curve is computation-
ally useful for computing a continuous version of the Euclidean distance be-
tween two trajectories.

Under this assumption, the Euclidean distance between two 2D trajecto-
ries* having the same k time stamps normalized in [0, 1] as follows. Given two

normalized trajectories P} = {{(x(l),y(l)),O}, e {(x;,y}),’c}}, o (X YT 1}}

*The trajectory is on a plane, but the extension to 3D spaces is straightforward.
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and P, = {{(x(z),y(z)),o}, {05, 5), T A ) 1}} Considering the
piece-wise linear assumption, and constant speed between each pair of sam-
pled points, it is possible to express the two trajectories with a common set
of T’s by a linear interpolation. Once the two trajectories are registered such
that they have the same normalized L € [min(T;,T>), (T; + T2)] time-stamps we
compute the squared Euclidean distance between P; and P; as follows:

di (P,Py) = ({1 [(Xl (7) —xz(T))z + (vi(7) —yz(r))z} dt =

01—y [ FO-ROP O =50 M
VT [0 =20 + 1910 = 320

TMh

where:

o %y (f) =™ (W)‘i‘;l('cé—l), ©(0) = X2(W)+;2(W—l)’ F1(0) = yl(w)+2yl (Tl—l)’ and

F2(0) = 211 The points (% (£), 71 (£)) and (%2(€),72(¢)) are, re-
spectively, the centers of the segment that starts from (x;(Ts—1),y1(Te—1))
and arrives at (x(T¢) , y1(T¢)), respectively, the centers of the segment
that starts from (x2(T¢—1) , y2(T/—1)) and arrives at (x2(t¢),y2(T¢));

o i1(0) = xl(ré)*le(ré—])’ % (0) = xz(fk)*;z('f{’—l)’ y1(0) = )’1(%)3’1(@171)’ and

Yo (0) = 2221 The value (4(£),y1(€)) and (ia(£) , 2 (£)) are, re-
spectively, the pairs of the component-wise half widths of the segment
that starts from (x;(t/—1) , y1(T¢—1)) and arrives at (x;(t¢) , y1(Te)), re-
spectively, of the segment that starts from (x2(T¢—;) , y2(T¢—1)) and ar-
rives at (x2(T¢) , y2(Te))-

Distance in Eq. 1 can be naturally decomposed for sub-trajectories. In a k-
means like algorithm, it is important to define an average object. Indeed, k-
means algorithms rely on the definition of a within cluster homogeneity crite-
rion that usually is expressed as a distance between objects and a representative
of the cluster. In this case, being trajectory depending on time, it is possible
that a misalignment occurs, biasing the average (prototype) object trajectory.
In each representation step of the algorithm, we suggest computing the proto-
type after a recursive alignment of the trajectories belonging to the cluster and
the average one such that a minimum DTW distance criterion is minimized.

The alignment step does not guarantee that the algorithm converges toward
a minimum squared distance criterion (like in k-mean).

Using some benchmark data we show its empirical convergence and the
obtained results. Some other warping methods will be discussed.
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ABSTRACT: The Mallows and Generalized Mallows models are compact yet pow-
erful and natural ways of representing a probability distribution over the space of per-
mutations. This short paper, which is a summary of the long paper of the same title,
deals with the problems of sampling and learning such distributions when the metric
on permutations is the Cayley distance. We propose new methods for both operations,
and their performance is shown through several experiments. An application in the
field of biology is given to motivate the interest of this model.

KEYWORDS: permutations , Mallows model , sampling , learning , Cayley distance ,
Fisher-Yates-Knuth shuffle.

1 Introduction

The presence of data in the form of permutations or rankings of items is ubiqui-
tous in many real world scenarios, from the computational social choice Brandt
et al. , 2016 to preference learning Lu & Boutilier, 2011 or bioinformatics
Critchlow, 1988. When it comes to handle uncertainty in permutation spaces
the Mallows and the Generalized Mallows model are two of the the most pop-
ular alternatives Mallows, 1957; Critchlow et al. , 1991.

Both models rely on a distance for permutations and in this paper we fo-
cus on the Cayley distance®. It counts the number of swaps (not necessarily
adjacent) to transform a given permutation into another one so it is closely re-
lated with the cyclic structure of permutations: the number of swaps to convert
7 into the identity permutation, and thus the Cayley distance d(m), equals n
minus the number of cycles of 7.

*This is a difference with most literature on the topic, where the Kendall’s-t distance is
usually considered
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Most results in this paper are based on a decomposition of the Cayley dis-
tance of a permutation 7, d(rt)" which is denoted as X (7). This X() is a vector
of length n — 1 where each position is defined as X;(m) = 0 if j is the largest

item in its cycle in &, and X;(nt) = 1 otherwise. Note that d(w) = Z?;} X(m).

2 Mallows and Generalized Mallows models

The Mallows model is an exponential-location probability model for permuta-
tions based on distances. It is defined by a central permutation (the location
parameter) denoted as 6y and the dispersion parameter, denoted 0. It can be
expressed as follows:

p(0) :wj(Gj)_lexp(—Bd(G,Go)). (D

The GMM is defined on the distance decomposition vector for Cayley,
X(o). Specificly, for a central permutation 6y and dispersion parameter vector
(01,...,8,_1) the GMM under the Cayley distance is defined as follows

n—1
p(c) =y;(6;)" Ilexp(—ejxj-(cca h). (2)

It is worth noticing that by setting every dispersion parameter 0; to the
same value we recover the MM. For both models, the mode is 6 provided that
0,0; > 0. The idea of the GMM is that the displacements at different positions
should affect in a different way to the probability of a permutation, and this is
controlled by setting different values to different dispersion parameters 6.

One of the best known references in the literature of statistical models on
permutation data Critchlow et al. , 1991 shows how to exploit the properties
on exponential models to obtain efficient expressions to work with these mod-
els. In particular, based on computable expressions for the moment generating
function, the authors are able to reformulate p(X;) and the normalization con-
stant y efficiently. In this paper, we extend their work and propose computa-
tionally efficient exact sampling and learning algorithms. We will illustrate the
links between MM and GMM under the Cayley distance to other known mod-
els in the literature and adapt classical algorithms to these statistical problems
by unraveling new properties of the algorithms.

Tfor notational convenience we use one of the permutations to be the identity, but these
results apply in general.
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3 Sampling

The first problem approached consists on obtaining a random permutation from
a MM or a GMM. It is known that the probability of the distance decomposi-
tion vector can be expressed’ and sampled efficiently Critchlow et al. , 1991,
Therefore, sampling a permutation can be done by (1) sampling a distance de-
composition vector X and (2) obtaining a permutation G such that X(c) = X.
Unfortunately, there exist possibly many permutations with this decomposition
and obtaining uniformly at random one of those is not trivial.

In the long version of this paper we show how to use the Chinese Restau-
rant Process and the Fisher-Yates-Knuth (FYK) algorithms to sample permu-
tations uniformly at random. We discuss which is the cyclic structure of the
obtained permutations and consequently, Cayley distance decomposition vec-
tor. Finally, we propose an adaptation of the FYK algorithm to sample from
a GMM in linear time, which is one of the main results of the paper. The ex-
perimental section compares the performance of our proposed sampler with an
adaptation of a Markov chain Monte Carlo algorithm, on both time an quality
results.

4 Learning

The learning task has been approached as a Maximum Likelihood Estimation
of the parameters of a given sample of permutations. It can be shown that the
MLE in MM can be broken in two stages, which are (1) finding the central
permutation that minimizes the sum of the distances to the sample and then
(2) computing the dispersion parameters. On the other hand, the learning pro-
cess of the GMM cannot be broken in stages and it is done by looking for
the permutation that maximizes the likelihood of the sample. However, both
learning problems can be seen as looking for a permutation that optimizes a
fitness function (sum of distances in MM and likelihood in GMM). Therefore,
we refer to the learning as an optimization problem for the rest of the section,
for which we propose two algorithms, one exact and one approximate for both
MM and GMM.

The exact algorithm explores the tree of partial permutations looking for
the permutation that optimizes the fitness function. The number of leaves in
this tree is much larger than the number of permutations, so a raw search on
this tree would be highly inefficient. However, for each partial permutation a

fWe should note that this paper corrects typos of the original version.
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lower bound on the value of the objective function for every node in the brach
can be computed efficiently. By making use of this clever lower bound, in
practice we can prune the tree and search a large space efficiently. As usually
occurs in this scenarios, the performance of the algorithm is highly increased
if we consider a good initial candidate solution.

The experimental evaluation shows the performance of both methods for
samples of various degrees of consensus. It concludes that as the sample dif-
fers from uniformity both algorithms quickly improve their performance: the
quality in the case of the approximate and the time performance in the case of
exact algorithm.
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ABSTRACT: The research in this paper introduces the Gender Parity Index (GPI) to
analyze gender differences in higher education. The GPI is applied to the time that it
takes students to graduate beyond the recommended time period for a Greek Univer-
sity. Interesting insights from this analysis shows a significant difference in time to
graduation for male and female students where female students, in general, have also
obtained higher graduation marks.

KEYWORDS: Gender parity index, higher education, time to graduation.

1 Introduction

Gender is considered to have a fundamental influence on research in higher ed-
ucation. Access and enrolment to higher education have their own correspond-
ing importance in higher education research involving gender. More reecently
the research has focused on students’ outcomes, where gender has its own
relevance in terms of students’ and institutions’ success and performance or
students’ and institutions’ efficacy, effectiveness and efficiency. Even though
there is no consensus regarding the definition and measurement, those most
commonly used fit into two categories; degree completion (percentage of de-
grees completed, non-completed, or rates of completion, drop-out rates) and
time-to-degree, more generally considered as length of studies. The focus of
this current research is on students’ length of studies defined as the time du-
ration between date of first enrolment to a university institution and up to the
occurrence of an event that terminates studies in this same university. This
paper draws on research of one individual level data set derived from social
sciences-oriented departments in a University in Greece. In this institution 46
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months is the minimum time for graduation but there is no maximum. In such
data all possible situations of termination of study can occur for instance, if the
student graduates on time, or drops out from their course. The paper is struc-
tured as follows. In the second section, we describe the GPI, while in Section
3 we report the results and section 4 presents the study’s conclusions.

2 The Gender Parity Index

The Gender Parity Index (GPI) (UNESCO, 2017) is a socioeconomic index de-
signed to measure the relative access to education of males and females. This
index is commonly used by international organizations, such as UNESCO,
but it is poorly mentioned by the literature accounting for gender differences
(Hippe & Perrin, 2017). The GPI at t time is defined as follows:

IndF[
IndM[

GPI, = (1)
where Indp; is the female value of an indicator at t time, while Ind,y; is the male
value of the same indicator at r time. A GPI value equal to 1 indicates parity
between females and males. In general, a value less than 1 for GPI indicates
a disparity in favour of males and a value greater than 1 indicates a disparity
in favour of females. The interpretation should be the other way round for
indicators where normally, the approach to 0% is the ideal (e.g. repetition,
dropout, illiteracy rates, etc). In these cases, a GPI of less than 1 indicates a
disparity in favour of females and a value greater than 1 indicates a disparity
in favour of males.

3 Data and results

The majority of university undergraduate curricula in Greece takes the form
of four academic years; exceptions correspond to medicine engineering, vet-
erinary science and agriculture. Graduation is possible at the end of the pre-
scribed time interval if a certain number of course units have been successfully
completed by the students. Students can graduate at exactly 46 months after
the date of their first enrolment. Students who fail to do so can proceed to the
next examination period for an unlimited number of times until the course unit
condition is satisfied and they graduate. Student data are provided by Panteion
University in Greece. The focus is on four cohorts of students who enrolled
at the university for the first time from September 2000 to September 2003.
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Enrolled students who transferred from other universities are excluded. More-
over, students who dropped out during the study time at the university are ex-
cluded. Every student was observed from the enrolment up to 40 months after
the minimum legal duration of studies. The study data consist of 6219 stu-
dents that are still enrolled at the beginning of the observation period. There
is 70% of students who are female. It is interesting to consider the GPI in the
following way:

S(0)F
S(t)m
with respect to the estimates of Kaplan-Meier survival function (Kaplan &
Meier, 1958) for each time from after the minimum legal duration of studies.
If GPI is less than 1, this indicates a disparity in favour of female. In fact, it
means that at t time the proportion of ”survived” female students (still enrolled
at the university) is lower than the same proportion for male students. On
the contrary, if GPI has a value greater than 1, this indicates a disparity in
favour of males. In Figure 1 Kaplan-Meier survival functions for male and
female (left panel) and the GPI (right panel) are reported. The Kaplan-Meier
estimates show that graduation rates are lower for male students for each ¢time,
even if in the first months the graduation rates for male and female are very
similar. The log-Rank test indicates to reject the hypothesis that the survival
curves for females and males are identical (z = —15.354, p —value < 0.00001)
hence suggesting a different student behaviour with respect to gender. The GPI
assumes to always have a value lower than 1, underling a disparity in favour of
females. The shape of the curve shows it is constantly decreasing in the first
20 months of TGaT then it decreases slowly and it seems to be constant at 0.6
after 30 months of TGaT, showing that the proportion of female students still
enrolled to be lower than 40% with respect to the same enrolled male students.

GPI, = 2)

4 Conclusions

This paper reports the analysis of the time it takes undergraduate students to
complete their degree beyond that of the University’s expected time period.
The analysis provides empirical evidence of gender gaps on length of studies
for a Greek University in social sciences departments. Like most public in-
stitutions these universities have not publicly reported on whether gender is a
factor in length of studies and timely graduation. This paper confirms through
the use of GPI and survival functions that gender differences do exist.
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Figure 1. Kaplan-Meier survival functions and GPI curve.
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ABSTRACT: Co-clustering designs in a same exercise a simultaneous clustering of the
rows and the columns of a data array. The Latent Block Model (LBM) is a probabilis-
tic model for co-clustering, based on a generalized mixture model. LBM parameter
estimation is a difficult problem as the likelihood is numerically untractable. How-
ever, deterministic or stochastic strategies have been designed and the consistency
and asymptotic normality have been recently solved when the number of blocks is
known. We address model selection for LBM and propose here a class of penalized
log-likelihood criteria that are consistent to select the true number of blocks for LBM.

KEYWORDS: Latent block model, co-clustering, model selection, BIC, ICL.

1 Introduction

Clustering is an essential unsupervised tool to discover hidden structure from
data by detecting groups of observations that are similar within a group and
dissimilar from one group to another one. The challenge of modern data is to
learn from observations x; € R¢ with a large number 7 of units observed on a
large number d of variables, and the question is not only to cluster the obser-
vations, but also to cluster simultaneously the observations and the variables,
leading to a tremendous parsimonious data representation.

This is called co-clustering and has many applications in many fields such
as recommendation systems (to cluster simultaneously customers and goods),
text mining (to co-cluster words and documents), genomics (to co-cluster genes
and experimental conditions) for example. As for clustering, there are many
ways to perform co-clustering, and we will focus here on the latent block
model (LBM). We present the model and its asymptotical properties. In par-
ticular, we shall analyze the log-likelihood ratio under model order misspeci-
fications, and derive a class of penalized log-likelihood criteria asymptotically
consistent, results that are new for LBM.
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Figure 1. n x d = 450 x 600 observations (left) and their reorganization according to
the underlying structure in 4 X 5 blocks (right)

2 The latent block model

LBM is a probabilistic model for co-clustering. Upon a data matrix X = (x;;)
of n rows and d columns, it defines a block clustering latent structure as the
Cartesian product of a row partition z by a column partition w with three main
assumptions:

- row assignments (or labels) z;, i = 1,...,n, are independent from column
assignments (or labels) w;, j=1,...,d : p(z,w) = p(z)p(w);
- row labels are independent, with a common multinomial distribution:

z; ~ M(1,m = (m,...,,)); in the same way, column labels are i.i.d.
multinomial variables: w; ~ M (1,p = (P1,...,Pm))-
- conditionally to row and column assignments (zy,...,2,) X (Wy,...,Wg),

the observed data X;; are independent, and their (conditional) distribution
¢(.,0) belongs to the same parametric family, which parameter o only
depends on the given block:

Xii{ziewje = 1} ~ @(., 0r)

where z;; is the indicator membership variable of whether row i belongs
to row-group k and wj, is the indicator variable of whether column j
belongs to column-group /.

Hence, the complete parameter set is 8 = (7,p, o), with &t = (01, ..., Cgm).
With these assumptions, the likelihood of the complete data is

p(x,2,w;0) = p(2:0) p(w,0)p(x|z,w;0) = [T [ T o, T @ (xij: ouee) ™"
ik FY ij

The labels are usually unobserved, and the observed likelihood is obtained by
marginalization over all the label configurations:
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LBM deals with matrix of homogeneous data, such as binary (Govaert &
Nadif, 2008), Gaussian (Lomet, 2012), categorical (Keribin et al., 2015) or
count (Govaert & Nadif, 2010) data. It involves a double missing data struc-
ture z for rows and w for columns, and the observed likelihood can not be fac-
torized as a product of the mixing density as for simple mixture models. This
implies that the likelihood is rapidly not tractable numerically even for few ob-
servations and few blocks, as the marginalization involves k" x d" terms. The
estimation can however be performed either with numerical approximations
(such as variational methods) or with Bayesian approaches (VBayes algorithm
or Gibbs sampling).

3 Asymptotic properties

The double missing structure also leads to a very challenging and interesting
study to state the asymptotic behavior of the maximum likelihood (MLE) and
variational (VE) estimators. This question was first studied on the Stochastic
Block Model (SBM) which is a LBM with the same statistical units in rows
and columns, used to model graph adjacency matrices. In this case, there is
only one set of latent variables z. Celisse et al., 2012 first proved that under
the true parameter value, the conditional distribution of the assignments of
a binary SBM converges to a Dirac of the real assignments. Assuming the
existence of an estimator of o converging at rate at least n~!, they obtained the
consistency of MLE and VE. Mariadassou & Matias, 2015 presented a unified
framework for LBM and SBM for observations coming from an exponential
family, but cannot get rid off the previous assumption to prove consistency.
Using a different approach, Bickel ef al., 2013 showed for binary SBM (i) the
consistency and aymptotic normality of the MLE in the complete model where
the labels are known (ii) these properties can be transferred to the MLE of the
observed model. Recently, Brault et al., 2017 solved the consistency and the
asymptotic normality of the MLE and VE for LBM observations coming from
an exponential family.

These results were obtained when the true order (K x L) of the model is
known. The question of the choice of K and L is crucial, and well-posed in
the probability framework of LBM. Let K’ (resp. L) be misspecifications of
the number of row (resp. column) clusters. In this talk, we will study the
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likelihood ratio statistics

SupeGQK/‘L/ p(X, e)

SUPgcoy p(x;0)

Dkkr 11 = log

for K’ # K or L' # L or both. Extending Wang et al., 2017 methodology
for SBM, we deal with the LBM double asymptotic in row and column to
provide an appropriate penalty term and define a class of selection criteria
asymptotically consistent.
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TRANSCRIPTOME CLASSIFICATION
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ABSTRACT: The field of classification is famous for its tremendous number of struc-
tural concept classes suitable for categorizing objects. Nevertheless, they are more
likely to be chosen according to ad—hoc simulations than by sophisticated considera-
tions on their theoretical properties. In this work, we discuss the idea of invariances
properties as an a priori criterion for concept class selection. These invariances de-
scribe the data transformations that cannot affect the predictions of any member of the
concept class.

As an example, we outline the landscape of linear classifiers for transcriptome
classification and report four linked subclasses with distinct invariances. We show that
the corresponding structural constraints may be incorporated in learning algorithms
for general linear classifiers, such as linear support vector machines.

Surprisingly, we were able to attain comparable or even superior generalisation
abilities to the linear one on the 27 investigated RNA-Seq and microarray data sets.
This indicates that a-priori chosen invariant models can replace ad-hoc robustness
analysis by interpretable and theoretically guaranteed properties in transcriptome cat-
egorization.

KEYWORDS: classification, invariance, linear classifier.
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CLUSTERING OF TIES DEFINED AS SYMBOLIC DATA
Luka Kronegger!

! University of Ljubljana, Slovenia, (e-mail: 1uka.kronegger@fdv.uni-17.si)

ABSTRACT: In the talk we are presenting the analysis of UK road network in which
ties are defined as symbolic objects. The data descriptions of the units are called
”symbolic” when they are more complex than the standard ones due to the fact that
they contain internal variation and are structured (Diday 2012). In our particular case
the data are discrete distributions that present an overall annual traffic counts on road
sections by vehicle types. In the analysis we used clamix package (Korenjak—éerne
et.al 2011) available in R, to cluster ties into several categories applied to further
analyzed and visualized road network.

KEYWORDS: network analysis, clustering, symbolic data, traffic.
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APPLICATION OF DATA MINING IN THE HOUSING
AFFORDABILITY ANALYSIS

Viera Labudova! and Cubica Sipkova!
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(e-mail: viera.labudova@euba.sk, lubica.sipkova@euba.sk)

ABSTRACT: Data mining is lately one of fastest growing new disciplines oriented on gaining
knowledge from databases. Data mining uses artificial intelligence techniques, neural
networks and advanced statistical tools (such as cluster analysis) to reveal trends, patterns and
relationships, which might otherwise have remained undetected. This article describes the use
of predictive data mining tools in housing affordability analysis.

Keyworps: EU SILC, housing affordability, logistic regression, decision trees, neural
networks.

1 Introduction, Data and Methods

Housing affordability represents a challenge everyone faces when covering the costs
of their current or potential housing and costs unrelated to their housing within the
limits of their own income. One of the first definitions of housing affordability is
provided by Howenstine: “The ability of the household to acquire decent
accommodation by the payment of a reasonable amount of its income on shelter”. In
fequently cited definition of housing affordability by MacLennan and Williams
affordability is concerned with securing some given standard of housing (or
different standards) at a price or rent which does not impose, in the eyes of some
third party (usually government) an unreasonable burden on household incomes.
Wong and Sendi consider the lack of a definition of the term “unreasonable burden”.
An explanation of the last term in the definition of “to be a detriment” is necessary
to be expressed more accurately for measuring purposes.

The European Union uses an indicator-based approach to quantifying housing
affordability, in which the household cost burden is calculated. The HCB (household
cost burden) is defined as the ratio of housing costs (HH070*12 — annual total) less
housing allowances (HY070G — annual total) to total available household income
(HY020 - annual total), less housing allowances (in percentage after multiplying by
100):

HHO070*12-HY 070G
HY 020 — HY 070G

HCB = 100

The value of the variable HCB is assigned to every person living in the given
household. The binary dependent variable has been created for modelling which
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equals ‘1’ if an person lives in a household where total housing costs (net of housing
allowances) represents more than 40% of the household’s total disposable income
(net of housing allowances) and ‘0’ if not. The aim of this paper is to analyse the
relationship between the characteristics of individuals and household cost burden
(HCB) in Slovak Republic. The analysis was carried out using an individual-level
data extracted from EU SILC 2016 cross-sectional component provided by the
Statistical Office of the Slovak Republic (EU SILC 2016, UDB 27/04/2017). In this
article, we compare results from logistic regression and artificial neural networks
with other popular classification algorithms from the data mining field, such as
decision tree.

All analyses were carried out with SAS Enterprise Miner 12.1 software, which is
SAS’ solution for data mining. Building models with SAS Enterprise Miner enables
the analyst to access a comprehensive collection of data mining tools through a
graphical user interface and to create process flow diagrams. Figure 1 shows the
process flow for modelling on the EU SILC dataset containing data on 14,101
inhabitants aged 16 years and over.

[»
3 ». Decision Treel
i

jﬁ‘j’! StatExplore 4%

.J;.:. Decision Tree2 (" Model )
) 3 % Comparison
% MultiPlot A

i}_/:‘, Regression1
DATA__HHOV % Data Partition [ 1
- : ressi

£ AutoNeural

Figure 1. Process flow diagram (Source: own elaboration)

Train data subset (70% of the data) was used for preliminary model fitting. We
tried to find the best model weights using this data set. The validation data set (30%
of the data) was used to evaluate the adequacy of the model in the Model
Comparison node.

Before creating neural network models, we reduced the number of input
variables with stepwise elimination procedure in the logistic regression models (p-
value > 0.05) (Hosmer & Lemeshow, 2004). We created two regression models
Regl and Reg2. These models differ by using the AROPE variable. With the Regl
model we selected these variables: AROPE (seven dummy variables indicating
whether the person is either at risk of poverty, or severely materially deprived or
living in a household with a very low work intensity; the reference category are
persons not present in any sub-indicators), region (three dummy variables refers to
the region of the residence of the household at the date of interview:
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SKO01/Bratislava Region, SK02/Western Slovakia and SK03/Central Slovakia; and
SKO04/Eastern Slovakia is our reference category), tenure status (four dummies
indicating whether the person is owner paying mortgage, or tenant or subtenant
paying rent at prevailing or market rate, or tenant or subtenant paying lower price
than the market price, or tenant or subtenant who does not pay a rent; the reference
category is outright owner), household type (eight dummy variables: single person,
two adults younger than 65 years, households without dependent children, single
person with dependent children, two adults with one dependent child, two adults
with two dependent children, two adults with three or more dependent children,
households with dependent children; two adults younger than 65 years is the
reference category) and the logarithm of equalised household disposable income. In
the second regression analysis (Reg2) we selected these variables: region, household
type, tenure status and the logarithm of equalised household disposable income. The
variable AROPE has been replaced by the following variables: poverty status
(ARPT60i) (a dummy indicating whether the household's equalised disposable
income (after social transfer) is above the at-risk-of-poverty threshold, which is set
at 60 % of the national median equalised disposable income after social transfers),
low work intensity of the household (LWI) (a dummy indicating whether the
household's work intensity is not very low).

These variables have also been used in neural network models: (Neural networkl
— with AROPE, Neural network2 and Autoneural without AROPE) (Kantardzic,
2003; Matignon, 2007).

In decision tree models, ordering the attributes for splitting is based on their
entropy. For selection of variables it is important to work out how much the entropy
of the entire training set would decrease if we choose each particular variable for the
next classification step in a node of the tree (Kantardzic, 2003; Matignon, 2007).
The most relevant variables in the first decision tree model (Decision Treel) were:
equalised household disposable income, household type and AROPE. In the second
model (Decision Tree2) these were: equalised household disposable income,
household type and low work intensity of the household.

2 Results

The Model Comparison tool selected the neural network model as the model with
the smallest average squared error and the decision tree model with input variable
AROPE as the model with the smallest validation misclassification rate (Table 1,
Table2). Detected relationships facilitated identification of the factors with
a significant influence on the housing cost burden for the inhabitants of Slovakia.

In addition to summary statistics, the Model Comparison tool also provides
graphical model performance summaries. Plotting the trade-off between sensitivity
and false positive fraction across all selected fractions of data creates a receiver
operating characteristic (ROC) curve. For training and validation sample, ROC
curves for logistic regression models, decision trees models and neural network
models were analysed.The ROC chart on the validation data set showed the neural
networks as the best models, followed by the regression models.
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Table 1 Fit Statistics Table for different models

Decisi | Decisi N;:Jr Ne:Jra

Fit Statistics (depth=10 %) T:‘):el T?Qez Netw | Netw ANN Regl Reg2
orkl ork2
Average Squared Error 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Roc Index 0.88 0.87 0.94 0.94 0.93 0.93 0.93
gg;z‘(’)':sté"e Percent Captured | 7057 | 7007 | eg4s | 7029 | 67.75 | 6957 | 67.39
Percent Captured Response 21.69 21.61 21.74 22.10 22.83 25.00 21.74
Misclassification Rate 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Mean Square Error - - 0.04 0.04 0.04 0.04 0.04
gg;g‘(‘)f;é"e Percent | 4503 | 4561 | 4458 | 4575 | 44.1 | 4528 | 43.87
Percent Response 28.24 28.14 28.3 28.77 29.72 32.55 28.3
Table 2 Event Classification Table

FALSE TRUE FALSE | TRUE Misclassification
Model Data . . . .

Negative | Negative | Positive | Positive Rate
Decission Treel TRAIN 365 9131 94 280 0.046505
Decission Treel VALID 156 3916 39 120 0.046088
Decission Tree2 TRAIN 367 9134 91 278 0.046403
Decission Tree2 VALID 158 3917 38 118 0.046325
Regressionl TRAIN 455 9140 85 190 0.05309
Regressionl VALID 183 3928 27 93 0.049634
Regression?2 TRAIN 448 9142 83 197 0.053799
Regression?2 VALID 187 3930 25 89 0.050106
Neural Networkl | TRAIN 418 9119 106 227 0.05309
Neural Networkl | VALID 169 3914 41 107 0.049634
Neural Network2 | TRAIN 450 9151 74 195 0.05309
Neural Network2 | VALID 182 3927 28 94 0.049634
AutoNeural TRAIN 431 9133 92 214 0.052989
AutoNeural VALID 177 3923 32 99 0.049397

This paper is a result of the research project VEGA 1/0770/17: Availability and
affordability of housing in Slovakia.
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ABSTRACT: Cylindrical hidden Markov fields are proposed as a parsimonious strat-
egy to analyze spatial cylindrical data, i.e. bivariate spatial series of angles and intensi-
ties. These models are mixtures of copula-based bivariate densities, whose parameters
vary across space according to a latent Markov random field. They enable segmenta-
tion of spatial cylindrical data within a finite number of latent classes that represent
the conditional distributions of the data under specific environmental conditions, si-
multaneously accounting for spatial auto-correlation.

KEYWORDS: composite likelihood, copula, cylindrical data.

1 Introduction

Cylindrical spatial series are bivariate vectors of angles and intensities that are
simultaneously observed at a number of sites in an area of interest. Their name
is motivated by the special domain of these data, because the pair of an angle
and an intensity can be described as a point on a cylinder. Cylindrical spatial
series arise frequently in environmental and ecological studies. Examples in-
clude hurricane wind satellite data, wave directions and heights, speeds and di-
rections of marine currents, as well as telemetry data of animal movement. The
analysis of cylindrical spatial series is complicated by the cross-correlations
between angular and linear measurements across space. Additional compli-
cations arise from the multimodality of the marginal distribution of the data,
which are often observed under heterogeneous, space-varying conditions.

A cylindrical hidden Markov random field (MRF) model is proposed here
to account for the specific features of cylindrical spatial series. The model is
based on a mixture of copula-based cylindrical densities, whose parameters
vary across space according to a latent Potts model. The Potts model is a cat-
egorical MREF, i.e. a multinomial process in discrete space, which fulfills a

*This work is supported by the 2015 PRIN project *Environmental processes and human
activities: capturing their interactions via statistical methods’, funded by the Italian Ministry of
Education, University and Scientific Research.
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spatial Markovian property. It segments an area of interest according to an in-
teraction parameter that captures the correlation between adjacent observations
and controls the smoothness of the segmentation.

Hidden MRFs for data with circular components have been already pro-
posed in the literature, by exploiting specific parametric distributions for circu-
lar and cylindrical data (Ranalli ef al., 2018; Ameijeiras-Alonso et al., 2019).
These proposals can be extended by considering copula-based cylindrical den-
sities (Lagona, 2019). Copulas allow the marginal densities and the joint de-
pendence structure to be modeled separately. As a result, they provide a gen-
eral method for binding any pair of univariate marginal distributions together
to form a bivariate distribution. This is particularly advantageous in the cylin-
drical setting, because a copula can be exploited to bind two marginal densities
that do not necessarily have the same support.

2 A copula-based hidden Markov field

A cylindrical sample is a pair z = (x,y), x € [0,2®), y € [0,+00). Let f(x; o) be
a density on the circle, known up to a parameter o, with cumulative distribu-
tion function (cdf) F(x; ), defined with respect to a fixed, although arbitrary,
origin. Moreover, let f(y;B) be a density on the semi-line, known up to a
parameter 3, with cdf F(y;). Finally, let g(u;Y),u € [0,27) be a parametric
circular density, known up to a parameter y. Then,

fq(2:0) = 2mg (2n (F (x; ) — gF (v;B))) f(x; ) f(3:B)) g==+1 (D)

is a parametric cylindrical density with support [0,27) x (0, 4c0), known up to
the parameter vector 8 = (a., 3,7), having the marginal densities f(x;ct) and
f(y;B). Equation (1) is a typical example of a copula-based construction of
a bivariate density, obtained by de-coupling the margins from the joint distri-
bution. When the binding density g is the uniform circular distribution, say
g(x) = (2m)~!, then equation (1) reduces to the product of the marginal den-
sities. Otherwise, the dependence between x and y is captured by the concen-
tration of g: when g is highly concentrated, the dependence is high; when
g is more diffuse, dependence is low. Finally, the constant ¢ = 31 deter-
mines whether the dependence between x and y is positive (¢ = 1) or negative
(g=-D.

The Potts model is a multinomial process in discrete space with K classes.
Given a lattice that divides an area of interest according to n observation sites
i=1,...,n, asample that is drawn from a