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Preface 

 

This book collects the short papers presented at CLADAG 2019, the 12th Scientific 

Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian 

Statistical Society (SIS). 

The meeting has been organized by the Department of Economics and Law of the 

University of Cassino and Southern Lazio, under the auspices of the SIS and the 

International Federation of Classification Societies (IFCS). CLADAG is a member 

of the IFCS, a federation of national, regional, and linguistically-based 

classification societies. It is a non-profit, non-political scientific organization, 

whose aims are to further classification research. 

Every two years, CLADAG organizes a scientific meeting, devoted to the 

presentation of theoretical and applied papers on classification and related methods 

of data analysis in the broad sense. This includes advanced methodological research 

in multivariate statistics, mathematical and statistical investigations, survey papers 

on the state of the art, real case studies, papers on numerical and algorithmic 

aspects, applications in special fields of interest, and the interface between 

classification and data science. The conference aims at encouraging the interchange 

of ideas in the above-mentioned fields of research, as well as the dissemination of 

new findings. 

CLADAG conferences, initiated in 1997 in Pescara (Italy), were soon considered 

as an attractive information exchange market and became a most important meeting 

point for people interested in classification and data analysis. One reason was 

1



certainly the fact that a selection of the presented papers is regularly published in 

(post-conference) proceedings, typically by Springer Verlag. 

The Scientific Committee of CLADAG2019 conceived the Plenary and Invited 

Sessions to provide a fresh perspective on the state of the art of knowledge and 

research in the field. The scientific program of CLADAG 2019 is particularly rich. 

All in all, it comprises 5 Keynote Lectures, 32 Invited Sessions promoted by the 

members of the Scientific Program Committee, 16 Contributed Sessions, a Round 

Table and a Data Competition.  We thank all the session organizers for inviting 

renowned speakers, coming from 28 countries. We are greatly indebted to the 

referees, for the time spent in a careful review. 

The editors would like to express their gratitude to the Rector of the University of 

Cassino and Southern Lazio and the Director of the Department of Economics and 

Law for having hosted the meeting.  Special thanks are finally due to the members 

of the Local Organizing Committee and all the people who with their abnegation 

and enthusiasm have worked for CLADAG 2019. 

Special thanks go to Alfiero Klain and Livia Iannucci for the editorial and 

administrative support. 

Last but not least, we thank all the authors and participants, without whom the 

conference would not have been possible. 

 

Cassino, September 11, 2019 

Giovanni C. Porzio 

Francesca Greselin 

Simona Balzano 
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UNIFYING DATA UNITS AND MODELS IN
(CO-)CLUSTERING

Christophe Biernacki1

1 Université Lille 1, FRANCE,
(e-mail: christophe.biernacki@math.univ-lille1.fr)

Statisticians are already aware that any modelling process issue (explo-
ration, prediction) is wholly data unit dependent, to the extend that it should
be impossible to provide a statistical outcome without specifying the couple
(unit,model). In this talk, this general principle is formalized with a particular
focus in model-based clustering and co-clustering in the case of possibly mixed
data types (continuous and/or categorical and/or counting features), being also
the opportunity to revisit what the related data units are.

Such a formalization allows to raise three important spots: (i) the couple
(unit,model) is not identifiable so that different interpretations unit/model of
the same whole modelling process are always possible; (ii) combining differ-
ent “classical” units with different “classical” models should be an interesting
opportunity for a cheap, wide and meaningful enlarging of the whole mod-
elling process family designed by the couple (unit,model); (iii) if necessary,
this couple, up to the non identifiability property, could be selected by any tra-
ditional model selection criterion. Some experiments on real data sets illustrate
in detail practical beneficits from the previous three spots.

It is a joint work with Alexandre Lourme (University of Bordeaux).
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STATISTICS WITH A HUMAN FACE

Adrian Bowman1

1 University of Glasgow, (e-mail: adrian.bowman@glasgow.ac.uk)

Three-dimensional surface imaging, through laser–scanning or stereo–pho-
togrammetry, provides high-resolution data defining the surface shape of ob-
jects.

Human faces are of particular interest and there are many biological and
anatomical applications, including assessing the success of facial surgery and
investigating the possible developmental origins of some adult conditions.

An initial challenge is to structure the raw images by identifying features
of the face. Ridge and valley curves provide a very good intermediate level at
which to approach this, as these provide a good compromise between informa-
tive representations of shape and simplicity of structure.

Some of the issues involved in analysing data of this type will be discussed
and illustrated. Modelling issues include simple comparison of groups, the
measurement of asymmetry and longitudinal patterns of shape change. This
last topic is relevant at short scale in facial animation, medium scale in indi-
vidual growth patterns, and very long scale in phylogenetic studies.
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BAYESIAN MODEL-BASED CLUSTERING WITH
FLEXIBLE AND SPARSE PRIORS

Bettina Grün1

1 Johannes Kepler Universitat Linz, (e-mail: bettina.gruen@jku.at)

Finite mixtures are a standard tool for clustering observations. However,
selecting the suitable number of clusters, identifying cluster-relevant variables
as well as accounting for non-normal shapes of the clusters are still challenging
issues in applications.

Within a Bayesian framework we indicate how suitable prior choices can
help to solve these issues. We achieve this considering mainly prior distri-
butions that have the characteristics that they are conditionally conjugate or
can be reformulated as hierarchical priors, thus allowing for simple estimation
using MCMC methods with data augmentation.
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GRINDING MASSIVE INFORMATION INTO FEASIBLE
STATISTICS: CURRENT CHALLENGES AND

OPPORTUNITIES FOR DATA SCIENTISTS

Francesco Mola1

1 University of Cagliari, (e-mail: mola@unica.it)

Massive amounts of data used to make quicker, better and more intelligent
decisions to create business value are nowadays available for companies and
organizations. Terms like big data, data science, analytics, artificial intelli-
gence, machine learning etc., are very common in both academia and industry.
All these areas of research are orientated towards answering the increasing de-
mand for understanding trends and/or discovering patterns in data. Usually,
collected data is massive and uncertain due to noise, incompleteness and in-
consistency. The main goal of a statistician/data scientist is therefore to turn
massive data into feasible information, the latter intended as able to describe
efficiently an observed phenomenon, to gain indications about its future evolu-
tion as well as to provide useful insights for the ongoing decisional process. All
these considerations lead towards arguing that the role of the statistician/data
scientist considerably evolved in the latest years. In my presentation, after a
brief description of the scenario summarized above, I will discuss three ex-
amples/case studies concerning image validation, hotels’ reputation and social
media popularity trying to give a contribution to the debate about turning the
enormous amount of available data into feasible statistics. In all cases, ad-
hoc but standard classification methods are used to obtain information that is
extremely feasible and adds value to a decisional process.
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STATISTICAL CHALLENGES IN THE ANALYSIS OF
COMPLEX RESPONSES IN BIOMEDICINE

Sylvia Richardson1

1 University of Cambridge, (e-mail: sylvia.richardson@mrc-bsu.cam.ac.uk)

To exploit better the structure of the rich sets of characteristics, such as
clinical biomarkers, molecular profiles or detailed ontology records, that are
currently being collected on large samples of healthy or diseased individuals,
statistical models of the variations within and the interplay between different
layers of data can be constructed.

Generic Bayesian model building strategies and algorithms have been tai-
lored for this purpose. In this talk, I will discuss three areas: implementing
joint hierarchical modelling of a large number of responses and a large num-
ber of features to discover features associated with many responses; analysing
tree structured ontology data with application for finding the underlying ge-
netic origin of rare diseases; and characterising network structures using fast
Bayesian inference in large Gaussian graphical models. Common statistical
issues of accounting for model uncertainty, ability to borrow information for
retaining power and scalability of Bayesian computations will be highlighted.
Modelling strategies and computations will be illustrated on case studies.
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MODEL-BASED CLUSTERING OF TIME SERIES DATA:
A FLEXIBLE APPROACH USING NONPARAMETRIC

STATE-SWITCHING QUANTILE REGRESSION MODELS

Timo Adam1, Roland Langrock1 and Thomas Kneib2 

2 University of Göttingen, (e-mail: tkneib@uni-goettingen.de)

ABSTRACT: We propose a model-based clustering approach for time series data ap-
plications where clusters are inferred from the conditional quantiles of the variable of
interest given the current state of a hidden state process. The suggested methodology
allows us to draw a detailed picture of i) the effect of some covariate on those quan-
tiles within clusters, and ii) the entire response distribution in a flexible data-driven
way without the need to specify a parametric family of distributions. As an illustrat-
ing example, we model Spanish energy prices to obtain clusters relating to periods of
relatively calm and nervous market regimes, respectively.

KEYWORDS: hidden Markov models, penalized B-splines, quantile regression.

1 Introduction

Quantile regression models (QMs, Koenker, 2005) are widely used for model-
ing the conditional quantiles of the variable of interest given some covariate.
In this paper, we extend QMs to time series data applications where the quan-
tile curves are subject to state switching controlled by a hidden Markov chain,
which provides an essentially distribution-free alternative to Markov-switching
generalized additive models for location, scale, and shape (MS-GAMLSS,
Adam et al., 2017, Langrock et al., 2018). By decoding the hidden states un-
derlying the observations, the resulting class of Markov-switching QMs (MS-
QMs) can be used for model-based clustering of time series data.

2 Methodology

2.1 Model formulation and dependence structure

MS-QMs comprise two stochastic processes, a hidden state process, {St}t=1,...,T ,
and an observed state-dependent process, {Yt}t=1,...,T . The state process is

1 Bielefeld University, (e-mail: timo.adam@uni-bielefeld.de, 
roland.langrock@uni-bielefeld.de)
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StSt−1 St+1

Yt−1 Yt Yt+1

· · · · · ·

xt−1 xt xt+1

hidden

observed

Figure 1: Dependence structure in Markov-switching quantile regression models.

Throughout this paper we consider first-order Markov chains, i.e. we assume that

the state process satisfies the Markov property, Pr(St+1|S1, . . . , St) = Pr(St+1|St), t =

1, . . . , T−1. This simplifying dependence assumption is heavily exploited in the likelihood

calculations provided in Section 3.1. While certainly being a strong assumption, in practice

it is often a good proxy for the actual dependence structure, and could in fact be relaxed

to higher-order Markov chains if deemed necessary (Zucchini et al., 2016).

2.2 The state-dependent process

Given the state at time t, St, the state-dependent process is assumed to generate an

observation from some (unspecified) distribution with state-dependent quantile function

g
(st)
τ (xt) for some quantile 0 ≤ τ ≤ 1. The quantile function may be modeled with P-

splines, where

g(st)τ (xt) = β
(st)
τ0 +

J∑

j=1

K∑

k=1

β
(st)
τjk·B

d
jk(xjt), (5)

with d denoting the degree of the basis functions (throughout this paper, we use cubic

basis functions, i.e. d = 3).

. . .

The dependence structure in MS-QMs is illustrated in Figure 1.

4

Figure 1. Dependence structure of a Markov-switching quantile regression model.

modeled as a discrete-time N-state Markov chain (where N determines the
number of clusters) with transition probability matrix Γ = (γi j), where γi j =
Pr(St = j|St−1 = i), i, j = 1, . . . ,N, and initial distribution (row) vector δ=(δi),
where δi = Pr(S1 = i), i = 1, . . . ,N.

At each time t, the state-dependent process generates an observation from
some (unspecified) distribution with state-dependent quantile functions g(st)

τ (xt),
where 0 < τ < 1 denotes the quantile of interest. Using penalized B-splines
(Eilers & Marx, 1996), the quantiles are modeled as functions of covariates,

g(st)
τ (xt) = β(st)

τ,0 +
K

∑
k=1

β(st)
τ,k Bd

k (xt), (1)

where β(st)
τ,0 denotes the state-dependent intercept and β(st)

τ,k the coefficient asso-
ciated with the k-th B-spline basis function of degree d evaluated at the covari-
ate value xt , i.e. Bd

k (xt); we consider cubic basis functions, i.e. d = 3.

2.2 Model fitting and clustering

For a fixed quantile τ, quantile regression is commonly carried out by opti-
mization with respect to the loss function ρτ(yt − gτ(xt)) = (yt − gτ(xt)){τ−
1(yt−gτ(xt))<0}. This is equivalent to maximum likelihood assuming an asym-
metric Laplace (AL) distribution, with density fAL(yt ;µt ,σ,τ), which yields,
in a Bayesian setup, posterior consistent estimators even if the observations
are not AL-distributed (Sriram et al., 2016). Defining the forward variables
αt(i) = f (y1, . . . ,yt ,St = i), which are summarized in the row vectors αt =
(αt(1), . . . ,αt(N)), the recursion

α1 = δP(y1) ;αt = αt−1ΓP(yt) , t = 2, . . . ,T, (2)

can be applied to evaluate αT , where P(yt) = diag( fAL(yt ;µ(1)t ,σ(1),τ), . . . ,
fAL(yt ;µ(N)

t ,σ(N),τ)), with state-dependent quantile curves µ(i)t = g(i)τ (xt), scale
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parameters σ(i), and (fixed) quantile τ. From αT , the likelihood is obtained as
L(θ) = f (y1, . . . , yT |θ) = ∑N

i=1 f (y1, . . . ,yT ,sT = i) = αT 1. For simultane-
ously considering multiple quantiles τq, q = 1, . . . ,Q, we follow Sriram et al.
(2016) and consider a pseudo-likelihood as the objective criterion to be maxi-
mized, where the quantile-specific state-dependent densities in (1) are replaced
by ∏Q

q=1 fAL(yt ; . . . ,τq). To avoid i) overfitting and ii) quantile crossing, two
penalties are added to the pseudo-log-likelihood, which leads to

log
(
Lpen.(θ)

)
= log(L(θ))

−
N

∑
i=1

Q

∑
q=1

λ(i)
q

K

∑
k=3

(
∆2β(i)

τq,k

)2

︸ ︷︷ ︸
roughness penalty

−c
N

∑
i=1

T

∑
t=1

Q

∑
q=2

1
(g(i)τq (xt)−g(i)τq−1 (xt))≤0

︸ ︷︷ ︸
quantile crossing penalty

,

where λ(i)
q denotes some smoothing parameter, ∆2β(i)

τq,k the squared second-
order differences between adjacent coefficients, and c some (arbitrary) con-
stant which ensures non-crossing quantile curves.

From some fitted MS-QM, clusters can be obtained by computing the most
likely state sequence underlying the observations via the Viterbi algorithm.
The state-dependent densities as required for Viterbi can be approximated
based on the estimated quantile curves as

f̂ (i)Y (yt) =
τq∗− τq∗−1

ĝ(i)τ∗q (xt)− ĝ(i)τq∗−1(xt)
, q∗ = min

{
q ∈ 0, . . .Q+1 : yt ≤ ĝ(i)τq (xt)

}
,

where the (not estimated) quantile curves associated with τ0 = 0 and τQ+1 = 1
are defined as min(y1, . . . ,yT ) and max(y1, . . . ,yT ), respectively.

3 Illustrating example

As an illustrating example, we model the conditional quantiles of daily en-
ergy prices in Spain, Yt , given the oil price, xt , over time. The data (Sanchez-
Espigares & Lopez-Moreno, 2014) comprise 1761 daily observations between
February 1, 2002, and October 31, 2008. For each of N = 2 states, we used
K = 30 B-spline basis functions, where (for simplicity) all smoothing parame-
ters were set to 1, and c was chosen to be 5.

The results are displayed in Figure 2. Within cluster 1, the energy prices
are fairly low and exhibit a moderate volatility. Within cluster 2, the prices
are generally higher and exhibit a considerably higher volatility. Overall, the
energy price distribution is quite heavily affected by the oil price, where the
corresponding effect substantially differs across both clusters and quantiles.

10



cluster 1

cluster 2

2

4

6

8

20 40 60 80
xt

y t

cluster 1

cluster 2

2.5

5.0

7.5

20 40 60 80
xt

y t

cluster 1

cluster 2

2.5

5.0

7.5

0 500 1000 1500
t

y t

Figure 2. Fitted state-dependent quantile curves for τ = (0.1,0.2,0.3, . . . ,0.9) with-
out penalization (left), with penalization (center), and Viterbi-decoded time series as
obtained under the model with penalization (right).

4 Discussion

We have proposed MS-QMs as a model-based clustering approach for time
series data applications. Key features of MS-QMs include i) their feasibility to
infer cluster-specific covariate effects on various quantiles, and ii) the flexible,
data-driven way in which the entire response distribution is modeled. The
immense flexibility, however, comes at the cost of a potentially large set of
tuning parameters. The development of efficient model selection techniques
may therefore provide an important avenue for future research.
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ABSTRACT: My talk discusses topics pertaining to generalized linear modeling, with
focus on categorical data: (1) bias due to floor and ceiling effects in using ordinary
linear models with ordinal response data, (2) interpreting effects with nonlinear link
functions, (3) alternatives to logit and probit link functions with binary responses, (4)
cautions in using Wald tests and confidence intervals when effects are large, and (5)
the behavior and choice of residuals. In this accompanying paper, we discuss topics
(2) and (3), which involve new and recent research.

KEYWORDS: Ordinal models, binary data, nonlinear link functions.

1 Introduction

We discuss some issues about generalized linear models that deserve more
attention in terms of additional research or greater awareness of existing liter-
ature. I became increasingly aware of the issues years while writing a book on
linear and generalized linear models (Agresti 2015) and while revising three
books on categorical data analysis (Agresti 2010, 2013, 2019). This paper dis-
cusses two of five topics from my talk: Section 2 proposes a simple way to
interpret effects in generalized linear models that use nonlinear link functions,
by comparing groups using a probability summary about the higher response.
Section 3 argues that for modeling binary responses, the identity link and log
link functions can often supplement the logit and probit links.

2 Interpreting Effects in GLMs with Nonlinear Link Function

For many standard nonlinear link functions in generalized linear modeling,
the interpretation of the model effects is difficult for non-statisticians and for
methodologists who are mainly familiar with ordinary linear models. To illus-
trate, suppose y is ordinal with c outcome categories. For observation i, let xik
denote the value of explanatory variable k. Consider the cumulative link model

link[P(yi ≤ j)] = α j +∑
k

βkxik, j = 1, . . . ,c−1,
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for links such as the logit, probit, or complementary log-log,. For the probit
link (i.e., the inverse of the standard normal cdf Φ), βk represents the change in
Φ−1[P(yi ≤ j)] for a 1-unit increase in xk, adjusting for the other explanatory
variables. This is a rather obscure interpretation, as few people can make sense
of effects on the scale of an inverse of a cdf.

One way used to interpret effects relies more on an underlying latent vari-
able model (McKelvey and Zavoina 1975). For the observed ordinal response
y and for a latent response y∗, suppose y∗i = βββ T xxxi+εi, where εi has some para-
metric cdf G with mean 0. Suppose that thresholds (cutpoints) −∞ = α0 <
α1 < .. . < αc = ∞ exist such that

yi = j if α j−1 < y∗i ≤ α j.

Then, at a fixed value xxx,

P(yi ≤ j) = P(y∗i ≤ α j) = P(y∗i −β T xxxi ≤ α j−βββ T xxxi)

=== P(εi ≤ α j−βββ T xxxi) = G(α j−βββ T xxxi).

This implies the model

G−1[P(yi ≤ j | xxxi)] = α j−βββ T xxxi

with G−1 as the link function. In particular, one obtains the cumulative probit
model when G is the standard normal cdf Φ; then Φ−1 is the probit link.

We suggest a simple interpretation that utilizes this latent variable model,
formulated in terms of a summary for comparing two groups, adjusting for the
other explanatory variables. Let z be an indicator variable for the two groups.
At any potential setting (x1, . . . ,xp) of p explanatory variables, let y∗1 and y∗2
denote independent latent variables when z = 1 and when z = 0, respectively.
For the latent variable model that generates the cumulative probit model

Φ−1[P(y≤ j)] = α j−β z−β1x1−·· ·−βpxp,

the difference between the conditional means of y∗1 and y∗2 is β , and

P(y∗1 > y∗2) = P[(y∗1− y∗2)> 0]

= P
[
(y∗1− y∗2)−β√

2
>
−β√

2

]
= 1−Φ(−β/

√
2) = Φ(β/

√
2).

At any setting of the p explanatory variables, differences between the normal
conditional means for the two groups of β = (0,0.5,1,2,3) standard deviations
correspond to P(y∗1 > y∗2) values of (0.50, 0.64, 0.76, 0.92, 0.98).
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For details, including corresponding expressions with logit and comple-
mentary log-log links, see Agresti and Kateri (2016). That article also dis-
cusses related measures for the observed response scale. The idea can extend
to other generalized linear models and to more complex models, such as gen-
eralized additive models.

3 Using Alternatives to the Logit and Probit Links with Binary
Responses

For binary responses, the logit and probit links are used almost exclusively.
Sometimes, however, we can also use the log and the identity links.

• The identity link provides similar fits as the logit or probit link when
P(y = 1) falls mainly between about 0.2 and 0.8. It has simpler inter-
pretations, as the model parameters relate to differences of probabilities
instead of ratios of odds.
• The log link provides similar fits as the logit or probit link when P(y =

1) falls mainly below 0.5. It has simpler interpretations, as the model
parameters relate to ratios of probabilities instead of ratios of odds.
• With uncorrelated explanatory variables, the effects with log and identity

links are the same in the full model as in marginal models with sole
predictors, which is not true with logit or probit links.

We illustrate the first two points with data from a recent Istat survey. For
the binary response y = whether employed (i.e., y = 1 means that the person
is present in some administrative source), we use explanatory variables x1 =
gender (1 = female, 0 = male), x2 = whether an Italian citizen (1 = yes, 0 = no),
and x3 = whether receiving a pension (1 = yes, 0 = no).

Consider first the 27,775 subjects in the survey having age over 65. For
the 8 combinations of x1, x2, x3, the sample proportions employed fall between
0.02 and 0.12. The main-effects logit and log-link model fits are

logit[P̂(y = 1)] =−1.8686−1.3236x1−0.4295x2 +0.2162x3,

log[P̂(y = 1)] =−2.0374−1.2388x1−0.3619x2 +0.2003x3.

The absolute difference in fitted proportions, averaged over the 27,775 cases, is
0.0001. For the log-link model, the exponentiated coefficients estimate proba-
bility ratios; e.g., adjusting for x2 and x3, the probability a woman is employed
is estimated to be exp(−1.2388) = 0.2897 times the probability a man is em-
ployed.
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Consider next the 72,225 subjects having age under 65. For the 8 combi-
nations of x1, x2, x3, the sample proportions employed fall between 0.18 and
0.74. The main-effects logit and identity-link model fits are

logit[P̂(y = 1)] = 0.3502−0.6440x1 +0.7017x2−1.8737x3,

P̂(y = 1) = 0.5875−0.1386x1 +0.1513x2−0.4079x3.

The absolute difference in fitted proportions, averaged over the 72,225 cases,
is only 0.004. For the identity-link model, the coefficients estimate differences
of probabilities. For instance, adjusting for x2 and x3, the probability that a
woman is employed is estimated to be 0.1386 lower than the probability that a
man is employed.

The effects in the models using log and identity links can be approximated
by linearizations of logit-link models, such as by using average marginal ef-
fects measures that are available with software such as R and Stata. For details,
see Agresti, Tarantola, and Varriale (2019). Such measures are also relevant
for ordinal responses (Agresti and Tarantola 2018).
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ABSTRACT: Burnout is a serious problem in modern society and early detection
methods are needed to successfully handled its multiple effects. However, in many
countries, official statistics on this topic are not available. For this reason, we propose
to use Google Trends data as proxies for the interest in burnout and to analyze them
through the functional data analysis (FDA) approach. Under this framework, the func-
tional analysis of variance (FANOVA) model is used for testing a macro geographic
area effect on search queries for the keyword “burnout” in Italy. The estimation of
the FANOVA model is proposed in a finite dimensional space generated by a basis
function representation. Thus, the functional model is reduced to a MANOVA model
on the basis coefficients.

KEYWORDS: Burnout, Google Trends data, FDA, FANOVA model.

1 Introduction

Burnout is typically defined as a three dimensional syndrome characterised
by emotional exhaustion, depersonalization and lack of professional efficacy
(Maslach & Jackson, 1981). It has a strong impact not only on working well-
being as it inevitably influences the private and social life of individuals. In-
deed, burnout can affect health, giving rise to both physical and psychoso-
matic problems such as depression, anxiety, low self-esteem, guilt feelings,
and low tolerance of frustration (Maslach et al., 2001). In this context, the
role of social support in reducing the negative effects of burnout becomes
fundamental, especially under the current situation of crisis in the world of
work. Although the importance of this phenomenon is now recognized, in
many countires official statistics on the rates of burnout among workers are
not available. For this reason, we propose the use of Google Trends data as
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proxies for assessing burnout. The basic idea is that internet searches may be
considered indicators of the public interest. Indeed, people reveal information
about their needs, wants, interests, moods and phycological problems through
their Internet search histories, which are stored in the form of Google Trends
data. More specifically, we propose to analyze Google Trends data through the
functional data analysis (FDA) approach (Ramsay & Silverman, 2005) because
data floowing from the web can be viewed as an infinite process, which con-
tinuously evolve over the time domain (Fortuna et al., 2018). Since functional
data are infinite-dimensional objects, they provide a more suitable represen-
tation of Google Trends search queries than traditional multivariate vectors.
Moreover, FDA allows to address the so-called ‘curse of dimensionality’ of
big data, enabling an effective statistical analysis when the number of vari-
ables exceeds the number of observations. Under this framework, the func-
tional analysis of variance (FANOVA) model has been applied for studying
the relationship between the functional queries and an explanatory categorical
variable. In particular, the problem of testing the null hypothesis of equality
of mean functions across different groups is addressed. In this paper, the es-
timation of the FANOVA model has been considered in a finite dimensional
space generated by a basis. Then, the problem has been reduced to a finite
multivariate ANOVA (MANOVA) model on the vector of basis coefficients.

2 The FANOVA model with regularized basis expansions
for Google Trends data

Since Google Trends data continuously flow from the server of a web site, they
can be seen as functions in a continuous domain, rather than scalar vectors

(Fortuna et al., 2018). Specifically, let y j(t) =
{

y j(t jl)
}L

l=1
, j = 1,2, ...,n, be a

functional variable observed in a discrete set of sampling points, l = 1,2, ....,L,
in the temporal domain T . Let us also assume that y(t)∈ L2(T ), where L2(T )
is the Hilbert space of square integrable functions. One usual solution to re-
construct the functional form of the n samples starting from the discrete ob-
servations, is to assume that sample paths belong to a finite-dimension space
spanned by a basis {φ1(t),φ2(t), · · · ,φK(t)}, so that they can be expressed as
follows:

yyy(t) = AAAφφφ(t) (1)

where yyy = [y1(t), ...,yn(t)]T ; AAA = (a jk) is the matrix of basis coefficient expan-
sion; and φφφ(t) = [φ1(t), · · · ,φK(t)]T is a K dimensional vector of basis func-
tions.

17



Let {yi j(t) : t ∈ T , i = 1, ..., I; j = 1, ...,ni} be I independent samples of func-
tions drawn from a second order stochastic process Y = {Y (t) : t ∈ T }, contin-
uous in quadratic mean, whose sample functions belong to L2(T ). Assuming
that there is a single factor with I different levels or groups (i = 1,2, ..., I)
and ni observations within each group; the model for the j-th observation
( j = 1,2, ...,ni) in the i-th group can be expressed as follows:

yyy(t) = ZZZβββ(t)+ εεε(t) (2)

where yyy(t) = [y1(t),y2(t), ...,yn(t)]T is a vector of functional observations of
length n = ∑I

i=1 ni; βββ(t) = [β1(t) = µ(t),β2(t) = γ1(t), ...,βQ(t) = γI(t)]T is a
vector of functional effects of length Q = I +1; εεε(t) = [ε1(t),ε2(t), ...,εn(t)]T

is a vector of n residual functions and ZZZ is a (n×Q) design matrix, coding the
group membership. The FANOVA model is equivalent to a standard ANOVA
model, with the difference that the parameters βββ(t), and hence the predicted
observations ŷyy(t) = ZZZβ̂ββ(t), are vectors of functions rather than vectors of num-
bers.
The parameter vector βββ(t) in equation (2) can be estimated using the standard
least squares criterion; thus, minimizing the residual sum of squares:

LMSSE(βββ) =
∫
[yyy(t)−ZZZβββ(t)]T [yyy(t)−ZZZβββ(t)]dt (3)

To fit the model (2), it is usual to assume that the sample paths and the parame-
ter functions belong to the same finite space generated by a basis of functions,
so that the observed response functions are expressed as in (1) and the regres-
sion functions as follows:

βq(t) =
K

∑
k=1

bqkφk(t) = BBBφφφ(t) q = 1, ...,Q; (4)

where BBB=(bik) is the matrix of basis function coefficients and φφφ(t)= (φ1(t), ...,
...,φK(t))T is the K dimensional vector of basis functions. In this context, the
least squares fitting criterion in (3) can be defined as follows:

LMSSE(βββ) =
∫ [

AAAφφφ(t)−ZZZBBBφφφ(t)
]T [AAAφφφ(t)−ZZZBBBφφφ(t)

]
dt (5)

which leads to the following estimation of the functional effects:

β̂ββ(t) = (ZZZT ΨΨΨZZZ)−1ZZZT ΨΨΨAAA (6)

where ΨΨΨ = (ψ jq)K×K is the symmetric matrix of the inner products between
basis functions, ΨΨΨ =

∫
T φφφ(t)T φφφ(t), and AAA has an additional row of zeros to

satisfy the constraint on the functional effects (Sayes et al., 2008).
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3 Conclusions

Burnout is a growing problem in the modern society. It is usually thought of as
an individual response to prolonged work related stress, which in turn, impacts
on job satisfaction and thereafter, can affect the phycological, physiological,
affective and behavioral well-being of workers (Dyrbye et al., 2011). The esti-
mation of this phenomenon is essential to design social support for reducing its
negative effects. However, in many countries, official statistics for the rates of
burnout are not available. In this context, we propose the use of Google Trends
data as proxies for the interest in burnout. In this scenario, we aim to provide
an original methodological approach for the analysis of social indicators based
on big data, through the FDA approach. The latter has the advantage of reduc-
ing the dimension of the huge amount of data with the conversion of vectors
into functions. Under this framework, the FANOVA model can be used for
testing a possible effect of different factors on the search queries.
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ABSTRACT: There are many attempts to measure well-being in various countries 
around the world. The Italian experience, conducted by the Italian National Institute of 
Statistics (Istat), is probably the most advanced (Equitable and Sustainable Well-being
– BES): the selection of indicators involved many actors of civil, entrepreneurial and
institutional society; there are twelve well-being domains and around 130 individual
indicators drawn mainly from Istat surveys and archives. In this way, Istat generated a
complex multi-indicator system, the understanding of which required the adoption of
approaches that would allow for more concise views that could summarise the com-
plexity. In this perspective, the guiding concept crossing all possible strategies is
synthesis. In the last four BES reports, the Istat adopted the aggregative approach to
synthesis and calculated composite indicators to provide one-dimensional measure-
ments for each domain. Nowadays, in literature, the work paradigm adopted by Ital-
ian official statistics seems to be the most complete and imitated. The objective of our
work is to provide, starting from the indicators of each domain, synthesis adopting a
non-aggregative approach, namely the Partial Order Set Theory (Poset). In particular,
the synthetic indicators in time series from 2010 to 2017 will be constructed for the
Italian Regions (provided by Istat using an aggregative procedure) using the posets
trying to analyse the phenomenon from a spatial and temporal perspective.

KEYWORDS: well-being, italian regions, synthesis, non-agggregative approach, poset.
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ABSTRACT: Imputing missing data from a data set is still a challenging issue both in
theoretical and applied statistics. In the context of multivariate time series, the prob-
lem of missing data becomes even more challenging due to the dependence structure
which is present in the data. Recently, a new imputation procedure for multivariate
time series has been proposed in Parrella et al. , 2018, which uses the class of Spatial
Dynamic Panel Data models (SDPD) to model serial correlation and cross-correlation
simulanteously. This paper is aimed at discussing a residual bootstrap construction to
approximate the sampling distribution of the missing value estimators.

KEYWORDS: multivariate time series, missing values, bootstrap.

1 Introduction: the model and the imputation procedure

Let yt be a multivariate stationary process of order p, assumed for simplicity
with zero mean value, collecting the observations at time t from p different
variables. Following Dou et al. , 2016 and Parrella et al. , 2018, we assume
that the process can be modeled by the following SDPD model

yt = D(λ0)Wyt +D(λ1)yt−1 +D(λ2)Wyt−1 +ut , (1)

where D(·) are diagonal matrices with diagonal coefficients from the vectors
λ0,λ1 and λ2, and the error process ut is serially uncorrelated. Model (1) be-
longs to the family of spatial econometric models, so it is particularly oriented
to model spatio-temporal data. The matrix W is called spatial matrix and col-
lects the weigths used in the spatial regression of each time series observation
with simultaneous or delayed observations of neighboring data. However, if
one uses a correlation based matrix W to measure variable distances, instead
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of using physical distances, one can use model (1) to analyse any kind of mul-
tivariate time series, not necessarily of strictly spatial nature.

In the following, we assume that y1, · · · ,yT are realizations from the sta-
tionary process defined by (1). Then, we denote with Σ j = Cov(yt ,yt− j) =
E(yty′t− j) the autocovariance matrix of the process at lag j, where the prime
subscript denotes the transpose operator. Let us assume that ỹ1, · · · , ỹT are re-
alizations from a stationary process as in (1), not necessarily with zero mean
value. In case of processes with no zero mean, model (1) can be still used for
parameter estimation after a pre-processing step which centers the observed
time series. Let δt = (δt1, . . . ,δt p) be a vector of zeroes/ones that identifies all
the missing values in the observed vector ỹt , so that δti = 0 if the observation
ỹti is missing, otherwise it is δti = 1.

The imputation procedure for missing values and missing sequences has
been proposed in Parrella et al. , 2018. It starts, at iteration 0, by initializing
the mean centered vector y(0)t , for t = 1, . . . ,T , as

y(0)t = δt ◦
(

ỹt − ȳ(0)
)
, with ȳ(0) =

T

∑
t=1

δt ◦ ỹt/
T

∑
t=1

δt , (2)

where the operator ◦ denotes the Hadamard product and the ratio between the
two vectors in the formula of ȳ(0) is made component-wise.

Then, the generic iteration s of the procedure, with s≥ 1, requires that:

a) we estimate (λ̂
(s−1)
0 , λ̂

(s−1)
1 , λ̂

(s−1)
2 ) as in equation (8) reported in the ap-

pendix section, using the centered data {y(s−1)
1 , . . . ,y(s−1)

T };
b) we compute, for t = 1, . . . ,T ,

ŷ(s)t = D(λ̂
(s−1)
0 )Wy(s−1)

t +D(λ̂
(s−1)
1 )y(s−1)

t−1 +D(λ̂
(s−1)
2 )Wy(s−1)

t−1 (3)

ȳ(s) =
1
T

T

∑
t=1

(
δt ◦ ỹt +(1−δt)◦ (ŷ(s)t + ȳ(s−1))

)
(4)

y(s)t = δt ◦ (ỹt − ȳ(s))+(1−δt)◦ ŷ(s)t , (5)

where 1 is a vector of ones.
c) We iterate steps a) and b) with increasing s = 1,2, . . ., until

‖y(s)t −y(s−1)
t ‖2

2 ≤ γ, (6)

with γ sufficiently small.

At the end of the procedure, the reconstructed multivariate time series is
given by ỹ(s)t = y(s)t + ȳ(s), t = 1,2, . . . ,T .

23



2 A Bootstrap construction for missing values estimation

The residual bootstrap approach can be effectively used to approximate the
sampling distribution of the missing value estimators. The theoretical proper-
ties of the following residual bootstrap scheme for time series can be derived
following Choi & Hall, 2000. The bootstrap algorithm can be implemented as
follows.

Denote with Y = (ỹ1, · · · , ỹT ) the observed time series. The bootstrap
resampled time series Y ∗ = (ỹ∗1, · · · , ỹ∗T ) is built as follows.

1. Compute the residuals ε̂(s)t = y(s)t − ŷ(s)t , where y(s)t is computed by the (5)
and ŷ(s)t is computed by the (3). The value for the index s is taken from
the last iteration of the imputation procedure described in the previous
section.

2. Obtain the bootstrap error series {ε∗t } by drawing T samples indepen-
dently and uniformly, with replacement, from the centered residuals ε̃(s)t =

ε̂(s)t − ε̄(s)t .
3. Generate the bootstrap series ŷ∗t , for t = 1, . . . ,T , as

ŷ∗t = (Ip−D(λ̂
(s)
0 )W)−1

[(
D(λ̂

(s)
1 )+D(λ̂

(s)
2 )W

)
y(s)t−1 + ε∗t

]
.

This bootstrap construction induces a conditional probability P∗, given the
sample Y . As usual, the bootstrap distribution can be approximated by Monte
Carlo simulation, by repeating the steps 1-3 for B times and by using the em-
pirical distribution of the bootstrap replicates

ỹ∗(b)t = ŷ∗(b)t + ȳ(s) b = 1, . . . ,B

Given the bootstrap distribution, a number of problems could be addressed
effectively. For example, it can be used to approximate confidence intervals
and confidence bands, of nominal level 1−α for missing value sequences.
Moreover, when applying this model class to environmental pollution time
series time series, such as PM10 and PM2.5, the bootstrap distribution can be
adequately used to estimate exceedance probability that the pollution levels
exceed a specific threshold (Draghicescu & Ignaccolo, 2009), as defined by
European law rules.

These lines of research are still under active developing.
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3 Appendix: estimation of model parameters

The parameters of model (1) can be estimated following Dou et al. , 2016. In
particular, given stationarity, from (1) we derive the Yule-Walker equations

(I−D(λ0)W)Σ1 = (D(λ1)+D(λ2)W)Σ0,

where I is the p-order identity matrix. The i-th row of the equation system is

(e′i−λ0iw′i)Σ1 = (λ1ie′i +λ2iw′i)Σ0, i = 1, . . . , p, (7)

with wi the i-th row vector of W and ei the i-th unit vector. The vector
(λ0i,λ1i,λ2i)

′ is estimated by the generalized Yule-Walker estimator, available
in closed form,

(̂λ0i, λ̂1i, λ̂2i)
′ = (X̂′iX̂i)

−1X̂′iŶi, i = 1,2, . . . , p, (8)

where X̂i =
(

Σ̂
′
1wi, Σ̂0ei, Σ̂0wi

)
, Ŷi = Σ̂

′
1ei and the estimated Σ0 and Σ1 are

Σ̂1 =
1
T

T−1

∑
t=1

yt+1y′t and Σ̂0 =
1
T

T

∑
t=1

yty′t .
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ABSTRACT: Shapes are represented by contour functions from planar object out-
lines. Functional archetypal analysis is proposed to describe closed contour shapes.
Each contour function is approximated by a convex combination of functional con-
tour archetypes, which are a mixture of cases in the data set. Archetypes represent
extreme shape patterns and improve the interpretability of highly complex distribu-
tions. The archetypal contours of feet from an anthropometric database of the adult
Spanish population are extracted, which is useful for improving the fit in footwear.

KEYWORDS: shape analysis, archetype analysis, functional data analysis, footwear.

1 Introduction

Archetype Analysis (AA) (Cutler & Breiman, 1994) is an unsupervised tech-
nique that describes cases of a sample as a mixture of archetypes, which in
turn, are mixtures of the cases in the sample. This multivariate technique was
extended to functional data (Epifanio, 2016; Vinué & Epifanio, 2017).

Shape is all the geometrical information that remains after location, scale
and rotational effects are removed from an object. Shapes can be analyzed
from three approaches (Stoyan & Stoyan, 1994): objects can be treated as
subsets of R2, they can be described by landmarks, or by using functions that
represent their contours. Epifanio et al., 2018 propose archetypal shapes based
on landmarks. Here we propose archetypal shapes based on contour functions.
In particular, we consider the natural parametrization of the contour, i.e. when
the contour is parametrized by its arc length. This can be applied to any contour
(other contour functions have limitations (Kindratenko, 2003)).

In Sect. 2 the methodology is introduced and it is applied on a foot shape
data set in Sect. 3. The work ends with some conclusions in Sect. 4.

2 Methodology

Let X be an n×m matrix with n observations and m variables. AA seeks to
find k archetypes, i.e a k×m matrix Z, in such a way that xi is approximated
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by a mixture of z j’s (archetypes): ∑k
j=1 αi jz j, with the mixture coefficients

contained in the n× k matrix α. Additionally, z j’s is expressed as a mixture
of the data through the mixture coefficients found in the k× n matrix β: z j =

n

∑
l=1

β jlxl . To obtain the archetypes, AA computes two matrices α and β that

minimize the following residual sum of squares (RSS): ∑n
i=1 ‖xi−∑k

j=1 αi jz j‖2

= ∑n
i=1 ‖xi−∑k

j=1 αi j ∑n
l=1 β jlxl‖2, under the constraints 1)

k

∑
j=1

αi j = 1 with

αi j ≥ 0 for i = 1, . . . ,n and 2)
n

∑
l=1

β jl = 1 with β jl ≥ 0 for j = 1, . . . ,k.

2.1 Functional Archetype Analysis (FAA)

In the functional context, the values of the m variables in the standard mul-
tivariate context are replaced by function values with a continuous index t.
Similarly, summations are replaced by integration to define the inner product.
See Epifanio, 2016 for details about extension of AA to functional data.

In our problem, two functions characterize each contour, so FAA for bi-
variate functions must be considered. Let fi(t) = (xi(t),yi(t)) be a bivariate
function. Its squared norm is ‖ fi‖2 =

∫ b
a xi(t)2dt +

∫ b
a yi(t)2dt. Let bxi and byi

be the vectors of length m of the coefficients for xi and yi respectively for the

basis functions Bh. Therefore, FAA is defined by RSS =
n

∑
i=1
‖ fi−

k

∑
j=1

αi jz j‖2 =

∑n
i=1 ‖ fi−∑k

j=1 αi j ∑n
l=1 β jl fl‖2 = ∑n

i=1 ‖xi−∑k
j=1 αi j ∑n

l=1 β jlxl‖2+∑n
i=1 ‖yi−

∑k
j=1 αi j ∑n

l=1 β jlyl‖2 = ∑n
i=1 axi ′Waxi +∑n

i=1 ayi ′Wayi , where axi ′ = bxi ′ -
∑k

j=1 αi j ∑n
l=1 β jlbxl ′ and ayi ′ = byi ′−∑k

j=1 αi j ∑n
l=1 β jlbyl ′, with the correspond-

ing constraints for α and β; and where W is the order m symmetric matrix with
elements wm1,m2 =

∫ b
a Bm1Bm2dt. In the case of an orthonormal basis, W is the

order m identity matrix, and FAA is reduced to AA of the basis coefficients.
But, in other cases, we may have to resort to numerical integration to evaluate
W, but once W is computed, no more numerical integrations are necessary.

3 Application

Knowledge of foot shape has a great relevance for the appropriate design of
footwear. It is a main issue for manufacturing shoes, since a proper fit is a key
factor in the buying decision, besides improper footwear can cause foot pain
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and deformity, especially in women. Therefore, the objective is to identify
the shapes that represent the fitting problems of the population by means of
archetypal shapes, which are extreme patterns. Then the shoe designer may
adapt the design to the measurements of the extremes of a size.

Footprints have been extracted from an database of 775 3D right foot scans
representing Spanish adult population. The anthropometric study was carried
out by the Instituto de Biomecánica de Valencia. Data was collected in differ-
ent regions across Spain using an INFOOT laser scanner. The binary images
have been centered and scaled to remove the effects of translations and changes
of scale as explained by Epifanio & Ventura-Campos, 2011.

In order to obtain the contour functions, the tracing begins counterclock-
wise in the most eastern outline point in the same row as the centroid, using
bwtraceboundary of the image toolbox of MatLab. We normalize these func-
tions in such a way that the perimeter length is eliminated, and the functions
are defined on [0,1]. We approximate each curve by a linear combination of
51 Fourier basis (note that this basis system is periodic with period 1). All this
work has been done by means of fda library (Ramsay & Silverman, 2005). We
have therefore two pairs of functions (representing coordinates) {X(t),Y (t)}
for each foot, with t ∈ [0,1].

3.1 Results

FAA is applied to the database. The screeplot is represented in Fig. 1, with
the number of archetypes versus the respective RSS, and an elbow is found at
k = 3. Fig. 1 also shows the contour of the 3 archetypes and the ternary plot
(black circles and red triangles indicate women and men, respectively), where
α values are displayed. The feet distribute more densely between archetype 2
and 3. The first archetype correspond with the solid black contour, the second
one with the dashed red contour, while the third one is the dotted green contour.

4 Conclusions

AA for contour functions has been proposed. We have applied it to a novel
data set of foot images. Knowing the extreme shapes can help shoe designers
adjust their designs to a larger number of the population and be aware of the
characteristics of the users that will not be comfortable to use them, whether
to consider a line of special sizes or modify any shoe feature to cover more
customers. As future work, we can extend AA to surface functions in order to
analyze 3D foot shapes.
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Figure 1. Screeplot (left-handed). Archetypes (central panel) and ternary plot (right-
handed). See text for details.
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ABSTRACT: Random projections have recently emerged as a powerful tool to address
the computational issues posed by high dimensional or very long data-sets. They
can be applied to reduce either the number of columns or the number of rows. Be-
sides facilitating computations they have also shown relevant statistical properties. In
this work we highlight the main aspects and applications of random projections and
present the use of matrix sketching in linear discriminant analysis with a focus on the
issue of imbalanced classes.

KEYWORDS: random projections, sketching, supervised classification.

1 Introduction

High dimensional or very long datasets pose challenging issues for multivari-
ate analysis. Let’s consider an n× p data matrix X , related to p variables
observed on n units. When the number of features is large compared to the
number of units, estimates are rather unstable. When p > n most of the classi-
cal multivariate methods can no longer be applied because the involved Gram
matrix (X>X) cannot be inverted (as it is no longer full rank). When, on the
contrary, it is the number of units to be very large, the Gram matrix can be
easily inverted but its computation becomes heavily demanding.

Reduction in the number of columns (variables) or in the number of rows
(units) can be dealt with in a unified framework resorting to random projec-
tions. Through random projections the columns of the data matrix are linearly
combined with randomly generated weights and mapped to a d-dimensional
subspace, with d� p, while approximately preserving interpoint distances. In
the same way, the rows of the data matrix can be linearly combined with ran-
domly generated coefficients, thus reducing the dataset size from n to k while
approximately preserving the inner product, i.e. the Gram matrix.

The theoretical motivation for this is given by Johnson & Lindenstrauss,

1984’s Lemma according to which given u,v ⊂ Q ⊂ Rn and k =
20log p

ε2 ,
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where ε ∈ (0,1/2), there exists a Lipschitz mapping f : Rn −→ Rk such that
for all u, v ∈ Q:

(1− ε)‖u−v‖2 ≤‖ f (u)− f (v)‖2 ≤ (1+ ε)‖u−v‖2

This means that, after mapping, distances and hence scalar product are pre-
served up to a constant ε.
Linear combinations generated by suitably chosen random matrices have been
proved to satisfy the lemma. When applied to the columns they are referred to
as random projections (RPs); when applied to the rows the term matrix sketch-
ing is used instead.

Besides these common features, random projections and matrix sketching
present specific characteristics which are mirrored in the algorithms based on
them. In this work we highlight the main aspects and applications of random
projections and present the use of matrix sketching in linear discriminant anal-
ysis with a focus on the issue of imbalanced classes.

2 Random projection based multivariate methods

All the most successful methods based on random projections entail the follow-
ing steps: (i) map at random the original high-dimensional data onto a lower
subspace, (ii) apply the chosen method to the dimensionally reduced data, (iii)
combine the results on (selected) RPs via ensemble methods.

Analysis in the dimensionally reduced space have successfully been ap-
plied in order to perform large covariance estimation (Marzetta et al., 2011),
supervised (Cannings & Samworth, 2017) and unsupervised (Anderlucci et al.,
2019a) classification, sparse principal components (Gataric et al., 2017) and
multiple regression analysis (Anderlucci et al., 2019b).

However useful in reducing dimensionality, random projections are highly
unstable and, exactly because of their randomness, most of them can com-
pletely miss the relevant structure in the data. Moreover, they are run to ob-
tain a final dimension d which is typically lower than the limit suggested by
Johnson-Lindenstrauss’ Lemma in order to preserve distances. Ensembles of
the results obtained on suitably chosen random projections compensate for the
instability and enlarge the dimension of the explored space, thus reaching the
lemma’s limit in an indirect way.

Ensembles have turned out to be very powerful, but they sometimes may
be redundant and may hide the role of the original variables, which is also
somehow masked by the recourse to random projections. These aspects have
been addressed in the literature (see Fortunato et al., 2017).
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3 Matrix sketching for Multivariate Analysis

When n is too large to allow fast computations, matrix sketching has turned
out to be an extremely useful and theoretically grounded device. It usually
involves the following steps: (i) reduce the number of rows of the data matrix
from n to k (k� n) premultiplying it by the random Sketching Matrix {S}, (ii)
apply the chosen method to the sketched data.

The similarity with the random projection strategy is striking, but one im-
mediately notices the lack of the ensemble step. Indeed ensembles are no
longer required for matrix sketching for practical and theoretical reasons. They
definitely increase the computational burden without providing better results as
the sketched dimension k is well within the Johnson-Lindenstrauss limit and
provides a sufficiently good approximation in itself.

Sketching methods have been theoretically developed and successfully ap-
plied in the context of multiple linear regression (Ahfock et al., 2017) and,
recently, of linear discriminant analysis (Falcone et al., 2019). In this paper
we propose to adopt matrix sketching in a rather unconventional setting.

In many practical contexts, observations have to be classified into two
classes of remarkably distinct size. In such cases, many established classifiers
often trivially classify instances into the majority class achieving an optimal
overall misclassification error rate. This leads to poor performance in classify-
ing the minority class.

To tackle this problem, researchers often first rebalance the class sizes in
the training dataset, through oversampling the minority class or undersampling
the majority class, and then use the rebalanced data to train the classifiers. It is
well known however that undersampling may lose some relevant information
while oversampling may lead to overfitting. As previously stressed, the main
feature of matrix sketching is that it preserves the scalar product. We propose
to use this relevant property in order to rebalance class sizes by performing
what we called Group-wise Sketching. It can be used in the classical sense
to reduce the size of the largest class, thus keeping most of the information
since all the original units are linearly combined (GwPS); but, by choosing a
sketching dimension larger than the class size, it can also be used to increase
the size of the small class thus preventing overfitting thanks to the randomness
involved in the linear combination of the units (GwPOS).

The following empirical results reported here as an example show the good
performances of the proposed method, definitely in line with the oversampling
(OverS) and undersampling (UnderS) results and with a slight improvement in
the ability to detect the small class.
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Table 1. Dataset mammography - Median values (over 200 reps)

Accuracy Sensibility Specificity AUC
LDA 0.98 0.99 0.55 0.90
OverS 0.83 0.83 0.89 0.93
UnderS 0.83 0.83 0.89 0.93
GwPOS 0.83 0.83 0.90 0.93
GwPS 0.83 0.83 0.90 0.93

Empirical results The Mammography dataset (https://www.openml.
org/d/310) has p = 6 and n = 11,183 labeled as noncalcification (π0 =
97.68%) and calcifications (π1 = 2.32%). Data have been split into training
(75%) and test (25%) sets. Median values are reported in Table 1.
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ABSTRACT: In this paper we propose a variable selection method for multiple linear
regression which is based on axis-aligned random projections and accounts for partial
correlation between each predictor and the response. Performances of the proposed
method are evaluated on simulated data.
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1 Introduction

It is well known that, when dealing with high dimensional data, most of the
classical multivariate methods cannot be applied or give unreliable results and
it is known as well that when the number of observed variables p is large
the relevant information may be contained in an s-dimensional subset of the
observed variables.

In the context of multiple linear regression this means that the vector of
regression coefficients for the model involving all the p variables is sparse. The
ordinary approach for variable selection based on stepwise methods has turned
out to produce very unstable results and new alternative solutions have recently
appeared in the literature. The problem, for instance, has been addressed by
either directly applying l1 norm regularization to the original data (Tibshirani,
1996) or by screening the variables to identify the most relevant ones and then
applying an l1 penalty to the selected subset (Fan & Lv, 2008). The reasons
for this two-step approach lie in the high computational load inherent in the
penalized approach.

In this paper we propose a new method for variable selection in multiple
linear regression which is based on random projections. The use of random
projections to reduce the dimensionality of a data set is becoming increasingly
popular in the multivariate statistical literature. The common trait of the most
effective solutions consists in randomly combining the p columns of the data
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matrix X , thus mapping the data onto a random d-dimensional (with d � p)
subspace on which classical analyses can be performed. The results obtained
on different random projections are then summarized by ensemble methods
in order to obtain the final estimates. Successful applications include super-
vised classification (Cannings & Samworth, 2017), large covariance estima-
tion (Marzetta et al., 2011), large-scale regression (Thanei et al., 2017) and
sparse principal components (Gataric et al., 2017).

2 Predictor selection via Random Projections

In our proposal we exploit the special feature of axis aligned random projec-
tions, which represent a fast and analytically tractable way to perform random
variable selection. Given a data matrix X we consider XA where A is a p× d
axis aligned random matrix. The least squares problem is than rephrased in
terms of XA as bA = argminb||y−XAb|| and many different A matrices are
considered. In particular we consider B1 sets composed by B2 random pro-
jections each and within each block of B2 projections we chose the one for
which the fitted regression model shows the largest R2. As the matrix A is axis
aligned only a few variables will contribute to bA in each selected projection
but combining the models fitted in all the B1 top projections we can obtain a
ranking of the p variables and after cutting the ranking at the assumed sparsity
level s we identify the most relevant predictors for y.

3 Simulation Study

To study and to evaluate the performance of the proposed method, we partially
reproduce the numerical study of Fan & Lv, 2008. In particular, Fan and Lv
consider two main scenarios to validate their Sure Independence Screening
(SIS) method: independent and correlated features.

Simulation I: ‘independent features’. The first scenario considers a lin-
ear model with IID standard Gaussian predictors and Gaussian noise with stan-
dard deviation σ=1.5. Two settings with (n,p)=(200,1000) and (n,p)=(500,2000)
are considered. The number s of relevant predictors is 8 and 18, and the cor-
responding non-zero coefficients are randomly chosen as follows. Let’s set
a= 4 · log(n)/n(1/2) and 5 · log(n)/n(1/2) respectively; the non-zero coefficients
are of the form (−1)ua|z| for each model, where u is drawn from a Bernoulli
distribution with parameter 0.4 and z is drawn from the standard Gaussian dis-
tribution. In particular, the l2-norms β of the two simulated models are 6.695
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Figure 1. Scenario 1, Distribution of the minimum number of selected variables that
is required to include the true model when (a) n = 200 and p = 1000 and (b) n = 800
and p = 2000.

and 9.582. For each model 100 data sets are simulated; the size of the pro-
jected space d is set to 10 and 500 blocks of 50 axis-aligned projections each
are considered. In order to facilitate the comparison with the results of Fan and
Lv, Figure 1 reports the distribution of the minimum number of variables to be
selected in order to include the true model. More than the 70% of the datasets
ranked the relevant variables as first. Such results clearly outperform those of
SIS reported in Figure 5 (a), page 862 of Fan & Lv, 2008.

Simulation II: ‘dependent features’. The scenario with dependent fea-
tures considers three settings with (n,p,s) equal to (200,1000,5), (200,1000,8)
and (800,2000,14), s denoting the number of non-zero coefficients. The three
p-vectors β are generated in the same way as in simulation I. Let’s set (σ,a)=(1,
2 · log(n)/n(1/2)), (1.5, 4 · log(n)/n(1/2)), (2, 4 · log(n)/n(1/2)). In particular,
the l2-norms ||β|| of the three simulated models are 3.618, 6.696 and 6.788.
To introduce correlation between predictors, an s× s symmetric positive defi-
nite matrix C was generated with condition number about n(1/2)/log(n); sam-
ples of s predictors X1, . . . , Xs are then generated from N (0,C). The re-
maining predictors are taken as Xi = Zi + (1− r)X1, i = 2s+ 1, . . . , p, with
r = 1−4 · log(n)/p, 1−5 · log(n)/p and 1−5 · log(n)/p, being Zs+1, . . . ,Zp ∼
N (0, Ip−s). For each model 100 data sets are simulated; the size of the pro-
jected space d is set to 10, B1=500, B2=50. Figure 2 includes the distribution of
the minimum number of selected variables that is required to include the true
model: compared with the independent case, the algorithm requires a larger
model size; however, such number is still very limited, particularly if com-
pared with that of SIS (see Figure 6 (a)-(b), page 863 of Fan & Lv, 2008).
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Figure 2. Scenario 2, Distribution of the minimum number of selected variables that is
required to include the true model when (a)-(b) n = 200 and p = 1000 and (c) n = 800
and p = 2000.

4 Conclusions

This paper present a novel approach to sparse linear regression via Random
Projections that accounts for partial correlation between predictors; as the sim-
ulation studies highlight, the proposed method improves upon SIS which only
considers marginal correlations. The optimal choice of the tuning parameters,
B1, B2, d, and the estimation of s are object of ongoing research.
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ABSTRACT: Random projections (RPs) have shown to provide promising results in
the context of high-dimensional supervised classification. In this work, we address
the unsupervised classification issue by exploiting the general idea of RP ensemble.
Specifically, we generate a set of low dimensional independent random projections
and we perform a model-based clustering on each of them. The top B* projections,
i.e. the projections which show the best grouping structure, are then retained. The
final partition is obtained by aggregating the chosen classifiers via consensus. The
performances of the method are assessed on a set of both real and simulated data.
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1 Introduction

It is well known that, when dealing with high dimensional data, most of the
classical multivariate methods for unsupervised learning cannot be applied or
give unreliable results; in order to overcome this problem, often dimension
reduction procedures are applied before carrying out any clustering.

A recent method for dimension reduction that has been gaining increasing
attention is based on Random Projections (RPs) and consists in mapping at
random the original high-dimensional data onto a lower subspace by using a
matrix with orthogonal columns of unit length. Regardless of the original data
dimension, the final solution preserves the global information almost perfectly;
such a result is guaranteed by the Johnson and Lindenstrauss’ Lemma (1984).

Specifically, in the context of supervised classification, Cannings and Sam-
worth (2017) proposed a very general method for high dimensional classifica-
tion, based on careful combination of the results of applying an arbitrary base
classifier (like Linear Discriminant Analysis, k-NN, . . . ) to random projections
of the feature vectors into a lower dimensional space. Such combination refers
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to the aggregation of the results of the base classifiers that yielded the smallest
estimate of the test errors. Inspired by their original idea for supervised clas-
sification, we propose to extend the procedure to the context of unsupervised
learning. Our idea is to generate a set of B low dimensional independent ran-
dom projections and to apply a Gaussian Mixture Model (GMM) on each of
them. Our Random Projection Ensemble Clustering (RPE Clu) algorithm then
obtains the final partition by combining via consensus the clustering results
from the top B∗ projections, i.e. the projections which show the best grouping
structure according to a given criterion.

In this work, we exploit the general idea of RP ensemble for high dimen-
sional clustering. In particular, our novel proposal consists in applying a Gaus-
sian Mixture Model (GMM) to carefully chosen random projections of the
original data, and in using the GMM properties for both projection selection
and consensus aggregation.

2 Random projection ensemble clustering

Random projections have shown to provide promising results for the analy-
sis of high-dimensional data. The main inconvenience is that they are highly
unstable; as a consequence of that, results from distinct configurations of the
same data can be dramatically different: some projections indeed can induce
a clear group structure in the lowered data, whilst some others can derail any
hope of learning by confusing all the groups together. That is the reason why,
in order to address this issue, the most successful proposals on RPs resort to
ensembles.

In principle, we search for the solution that maximizes the log-likelihood
of the GMM fitted on the original data, penalized by the number of free pa-
rameters. In practice, in order to avoid the drawbacks associated with the high-
dimensional spaces, a feasible solution consists in considering the following
variable partition

Y ∗ = [Y,Ȳ ] = [XA|XĀ],

where X ∈ Rn×p is the original high-dimensional data matrix, A ∈ Rp×d

is the random projection matrix and Ā ∈ Rp×(p−d) is its orthogonal comple-
ment. The basic idea is to perform model-based clustering on the reduced data
Y = XA, assuming that the underlying group structure may be well approxi-
mated by the one in the d dimensions of the block matrix Y ∗. The projected
solutions are then ranked according to the goodness of the partition they in-
duce, measured by a specific transformation of the BIC, say BIC*.
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The final partition is obtained through the following steps:

1. Generate B independent d-dimensional random projections Ab, b= 1, . . . ,B,
according to a specific measure, e.g. the Haar measure;

2. Compute the BIC* for the partition Cb induced by the GMM fitted on the
projected data Y = XA;

3. Among the B possible solutions, select the B∗ projections that exhibit the
highest values for the BIC*: A = [A1;A2; . . . ;AB∗ ];

4. Aggregate the cluster membership vector of the best B∗ projections via
consensus (Hornik, 2005).

On the basis of the numerical evidence, we suggest B= 1000 and B∗= 100
as good choices. A value for d equal to O(10logG) works pretty well; higher
values of d do dot noticeably improve the final performance.

3 Numerical Study on Gene Expression

The performances of the proposed method have been assessed on a set of both
real and simulated data; in order to validate the results, we compare them with
those of other clustering algorithms, such as the ‘standard’ Gaussian Mixture
Model, the K-means algorithm, the Ward’s method agglomerative hierarchical
clustering, the Partition Around Medoids, the Spectral clustering and the Affin-
ity Propagation algorithm. A further comparison is with the variable selec-
tion methodology for Gaussian model-based clustering (see Raftery & Dean,
2006). Due to space constraints, we illustrate the performance on real data
only.

The lymphoma dataset (taken from the R package spls) contains the ex-
pression levels of p= 4026 genes for n= 62 patients. The study reports that 42
subjects have diffuse large B-cell lymphoma (DLBCL), 9 follicular lymphoma
(FL), and 11 chronic lymphocytic leukemia (CLL).

The objective of the analysis is to group patients according to the corre-
sponding lymphoma diagnosis, by using the information on their gene expres-
sion levels. RPE Clu procedure is performed with B = 1000, B∗ = 100 and
d = b10log3+ 0.5c+ 1 = 12; the number of groups is taken as known and
set equal to 3 for all the methods. Clustering results in terms of ARI are re-
ported in Table 1. As can be seen, the random projection ensemble clustering
algorithm is capable to perfectly detect the grouping structure identified by
the diagnosis. Mixture of Gaussians, K-means and hierarchical agglomerative
clustering with Ward’s method provide exactly the same (good) result, up to a
label switching.
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Table 1. ARI for the Gene Expression Data.

Method ARI
RPEClu 1.00
GMM 0.95
k-means 0.95
h-ward 0.95
pam 0.84
Clust VarSel 0.49
Specc 0.95
AClust 0.85

4 Conclusions

This paper present a novel approach to cluster high-dimensional data via Ran-
dom Projections; as the numerical results highlight, the proposed method im-
proves upon the other clustering methods. Estimating the number of clusters
is left for future work.
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ABSTRACT: In high reliability standards fields such as automotive or avionics, the
detection of anomalies is crucial. An efficient methodology for automatically detect-
ing multivariate outliers is detailed. It takes advantage of the remarkable properties of
the Invariant Coordinate Selection method.
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1 Mahalanobis distance and PCA

Detecting outliers in multivariate data sets is of particular interest in indus-
trial, medical and financial applications. Among the many existing method,
some classical detection methods are based on the Mahalanobis distance and
its robust counterpart (Rousseeuw & Van Zomeren, 1990), or on robust prin-
cipal component analysis (Hubert et al., 2005). One advantage of the Ma-
halanobis distance (MD) is its affine invariance while Principal Component
Analysis (PCA) is only invariant under orthogonal transformations. For its
part, PCA allows some components selection and facilitates the interpretation
of the detected outliers.

2 Invariant Coordinate Selection

We propose an alternative to MD and PCA in a casewise contamination con-
text when the number of observations is larger than the number of variables.
The method we consider is the Invariant Coordinate Selection (ICS) as pro-
posed by Tyler et al., 2009. The principle of ICS is quite similar to Principal
Component Analysis (PCA) with coordinates or components derived from an
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eigendecomposition followed by a projection of the data on selected eigenvec-
tors.

However, ICS differs in many respects from PCA. It relies on the simulta-
neous spectral decomposition of two scatter matrices instead of one for PCA.
While principal components are orthogonally invariant but scale dependent,
the invariant components are affine invariant for affine equivariant scatter ma-
trices. Moreover, under some elliptical mixture models, the Fisher’s linear
discriminant subspace coincides with a subset of invariant components in the
case where group identifications are unknown (see Theorem 4 in Tyler et al.,
2009). This remarkable property is of interest for outlier detection since out-
liers can be viewed as data observations that differ from the remaining data
and form separate clusters.

Compared to the MD which has some limitations in a context where the
dimension of the data is large, ICS makes it possible to select relevant com-
ponents which removes the limitations. Owing to the resulting dimension re-
duction, the method is expected to improve the power of outlier detection rules
such as MD-based criteria. It also greatly simplifes outliers interpretation.

3 Practical guidelines for using ICS

We propose practical guidelines for using ICS in the context of a small propor-
tion of outliers which is relevant in high reliability standards fields. The choice
of scatter matrices together with the selection of relevant invariant components
through parallel analysis and normality tests are addressed. The use of the reg-
ular covariance matrix and the so called matrix of fourth moments as the scatter
pair is recommended. This choice combines the simplicity of implementation
together with the possibility to derive theoretical results. Further details and
results can be found in Archimbaud et al., 2018.
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ABSTRACT: We consider the issue of estimating the effect of schools on student 
achievement when a pre-test is available. Based on Invalsi data, our focus is on the 
causal effect of the lower secondary school type (public versus private) on test scores 
at the 8th grade (post-test), accounting for the student test scores at the 5th grade (pre-
test). The causal effect can be estimated by either adjusting for the pre-test score (i.e. 
conditioning) or by using the difference between post-test and pre-test scores (gain 
score) as response variable. The performance of the two approaches, in terms of bias 
and efficiency, depends on several factors, such as pre-test reliability and validity of 
the common trend assumption. We compare the two approaches by an application 
using Invalsi data and by a simulation study.

KEYWORDS: causal effect, Invalsi achievement tests, multilevel model, random 
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1 Introduction

We consider the problem of estimating the school effect on student achieve-
ment, when a pre-test is available. Our work is inspired by Invalsi achievement 
tests implemented at the 5th grade (end of primary school) and 8th grade (end 
of lower secondary school) in Italy. We merge students with scores on these 
two grades to assess the school value added based on the progress from grade 
5th to grade 8th. Specifically, we aim to evaluate if the school effect is different 
between public and private schools.

Two main methodological approaches have been considered in the litera-
ture to deal with the estimation of a causal effect when pre-test measures of 
the outcome are available (Kim & Steiner, 2019). The first approach consists 
in estimating the effect of the variable of interest on the post-test score, condi-
tionally on the pre-test score (conditioning approach). In the second approach,

45



the analysis is conducted on the gain score, namely the difference between the
post-test and the pre-test scores (gain score approach).

In the causal inference literature, the conditioning approach is implemented
via regression models or matching on the pre-test score, which can be re-
garded as methods to remove confounding, when conditioning on the pre-test
score is sufficient to make the unconfoundedness assumption plausible (Arpino
& Aassve, 2013). On the other hand, the gain score approach is related to
difference-in-difference methods, which are devised to remove the effect of
unobservable confounders under the assumption that such confounders have
a time invariant effect, known as common trend assumption. In such a case,
taking the first difference of the outcome removes confounding (e.g., Lechner,
2011).

Recently, Kim & Steiner, 2019 reconsidered the choice between the con-
ditioning and gain score approaches. They consider a linear data generating
model with constant effects across units. The treatment variable Z affects the
post-test score Y , while an unobservable ability A affects both Z and Y . Thus,
A is an unobserved confounder. In addition, the ability A affects the pre-test
score P. If P is a reliable measure of A (i.e. the Cronbach alpha is high),
conditioning on P removes most of the confounding effect of A. On the other
hand, a low pre-test reliability suggest to consider the gain score approach,
which is not affected by the reliability. However, the gain score approach is
based on the common trend assumption. The authors derive formulas for the
bias of the causal effects estimators under the two approaches, highlighting
the assumptions required for unbiasedness. They also consider other scenar-
ios, in particular a direct effect of the pre-test score on the treatment variable,
which makes more problematic the assessment of the bias under the gain score
approach.

In this contribution, we compare the two approaches, based on condition-
ing and gain scores, in a more complex setting with hierarchical data. Specifi-
cally, we consider students (level 1 units) nested within schools (level 2 units),
where ability, pre-test and post-test scores are level 1 variables, while the treat-
ment is a level 2 binary variable (public vs private school). Moreover, we
investigate through a simulation study the performances of the estimators in
terms of both bias and efficiency.

2 Case study

We aim at evaluating the effect of the Italian lower secondary schools on stu-
dent achievement measured by Invalsi tests, focusing on the differences be-
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tween public and private schools. To this end, we alternatively apply the con-
ditioning and the gain score approaches, outlined in Section 1.

The data set collects information on a cohort of students that participated to
the Italian language and mathematics Invalsi tests at grades 5th and 8th (i.e., the
last year of the primary school and the last year of the lower secondary school,
respectively). The data set has been obtained by merging data on students who
attended the 5th grade in school year 2013-2014 with data on students who
attended the 8th grade in school year 2016-2017. We retain data on students
present in both occasions. The resulting data set consists of 436889 students
who took part on both occasions: 427950 participated to both occasions of the
language test, 427256 participated to both occasions of the math test. A subset
of 418330 students participated to both occasions of both tests.

The students are nested in 5777 Italian schools. The average number of
tested students per school is 103.91 with a standard deviation of 54.97 (min
= 1; max = 334).

Each of the two achievement tests is composed of a set of items measur-
ing the unobservable ability in language and mathematics, respectively. Items
are dichotomously scored, with value 1 for a correct answer and value 0 for a
wrong answer. The selection of the set of items relies on internationally vali-
dated methods based on the Rasch model (Rasch, 1960). For this reason, the
ability level of a student is measured by the raw score (i.e., the total number of
correct answers to the test items). As the number of items is different across
subject areas (language and mathematics) and grades, we divide the raw scores
by their maximum so that they are normalised in the range 0-100.

Several background variables are available both at student and school lev-
els. Student covariates include gender, citizenship, and marks in language and
mathematics resulting from the school reports. Data also include information
about the parents educational level and job condition, which are exploited by
Invalsi to define an index of the socio-economic status. In addition, a wide
set of indicators measured at the end of the 5th grade provides information on
student material deprivation, motivation and interest in learning, and relations
with the class mates. School characteristics include information on the geo-
graphical location (municipality, urban area, altimetric area, and population
density), the average number of students per class and the type of school (pub-
lic vs private). Other school level variables are obtained averaging the student
level characteristics (e.g., proportion of immigrants per school).

We specify a multilevel model (Goldstein, 2010) with students at level
1 and schools at level 2. In order to compare the conditioning and the gain
score approaches, we specify two versions of the model. In the first version,
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the response variable is the post-test score (8th grade test), while the pre-test
score enters as a covariate. In the second version, the response variable is the
gain score (difference between the 8th and 5th grade tests), while the pre-test
score is omitted from the covariates. Both versions of the model include the
treatment variable, that is the indicator of the type of school (public vs private),
as well as student and school characteristics.

3 Simulation study

The results of Kim & Steiner, 2019, described in Section 1, are based on a
very simple setting that may be unrealistic in some circumstances. For exam-
ple, in our application on Invalsi data (Section 2) the treatment variable is bi-
nary rather than continuous and the data have a hierarchical structure requiring
random effects modelling. In such type of setting, it is not possible to obtain
analytical results in closed form, thus we perform a simulation study to inves-
tigate the properties of the causal effect estimators under the conditioning and
gain score approaches. The performance of the two approaches in terms of bias
and efficiency of estimators is evaluated under different conditions depending
on: pre-test reliability, validity of the common trend assumption, heterogeneity
of the causal effects, and direct effect of the pre-test on the treatment variable.
The simulation set-up mimics our case study on Invalsi data.
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1 Introduction

The parametric family of power transformations analysed by Box & Cox, 1964
is widely used for the transformation of non-negative responses to approxi-
mate normality. Advantages of such transformation include the availability of
software to analyse data from a wide range of models and the simplicity of
inferences based on the normal distribution. Non-parametric alternatives use
smoothing to find a transformation. Neither procedure is robust; the estimated
transformation can be strongly affected by outliers and influential observa-
tions. The purposes of the work of which this is an extended abstract are:

1. To describe extensions of the Box-Cox transformation to responses which
can be positive or negative.

2. To use the forward search, Atkinsonet al., 2010, to provide a robust
method of data analysis in which outliers are detected.

3. To use a graphical display, the fan plot, to detect observations influential
for the estimated transformation.

4. To investigate two non-parametric methods: ACE - Alternating Condi-
tional Expectations, Breiman & Friedman, 1985 and AVAS - transforma-
tions for Additivity And Variance Stabilisation, Tibshirani, 1988.

5. To show the extension of the fan plot to investigating transformations
of positive and negative responses and to illustrate its use in checking
proposed transformations.
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6. To provide a robust analysis of ACE and AVAS by comparing them with
parametric transformations over values of the transformation parameter.

7. To illustrate these methods on a set of well-behaved investment fund data
and on the data with appreciable contamination.

2 Extended Parametric Transformations

The normalized form of the Box-Cox transformation is

(zλ −1)/(λẏλ−1) (λ 6= 0); ẏ logy (λ = 0), (1)

where ˙y is the geometric mean ofy andJ, the Jacobian of the transfroamtion
is given by logJ = n(λ−1) log ẏ. The linear models is

z(λ) = Xβ(λ)+ ε, (2)

whereX is n× p, β is a p×1 vector of unknown parameters and the variance
of ε is σ2. For comparisons of estimates of parameters for different values
of λ, many authors, starting with Box & Cox, 1964, stress the importance of
working with z(λ).

Yeo & Johnson, 2000 extended the Box-Cox transformation to observa-
tions that can be positive or negative by using different Box-Cox transforma-
tions for the two classes of response. The normalized transformation for their
single parameter family is given by Atkinsonet al., 2020, where the Jacobian
is now a more complicated function of the observations.

3 Robustness and the Fan Plot

We use a robust procedure, the Forward Search Atkinsonet al., 2010 to order
the data by closeness to the fitted model. The procedure starts from a carefully
chosen subset ofm0 = p + 1 observations and moves forward increasing the
subset sizem by introducing the observation, not used in fitting, that is closest
to the fitted model, until all observations have been fitted. Outliers, if any,
enter at the end of the search. The outliers detection procedure is described,
for multivariate data, by Rianiet al., 2009. The understanding of outliers is
helped by brushing linked plots.

Outliers in one value ofλ may not be so for some other values. We there-
fore need to repeat the forward search for a grid of values ofλ. For each
resultant ordering of the data we monitor evidence for the correctness of the
transformation asm increases. We avoid repeated calculation ofλ̂ by use of
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an approximate score statistic. Taylor series expansion ofthe linear model (2)
about the valueλ0 leads to the approximate model

z(λ0) = xT β+ γ w(λ0)+ ε, (3)

where the constructed variablew(λ)= ∂z(λ)/∂λ. The approximate score statis-
tic for testing the transformation is thet statistic for regression onw(λ0) in (3)
in the presence of all other variables.

Atkinson et al., 2020 derive constructed variables for the one-parameter
Yeo-Johnson transformation. They further derive constructed variables for
testing whether positive and negative observations require the same transfor-
mation. These come from the extended transformation in which one kind of
response has parameterλ+ α and the otherλ. The test is forα = 0.
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Figure 1. Investment fund data, fan plots from Yeo-Johnson transformation. Upper
panel, fan plot for single parameter distribution indicating the overall transformation
λ = 0.7; lower panel, extended fan plot for λ = 0.7 suggesting different transforma-
tions for positive (upper trajectory) and negative responses

4 Some Data Analysis

As a brief illustration of the fan plot and its extension we give a small part of
the analysis of the performance of 309 investment funds, 99 of which have neg-
ative performance. The purpose is to relate the medium term performance to
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two indicators. The upper panel of Figure 1 suggests an overall transformation
with λ = 0.7. The horizontal bands are the 99% confidence intervals for the
score test. Although the value of 0.7 is acceptable at the endof the search it is
rejected aroundm = 200. The lower panel of the figure indicates that different
transformations are needed for positive and negative observations.

The strategy now is to try sets of pairs of values of the parameters for
transformation of the positive and negative values,λP andλN . When we have
found the correct transformation, the fan plot of the transformed data indicates
that no further transformation is required; that is we accept the valueλ = 1 in
this fan plot. The analysis of extended fan plots with this strategy led to the
valuesλP = 1 andλN = 0, which is not the log transformation for negative
variables. With this transformation all three trajectories in the extended fan
plot are close together, lying within the bounds throughoutthe search. This
is also the strategy we apply to evaluating the transformations from ACE and
AVAS.
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ABSTRACT: We introduce mixtures of multivariate leptokurtic normal (LN) dis-
tributions as a tool for robust model-based clustering in the presence of mild outliers.
Compared to the normal distribution, the LN has an additional parameter and, advanta-
geously with respect to the existing elliptical heavy-tailed distributions, the additional
parameter directly corresponds to the quantity of interest, namely, the excess kurtosis.
We outline an EM algorithm for maximum likelihood estimation of the parameters of
the mixture. As an illustration, we analyze the well-known Old Faithful geyser data.

KEYWORDS: Leptokurtik normal distribution, mixture models, EM algorithm.

1 The model

A d-variate random vectorXXX follows a leptokurtic normal distribution with
mean µµµ, covariance matrix ΣΣΣ, and excess kurtosisβ, in symbols
XXX ∼ LN d (µµµ,ΣΣΣ,β), if its density is given by

fXXX (xxx;µµµ,ΣΣΣ,β) = q(t;β)φ(xxx;µµµ,ΣΣΣ) , xxx ∈ Rd, (1)

whereφ(·;µµµ,ΣΣΣ) is the density of ad-variate normal random vector with pa-
rametersµµµ andΣΣΣ, andq(t;β) is defined as follows

q(t;β) = 1+
β

8d(d+2)

[
t2 −2(d+2)t +d(d+2)

]
, t = (xxx−µµµ)′ ΣΣΣ−1(xxx−µµµ) .

(2)
The kurtosis ofXXX ∼ LN d (µµµ,ΣΣΣ,β) is d(d + 2) + β. So, β directly repre-
sents the excess kurtosis. Such a parameter must satisfy the constraintβ ∈
[0,min(4d,4d(d+2)/5)], which is the intersection of two constraints:
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i) β ∈ [0,4d], which assures thatfXXX(·;µµµ,ΣΣΣ,β) is a positive elliptical density;
ii) β ∈ [0,4d(d+2)/5], which guarantees thatfXXX(·;µµµ,ΣΣΣ,β) is unimodal.

For ad-variate random vectorXXX, a finite mixture of MLN distributions can
be written as

p(xxx;ϑϑϑ) =
k

∑
j=1

π j f
(
xxx;µµµj ,ΣΣΣ j ,β j

)
, (3)

whereπ j is the mixing proportion of thejth component, withπ j > 0 and
∑k

j=1 π j = 1, f is defined as in (1), andϑϑϑ contains all the parameters of the
mixture. As a special case, whenβ j = 0 for eachj = 1, . . . ,k, we obtain clas-
sical mixtures of multivariate normal distributions.

2 An EM algorithm for maximum likelihood estimation

Let xxx1, . . . ,xxxn be a random sample from model (3). To find maximum likeli-
hood (ML) estimates for the parameters of our model, we adopt the classical
expectation-maximization (EM) algorithm. We need to introduce an indica-
tor vectorzzzi = (zi1, . . . ,zik)

′, wherezi1 = 1 if xxxi comes from componentj and
zi j = 0 otherwise. The values ofzi j are used for the definition of the following
complete-data log-likelihood

lc(ϑϑϑ) =
n

∑
i=1

k

∑
j=1

zi j ln(π j)+
n

∑
i=1

k

∑
j=1

zi j ln
[

f
(
xxxi ;µµµj ,ΣΣΣ j ,β j

)]
, (4)

which is the core of the EM algorithm. The EM algorithm iterates between
two steps, one E-step and one M-step, until convergence.

The E-step on the(q+1)th iteration requires the calculation of

Eϑϑϑ(q) [Zi j |xxxi ] = z(q)
i j = π(q)

j f
(

xxxi ;µµµ
(q)
j ,ΣΣΣ(q)

j ,β(q)
j

)/
p
(

xxxi ;ϑϑϑ(q)
)

. (5)

Then, by substitutingzi j with z(q)
i j in (4), we obtain the conditional expectation

of the complete-data log-likelihood, sayQ(ϑϑϑ) = Q1(πππ)+ Q2(ψψψ), where the
two terms on the right-hand side are ordered as the two terms on the right-hand
side of (4), beingπππ = (π1, . . . ,πk)

′ andψψψ = ϑϑϑ\πππ.
The M-step on the same iteration requires the calculation ofϑϑϑ(q+1) as the

value of ϑϑϑ that maximizesQ(ϑϑϑ). As Q1(πππ) and Q2(ψψψ) have zero cross-
derivatives, they can be maximized separately. MaximizingQ1(πππ) with re-
spect toπππ, subject to the constraints on those parameters, yields

π(q+1)
j =

n

∑
i=1

z(q)
i j

/
n, j = 1, . . . ,k. (6)
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MaximizingQ2(ψψψ) with respect toψψψ is equivalent to independently maximize
each of thek weighted log-likelihood functions

Q2 j
(
µµµj ,ΣΣΣ j ,β j

)
=

n

∑
i=1

z(q)
i j ln

[
f
(
xxxi ;µµµj ,ΣΣΣ j ,β j

)]
, (7)

with respect toµµµj , ΣΣΣ j , andβ j , j = 1, . . . ,k. Details about the maximization of
Q2 j can be found in Bagnatoet al. (2017).

3 Application: Old Faithful Geyser

We analyze thegeyser2 data set accompanying thetclust package forR, a
bivariate (d = 2) data set containing the eruption lengths and the corresponding
previous eruption lengths forn = 271 eruptions of the Old Faithful Geyser.

We provide a comparison with (unconstrained) finite mixtures of some
well-established multivariate elliptically contoured distributions. In particu-
lar, for k = 1, . . . ,6, we estimate: 1) mixtures of multivariate normal distri-
butions (MNMs), 2) mixtures of multivariatet distributions (MtMs; Peel &
McLachlan, 2000), 3) mixtures of multivariate contaminated normal distri-
butions (MCNMs; Punzo & McNicholas, 2016), 4) mixtures of multivariate
power exponential distributions (MPEMs; Zhang & Liang, 2010), and 5)mix-
tures of multivariate leptokurtic normal distributions (MLNMs).

Table 1 compares the best BIC value, and the associated value ofk, for each
of the competing models. The best model is the MNM withk = 5 components,

Table 1. Best BIC values, and associated value of k, for the fitted mixtures.

MNM M tM MCN MPEM MLNM

k 5 4 3 3 4
BIC -1113.080 -1118.659 -1139.531 -1145.911 -1115.995

while the worst is the MPEM withk = 3 components. However, the clustering
provided by the former model (see Figure 1(a)) is not as expected: the orange
group seems to be composed by two well-separated subgroups, being oneof
them very overlapped with the blue group. Motivated by these results, we look
for a different model. The second best MNM, having BIC= −1128.001, has
k = 3 components; compared with the BIC values in Table 1, this MNM is
no more the best one. So, the overall second best model is the MLNM with
k= 4 components (see Figure 1(c) for the obtained clustering). For the selected
MLNM, the estimates of the excess kurtosis for the four components areβ̂1 =
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9.768· 10−8 (refer to the black bullets in Figure 1(c)),β̂2 = 1.282· 10−6 (red
bullets),β̂3 = 2.339 (green bullets), and̂β4 = 0.972 (blue bullets); therefore,
it seems that two of the obtained clusters need heavier tails than the normal
ones. For completeness, Figure 1(b) displays the clustering results obtained
for the MLNM with k = 3 components (BIC= −1119.837). As we can note
by the green bullets in Figure 1(b), the small cluster on the left-down corner
is captured by the tail of the MLN distribution located on the cluster on the
right-down corner; this is confirmed by the estimated excess kurtosis of such
a component which is almost 6.4, which is the maximum excess kurtosis the
MLN distribution can reach in the bivariate case.
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(b) MLNM: k = 3
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(c) MLNM: k = 4

Figure 1. Clustering results for some MNM and MLNM models.
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ABSTRACT: This paper outlines a way for finding the consensus ranking minimizing
the sum of the weighted Kemeny distance, using positional weights. The weighted Ke-
meny distance, introduced by Garcı́a-Lapresta and Pérez-Román, meets the original
Kemeny-Snell axioms and it is fully applicable in treating weak orderings. A differ-
ential evolution algorithm is ad-hoc defined in order to detect the consensus ranking,
namely that ranking that best represents the preferences expressed by a set of individ-
uals.

KEYWORDS: preference rankings, genetic algorithms, consensus ranking, weighted 
distance.

1 Introduction

Preference data are analyzed in several fields, such as political and social sci-
ences, behavioral sciences, economics, and computer science. They are gen-
erally expressed through either ordering (when a person places in order a set
of items according to his/her preference), or rank vectors (when an individual
assigns a rank to each item). Even though their meaning is different, these
terms can be used interchangeably (Marden, 1996).

In the specific, m judges could express their preference on n items by as-
signing values from 1 to n, where 1 represents the most preferred item and
n the object in the last position. If the whole item set is judged and a judge
assigns a different rank to the items, a full ranking is furnished. When a judge
assigns the same value to two or more items, the resulting ordering is called
tied (or weak) ranking. Lastly, if judges express their preference for an items
subset only, the ordering is called partial ranking (D’Ambrosio et al. , 2017).
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Often, the goal is to find the ranking that best represents the preferences
stated by the individuals. This goal is known as consensus ranking problem, or
Kemeny problem, or rank aggregation problem. When there is a large number
of objects to be ranked, the solution of the stated problem can be really com-
plex, falling in fact into the category of Non-deterministic Polynomial-time
(NP) hard problems (Bartholdi III et al. , 1989). The solution is indeed carried
out in a space of dimensions equal at least to the number of all possible per-
mutations of items. Note that if there are tied rankings, the searching space is
larger and larger than the space of permutations (D’Ambrosio et al. , 2019).

In order to carry out the search for the ranking that is most in agreement
with the others, it is possible to follow two aggregation approaches: the ad hoc
methods (de Condorcet, 1785) and distance-based methods.

This paper focuses on the distance-based approach to find the consensus
ranking that is the ranking that minimizes the sum of a given distance between
itself and all the orderings in a data matrix. Several distance measures for rank-
ings have been defined. The most used measures are based on the geometric
representation of the permutation set, that is called permutation polytope. It is
a convex hull of a finite set of points in Rn, whose coordinates are the permu-
tations of n distinct numbers (Thompson, 1993). The permutation polytope is
an (n− 1) dimensional object and for such reason it can only be represented
for n = 3 or with n = 4 (D’Ambrosio et al. , 2015). The distance between
two vertices corresponds to the minimum number of transpositions of adjacent
objects needed to transform one ranking into another (Heiser, 2004).

Probably, the most known distance for rankings is the Kendall distance
(Kendall, 1938), which is the natural measure defined on the permutation poly-
tope. For two rankings, it is equal to the total number of steps to migrate from
the first to the second ordering by reversing adjacent pairs of objects (Heiser,
2004). If ties are allowed, it is better to use the Kemeny distance (Kemeny &
Snell, 1962), which counts the number of interchanges of couples of elements
that are required to transform one (partial) ranking into another (Emond &
Mason, 2002). Kemeny and Snell defined the median ranking as that ranking
Ŝ that minimizes the sum of the distances between itself and all the other m
rankings R:

Ŝ = argmin
S∈Zn

m

∑
i=1

d(S,Ri), (1)

where Zn represents the universe of rankings with n items.
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2 Weighted Kemeny distance and Differential Evolution algorithm

Garcı́a-Lapresta and Pérez-Román (2010) introduced the possibility of weight-
ing the discrepancies between weak orderings. They demonstrated that the Ke-
meny distance doesn’t consider whether the judges’ choices diverge in relation
to the objects classified in the first positions rather than in the last ones.

Let A and B be two rankings of n items. Let w be a set of (n−1) positional
weights, which equal for both rankings with the restriction that w1≥w2≥ ...≥
wn−1 and ∑i wi = 1. Let ai j and bi j be the elements of the score matrices (Ke-
meny & Snell, 1962) associated with the rankings A and B. Garcı́a-Lapresta &
Pérez-Román, 2010 defined the weighted Kemeny distance that can be formu-
lated as follows:

dw(A,B) =
1
2

(
n

∑
i< j=1

wi

∣∣∣a(A)i j −b(A)i j

∣∣∣+
n

∑
i< j=1

wi

∣∣∣a(B)i j −b(B)i j

∣∣∣
)
, (2)

where the subscripts (A) and (B) mean that the orderings B and A are ordered
with respect to rankings A and B, respectively.

Recently, D’Ambrosio et al. , 2017, proposed a Differential Evolution al-
gorithm aimed at the detection of the consensus ranking for complex problems
(i.e., with n > 200) called DECoR. Here, we modify the DECoR algorithm so
that we can find the solution by minimizing the weighted Kemeny distance.
The behavior of the algorithm is checked through both a simulation study and
applications to well-known data set.

The goal of the experimental evaluation is understanding the role of the
positional weights in detecting the consensus ranking and, at the same time,
providing a flexible tool for complex problems in which the (weighted) con-
sensus ranking detection is the starting point for other kinds of analysis, as in
recursive partitioning methods (Plaia & Sciandra, 2017).
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ABSTRACT: This work introduces a multi-group Principal Component Analysis, in 
analogy with the linear predictor as in the general linear mixed model approach.

Estimating PCs simultaneously in different groups provides a joint dimension re-
duction solution (Flury, 1988, Härdle and Simar, 2015), representing the so-called
Common Principal Components (CPC). The literature proposes two types of CPC -
one for independent groups (Flury, 1984), and the other for dependent groups (Neuen-
schwander and Flury, 2000).

The CPC basic assumption is that the space spanned by the eigenvectors, that
leads to a joint eigenstructure across the structure, is identical across groups, but in
practice variances associated with the components are allowed to vary. Some re-
cent approaches address this issue incorporating the analysis of the differences among
groups in the Structural Equation Modeling (SEM) framework (Bechger et al., 2014).
Gu and Wu ()2016) propose to exploit a state-space model analysis (Dolan et al, 1999).

We present a model-based solution to some of the issues of the multi-group PCA.
We refer to this approach as Predictive PC (PPC) as the PC loadings and scores are
based on the results of a Singular Value Decomposition of the matrices of a linear
model predicted values. The empirical predictor is given by an extension of the
distribution-free variance least squares method to an iterative multivariate response
algorithm.

KEYWORDS: Principal components, linear mixed model, empirical best linear unbi-
ased predictor, variance least squares.
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ABSTRACT: One of the major developments in the last two decades in the field of recursive 

partitioning was the use of “hybrid” tree models. These methods have the structure of a 

traditional non-parametric decision tree, but a parametric regression model is fitted within 

each node of the tree, instead of a constant value. The aim of the present work is to illustrate 

the use of a new class of flexible model-based trees for count data, where the novelty is to 

allow different regression models to be fitted in different nodes. In each node, partitioning is 

performed using the model which better locally fits, instead than the one which better 

globally fits. A performance-complexity assessment of this method on simulated data is 

reported, comparing the proposed flexible model-based tree for count data to the standard 

model-based tree that uses the same model in each node.  

KEYWORDS: model-based trees, count regression, regression trees, model selection.

1 Rationale and aim of the research 

Since their introduction in the mid 60’s, but mostly following their diffusion in the 
mid 80’s, recursive partitioning methods are widely used in applied research. A 
major advantage is the interpretability of their decision tree structure, which gives 
the potential to easily communicate the result of the statistical analysis. 

One of the major developments in the last two decades in this field was the use 
of “hybrid” tree models (Loh, 2014). These methods have the structure of a 
traditional non-parametric decision tree, but a parametric regression model is fitted 
within each node of the tree, instead of a constant value (e.g. the arithmetic mean). 
This gave birth to a new class of recursive partitioning methods - which in this work 
are named model-based trees – aimed at finding subgroups that have different values 
of a model’s parameters. Indubitably, this gives the possibility of a great 
customization of the splitting criteria, since researchers can specify a domain-
specific regression model and perform recursive partitioning with respect to one or 
more of this model’s parameters. The key point is setting a model’s equation which 
leads to the estimation of parameters that have a straightforward and relevant 
interpretation, with respect to the scope of the analysis. Some recent proposal of this 
kind were made, among others, in the field of medical and health statistics. These 
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were focused on the identification of subgroups of patients that have differential 
treatment effects in randomized and observational clinical trials (Seibold et al., 
2016) (Loh et al., 2015) and also in individual-level meta-analysis of clinical trials 
(Fokkema et al., 2018).  

Despite the fervent research activity in this field, the current available model-
based trees are mainly based on fitting the same model in all nodes of the tree. In 
particular, the same distribution for the response variable is assumed, and the 
model’s independent variables are often kept fixed. However, since to find different 
data patterns is a goal itself in recursive partitioning, the use of a fixed model in all 
nodes has not to be considered as the only possibility. Instead, it could be possible 
that different model, e.g. models that suppose different distribution for the response 
variable, can fit better in different subsets of data, during the recursive partitioning 
procedure. Hence the need for the study and assessment of the possibility of 
selecting different models in different nodes of a model-based tree.  

Therefore, based on these considerations, the aim of the present work is to 
illustrate the use of a new class of flexible model-based trees, where the novelty is to 
allow different regression models to be fitted in different nodes. In particular, the 
work is focused on the study of these flexible model-based trees for a count response 
variable, as this latter can be described by several alternative statistical distributions.  

2 Flexible model-based trees for count data 

In the model-based tree literature, one of the most promising methods for 
exploratory analysis of subgroups which differ for the values of a model’s 
parameters is the Model-Based Recursive Partitioning (MOB), which was 
exhaustively described in (Zeileis et al., 2008).  

This general, unbiased and broadly applicable recursive partitioning method is 
based on a class of parameter instability tests - M-fluctuation tests - for detecting 
different values of a model’s parameters. Given the flexibility and adaptability of 
this method, several researchers have proposed the use of particular classes of 
models for use within the MOB algorithm. Some examples are: the generalized 
linear model-based tree described in (Rusch & Zeileis, 2013); the generalized linear 
mixed model-based tree in (Fokkema et al., 2018); the beta model-based tree in 
(Grun et al., 2012); the Rasch model-based tree in (Strobl et al., 2015).  

All of these implementations share a common principle, which is to use the same 
model across all nodes. Define 𝕄(𝑌, 𝑋, 𝜃) as the chosen regression model to be 
fitted in the nodes, where 𝑌 is a count dependent variable that follows a fixed 
parametric distribution, 𝑋 is a vector of independent variables and 𝜃 is a vector of 
regression parameters. The traditional model-based tree seek for a partition of the 
covariate space, where each subgroup has an associated model and a node-specific 
vector of parameters. The result of such a model-based tree 𝑇 can be seen as a 
segmented (or piecewise) model: 

𝕄𝜏(𝑌, 𝑋, 𝜃𝜏),     𝜏 = 1, … , |𝑇̅̃| 
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where 𝕄𝜏(𝑌, 𝑋, 𝜃𝜏) is the parametric regression model fitted in generic node 𝜏, 𝜃𝜏 is
a vector of node-specific regression parameters in node 𝜏, 𝑇̅̃ is the subset of terminal 
nodes of  𝑇 and |𝑇̅̃| is the cardinality of the tree (the number of its terminal nodes). 

Regarding the general structure of the newly proposed flexible model-based tree, 
this is the same of MOB, preceded by a preliminary model choice step in each node. 
It then consists in five steps, which are iteratively performed: 1) to fit 𝐷 >
1 different regression models to all observations in the current node 𝜏 and to select 
the best fitting one among them; 2) to fit the selected regression model to all 
observations in the current node, in order to estimate 𝜃𝜏; 3) to assess whether the
parameter estimates 𝜃𝜏 show parameter instability; 4) to detect the partitioning
variable which is associated to the maximum parameter instability; 5) to find the 
best binary split. The five steps are repeated recursively until stopping or pre-
pruning criteria occur. The first step is the novelty proposed in this work, whereas 
those that follow are the original steps of MOB. The results of such a procedure is 
not a segmented model in its previously described form, because of the different 
underlying distributions. However, provided that the different models are expressed 
in terms of parameters with the same interpretation, the result of the flexible model-
base tree is a segmented model of the form: 

𝕄𝜏,𝑑𝜏(𝑌, 𝑋, 𝜃𝜏,𝑑𝜏),    𝜏 = 1, … , |𝑇̅̃| 

where 𝕄𝜏,𝑑𝜏(𝑌, 𝑋, 𝜃𝜏,𝑑𝜏) is the best-fitting parametric regression model 𝑑𝜏 in the
generic node 𝜏 and 𝜃𝜏,𝑑𝜏 is a vector of node-specific regression parameters estimated
from the best-fitting model 𝑑𝜏 in node 𝜏.

In the present work, the attention was focused on a flexible model-based tree for 
count data. Four models (𝐷 = 4) of common use in count data analysis are 
considered in each node: Poisson, Negative Binomial (NB), Zero-Inflated Poisson 
(ZIP) and Zero-Inflated Negative Binomial (ZINB) models. Each of these models is 
nested within another one - with ZINB being the more general case. As a 
consequence, the splitting criterion always looks for differential values of 𝜃, 
whatever model is used to estimate it. The partitioning criteria are therefore coherent 
across all nodes, even if the models are different. Recursive partitioning via this 
method is still based on the search for differential model’s parameters, like the 
standard model-based trees; rather, these parameters are estimated in each node 
according to the model which better locally fits, instead than from the one which 
better globally fits. 

3 Planning of an experimental design for performance-

complexity comparison of model-based trees on 

simulated data 

The proposed flexible model-based trees for count data are compared to the standard 
model-based trees that use a fixed count data model in each node. This is a 
performance-complexity comparison, where the statistical performance is assessed 
as a function of the complexity of the tree (the number of terminal nodes). In order 
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to do that, a sequence of nested subtrees 𝑇0 ⊃ 𝑇1 ⊃ ⋯ ⊃ 𝑇𝑚,   |𝑇0| > |𝑇1| > ⋯ >
|𝑇𝑚|, 𝑚 + 1 ≤ |𝑇̅̃| is identified via post-pruning of the model based-trees, following
a bottom-up procedure. 

The comparison is carried out by assessing performance-complexity curves on 
simulated datasets in the field of medical and health statistics. 
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ABSTRACT: The main goal of the article is to discuss methods based on the Euclidean 

distance which can be used during the identification of financial frauds. The methods 

enable assessing data conformity to Benfordʼs Law, within the primary tests of this 

law. After discussing techniques based on the Euclidean distance, an example of 

accounting fraud detection is presented. 
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1 Introduction 

Benfordʼs Law deals with the probability of the occurrence of significant digits in 
numbers. The law was discovered by S. Newcomb (1881) who noticed that there are 
more numbers that start from lower digits than from the higher ones. Exactly the 
same observation was also made by F. Benford (1938). 

Let    be the first significant digit of a number. The probability that a number 
has the first significant digit    is calculated in the following way: 

                   
   ,   (1) 

where     {1, 2, ..., 9}. 
Similarly, let      denote the first two significant digits of a number. Then, the 

probability that the first two significant digits of a number equal      is calculated 
as follows: 

                                                                  
   ,                        (2) 

where       {10, 11, ..., 99}. 
One of the applications of Benfordʼs Law is to use it as a tool in fraud detection 

procedures. M. Nigrini (2012) classified Benfordʼs Law tests into three main 
categories: the primary tests, the advanced tests, and the associated tests. The idea of 
the primary tests is to verify whether an empirical distribution of digits in numbers 
conforms to Benfordʼs Law or not. Some of the methods employed in this kind of 
evaluation are very popular (e.g. the Kolmogorov-Smirnov test, the chi-square 
goodness of fit test), while other techniques (e.g. tests based on distance measures), 
are less known. 
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The main objective of the article is to present methods based on the Euclidean 
distance which can be applied during the assessment of data conformity to Benfordʼs 
Law in the process of detecting financial frauds. Moreover, an example of detecting 
irregularities in accounting data is presented. 

2 Methods based on Euclidean distance 

W.K.T. Cho and B.J. Gaines (2007) proposed the following measure based on the 
Euclidean distance when checking data conformity to Benfordʼs distribution: 

        
    

 
  

     
   

,   (3) 

where:    
 is the probability of appearance of digit   , resulting from Benfordʼs 

Law (see: equation (1)),    
 denotes the observed relative frequency of digit    in a 

data set consisting of   records. 
Dividing   by the maximum possible distance between two distributions, one of 

which is Benfordʼs distribution and the other is the distribution where only digit 9 
appears (i.e. a digit which is expected to occur the least often according to Benfordʼs 
Law), W.K.T Cho and B.J. Gaines obtained: 

         

  
           

  
   

          .  (4) 

The measure    can take on any value from 0 to 1. The lower the value of   , the 
higher conformity to Benfordʼs Law. 

Deliberations presented in (Cho and Gaines (2007)) concentrate on the first 
significant digit. However, it is possible to extend them to the first two significant 
digits case. Thus, we have: 

                                                   
      

 
   

        
   

,                              (5) 

and 

                   

   
               

  
   

          ,              (6) 

where      
 and      

 are the probability of appearance of digits      (resulting 

from Benfordʼs Law; see: equation (2)) and the observed relative frequency of digits 

     in a data set consisting of   records, respectively. 
J. Morrow (2014) introduced the measure (3) to a hypothesis-testing framework. 

So as to verify the null hypothesis that the first significant digit distribution stays in 
accordance with Benfordʼs distribution, against the alternative hypothesis that the 
first significant digit distribution does not conform to Benfordʼs distribution, one 
uses the statistic: 

           
    

 
  

    .   (7) 

In his paper, J. Morrow gives also critical values for the above written statistic. 
An analogous statistic, but this time focused on the first two significant digits 

distribution analysis, takes the following form: 

                                                      
      

 
   

       .                           (8) 
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D.W. Joenssen and T. Muellerleile (2015) created in R environment the package 
ʻBenfordTestsʼ which enables, among others, the analysis of the first significant 
digit distribution and the first two significant digits distribution. 

3 Example 

In our study we used data set A which contained 12,104 foreign revenues from the 
sales of finished products in 2016 in a certain company. The conducted analysis was 
based on the examination of the first two significant digits distribution. In the case 
of the statistical test based on the Euclidean distance, the p-value was calculated by 
means of the bootstrap technique, assuming 10,000 replicates. 

Since the companyʼs financial statements for 2016 were accepted without any 
reservations by an auditor, the expectation was that the financial data, including the 
foreign revenues, was the result of the proper accounting process, and therefore the 
data should follow Benfordʼs distribution. Indeed, at the 0.05 level of significance, 
the Euclidean distance test did not permit to reject the null hypothesis stating that  
the distribution of the first two significant digits of foreign revenues conforms to 
Benfordʼs distribution (   = 1,0736, p-value = 0,1653). 

Next, a certain accountant (who did not know Benfordʼs Law) was asked to 
commit fraud by adding 121 falsified records to data set A. Thus, a new data set 
(data set B) contained 12,225 foreign revenues. The results of the Euclidean distance 
test (   = 1,1472, p-value = 0,0470) led to the conclusion that at the 0.05 level of 
significance, we accept the alternative hypothesis stating that the distribution of the 
first two significant digits of foreign revenues does not conform to Benfordʼs Law. 
For this reason, the foreign revenues from data set B resulted from the improper 
accounting process. 

Table 1 presents the results of checking data conformity to Benfordʼs Law for 
both analyzed data sets, taking into account the first two significant digits and using 
the measure   . The analysis of foreign revenues was made for the whole data sets 
(the last row of the table), and for five subsets of the data. 

 
Table 1. Outcomes of the assessment of data conformity from data sets A and B to 
Benfordʼs distribution. 

Foreign revenues (PLN) 
A B 

          

10.00 to less than 100.00 51 0.2066 51 0.2066 

100.00 to less than 1,000.00 2,201 0.0814 2,213 0.0820 

1,000.00 to less than 10,000.00 6,340 0.0271 6,443 0.0280 

10,000.00 to less than 100,000.00 3,336 0.0757 3,337 0.0757 

100,000.00 to less than 1,000,000.00 176 0.2315 181 0.2304 

10.00 to less than 1,000,000.00 12,104 0.0097 12,225 0.0103 

 
The obtained results allow to formulate the following main conclusions. Firstly, 

data set A is characterized by a higher level of agreement with Benfordʼs Law than 
data set B. Secondly, the poorest fit for both data sets is observed for [10.00, 100.00) 
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and [100,000.00, 1,000,000.00) intervals. Such a situation is caused by a small 
amount of numbers in these two intervals. Thirdly, the introduction of 121 falsified 
records into data set A resulted in: (a) the decline in the level of conformity to 
Benfordʼs Law in the case of five- and six-digit revenues, (b) the increase in the 
level of conformity to Benfordʼs Law in the case of eight-digit revenues, (c) no 
change (or a very small change) in the level of conformity to Benfordʼs Law in the 
case of four- and seven-digit revenues. 

4 Conclusion 

The article discussed methods based on the Euclidean distance which are employed 
when assessing data conformity to Benfordʼs Law. The outcomes of the conducted 
study indicated that these techniques can be a useful tool in the process of financial 
fraud detection. Although J. Morrow described the statistical test based on the 
Euclidean distance, there is still an open problem which deals with determining the 
distribution of the statistic   . 
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ABSTRACT: A dynamic analysis of purchases in the Italian market of sparkling 
wines is conducted by using scanner data derived from a consumer panel. We 
propose a continuous-time hidden Markov model that allows the transitions between 
states at any point in time. Results identify consumers’ profiles in terms of type of 
purchases and socio-economic characteristics and describe the dynamics, and its 
determinants, across market segments. The findings improve the understanding of 
the market and provide useful evidences to design successful marketing strategies. 

KEYWORDS: consumers’ profiles, hidden Markov model, market dynamics, 
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1 Introduction 

We study the dynamics of consumers’ behavior in the Italian market of sparkling 
wine. In the last decade, the strong increase in the sparkling wines market has been 
coupled by a growth in brands, appellations, price range as well as other attributes 
(e.g. packaging), to catch consumers’ attention. While in many countries the market 
tends to be dominated by Champagne, Cava or Prosecco, in Italy there is a greater 
fragmentation due to the preponderance of numerous domestic products and their 
complex denomination of origin classification. The consumption occasions for 
drinking sparkling wines have changed. Italian drinkers have started to drink and 
buy sparkling wine throughout the year rather than at specific seasons (e.g. 
Christmas); for this reason, the market is growing and it is expected to grow, 
offering more opportunities for sparkling wine producers. 
In 2017 in Italy 31.6 million people (64% of adults)1 consumed sparkling wine at 
least once; the majority of purchases is made in supermarkets; some specific 

1https://www.wineintelligence.com 

71



appellations, especially Champagne, are bought also in wine shops. Brand 
awareness, promotional offers and friends and family recommendations are the most 
important drivers of choice. Other relevant wine attributes for preferences are the 
method of production (Charmat, like Prosecco vs. Classic or Champenoise), 
appellations, especially the Controlled Denomination of Origin (DOC) and the 
Guaranteed Controlled Denomination of Origin (DOCG), the producer brand, the 
label, and its location. 
The market of sparkling wines is relatively young, therefore the literature focusing 
on this topic is quite scarce. It mainly reports works on technical and sensorial 
aspects (Culbert et al., 2017) or on consumer’s behavior and preferences (Cohen et 
al., 2012). With the proposed  study of the market dynamics and of the factors that 
favor it we provide important information for designing successful marketing 
strategies. By using information collected on a panel of Italian families with 
purchases in stores we aim at identifying typical customers’ profiles and analysing if 
and how they change acquisition behavior within two years of time. We also 
evaluate the effects of the characteristics of the consumers and the families on 
purchases. 

2 Data and method 

Data concerns a panel of 9,000 Italian households who registered their purchases in 
2015 and 2016. The sample is representative of the Italian population with reference 
to the area of residence, number of components, monthly per capita income, age of 
the person responsible for purchases, type of the family. The survey collects 
longitudinal data with continuous time, each household may perform multiple 
purchases in the reference period. We observe a total of 22,362 purchases in 
unspecialized stores, made by 5,155 households, they make from 1 to 230 purchases 
in the reference period. 

The dynamics of consumers’ behavior is analyzed by assuming that preferences 
can be represented by an underlying latent variable U = (Ui1,…,UiT) for each 
customer i = 1,…,n, at occasion t, t = 1,…,T, where each t refers to the purchase time 
period. The latent process follows a continuous-time hidden Markov chain with 
discrete states, initial and transition probabilities parameterized with covariates 
(Bartolucci et al., 2013). We propose a multivariate hidden Markov model (HMM) 
for the vector of categorical responses Yit = (Yi1t,…,Yirt) where the responses observed 
for every customer are: the value of each purchase in Euros,  denomination and type 
of wine. The main assumption is that the latent process fully explains the observed 
customer behavior and the time-fixed and time-varying customer socio-demographic 
characteristics describe the dynamics of the underlying latent preferences. The 
conditional probabilities of the responses are assumed constant over time to stabilize 
the customer’s profiles. The Expectation-Maximization algorithm is employed to 
maximize the log-likelihood. The suitable number of latent states is selected by 
using the Bayesian Information Criterion. 
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3 Results 

Five clusters of homogeneous purchases are identified as reported in Table 1. The 
first latent state identifies consumers that spend no more than four Euros for an 
ordinary sparkling wine, with no specific appellation. We refer to this segment as 
that of customers with low quality purchases, concerning 19% of the population. 
Latent state 2 defines customers with low quality purchases preferring sweet wine, 
this concerns 34% of the customers. Latent state 3 defines customers with mainly 
purchases of Prosecco wine both with DOC and DOCG, of dry or extra dry type, 
and the amount spent per purchase is over three Euros; we define this profile as 
Prosecco (20% of the population). Latent state 4 denotes the profile of sophisticated 
customers, not choosing Prosecco since they select mainly prestigious 
denominations such as Franciacorta, Asti, Brachetto D’Aqui, Oltrepo Pavese (13% 
of the customers). Latent state 5 denotes the profiles of sparkling wine connoisseurs, 
since they show purchases with the highest purchasing power, over six Euros, for 
brut classic sparkling wine with appellations such as Franciacorta, Trento and 
Champagne (14% of the customers). 

Table 2 lists the average transition probabilities among each segment. The 
percentage of customers who do not change purchase behavior can differ quite a lot 
across states. Purchases of types 1, 2 and 3 are more stable than those of type 4 and 
5. However, a non-negligible percentage of customers, greater than 12%, tend to
move towards segment 1. The state from which there is the highest mobility is 5, 
these are purchases with the highest amount of money spent and the most 
prestigious appellations: this reveals as an occasional consumption behavior. 
Concerning the effects of the covariates we mention that purchases in segment 3 of 
Prosecco refer with higher probability to middle-age consumers, living mainly in the 
North-east of Italy and Lazio region, with a medium-level income.  

4 Conclusions 

We propose a dynamic analysis of the Italian market of sparkling wines estimating a 
hidden Markov model on scanner data from a consumer panel. Latent states identify 
five homogenous types of purchases according to prices, type of wine and 
appellation. A non-negligible proportion of consumers perform purchases of 
different types, the most unstable segment is that with the highest price. Consumers 
tend to move to a segment of lower quality wine for their subsequent purchase and 
consumers’ characteristics act as drivers of preferences. 
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Table 1. Latent states’ profiles 

Table 2. Average transition matrix 

State 1 State 2 State 3 State 4 State 5 
State 1 0.74 0.06 0.11 0.04 0.04 
State 2 0.12 0.66 0.09 0.09 0.04 
State 3 0.12 0.08 0.72 0.04 0.05 
State 4 0.14 0.18 0.11 0.52 0.05 
State 5 0.18 0.11 0.15 0.10 0.47 
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Response variables Estimated conditional probabilities 
Average purchase in Euros 

<2.99 0.22 0.51 0.03 0.05 0.00 
2.99-3.98 0.30 0.21 0.19 0.24 0.00 
3.99-5.68 0.19 0.13 0.26 0.30 0.01 
5.69-8.98 0.18 0.10 0.28 0.27 0.22 

>8.98 0.11 0.05 0.24 0.14 0.76 
Type of wine (sugar content) 

Brut 0.78 0.07 0.07 0.00 0.97 
Extra dry 0.14 0.02 0.59 0.02 0.00 

Dry 0.08 0.04 0.34 0.00 0.00 
Sweet 0.01 0.88 0.00 0.98 0.00 

Denomination 
No appellation 0.69 0.95 0.04 0.01 0.01 

Prosecco DOCG 0.06 0.01 0.41 0.00 0.00 
Prosecco DOC 0.11 0.00 0.58 0.00 0.01 

Franciacorta DOCG 0.00 0.00 0.00 0.16 0.40 
Asti DOCG 0.00 0.03 0.00 0.39 0.00 
Trento DOC 0.00 0.00 0.00 0.00 0.42 

Brachetto DOCG 0.00 0.00 0.00 0.28 0.00 
Oltrepo DOCG 0.04 0.00 0.00 0.06 0.00 

IGT 0.07 0.00 0.00 0.00 0.01 
French appellation 0.00 0.00 0.00 0.00 0.14 

Other 0.01 0.00 0.00 0.07 0.00 
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ABSTRACT: Modern likelihood asymptotics make available several inferential meth-
ods that can be applied to a large class of statistical models. In this contribution we
summarize some of such methods, and provide an illustration by means of an applica-
tion to a hierarchical nonlinear regression model. The methodology presented can be
readily applied by the R package likelihoodAsy.

KEYWORDS: likelihood asymptotics; nonlinear regression; statistical software.

1 Background and theory

Modern likelihood asymptotics is a well established theory for inferential meth-
ods in parametric statistical models. The relevant literature is large, with sur-
veys of the main results given in Severini, 2000 and Skovgaard, 2001, among
others. The recent expository paper by Pierce & Bellio, 2017 tracks some of
the developments, with an effort to make them accessible to a wider audience.
The paper has an accompanying R package, named likelihoodAsy (avail-
able at the CRAN repository), which implements some of the methods.

The starting point is a parametric statistical model for the sample y =
(y1, . . . ,yn), given by a density p(y;θ), indexed by a p-dimensional parame-
ter θ. Let `(θ;y) = logL(θ;y) the log likelihood function and θ̂ the maximum
likelihood estimate.

The main methodology concerns inference about a scalar smooth function
of the parameter θ, defined as ψ(θ). For testing the hypothesis ψ(θ) = ψ, the
recommended approach relies on the directed deviance

rψ(y) = sgn(ψ̂−ψ)
[
2
{
`(θ̂;y)− `(θ̂ψ;y)

}]1/2
,

∗This research is partially supported by the Italian Ministry for University and Research
under the PRIN2015 grant No. 2015EASZFS 003.
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where θ̂ψ is the maximum likelihood estimate of θ for fixed ψ. The key theo-
retical result is the r∗-formula (see for example Severini, 2000)

Pr
{

rψ(Y )≤ rψ(y);θ : ψ(θ) = ψ
}
= Φ{r∗ψ(y)}

{
1+O

(
n−1)} , (1)

where r∗ = r∗ψ(y) is a modified directed deviance and Φ(·) is the standard nor-
mal cdf. The formula improves on the usual first-order version employing
Φ{rψ(y)} for the probability on the left-hand side, and it provides a fairly ac-
curate approximation to the distribution of the directed deviance. This can be
readily used for computing confidence intervals and p-values for ψ(θ).

Some remarks on (1) are in order.
(i) The computation of r∗ is challenging, but code in likelihoodAsy

provides a fairly accurate approximation to it, with protection for large devia-
tions (see Skovgaard, 2001). The code requires the user to supply a function
implementing the log likelihood function and a function to generate a data
set from the model. The latter is used for computing certain expected values
entering the r∗-formula by a Monte Carlo approach.

(ii) A remarkable feature of the code is that the interest parameter ψ(θ)
need not be a coordinate of the parametrization employed for the model.

(iii) Pierce & Bellio, 2017 provides a detailed account on the nature of
(1). Moreover, results cited in the article show that inferences based on (1) are
quite close to those of the most accurate parametric bootstrap method, which
simulates a large number of bootstrap samples from p(y; θ̂ψ).

Code in the package includes also routines for computing the modified pro-
file likelihood, which is the inferential tool suitable for inference on multidi-
mensional parameter of interest ψ accounting for nuisance parameters. Namely,
`M(ψ) = `P(ψ)+ logM(ψ;y) is returned, where `P(ψ) is the profile log likeli-
hood for ψ and M(ψ;y) an adjustment term, whose computation entails a task
similar to that required for r∗ψ(y).

2 Application to a nonlinear regression model

For an illustration of the scope of the methodology, we summarize here the
analysis of the theophylline data, already considered by several authors. In par-
ticular the data are thoroughly analyzed in the monograph by Pinhéiro & Bates,
2000, and made available in the R package nlme associated to the book. The
data are about a longitudinal study on 12 patients, each observed on 10 time
points. The response is the theophylline concentration, for which a nonlinear
regression model is adopted (see Pinhéiro & Bates, 2000, p. 351)

yi j = f (φi;di, ti j)+ εi j . (2)
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Here i is the index for subject and j for time point, di a time-invariant dose and
ti j the j-th time point for the i-th subject. The model assumed is

f (φi;di, ti j)= di
exp(φ1i +φ2i−φ3)

{exp(φ2i)− exp(φ1i)}
[exp{−exp(φ1i) ti j}− exp{−exp(φ2i) ti j}] .

This is a one-compartment model, with two subject-specific parameters (exp(φ1i)
and exp(φ2i)) and one common parameter (exp(φ3); the exponential form for
them is introduced for numerical stability. In what follows, we take the clear-
ance of the model as the parameter of interest, defined as ψ = exp(φ3).

At first, we follow a fixed-effects approach, treating the subject-specific
coefficients as model parameters, and assuming a normal distribution for the
error term with subject-specific standard deviation. Implementation in R is
straightforward, due to the independence assumption, yet the resulting model
has 37 parameters for a sample with 120 observations. This is a setting where
the r∗ statistic may be useful, since this typically occurs in settings with either
very small sample size or with many nuisance parameters.
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Figure 1. rψ(y) and r∗ψ(y) as a function of ψ = exp(φ3) for a fixed-effects model (left)
and a random effects model (right). The P-values are the one-sided error rates given
by 1−Φ{|rψ(y)|} or 1−Φ{|r∗ψ(y)|}.

This fact is represented in the left panel of Figure 1, which shows the values
of rψ(y) and r∗ψ(y) as ψ varies along a grid of values around ψ̂=0.038. Con-
fidence intervals are read off the plot, and correspond to ψ-points where the
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curves intersect the normal quantiles for the level of interest. The adjustment
performed by the r∗-formula is noticeable, with the 95% confidence interval
which is about 25% wider than that based on the first order solution.

A more customary modelling approach would treat φ1i and φ2i as normal
random effects, and integrate them out to obtain the likelihood function. This
entails a more challenging implementation, which is doable by recourse to the
TMB package for automatic differentiation (Kristensen et al. , 2016). This has
been done for a simpler version of the model, assuming homoscedasticity for
εi j, obtaining ψ̂=0.040. A close agreement between rψ(y) and r∗ψ(y) is found,
as shown in the right panel of Figure 1. Indeed, the random effects models has
only 6 parameters and the nuisance parameters adjustment is small. Finally, in
the random effects model `M(ψ) can be used to estimate the variance compo-
nents in a REML-like fashion. This gives a 10% inflation for the estimates of
random effects standard deviation.

3 Conclusion and ongoing research

Modern likelihood asymptotics has the potential to supplement standard anal-
ysis for models currently used in applications in several fields. The availability
of suitable software appears to be the key factor. To this end, some develop-
ments of the likelihoodAsy package may involve the inclusion of further
methods, such as the multidimensional tests (Skovgaard, 2001). Further ex-
tension would involve closer integration with the TMB package, which seems
a promising route for targeting more realistic and complex models.
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ABSTRACT: The ontology-based classification of multilingual documents is the main problem 

discussed in the paper. The system proposed here is focused on the issue of cluster analysis of 

large sets of job offers prepared in various languages, but the method has universal character 

and can be used for analysis of documents related to a specific domain. Taking into account 

computational requirements, the authors propose to conduct all calculations in the cluster 

environment. 

KEYWORDS: cluster analysis, exploratory analysis of multilingual documents, computational 

infrastructure, analysis of competencies. 

1 Introduction 

Ontology-based approach in computational text analysis allows to explore large 
corpuses of documents related to a specific domain. This technique appeared in the 
literature about twenty years ago (cf. Hotho et al, 2002) and has been used in different 
areas. Analysis of competencies expected by employers constitutes one of the most 
important field of application for this approach. However, it is worth emphasizing that 
all solutions developed in the area related to competencies have universal character 
and can be applied to other types of documents. 

The issue of competencies appeared in the research literature in the 1960s (White, 
1959) and has been being developed in many further publications (Boyatzis, 1982), 
(Levy-Leboyer, 1996), (Bengtsson, 1996). The problem of competency development 
is also widely discussed in the context of education, cf. (Lambrechts et al., 2013) or 
Oczkowska et al., 2017).  

Employers’ expectations towards competencies of candidates for employment are 
being considered by managers, experts responsible for education, individuals thinking 
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about their future career, employees or politicians. This fact justifies the necessity of 
building IT solutions for labour market monitoring. Two systems belonging to this 
area were presented in (Lula et al., 2018) and (Belov et al., 2018). 

However, it seems that globalization processes and swelling migration flows 
create the need for analysis of competencies in a context wider as national labour 
market which that takes into account the situation prevailing in many countries at the 
same time. Job offers published online on different labour markets can be treated as 
very important source of information on employees’ competencies. Its universality 
and ease of access is a key advantage. Nevertheless, their analysis may cause many 
difficulties due to the lack of a uniform format of offers, the ambiguity of expressions 
used in their contents and multilingual nature of advertisements. 

In the context presented above, the main goal of this study can be stated as the 
development of a system for analysis of job offers with particular reference to three 
issues: automatic exploration of offers prepared in various languages, cluster analysis 
of offers and performing required calculation in cluster environment.  

2 The methodology 

Let’s assume that the 𝑶 is a set of job offers: 
𝑶 = {𝑂1, 𝑂2, … , 𝑂𝑁}

and 𝑪 is a set of competencies: 
𝑪 = {𝐶1, 𝐶2, … , 𝐶𝑀}.

The main goal of the analysis as performing a cluster analysis of objects belonging 
to the set 𝑶 with respect to competencies taken from the set 𝑪. 

The process of a job offer analysis can be divided into two parts: 
1. analysis of job offers’ contents and their transformation into a form suitable

for cluster analysis,
2. cluster analysis of objects representing job offers’ contents.

2.1 The analysis of job offers’ contents 

It was assumed that the system proposed here should process job offers prepared in 
various languages (the current version can analyse offers prepared in English, Italian, 
Polish, Russian and Serbian language) and that modules designed for different 
language versions should recognise the same set of competencies. Otherwise the 
scope of the further analysis would be seriously limited. 

Past experiences of the authors presented in (Lula et al., 2018) and (Belov et al., 
2018) and literature survey indicates that the schema of analysis presented in the 
Figure 1 can be used. 
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The process of analysis of a given job offer allows to identify main competencies 
expected by an employer. During the analysis the significance of every competency 
is estimated for every phrase occurring in an offer. Next, significant coefficient 
calculated for every phrase can be aggregated to express the importance of a given 
competence in a whole job offer.  

2.2 Cluster analysis of job offers 

Cluster analysis of job offers should identify their homogenous groups. It seems that 
model-based approach can find formal description for every group (Ingrassia et al., 
2015). The authors would like to find answers to research questions concerning 
similarities and differences between clusters identified in various countries. Also it 
may be interesting to compare formal descriptions of profiles of the most popular 
positions with respect of countries, employers, sectors and offer’s language. 

3 Implementation 

All algorithms presented in the paper were implemented in R and Python languages. 
Raw data is being gathered from the publicly available sources (hunting agencies, job 
seeking sites, governmental organizations) using the following methods: web 
scraping, archives download, using sites’ application programming interfaces. For the 
further processing to provide scalability and affordable speed, the technology stack of 
Big Data is used (Zaharia et al, 2012). Among the variety of products involved to 
build the processing pipeline, it is worth to mention Apache Spark which is used as a 
core platform to organize the computational part of the whole system (Armbrust et al, 

Figure 1. The schema of ontology-based analysis of job offers 
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2015). The infrastructure is based on the university cloud with application of Docker 
containerisation approach to ease the processing chain management. 
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ABSTRACT: The analysis of longitudinal and cross-sectional data requires taking the
dependence of observations and the heterogeneity of measurement units into account.
A very flexible tool to account for unobserved heterogeneity are fixed effects models
because they do not make assumptions on the distribution of effects. On the basis of a
fixed effects model, we propose a recursive partitioning method that identifies clusters
of units that share the same effect. The approach reduces the number of parameters
to be estimated and is beneficial in particular if one is interested in identifying clus-
ters with the same effect on the outcome variable. The usefulness of the approach is
illustrated in an application using data from CTB/McGraw-Hill.

KEYWORDS: clustered data, fixed effects model, recursive partitioning, tree-structured 
regression.

1 Fixed Effects Models

Consider clustered data given by (yi j,xi j,zi j), i = 1, . . . ,n, j = 1, . . . ,ni, where
yi j denotes the response of measurement j for unit i. There are two sets of
predictive variables x>i j = (1,xi j1, . . . ,xi jp) and z>i j = (1,zi j1, . . . ,zi jq) including
p and q covariates, respectively. In a fixed effects model the mean response
µi j = E(yi j|xi j,zi j) is linked to the explanatory variables in the form

g(µi j) = ηi j = x>i jβ+ z>i jβi , (1)

where xi j is a vector of covariates that has the same effect β across all units and
zi j contains the covariates with effects that vary over units. With regard to zi j

each measurement unit has its own parameter vector β>i = (βi0, . . . ,βiq). The
specification of one parameter vector per unit results in a very large number
of parameters which can affect estimation accuracy. Moreover, typically there

1 Department of Medical Biometry, Informatics and Epidemiology, Rheinische Friedrich-
Wilhelms-Universität München, (e-mail: moritz.berger@imbie.uni-bonn.de)
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is not enough information to distinguish between all units. To address these
issues, one can assume that there are groups of units (i.e. clusters) that share
the same effect on the outcome.

2 Tree-Structured Models

Consider the fixed effects model with unit-specific intercepts, only. In the
simplest case in which all intercepts are equal the linear predictor has the form
ηi j = x>i jβ+β0. If there are two clusters, the corresponding linear predictor is
given by

ηi j = x>i jβ+β(k)
i0 , k = 1,2 , (2)

where k denotes the membership to a group and β(k)
i0 is the corresponding effect

for the group. A simple test, for example a likelihood ratio test, for the hypoth-
esis H0 : β(1)

i0 = β(2)
i0 can be used to determine if the model with two groups

is more adequate for the data than the model in which all the intercepts are
equal. By iterative splitting into subsets guided by test statistics one obtains a
clustering of units that have to be distinguished with regard to their intercept.

In general, a tree is built by successively splitting one node A, that is al-
ready a subset of the predictor space, into two subsets A1 and A2 with the split
being determined by only one variable. In a fixed effects model, when specify-
ing intercepts for each unit, the unit number i ∈ {1, . . . ,n} itself can be seen as
a nominal categorical covariate with n categories. The partition has the form
A∩S1, A∩S2, where S1 and S2 are disjoint, non-empty subsets S1 ⊂ {1, . . . ,n}
and its complement S2 = {1, . . . ,n}\S1. Using this notation another represen-
tation of model (2) is given by

ηi j = x>i jβ+β(1)
i0 I(i ∈ S10)+β(2)

i0 I(i ∈ S20) , (3)

where I(·) denotes the indicator function with I(a) = 1, if a is true and I(a) = 0
otherwise. After several splits one obtains a clustering of the units {1, . . . ,n}
and the predictor of the resulting model can be represented by

ηi j = x>i jβ+
m0

∑
k=1

β(k)
i0 I(i ∈ Sk0) , (4)

where S10, . . . ,Sm00 is a partition of {1, . . . ,n} consisting of m0 clusters that
have to be distinguished in terms of their individual intercepts. To determine
the optimal number of splits (i.e. to decide when to stop) our strategy is to
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Figure 1. Analyis of the CTB data. Paths of coefficients of school-specific intercepts
against all splits. The paths build a tree that successively partitions the schools. The
optimal number of splits is marked by a dashed line.

check if the heterogeneity of measurement units is already modeled sufficiently
in each step. To decide for the first split one has to examine the null hypothesis
H0 : β10 = β20 = . . .= βn0, which corresponds to the case of no heterogeneity.
The hypothesis is tested by a likelihood-ratio test with significance level α and
n−1 degrees of freedom. After several splits only differences of units within
already built clusters are tested. In the `− th step n− ` differences have to
be tested because `− 1 splits are already performed. If a significant effect is
found the selected split is performed, otherwise splitting is stopped.

3 Analysis of the CTB Data

We consider a data set from CTB/McGraw-Hill, a division of the Data Recog-
nition Corporation (DRC). For a description of the original data, see De Boeck
& Wilson, 2004. The data includes results of an achievement test that mea-
sures different objectives and subskills of subjects in mathematics and science.
For our investigation we used the results of 1500 grade 8 students from 35
schools. They had to respond to 56 multiple-choice items (31 mathematics, 25
science). The outcome yi j was the overall test score of student j in school i,
defined as the number of correctly solved items. The main objective was to ad-
equately describe the heterogeneity of the 35 schools. As additional covariate
we included the gender of the students (male: 0, female: 1). There were 761
males and 739 females achieving an average test score of 34.

The coefficient paths of the school-specific intercepts obtained when fitting
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Figure 2. Analysis of the CTB data. Comparison of the estimated distribution of a
linear mixed model (LMM) and the school-specific intercepts of the tree-structured
model (TSC). The distribution of the fixed effects is quite different from the normal
distribution obtained for the random effects model.

the tree-structured model are shown in Figure 1. The coefficient paths build
a tree that successively partitions the schools in terms of the performance of
students. The optimal number of splits that was selected by the algorithm,
is marked by the dashed line. It is seen that estimates changed strongly in
the first steps, but after about ten splits the estimates were very stable. A
graphical comparison of the estimated normal distribution of the random ef-
fects when fitting a classical linear mixed model with R package lme4 (Bates
et al., 2015) and the distribution of the school-specific intercepts of the tree-
structured model is shown in Figure 2. It illustrates the main advantage of the
tree-structured model. There is no distributional assumption on the school-
specific intercepts, especially no assumption of symmetry. The number of
schools in each cluster were quite different and not symmetric. The coef-
ficient estimate for covariate gender was βgender = −0.088 (95%-Bootstrap-
CI: [−0.478; 0.313]), which showed no evidence for an effect.
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ABSTRACT: Mixtures of experts models provide a framework in which concomitant
variables may be included in mixture models. In this paper, we present a method to
allow for flexible specification of the mixing proportions, as smoothing functions of
these covariates. We propose a data augmentation algorithm for sampling the param-
eters from their posterior distribution within a Bayesian framework. The proposed
methodology is investigated via a simulation experiment.

KEYWORDS: mixtures of experts models, data augmentation, bayesian P-splines.

1 Introduction

Mixture models are the basis of many model-based clustering methods. The
use of a model-based approach to clustering allows for any uncertainty to be
accounted for in a probabilistic framework. Mixtures of experts (ME) models
provide a way to extend mixture models, and allow the parameters to depend
on concomitant covariate information. In particular, in Jacobs et al. (1991)
the components’ weights are modeled as a logistic function of the covariates.
Estimation of mixtures of experts models can be achieved within the Bayesian
paradigm, using a Markov chain Monte Carlo (MCMC). Frühwirth-Schnatter
et al. (2012) exploit data augmentation based on the differenced random utility
model (dRUM) representation, thus introducing a set of auxiliary variables.

In this paper, we consider a more flexible specification of these auxiliary
variables. More specifically, part of the linear predictor is substituted with a
sum of smooth functions of each covariate, as in a generalized additive model.
In order to achieve a parsimonious representation of these smooth functions,
we use Bayesian P-splines as suggested by Lang & Brezger (2004).
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2 Model specification

Consider an independent and identically distributed sample of outcome obser-
vations {yi}, with i = 1, . . . ,n, from a population modelled by a G components
finite mixture model. Each component g (for g = 1, . . . ,G) is modelled by
the probability density function f (yi|θg) with parameters denoted θg, and has
weight pg , such that ∑G

g=1 pg = 1. Observation i has J associated covariates
xi = (1, xi1, . . . , xiJ∗−1, xiJ∗ , xiJ∗+1, . . . , xiJ), of which the last J− J∗ are met-
rical, with J∗ ∈ [1,J]. The simple mixtures of experts model extends the finite
mixture model by allowing the distribution of the latent variable to depend on
the concomitant variables:

f (yi|xi) =
G

∑
g=1

pg(xi) f (yi|θg). (1)

Jacobs et al. (1991) model the components’ weights using a multinomial logit
regression model, which can be represented following Frühwirth-Schnatter &
Frühwirth (2010) as a binary logit model conditional on knowing the regres-
sion parameters of the remaining categories.

Denote by γg and βg the vectors containing the parameters respectively as-
sociated to the linear and nonlinear part of the predictor for the g-th component
(g = 1, . . . ,G−1):

ln
pg(xi)

pG(xi)
= ηgi =

J∗
∑
j=1

γg jxi j +
J

∑
j=J∗+1

m

∑
ρ=1

βg jρB jρ(xi j) (2)

where B jρ(·) (for j = J∗, . . . ,J and ρ = 1, . . . ,m = r + 4) is a B-spline basis
function for a cubic spline with r knots. Lang & Brezger (2004) suggest a
number of knots between 20 and 40 to ensure enough flexibility, and to define
the priors for the regression parameters βg j in terms of a random walk:

βg jρ = βg j,ρ−1 +ug jρ (3)

with ug jρ ∼ N(0,τ2
g j). The amount of smoothness is controlled by the addi-

tional variance parameters τ2
g j, which correspond to the inverse smoothing pa-

rameters in the classical approach. The presence of the smoothing parameter
τ2

g j protects against possibile overfitting if a large number of knots is chosen
Then, we can write the above-described binary logit model in the partial

dRUM representation (Frühwirth-Schnatter & Frühwirth, 2010):

zgi = ηgi− log

(
∑
h6=g

λhi

)
+ εgi, Dgi = 1(zgi > 0) (4)
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Figure 1. True (solid line) and estimated posterior effects (with 95% posterior point-
wise confidence bands) of the concomitant covariates on the log-odds of mixing pro-
portions. Dotdashed and dashed lines are obtained using a linear predictor and an
additive predictor, respectively.

where zgi is a latent variable, λgi = exp(ηgi) and εgi are i.i.d. errors following
a logistic distribution.

Given λ1i, . . . ,λGi and the latent indicator variables D1i, . . . ,DGi, the latent
variables (z1i, . . . ,zGi) follow exponential distributions and can be easily sam-
pled in a data augmented implementation. To avoid any Metropolis-Hastings
step, Frühwirth-Schnatter et al. (2012) approximate, for each εgi, the logistic
distribution by a finite scale mixture of normal distributions with zero means
and parameters drawn with fixed probabilities. Regarding the parameters of
each component, appropriate full conditionals can be exploited in order to sam-
ple from the posterior distribution. Observations can be allocated into the G
components using the maximum-a-posteriori rule.

3 Simulation study

The performances of the proposed approach are investigated in a simulated
environment. Although this application concerns latent class analysis, the
proposed methodology can be easily adapted to any other type of response
variables, by chosing an appropriate form for f (yi|θg). We generate 100 in-
dependent datasets, with n = 1000 from a 2-components mixture distribution
for 5 categorical manifest variables. The components’ weights are assumed to
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depend on 2 uniformly distributed covariates x1 and x2.
Figure 1 shows the nonlinear effects of x1 and x2 on the additive predic-

tor η1i (solid line), along with the estimated effects obtained on one of the
simulated dataset using both our method (dashed lines) and by restricting the
additive predictor to be linear in x1 and x2 (dotdashed lines). For comparison
purposes, also Bayesian latent class (BLCA) models are considered, that ig-
nore the effects of x1 and x2 on the components’ weights. For each dataset, we
run the three algorithms setting the number of components equal to 2, 3 and 4.
For all the simulated datasets, our method estimated the best model in terms
of AICM (Raftery et al., 2007). In particular, the AICM suggests G = 2 for
95 datasets when an additive predictor with smooth effects is considered. We
also fixed the right number of classes (G = 2) and investigated classification
for each method, by comparing it to the true group membership. The aver-
age adjusted Rand index with our approach is 0.840, against a 0.797 by our
competitors.
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FRÜHWIRTH-SCHNATTER, S., & FRÜHWIRTH, R. 2010. Data augmentation
and MCMC for binary and multinomial logit models. Pages 111–132
of: KNEIB, T., & TUTZ, G. (eds), Statistical Modelling and Regression
Structures: Festschrift in Honour of Ludwig Fahrmeir. Springer.
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ABSTRACT: A measure of interrater absolute agreement was recently proposed capi-
talizing on the dispersion index for ordinal variables proposed by Giuseppe Leti. The
new measure is not affected by restriction of variance problems and does not depend
on the choice of a particular null distribution. In this presentation an unbiased estima-
tor of such a measure is proposed and its variance is evaluated.

KEYWORDS: ordinal variables, interrater agreement.

1 Introduction

Ordinal rating scales are frequently developed in study designs where several
raters (or judges) evaluate a group of targets. For instance, in language studies
new rating scales before their routine application are tested out by a group
of raters, who assess the language proficiency of a corpus of argumentative
(written or oral) texts produced by a group of writers. The main interest is in
analysing the extent that raters assign the same (or very similar) values on the
rating scale (interrater absolute agreement), that is to establish to what extent
raters evaluations are close to an equality relationship.

Bove et al., 2018 proposed a new procedure to measure absolute agreement
for ordinal rating scales by using the dispersion index proposed by Leti, 1983
(pp. 290-297). Such an index is given by

D = 2
K−1

∑
k=1

Fk(1−Fk) (1)

where K is the number of categories of the variable and Fk is the cumulative
proportion associated to category k. The index D is nonnegative and it is easy
to prove that D = 0 if and only if all the observed categories are equal (ab-
sence of dispersion). For a moderately large number of observations (N), the
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maximum of the index can be assumed equal to Dmax = (K−1)/2 (all the ob-
servations are concentrated in the two extreme categories of the variable).Then,
a measure of dispersion normalized in the interval [0,1] is given by

d =
D

Dmax
. (2)

The present proposal is advantageous if compared to measures of absolute
agreement in LeBreton & Senter, 2008 for two reasons. It does not depend by
the formulation of a null distribution for normalization. It can never be out of
the range [0,1].

2 An unbiased estimator of Leti index

A sample of nR raters and a sample of nT targets are drawn by simple random
sample without replacement. Let us denote by Xi j the score given by the jth
rater to the ith target, for j = 1, . . . ,nR, i = 1, . . . ,nT . Xi js are independent
categorical random variables having K categories with p(i j)

k = P(Xi j = k), for
j = 1, . . . ,nR, i = 1, . . . ,nT and k = 1, . . . ,K. In the sequel we assume that
both the targets and the raters are homogeneus (targets-raters homogeneity
assumption), this implies that the probability p(i j)

k = pk, for j = 1, . . . ,nR, i =
1, . . . ,nT and k = 1, . . . ,K.

As a consequence of homogeneity assumption, the variables Xi j are inde-
pendent and identically distributed. As an estimator of d we consider

d̂ =
D̂

Dmax
=

1
Dmax

(
1

nT

nT

∑
i=1

D̂i

)
(3)

where D̂i is given by

D̂i = 2
K−1

∑
k=1

F̂(i)
k (1− F̂(i)

k ) (4)

and F̂(i)
k is the empirical cumulative distribution function computed on ith tar-

get.

Proposition 1 The estimator d̂ has expectation

E(d̂) =
(

1− 1
nR

)
d (5)
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and variance

Var(d̂) =
(

1
Dmax

)2 V
nT

(6)

where

V =

(
1
n2

R
− 1

n3
R

)
(4σ2 +4(nR−2)J−2(2nR−3)D2) (7)

σ2 = Var(Xi j) =
K

∑
k=1

k2 pk−
(

K

∑
k=1

kpk

)2

(8)

J =
K

∑
k=1

K

∑
h=1

K

∑
l=1
|k−h||k− l|pk ph pl. (9)

As a consequence of Proposition 1, from (5) an unbiased estimator of d can be
defined as follows

d̂∗ =
(

nR

nR−1

)
d̂. (10)

3 An application on real data

In this section the ratings obtained in a research conducted at Roma Tre Uni-
versity are analyzed (Bove et al., 2018). The aim of the study was to investigate
the applicability of a six-point Likert scale for functional adequacy (an aspect
of language proficiency) developed by Kuiken & Vedder, 2017 to texts pro-
duced by native and non-native writers in three different task types (narrative,
instruction, and decision-making tasks). The scale comprises four subscales,
corresponding to the four dimensions of functional adequacy identified by the
authors of the scale: content, task requirements, comprehensibility, coherence
and cohesion. In the study nR = 7 raters evaluated the text produced by nT = 40
targets: 20 native speakers of Italian (L1) and 20 non-native speakers of Italian
(L2). For our purposes, we have selected ratings concerning only the narrative
task and the subscale comprehensibility.

The results of the interrater agreement analysis for the subscale are sum-
marized in Table 1, where the intraclass correlation ICC(A,1) and the average
values of rWG defined as in LeBreton & Senter, 2008, the coefficient of vari-
ation CV , d̂ and d̂∗ are shown for L1, L2 and total groups. The intraclass
correlation ICC(A,1) provides a low-moderate level of agreement for the to-
tal group (0.67). The results for the average values of CV (12.16%), d (0.22)
and d∗ (0.25) seem in accord with ICC(A,1), while the average value of rWG
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(0.87), highlights a higher level of agreement. When the analysis focuses sep-
arately on the two subgroups of L1 and L2 students, results regarding the L1
group deserve particular attention. Interrater agreement measured by intraclass
correlation is very low in the L1 group (ICC(A,1) = 0.14). Analysing the dis-
persion of the ratings due to this subgroup, it comes out that most of the raters
used almost exclusively levels 5 and 6 of the scale. Such a range restriction
caused the very low value of the intraclass correlation, despite the substantial
agreement among the raters that scored all the L1 texts in the same high levels.
This problem does not regard the results for the other three indices of Table 3
(rWG = 0.90; CV = 8.12%; d̂ = 0.17; d̂∗ = 0.19) that show a very good level
of absolute agreement.

Table 1. ICC(A,1) and average of rWG, CV , d̂ and d̂∗ for the comprehensibility sub-
scale in the L1, L2 and the Total groups

Group N ICC(A,1) rWG CV% d̂ d̂∗

L1 20 0.14 0.90 8.12 0.17 0.19
L2 20 0.63 0.84 16.20 0.28 0.32

Total 40 0.67 0.87 12.16 0.22 0.25
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ABSTRACT: Tensor analysis is also known as multi-way analysis. It allows analysing
and visualizing more complex data than possible in multivariate analysis. Rather than
being limited to matrices, tensor analysis allows analysing e.g. ‘boxes’ of data, called
third-order tensors or three-way arrays. And the analysis extends easily to higher
orders as well. There are several models and decompositions available for tensor data
and they provide insights that are not possible to obtain with standard multivariate
tools (Smilde, Bro et al. 2004).

For example, some models allow unique decomposition that completely obliviate
the need for rotations towards simplicity because there is no rotational freedom what-
soever (Kruskal 1989). In particular, the PARAFAC (Harshman 1970) and PARAFAC2
(Harshman 1972) are interesting data analysis models with properties that allow solv-
ing otherwise impossible problems. For example, they allow making predictions of
concentrations of chemical compounds where other methods would fail or allow to re-
solve completely mixed chemical signals. That is, they allow unscrambling scrambled
eggs figuratively speaking.

In this presentation, we will showcase some of the interesting properties of tensor
methods on a variety of data. We will mainly focus on chemical data such as fluo-
rescence spectroscopic data for checking adulteration of food products or gas chro-
matography with mass spectrometry detection for untargeted chemical profiling of
food products.

KEYWORDS: PARAFAC, PARAFAC2, Tucker, uniqueness.
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ABSTRACT: A boxplot for data lying on the surface of spheres is proposed. The
notion of statistical depth function for directional data is adopted in order to extend
the circular boxplot to spherical spaces.

KEYWORDS: Angular data depth, bagplot, graphical tool.

1 The spherical boxplot

The univariate box-and-whiskers plot (or simply the boxplot) introduced by
Tukey (1977) is a well known graphical tool in exploratory data analysis. It
was extended to the bivariate case by Rousseeuw et al. (1999), who introduced
the “bagplot” by exploiting the notion of halfspace depth function (Tukey,
1975).

Here, after the boxplot for circular variables (Buttarazzi et al., 2018), and
in analogy with the bagplot of Rousseeuw et al. (1999) we propose a box-
plot for spherical data which is based on the notion of angular depth function.
Specifically, the angular Mahalanobis (Ley et al., 2014) and angular Tukey’s
depths (Liu & Singh, 1992) will be considered.

Drawing a spherical boxplot is a non-trivial task because of the peculiar
features of spherical data. Spherical data arise in many scientific fields such
as Earth sciences, biology, medicine and physics. They lay on the surface
of a (d − 1)-dimensional unit sphere in three dimensions, that is on S2 ={

x ∈ R3 : ||x||= 1
}

, where ||x|| =
(
xT x
)1/2 is the usual L2-norm of the vec-

tor x.
The center of the spherical boxplot will be given by the angular median

corresponding to the depth function adopted (i.e., the point at which the depth
is maximized). A bag containing the 50% of the data having highest depth
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values will be depicted. Fences will be obtained by enlarging the bag by a
multiplying factor. Whiskers will be a bag including all the observed points
lying within the fences area. Points outside the whiskers will be marked as far
out values.

As with the univariate boxplot, the proposed spherical boxplot will allow
displaying information on location, spread, and shape of a spherical distribu-
tion. Outliers may also be revealed.

For the aim of our work, we need to consider that: (i) the support of a spher-
ical distribution is bounded, and hence the boxplot multiplying factor should
be carefully chosen; (ii) a proper tool for spherical data must be rotationally
invariant; (iii) the data spherical convex hull coincides with the whole sphere
in case the data set does not lie within a hemi-sphere, and hence the extension
of the ideas behind the bagplot should be carefully considered.
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ABSTRACT: This research addresses the problem of predicting the trends of two
stocks and two stock indexes for the American stock market. In this study, the predic-
tive performance of four machine learning models, are compared. The models inves-
tigated include Artificial Neural Networks (ANN), Support Vector Machine (SVM),
Random Forest and Naive-Bayes. Supervised models training is performed through a
10-fold CV approach repeated 3 times, using 10 of the main indicators and oscillators
of technical analysis as input. The experiments conducted show that among the 4,
the Naive-Bayes model gives the worst predictive performance, the Random Forest
obtains discrete results, while the SVM and the ANN are the best performing models.

KEYWORDS: machine learning, technical analysis, ann, svm, random forest.

1 Introduction

The task of predicting the evolution of stock prices and stock indexes is not
easy, due to the uncertainty that characterizes this type of variables. Before
buying or selling securities, analysts perform two types of analysis: fundamen-
tal analysis and technical analysis. In the fundamental analysis, the investment
decision depends on the study of the variables referred to the intrinsic share
value, such as the capital soundness, the ability to convert technology into
value, the performance of the economic sector to which the company belongs,
the political-economic climate, and so on. On the other hand, the technical
analysis aims to determine the future share prices by studying the statistics
generated by market activity, such as past prices and volumes. Technical an-
alysts use stock charts and statistical tools to identify patterns, trends, cycles,
which may suggest how the movement of stock price will behave in the future.
The technical analysis is based on the Efficient Market Hypothesis (EMH) of
Malkiel & Fama, 1970, according to which stock prices are an expression not
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only of fundamentals but also of all systemic variables. Therefore, if the in-
formation obtained from the prices with efficiently and appropriate algorithms
is dealt, then it is possible to forecast the evolution of the stock prices and
the stock indexes. For several years, in order to predict the stock performance
many techniques have been developed and tested. Initially, the classic lin-
ear regression models were used, but over time more appropriate techniques
such as non-linear machine learning methods were preferred (see Hastie et al.
, 2017 for an overview). This research resumes general experimental setup that
is found in the literature and it is inspired by the paper Predicting stock and
stock price index movement using Trend Deterministic Data Preparation and
Machine Learning techniques by Patel et al. , 2015. The goal of this experi-
ment is to compare the forecast performances of Artificial Neural Networks,
Support Vector Machine, Random Forest and Naive-Bayes Classifier on the
time series of two stock indices and two stocks of the American stock market.
Over ten years of data are used to compute ten technical parameters used as
input for the aforementioned models. Both the securities and the indexes have
a high trading volume, therefore they better express the general trading activ-
ity of the American market. The models are validated using a 10-fold Cross
Validation approach repeated 3 times, which made it possible to find the best
combination of parameters which minimize the forecast error. The final results
showed not only the best performing models and the differences with respect
to the less successful ones, but also how the predictive performance changes
considerably depending on whether we consider stocks or indexes. The suc-
cess or failure of a trading operation is related to the market timing and to the
taken position, long or short. This work aims to help traders to move in the
same direction of the market, identifying the moment in which to carry out a
transaction.

2 Literature

In this section, we review some studies that focused on the application of statis-
tical learning methods to financial time series data. Patel et al. , 2015 attempt
to predict the direction of the trends of two stocks and two stock indices of
the Indian Stock market. The study compares four prediction models, Artifi-
cial Neural Networks (ANN), Support Vector Machine (SVM), Random For-
est and Naive-Bayes. Two different input approaches are presented. The first
one involves the calculation of ten technical parameters using the daily trad-
ing data (opening prices, max price, min price, and closing price), while the
second one consists in representing the technical parameters as deterministic
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trend data. The authors evaluate the accuracy of each model with respect to the
two input approaches. The assessment is carried out over 10 years of histor-
ical data, from 2003 to 2012, considering two securities, Reliance Industries
and Infosys Ltd, and two stock indices, CNX Nifty and S&P Bombay Stock
Exchange (BSE). The experimental results show that, when the ten technical
indicators are used as continuous values, the Random Forest exceeds the other
three models in terms of overall predictive performance. The research also
shows that the performances of all 4 models improve significantly when the
technical parameters are transformed into trend deterministic data.
Sezer et al. , 2017 propose a trading system in which a set of technical analysis
parameters are optimized using genetic algorithms and subsequently are used
as inputs of a MultiLayer Perceptron (MLP), whose outputs are buy-sell-hold
signals. The model was trained on the historical series of daily stock prices be-
longing to the Dow 30 index for the period 1996-2016 and was subsequently
tested between 2007-2016. The results suggest that the optimization of tech-
nical indicators not only improves trading performance but also provides an
alternative model to other standard technical analysis approaches.
Moghaddam et al. , 2016 study the predictive ability of Artificial Neural Net-
works (ANN) on the NASDAQ stock index. Several feed-forward Neural Net-
works trained through the back-propagation algorithm were evaluated. The
NASDAQ series was considered over a period of 100 days: the first 70 days
(from 28/01/2015 to 7/03/2015) were considered as training set and the last 29
days were used to test the model forecasting ability. The authors experiment
with different combinations of layers and numbers of hidden units, leading to
configurations that show rather high predictive performance.

3 Results and Conclusion

We split our data into an in-sample period (training set, 10 yrs.) and a out-
of-sample period (test set, 6 months), keeping the beginning Up/Down propo-
sition and each model is selected using 10-fold Cross Validation repeated 3
times. To evaluate the predictive performances, the Accuracy, Sensitivity and
Specificity measures were used.

The experiments showed that the Naive-Bayes model performs worse than
all, with an average accuracy of 68,15% on the training set and 58,93% on
the test set. Support Vector Machines and Artificial Neural Networks showed
the highest average performance, with an accuracy of 85.09% and 83,74% on
the training set and 71,83% and 72,03% on the test set respectively. Whereas,
Random Forest stood in the middle between the unlucky Naive-Bayes and the
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performing SVM and ANN, with an average performance of 80.33% on the
training set and 69.45% on the test set. In general, all four models worked
better for indexes than for securities.
Complete results (not tabulated) show that: (i) The SVM and ANN models,
which on average perform better, have also a greater ”horizontal” variabil-
ity, i.e. the variability calculated between the estimates that each model has
produced for each asset; (ii) There are so many cases of overestimation and
underestimation and sometimes the differences are far from marginal. The dif-
ferences in absolute value and in percentage between the average performances
obtained for the in-sample and the out-of-sample periods w.r.t. Accuracy, Sen-
sitivity, and Specificity give an idea of overestimation and underestimation er-
rors on average. A further summary measure is represented by the average of
the Accuracy percentage differences: Err = 0.1416. On average, the models
overestimate the accuracy, or underestimate the forecast error of 14.16%. Fi-
nally the average accuracy is computed on the training set and on the test set,
considering the performances of the four models: AccuracyTR = 79.33%;
AccuracyTE = 70.06%.
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ABSTRACT: The paper discusses a new technique for growing trees for ordinal 
responses in the model-based framework The class of CUB mixtures is considered 
which is particularly appropriate to model perceptions, judgments and evaluations, 
as it designs the response process as the combination of  two components: a personal 
feeling which is related to the subject’s motivations and it may be  a direct measure 
of agreement, worry, satisfaction and an uncertainty component which expresses the 
inherent fuzziness of a discrete choice. 
In the proposal, the partitioning process is based on the local estimation of CUB 
regression models to profile respondents according to feeling and uncertainty. 
Alternative splitting criteria which feature both inferential and fitting issues are 
implemented in the devoted R package which is illustrated showing how the chosen 
modelling framework also allows for advantageous visualization of the classification 
results. Various applications to real data from official surveys are presented.  

KEYWORDS: Ordinal responses, Model based trees, CUBREMOT. 
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ABSTRACT: Three important issues are often encountered in Supervised Classifica-
tion: class-memberships are unreliable for some training units (Label Noise), a pro-
portion of observations might depart from the bulk of the data structure (Outliers) and
groups represented in the test set may have not been encountered earlier in the learn-
ing phase (Unobserved Classes). The present work introduces a Robust and Adaptive
Eigenvalue-Decomposition Discriminant Analysis (RAEDDA) capable of handling
situations in which one or more of the afore described problems occur. Transductive
and inductive robust EM-based procedures are proposed for parameter estimation and
experiments on real data, artificially adulterated, are provided to underline the benefits
of the proposed method.

KEYWORDS: model-based classification, unobserved classes, label noise, outliers de-
tection, impartial trimming, robust estimation.

1 Motivating Problem

In a standard classification framework a set of trustworthy learning data are
employed to build a decision rule, with the final aim of classifying unlabelled
units belonging to the test set. Therefore, unreliable learning observations can
strongly undermine the classifier performance, especially if the training size
is small. Additionally, the test set may include classes not previously encoun-
tered in the learning phase. For jointly overcoming these issues, we introduce
a robust generalization of the AMDA methodology (Bouveyron, 2014) that
accounts for outliers and label noise by detecting the observations with the
lowest contributions to the overall likelihood employing impartial trimming
(Gordaliza, 1991).

The rest of the paper is organized as follows: in Section 2 the notation
is introduced and the main concepts about the model framework are summa-
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rized. Section 3 outlines the EM-based procedures proposed for parameter
estimation. In Section 4 we employ the designed methodology in performing
classification, adulteration detection and new class discovery in a food authen-
ticity context of contaminated Irish honey samples.

2 RAEDDA Model

Consider {(x1, l1), . . . ,(xN , lN)} a complete set of learning observations, where
xn denotes a p-variate continuous outcome and ln its associated class label,
such that lng = 1 if observation n belongs to group g and 0 otherwise, g =
1, . . . ,G. Further, denote ym, m = 1, . . . ,M the set of unlabelled observations
with unknown classes zm, where zmc = 1 if observation m belongs to group c
and 0 otherwise, c = 1, . . . ,C. Note that only a subset G ⊆ C of classes might
have been encountered in the learning data, with H set of “hidden” classes
in the test such that C = G ∪H . Given a sample of N training and M test
data, we construct a procedure for maximizing the trimmed observed data log-
likelihood:

`trim(τττ,µµµ,ΣΣΣ|X,Y, l) =
N

∑
n=1

ζ(xxxn)
G

∑
g=1

lng log
(
τgφ(xn;µµµg,ΣΣΣg)

)
+

+
M

∑
m=1

η(ym) log

(
C

∑
c=1

τcφ(ym;µµµc,ΣΣΣc)

) (1)

where φ(·;µµµg,ΣΣΣg) represents the multivariate Gaussian density, τg denotes the
probability of observing class g and ζ(·), η(·) are 0-1 trimming indicator func-
tions such that a fixed fraction αl and αu of observations, respectively be-
longing to the training and test data, is unassigned by setting ∑N

n=1 ζ(xxxn) =
dN(1−αl)e and ∑M

m=1 η(ym) = dM(1−αu)e.

3 Estimation Procedure

Transductive and inductive EM-based procedures are proposed for parameter
estimation and a robust model selection criteria is used for selecting the actual
number of classes.

The transductive approach works on the union of learning and test sets:
both samples are used to estimate model parameters. This mechanism would
be equivalent to robust semi-supervised classification if C = G, but here we
allow the procedure to also look for extra classes in the test.
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The inductive approach consists of a robust learning phase and a robust
discovery phase. The former performs a robust version of supervised discrim-
inant analysis estimating model parameters for the known groups using only
the training set. The latter assigns unlabelled observations to the known groups
whilst searching for new classes; therefore, only the parameters for the C−G
extra classes need to be estimated.

In both approaches, we protect the parameter estimation from spurious
solutions considering a restriction on the ratio between the maximum and the
minimum eigenvalue of the group scatter matrices (Ingrassia, 2004).

4 Detect extra adulterant in samples of contaminated Irish Honey

We consider a dataset of Midinfrared spectroscopic measurements of 530 Irish
honey samples recorded in the wavelength range of 3700 nm and 13600 nm
(Kelly et al. , 2006). The experiment is carried out splitting observations in a
training set composed by 145 pure honey and 60 beet sucrose adulterated sam-
ples; and a test set of 145 pure, 60 beet sucrose-adulterated and 120 dextrose
syrup-adulterated honeys. In addition, 10% of beet sucrose adulterated units
in the training set are wrongly labelled as pure honey. The final aim of the
experiment is then three-fold: detect the wrongly labelled units in the training,
discover the extra adulterant in the test and finally classify unobserved units to
the correct class they belong.

The Adjusted Rand Index (Rand, 1971) is used to validate the classification
accuracy in the test set for popular model-based classification methods: results
for 50 random splits in training and validation are reported in Table 1. Clearly,
methods that adapts to unobserved classes (i.e., AMDA and RAEDDA, esti-
mated using either transductive or inductive approaches) display higher ARI,
however the performance of AMDA is intensely affected by the presence of
label noise in the learning set.

Table 1. Adjusted Rand Index (ARI) computed on the test set for popular model-based
classification methods: Eigenvalue Decomposition Discriminant Analysis (Bensmail
& Celeux, 1996), Robust Mixture Discriminant Analysis (Bouveyron & Girard, 2009),
Adaptive Mixture Discriminant Analysis via transductive and inductive approaches
(Bouveyron, 2014), and the methods proposed in this article. Average results for 50
random splits in training and validation.

EDDA RMDA AMDAt AMDAi RAEDDAt RAEDDAi
ARI 0.321 0.317 0.633 0.451 0.843 0.831
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Our proposal successfully identifies the previously unseen adulterant as
a hidden class and, furthermore, beet sucrose units erroneously labelled as
pure honey in the training set are correctly detected by the impartial trimming
99.7% of the times in each scenario. That is, honeys that present label noise
are not accounted for in the estimation procedure, enhancing the discriminating
power of the classification rule.

Our methodology seems promising in effectively dealing with challenging
supervised tasks, where both labelled and unlabelled units exhibit uncommon
and hidden patterns. Particularly, as the application showed, practitioners in-
volved in domains like food authenticity may benefit from the proposed ap-
proach. As a further research direction, a robust wrapper variable selection for
dealing with high-dimensional problems is currently under development.
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ABSTRACT: In the framework of nonparametric clustering, clusters are defined as
the domains of attraction of the modes of the density function assumed to underlie the
data. To identify clusters, an estimate of the density is then needed, with kernel density
estimator taking the lion’s share. When resorting to these methods a fine tuning of
the amount of smoothing, governing the modal structure of the density, is required.
While thoroughly analyzed in the context of density estimation, this issue has been
scarcely studied for clustering purposes. In this work the problem is addressed from
an asymptotic perspective. A sensible distance among groupings is introduced and its
asymptotic expression is derived and exploited in order to obtain a bandwidth selection
procedure specifically tailored for nonparametric clustering.

KEYWORDS: modal clustering, kernel estimator, gradient bandwidth, mean shift.

1 Introduction

Density-based clustering pursues the aim of providing a statistical formaliza-
tion to the widespread, yet ill-posed, problem of finding groups in a set of data.
According to the nonparametric - or modal - formulation, clusters are seen as
the domains of attraction of the modes of the density assumed to underlie the
data, usually estimated by nonparametric methods. Linking the notion of clus-
ter to the features of the underlying density frames the problem into a standard
inferential context. As a consequence the concept of induced clustering, the
partition implied by the characteristics of the density itself, is defined with the
ideal population clustering being the one induced by the true density.

Regardless of the specific nonparametric density estimator adopted, the se-
lection of a smoothing parameter is required. This choice represents a relevant
issue since under- or over-smoothed estimates may lead to deceiving indica-
tions about the modal structure of the density, and hence about the number of
groups.
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The selection of the amount of smoothing is usually addressed via the
minimization of some measure of distance which quantifies the discrepancy
between the estimate and the target density. Standard references are the Inte-
grated Squared Error and its expected value (MISE), or its asymptotic coun-
terpart. While for the explicit task of density estimation, the distance criterion
is usually selected to provide good estimates in a global sense, the same may
be suboptimal in a clustering framework, where a focus on the local character-
istics of the density would be more adequate to identify the modal regions.

The aim of this work is to address the problem of nonparametric density
estimation for the final purpose of modal clustering. Density estimation is per-
formed via the minimization of an appropriate metric relying on the compar-
ison between the partitions induced by the estimated distribution and the true
one, i.e. the ideal population clustering. A manageable asymptotic approxima-
tion of the considered metric is provided, which allows to define the optimal
amount of smoothing for nonparametric clustering when a kernel estimator is
adopted.

2 Optimal bandwidth for the asymptotic distance in measure

Let us assume that the observed data X = {xi}i=1,...,n, are sampled from a
random variable X with unknown density f . For mathematical tractability, in
the following we restrict our attention to the univariate case, i.e. xi ∈ R.

A standard choice to estimate f is to resort to the kernel estimator

f̂h(x) = (1/nh)
n

∑
i=1

K[(x− xi)/h]

where K is a kernel function and h > 0 is the bandwidth which controls for the
amount of smoothing and, then, the modal structure.

To tailor the choice of h for clustering purposes, we consider the distance
in measure (Chacón, 2015) between Ĉh = {Ĉ1, . . . ,Ĉr}, the clustering induced
by f̂h, and C0 = {C0,1, . . . ,C0,s}, the ideal population one, induced by the true
f :

d(Ĉh,C0) =
1
2

min
σ∈Ps

{
r

∑
i=1

P(Ĉi∆C0,σ(i))+
s

∑
i=r+1

P(C0,σ(i))

}
, (1)

where Ps is the set of permutations of {1, . . . ,s}, C∆C0 = (C∩Cc
0)∪ (Cc∩C0)

and with possibly r ≤ s. This distance can be seen as the minimal probability
mass that needs to be moved to transform one clustering into the other. Be-
ing sample-specific, the distance in measure is subject to a random variability.
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Hence, the Expected Distance in Measure EDM(h) = E[d(Ĉh,C0)] is alterna-
tively considered as a non-stochastic error distance. The optimal bandwidth is
then defined as hEDM = argminh>0EDM(h).

Under some regularity assumptions, it can be proved (Casa et al., 2019)
that EDM(h) is asymptotically equivalent to

AEDM(h) =
r−1

∑
j=1

f (m j)

f (2)(m j)
ψ
(1

2
µ2(K) f (3)(m j)h2,R(K(1)) f (m j)(nh3)−1

)
(2)

where ψ(µ,σ2) = (2/π)1/2
{

σe−µ2/(2σ2)+ |µ|∫ |µ|/σ
0 e−z2/2dz

}
, m j is the jth lo-

cal minimum of f , g(l) denotes the lth derivative of a function g, µ2(K) =∫ ∞
−∞ x2K(x)dx, and R(K(1)) =

∫ ∞
−∞ K(1)(x)2dx.

Since neither the EDM(h) nor the AEDM(h) admit an explicit represen-
tation of their minima, the idea is to rely on a tight upper bound. The study
of the behaviour of ψ(·, ·) allows us to introduce two different upper bounds,
whose minimizers can be computed explicitly. It follows that

hAB1 =




9R(K(1))
(

∑r−1
j=1 f (m j)

3/2/ f (2)(m j)
)2

2πµ2(K)2
(

∑r−1
j=1 f (m j)| f (3)(m j)|/ f (2)(m j)

)2




1/7

n−1/7

hAB2 =

(
24R(K(1))∑r−1

j=1 f (m j)
3/2/ f (2)(m j)

11µ2(K)2 ∑r−1
j=1 f (m j)1/2 f (3)(m j)2/ f (2)(m j)

)1/7

n−1/7 .

Note that, since the derived bandwidths are depending on some unknown quan-
tities, from an operational point of view we need to resort to plug-in strategies.

3 Some results and conclusions

In this section we present an excerpt of the numerical results obtained in one-
dimensional setting in order to evaluate the performances of the proposed se-
lectors as well as the quality of the introduced asymptotic approximations.

The top panel of Table 1 shows the quality of the derived approximations
to the EDM, as a function of the bandwidth, when all the involved quantities
are known. The approximations improve as the sample size increases and they
appear to behave satisfactorily especially around the value of h minimizing the
EDM. In the bottom panel we can see the results, in terms of EDM, of the
data-based bandwidth selectors over B = 1000 synthetic samples, along with
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Table 1. Top panel: true density (left); EDM, AEDM and the bounds vs h for
n = 1000,10000 (middle and right panels). The vertical dashed line is associated
to the gradient bandwidth. Bottom panel: EDM estimates (and standard errors) at the
optimum h according to the AEDM, the two bounds, and the gradient bandwidth.
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DM estimate
ĥAEDM 0.015 (0.018) 0.005 (0.003)
ĥAB1 0.013 (0.010) 0.005 (0.003)
ĥAB2 0.014 (0.011) 0.005 (0.003)

ĥGRAD 0.013 (0.009) 0.005 (0.003)

the performances of the gradient bandwidth, representing a sensible competi-
tor in this framework, obtained via MISE minimization. The proposed selec-
tors ĥAB1 and ĥAB2 led to more accurate clusterings than hAEDM, with a slight
preference for the former. The gradient-based bandwidth, in turn, not only
produces competitive results, but its Monte Carlo average distance in measure
appears lower than the one produced by the asymptotic EDM minimizers. In
fact, a deeper insight into the standard errors of the obtained distances shows
that ĥAEDM, as well as ĥAB1 and ĥAB2, produce more variable results, due to a
higher sensitivity of the minimizers to the plugged in pilot estimates.

For a complete exposition of the results, alongside with a multivariate gen-
eralization, see Casa et al., 2019.
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ABSTRACT: Significant changes have affected currently internal mobility in Italy. We try to 

understand what are the variables that allow a place to attract population. This work focuses 

on the foreign population and aims to detect the factors that push immigrant population 

towards Italian municipalities. We want to verify whether the action is different between 

movements of foreigners already resident in Italy and of immigrants coming directly from 

abroad. Data on flows, stock of populations and socioeconomic variables on Italian 

municipalities from Istat, Ministry of Economy and Sole 24 were exploited. Methods used are 

regression analyses enriched with spatial factors with reference to the possible action of 

spatial variables through the building of OLS, spatial lag and spatial error models. 

KEYWORDS: Foreign immigration, pull factors, internal mobility, regression, spatial analysis.

1 Background and aim 

Significant changes have affected the current internal mobility in Italy. Foreign 
immigration, the repopulation of internal or marginal areas are important 
phenomena that may have played a role in the capacity of an area to attract 
population. We try to understand what are the variables that allow a place to attract 
population. Some results of a previous work (Natale, Santacroce, Truglia, 2016) 
show an unexpected absence of a link between the "attraction" variables identified 
for Italians and also those designed for foreigners. The reasons that lead natives 
(Italian citizens) to move within the country seem different from those of 
immigrants (Foreign citizens). This work focuses on the foreign population and aims 
to detect the capability of the foreign population already resident in the Italian 
municipalities to attract further flows of immigrants originated either from other 
municipalities or directly coming from abroad. In other words the paper tries to 
detect the factors underpinning the network effect due to foreign population resident 
in Italy. 
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2 Materials and methods 

      We analyze in this first phase only four Italian regions: Piedmont, The Marches, 

Apulia and Calabria1. Three sources of data are used. We consider the data 

concerning foreigners enrolled in the municipality population registry (demographic 

balance data supplied by Istat, the Italian Statistical Institute) in the about 2000 

municipalities of the four regions examined. We took into account both the series 

recently made available by Istat, beginning with the Census data (8mila Census), 

and statistics on per capita income obtained from studies carried out by the Ministry 

of Economy and Finance.  
We first calculated the foreign immigration rate FRi for a generic municipality i 

observed in the years 2012-2014. The rate is defined as:  

FRi,12-14= (Fi,2012 + Fi,2013 + Fi,2014)/3 / (FPi,1.1.2012 + FPi,31.12.2014)/2 

where Fi is the sum of foreign inflows coming from other municipalities or from 

abroad, FP is the foreign resident population. Then we calculated two further 

measures: internal (regarding flows of foreigners resident from other Italian 

municipalities) and external (foreigners from abroad) foreign immigration rates 

(respectively, IFRi and EFRi). 
In order to detect the effect of various factors and patterns of spatial association, 

autoregressive models are used (Anselin, 1988 and 1995). In particular, OLS, spatial 
lag and spatial error models are estimated. In this paper only the results concerning 
this strategy of analysis are showed. Anyway the results obtained with the second 
model are quite similar.  

3 Main Results 

      In the four Regions the internal immigration rates are not so different (around 4-

6%: see Table 1). 

Table 1 Total, internal and external foreign immigration rates (%) in Piedmont, The 

Marches, Apulia and Calabria. Italy, 2012-2014.  

Regions Total Immigration Rate Internal Immigration Rate External Immigration Rate 

Piedmont 11,5 6,3 5,2 

The Marches 11,3 5,9 5,4 

Apulia 14,8 5,0 9,9 

Calabria 13,7 3,8 9,9 

Total Regions 12,2 5,8 6,4 

  Source: own elaboration based upon Istat Resident Population Balance 

       A less capability of the resident foreign population to pull further flows coming 

from the rest of the country (the rate is equal to 3,8%) clearly emerged in Calabria. 

1 The four areas were chosen for the sake of comparison with a previous research conducted in the same 

Regions with reference to the attraction of Italian population: see Natale, Santacroce and Truglia (2016). 
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Apulia, the other Southern Region, shows low level of IFR as well. Regarding the 

external pull force the situation is reversed: EFR is higher in the Southern Regions 

(about 10% in the three years examined), well above the rates observed in the 

Centre-North Regions (value around 5%)2. Total immigration rates are clearly 

influenced by this different pattern: rates range from 11.3 (The Marches) to 14.8 

(Apulia)3. Concerning the rate observed at municipal level the variability is very 

high, showing a surprising range of very different levels inside the same Region (see 

Map 1).  

 Map 1 Total Foreign Immigration Rate by municipalities. Italy, 2012-2014. 

      The autoregressive models are used prove to be useful for the analysis of the 

factors underlying a high or low attraction capacity of the foreign population in the 

municipalities chosen. The results of the preliminary analyses seem to suggest 

adoption both of a model with lag of the variables used and a model with 

autoregressive spatial disturbances (Table 2). This results are not new in the 

literature (see, for instance, Cracolici et al, 2009; Arbia, 1993; Truglia, 2013). 

      Some relevant variables are associated with IFR and EFR. Percentage of foreign 

population has a negative association with the pull force of the municipalities. It 

seems to be an evidence of the existence of a scarce network effect: in other words 

2 In the two Southern Regions a slight increasing presence of immigrants from African continent is 

observed in the 2012-2014 period: in Italy the percentage increased by 12%, in Apulia and Calabria by 

25%. However to include this effect in the model didn't significantly improved the results obtained. The 

higher EFR in Apulia and Calabria could be also linked to the capacity of foreign population already 

resident in Italy to attract other components of the household from abroad. This capacity is inversely 

linked to the duration of stay in the country of arrival. In the Southern Regions the percentage of long 

sojourn residents is lower than in the Piedmont and The Marches. 
3 Regarding Italian resident population it is important to note that both the rates are below the levels 

observed for foreign population: nearly zero concerning the flows of Italians from abroad, more or less 
one third with reference to the internal migration.  
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municipalities with an high percentage of foreign population exert a weak force in 

attracting foreign flows. This could be in accordance with a theory of spatial 

assimilation in which foreigners tend to disperse in the territory. Unemployment has 

a negative effect only with reference to EFR4. It is interesting to note that some 

variables act in a different way on the two mobility measures used: in the areas with 

high percentage of high percentage of poor household the IER is low, the contrary 

happened with reference to the EFR. It is important to say that the presence of a 

neighbour effect emerged in the models considering spatial effects. These effects are 

obviously neglected by using OLS model.  

Table 2: Test to determine the goodness of the model. 

Test 
Internal Migratory Rate External Migratory Rate 

Statistic Sig. Statistic Sig. 

Moran's I (error) 5,10 0,00 8,90 0,00 

Lagrange Multiplier 17,41 0,00 55,53 0,00 

Robust LM (lag) 0,43 0,51 2,91 0,09 

Lagrange Multiplier (error) 22,71 0,00 72,76 0,00 

Robust LM (error) 5,74 0,02 20,14 0,00 

Lagrange Multiplier (SARMA) 23,14 0,00 75,67 0,00 

     In sum the level of the attractiveness of the foreign population in Italy is linked to 

the levels of the municipalities around, so that this pull force tends to be clustered in 

the Regions used. An extension of these results to the whole nation could lead to 

further interesting results. 
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ABSTRACT: Manifold multidimensional concepts are explained via a tree-shape struc-
ture by taking into account the nested hierarchical partition of variables. The root of
the tree is a general concept which includes more specific ones. In order to detect the
different specific concepts at each level of the hierarchy, we can identify two differ-
ent features regarding groups of variables: the internal consistency of a concept and
the correlation between concepts. Thus, given a data positive correlation matrix, we
reconstruct the latter via an ultrametric correlation matrix which detects hierarchical
concepts by looking for their internal consistency and the correlation between them
measured by relative indices.

KEYWORDS: ultrametric matrix, hierarchical latent concepts, correlation matrix, par-
tition of variables.

1 Introduction

Many relevant multidimensional phenomena are represented via a tree-structure
(for example well-being, sustainable development, poverty, climate change).
We can hypothesize a Dimensionality Reduction model with a hierarchical
structure that goes from disjoint sets of Manifest Variables (MVs) to the Gen-
eral Concept (GC). In other words we build a parsimonious hierarchy of classes
of variables starting from a reduced number, (i.e., latent dimensions) which
measure specific concepts describing the main components of the phenomenon
under study up to the definition of the GC. Each cluster of MVs may be related
with a factor which best represents its dimension. This is not new in many
fields of research, for instance Revelle (1979) introduced a hierarchical clus-
ter analysis method very useful to detect clusters of variables in a hierarchical
approach. Our proposal can be considered into the Dimensionality Reduction
framework for its ability of summarizing a big quantity of information by way
of many steps of aggregation. In order to detect the hierarchy of variables, i.e.,
the different specific concepts at each level of the hierarchy, we identify two
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different features regarding clusters of variables: the internal consistency (i.e.,
reliability of the concept) and the correlation between concepts. Thus, given a
data correlation matrix, we reconstruct the latter via an ultrametric correlation
matrix which detects hierarchical concepts with the highest internal consis-
tency and with the highest correlation between them in order to justify their
fusion. The internal consistency of concept (i.e., variable cluster), is the global
consistency of MVs based on their correlations within cluster. This is also
called internal reliability and it is commonly measured by Cronbach’s alpha
(Cronbach, 1951). On the one hand, the reliability is connected to the con-
cept of unidimensionality, which, on the other hand, evaluates to what extent
a single latent indicator has been measured with a set of MVs. Reliability and
unidimensionality are more realistic for specific dimensions, whereas, when
considering a general factor, we have to hypothesize the presence of a GC
(Cavicchia & Vichi, 2019). A common error is to interpret a measure of re-
liability as a measure of unidimensionality. Although being connected, they
cannot consider as the same thing. Unidimensionality involves the homogene-
ity of a set of items, and internal consistency is certainly necessary for homo-
geneity, but it is not sufficient. We can see that, therefore, the improving of
the internal consistency leads to an improvement of unidimensionality as well,
but we cannot use the same index to measure both. By supposing that no vari-
able can belong to two clusters at the same time, such that, all the clusters are
disjoint at each level, we can consider another important feature which is the
correlation between clusters of variables. This latter represents a function of
the pairwise relationships between the items of the two groups and determines
the bottom-up agglomerations of variable clusters. Hence, we are supposing a
nested hierarchy where, starting from Q clusters of variables, all the possible
combinations are taken into consideration in order to identify the aggregations
which best detect reliable concepts at all levels.

2 Internal Consistency and Correlation Between

2.1 A Measure of Internal Consistency

The internal consistency of a cluster of MVs is the ability of all variables to
measure the same latent concept. It is usually measured by indices based on the
correlations between the MVs within the cluster. Many measures of internal
consistency are reviewed by Revelle & Zinbarg (2009). In our framework, by
starting from Q variable clusters at the bottom level, we have Q(Q−1)

2 clusters
along the hierarchy, and as many internal consistency indexes. For each level
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q = Q, . . . ,1, the (J× q) membership matrix Vq, where J is equal to the total
number of MVs, tells us for each cluster which variable belongs to. Given
Vq, Cavicchia et al. (2019) proposed a measure of internal consistency for
non-negative data correlation matrices, arranged in a (q× q) diagonal matrix
as follows:

R̂
W
q = diag

(
dg(V′q(R− IJ)Vq)

)
[(V′qVq)

2−V′qVq]
−1. (1)

In Eq. 1 R represents the (J×J) observed correlation matrix and IJ is the iden-
tity matrix of order J; furthermore dg(·) produces a vector whereas diag(·)
builds a diagonal matrix. It is important to notice that R̂

W
q has q non-zero el-

ements which are the internal consistency measures, one for each cluster. R̂
W
q

corresponds to the Least Squares solution for reconstructing R via an ultra-
metric correlation matrix composed by a matrix which explains the internal
consistency of concepts and a matrix which explains the correlation between
concepts. Each value W r̂ll (l = 1, . . . ,q) of R̂

W
q belongs to the interval [0,1],

recalling that R has all non-negative values, thus it may be considered as a
relative index. An important characteristic of the values of R̂

W
q is that they are

not function of the number of MVs of each cluster, thus they are not affected
by the size of clusters.

2.2 A Measure of Correlation Between Clusters of Variables

In order to detect all the levels of the hierarchy, it is crucial to define the corre-
lation between clusters of MVs, each one representing a latent concept.
For each level q = Q, . . . ,1 it is possible to compute the correlation between
clusters of variables, and the internal consistency within clusters as well, but
it is important to stress the fact that the Q-level (i.e., the level with Q variable
clusters at the bottom level) is the optimal one in order to reconstruct the data
correlation matrix R. Given Vq and the diagonal matrix of internal consistency

measures R̂
W
q , Cavicchia et al. (2019) proposed a measure of correlation be-

tween clusters of MVs for non-negative data correlation matrices, arranged in
a (q×q) correlation matrix as follows:

R̂
B
q = (V′qVq)

−1V′qR̄Vq(V′qVq)
−1. (2)

In Eq. 2, R̄ = R−V′qR̂
W
q Vq + diag

(
dg(V′qR̂

W
q Vq))− IJ +V′qIQVq. The off-

diagonal values within R̂
B
q are the between-concepts correlation whereas the
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diagonal elements are equal to one. R̂
B
q is the LS solution with respect to the

matrix which explains the correlation between concepts. As for R̂
W
q , each value

Br̂k f (k = 1, . . . ,q; f = 1, . . . ,q; k 6= f ) of R̂
B
q belongs to the interval [0,1] and

it turns out to be a relative index.

3 Conclusions

A correlation matrix R may be reconstructed via a ultrametric hierarchical
structure which highlights two crucial characteristic regarding clusters of vari-
ables: the internal consistency and the correlation between clusters. In order
to detect the ultrametric structure of the latent concepts, it is important to in-
vestigate in depth the reliability of each cluster of MVs and all the relations
among them. For correlation matrices R which are composed only by non-
negative elements, as common in psychometric applications, Cavicchia et al.
(2019) presented a model that considers two main matrices, the first one which
contains non-zero element only on the diagonal, that is the internal consis-
tency measure for the related cluster, and the second one which is a correlation
matrix with the off-diagonal elements that represent the correlation between
clusters. The Dimensionality Reduction model with a hierarchical structure
that goes from disjoint sets of Manifest Variables (MVs) to the General Con-
cept (GC) is given by detecting consistent clusters and by following correlation
between them.
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ABSTRACT: Selecting an optimal clustering solution is a longstanding problem. In
model-based clustering this amounts to choose the architecture of the model mixture
distribution. Decisions to be made pertain to: cluster prototype distribution; number of
mixture components; (optionally) restrictions on the clusters’ geometry. Classical pro-
posals address this issue via penalized model selection criteria based on the observed
likelihood function. In this study, we compare these techniques with the less explored
cross-validation alternative, which is rather popular for many other data-driven opti-
mized methods. We analyze both classical methods such as BIC, AIC, AIC3 and ICL,
and several cross-validation schemes where the risk is defined in terms of minus the
log-likelihood function. Selection methods are compared by using the Iris dataset.

KEYWORDS: model based clustering, model selection, penalized likelihood, cross-
validation.

1 Introduction

In model-based clustering it is assumed that data are generated from a fi-
nite mixture distribution with density f (· ; θ) = ∑K

k=1 pk fk(· ; ak), where θ =
(p1, · · · pK ,a1, · · · ,aK), is the unknown parameter vector. Here fk are densi-
ties representing the k-th cluster, 0≤ pk ≤ 1’s are mixing proportions, so that
∑K

k=1 pk = 1, ak is the parameter vector describing the cluster shape under fk.
Henceforth, fk(· ; ak) is the Gaussian density with mean µk, and covariance
matrix Σk, thus ak = (µk,Σk). The definition of a member of the set of candi-
date models M requires: (i) definition of K, (ii) eventually a parameterization
for the covariance matrices Σk. Let ak,h = (µk,Σk,h) be the parameters of the
k-th component according to a certain parameterization h of the covariance
structure. Celeux & Govaert, 1995 proposed to decompose Σk,h into parame-
ters describing geometrical notion of clusters’ volume, orientation, and shape
to reproduce different levels of model complexity.
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Let θ(m) be the parameter vector representing a candidate model m ∈M .
In most situations, the practice is : (i) estimate each member of M based on
maximum likelihood (ML); (ii) choose a model m∗, and its implied clustering,
based on some optimality notion. In the context of Gaussian model-based clus-
tering the choice of m∗ is typically performed by optimizing an information-
theoretic statistic, based on the log-likelhood function. Section 2 introduces
these and other methods. Section 3 provides a comparison of on real data.

2 Methodology

Let Xn = {x1, · · · ,xn} be a sample of n data points. Let zik be the unobserved
assignment, where zik = 1 if xi belongs to the k-th cluster and 0 otherwise. Let
K(m) and h(m) the values of K and h according to m ∈M . Define

l(θ(m)) =
n

∑
i=1

K(m)

∑
k=1

log(pk fk(xi,ak,h(m))) (1)

cl(θ(m)) =
n

∑
i=1

K(m)

∑
k=1

zi,k log(pk fk(xi,ak,h(m))) (2)

where l(·) is the sampling log-likelihood function under m, and cl(·) is the so
called complete log-likelihood function. Let θ̂(m) the ML estimate of θ(m),
and let ẑi,k be the maximum a posteriori estimates of zi,k. Replacing θ̂(m) and
ẑi,k into (1) and (2) the corresponding sample estimates l̂(m) and ĉl(m) are
obtained. Let νm be the number of free parameters in the model m, where
νm increases with both K(m), and the number of parameters required by the
covariance parametrization h(m). We now introduce sampling approximations
of the Bayesian Information Criterion (BIC) of Schwarz, 1978, the Akaike
Information Critirion (AIC) of Akaike, 1973, the modified version of the AIC
(AIC3) of Bozdogan, 1983 and the Integrated Complete Likelihood Criterion
(ICL) of Biernacki et al. , 2000. They are defined as:

AIC(m) = 2l̂(m)−2νm,

AIC3(m) = 2l̂(m)−3νm,

BIC(m) = 2l̂(m)− log(n)νm,

ICL(m) = 2ĉl(m)− log(n)νm.

A model m∗ is selected in order to maximize one of the previous quantities.
These criteria, although derived from different perspectives, have all the fol-
lowing form: “log-likehood at the MLE − penalty”, where the penalty in-
creases with model complexity, and sometimes decreases with n.
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Figure 1. x-axes show models m ∈M , ordered in terms K(m) first, and then by the
number of free parameters required by the covariance structure h(m) (increasing com-
plexity). E.g. “G2” means K(m) = 2. For CV plots, 95%-confidence bands for the
average CV (m) are shown as well.

Another proposal, that is less explored, but still based on likelihood-type
statistics, is the cross-validation (CV) method of Smyth, 2000. In CV a risk
measure CV (m) is computed out-of-sample by splitting the available data, and
a model m∗ is chosen in order to optimize CV (m). For a given m the CV
works as follow: (i) a partition of Xn into a training-set X tr

n , and a test-set
Xcv

n is obtained; (ii) θ̂tr(m) is estimated using the sample points in X tr; (iii)
CV (m) = l̂cv(m)/n is computed, where l̂cv is the estimated l̂(m) computed on
Xcv

n using θ̂tr(m). In order to reduce the bias/variance of the CV, multiple
splits are performed and the averaged value of CV (m) is maximized. A model
is selected in order to maximize the so computed CV (m).

3 Comparing methods on real data

The comparison uses the famous Iris dataset (Fisher, 1936), a four dimensional
dataset with n = 150 observations of Iris species, divided in three different
classes/groups. The analysis employs the mclust R package (Scrucca et al. ,
2017) for parameters estimation. M includes finite Gaussian mixture models
with K = 1,2, . . . ,10, and the covariance parametrizations of Celeux & Gov-
aert, 1995, for a total of 140 models. For cross-validation we compare two
splitting methods: (i) 10-fold CV: the data set is randomly partitioned into 10
non-overlapping subsets (the folds), each used once as test-set while setting the
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remaining 9 folds as training-set; (ii) Monte Carlo CV (MCCV): the dataset
is partitioned T = 100 times into two halves, one is used as training-set, the
other is used as test-set. Results for the 6 methods are summarized in Fig-
ure 1. There are two winning solutions. BIC, ICL and MCCV, select K = 2,
ellipsoidal structures for both clusters with varying volume and orientation.
This solution merges the overlapping groups corresponding to versicolor and
virginica species, which might be still reasonable. AIC3 and 10-fold CV se-
lects a solution with K = 3 and covariance structure as before. This solution
achieves an adjusted Rand index = 0.9 (see Hennig et al. , 2015) where 3.3%
of the points are misclassified in the strongly overalpping region between the
versicolor and virginica species. Here we conclude that AIC3 and 10-fold CV
have a superior performance. This is an interesting evidence that encourages
further investigations.
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ABSTRACT: The work presents a robust approach to labor share analysis. The esti-
mate of labour share presents various complexities related to the nature of the data sets
to be analyzed. Typically, labour share is evaluated by using the discriminant analy-
sis and linear or generalized linear models, that do not take into account the presence
of missing values and possible outliers. Moreover, the variables to be considered are
often characterized by a high dimensional structure. The proposed approach has the
objective of improving the estimation of the model using robust multilevel regression
techniques and data transformation.
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1 Introduction

The analysis of the labor share is a field of analysis which involves both the
macro and the micro level. The relevance of this issue indeed is mostly related
to the empirical analysis of the level and evolution of the aggregate labor share.
A large share of the theoretical literature however has studied the dynamics of
the determinants of the labor share at the micro level. This contradiction has
been solved converging to a paradigm where the macro level was concealed
with the micro level by assuming that a representative firm is operating in the
economy. This approach characterizes most of the literature. In particular
since the seminal analysis of Bentolila & Saint-Paul, 2003 where, the theoret-
ical determinants of the labor share are summarized in the definition of the SK
schedule, several studies have tried to provide an explanation for the persistent
declining trend of the labor share identifying different causes for it. Most of
these causes have to do with the behaviour of the representative firm, and thus
concern the micro level. They include the elasticity of substitution between
labor and capital (Bentolila & Saint-Paul, 2003; Lawless & Whelan, 2011)
capital deepening (Piketty & Zucman, 2014; Karabarbounis & Neiman, 2013).
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The present paper focuses on the micro level and analyzes the determinants of
the labor share using a large set of firm-level data with the main aim to inves-
tigate the issues that in the empirical analyses at the macro level are discarded.
In particular we will discuss the role of the elasticity of substitution between
productive factors and its interactions with fundamental structural factors as
firm size and the sectors where the firm operates. The results of our analysis
contribute to the well established empirical literature studying the aggregate
labor share by providing new insight on how differences between firms affect
the labor share and how its determinants interact at the micro level.

2 The dataset and variables

Our main sample of firms is composed of more than thirty thousand firms in
a timespan of ten years going up to year 2017, representative of the manufac-
turing sector and extracted from the Buerau Van Dijk’s AIDA data base that
contains comprehensive information on capital companies in Italy. A rich set
of information is collected by this survey, including firm-specific characteris-
tics, investment and (international) trade activities. The model variables are as
follows: Y: Labour share proxied by the ratio of labour cost to value-added;
This indicator is an alternative version of the ratio of wage to total company
assets. Using the added value instead of total assets, this variable can assume
negative or positive values. X1: The ratio of tangible fixed assets to added
value. The book-value of gross investments of this year has been adjusted to
account for inflation using a measure of vintage. Then the deflated value of
investments in the next years has been added using sectoral deflators for gross
fixed capital calculated by the ISIC/ATECO assuming year 2007 as the base
reference. X2: The ratio of intangible assets to total assets: this ratio measures
the percentage of investments on intellectual capital, research and develop-
ment and other intangible assets over the company total assets. X3: The ratio
of industrial equipment to total asset: this variable measures the theoretical
productive potential of the firm and is one of the primary drivers of company
value. X4: Return On Sales, (ROS), that measures firm operating profitability
proxied by the ratio of operating margins to sales. We expect a negative effect
on the default risk, as the higher a firm’s profitability the higher the flow of
internal resources available to cover debt exposure should be; X5: measures
the firm’s interest burden, proxied by the ratio of firm total asset to net capi-
tal; high interest burden may worsen the financial risk associated with external
finance. X6: Sales, X7: Age of the firm.
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3 Results

Table 1 first column shows the results of the application of the multilevel re-
gression model on the original data. We used the method described in Naka-
gawa & Schielzeth, 2013 for deriving R2 in multilevel framework. The R2 of
the multilevel model is high, but the significance of β coefficients is always
near critical values, except for the intercept. The main reason of this behaviour
lies in the presence of extremely high leverage points in the data that are af-
fecting the β estimates in the linear model; this effect is well know in statistical
literature and was first pointed out by Sastry and Nag, 1990 which summarized
it in a theorem that states that R2 → 1 as the remoteness of the leverage units
increases. Table 1 4th column shows the results of the application of the multi-
level regression model after removing these outlying observations by means of
the forward search, a procedure that detects multivariate outliers, Atkinson &
Riani, 2000. The new pseudo R2 is very low, near 0.01 even if the significance
of the β estimates improves considerably and most of them are now significant.

β̂ML β̂MLFS β̂MLFSdt
Variable Estimate p-value Estimate p-value Estimate p-value
intercept 0.44924 6.9299e-05 0.68786 2.9993e-163 0.35525 2.5439e-239
TFA/AddVal 0.055476 0 0.018411 1.0344e-05 -0.051072 7.5262e-179
IA/TA -0.65996 0.16129 -0.10365 0.29107 -0.66183 3.0051e-57
IE/TA 0.29917 0.78016 0.20128 0.59472 -0.49701 0.001858
ROS 0.00039737 0.95317 -0.02762 6.4095e-79 -0.094043 0
Debt ratio 0.00042643 0.70808 0.001237 0.10774 0.0019641 1.4619e-09
Sales -1.3991e-08 0.97737 7.3252e-06 0.1368 -5.2079e-05 1.0936e-137
Age 0.0041725 0.29412 0.0020498 0.012091 0.0089754 3.1016e-148

Table 1. β̂ comparison between non robust regression, robust regression and robust
regression after data transformation

The analysis of the distribution of the regression residuals leads us to think
that transformation of the response is required. To this purpose we use the
non parametric conditional expectation methods (i.e. ACE and AVAS), Tib-
shirani, 1988, Breiman & Friedman, 1985. Applying the transformations on
the cleaned dataset we were able to dramatically improve the goodness of fit,
R2 = 0.33. The analysis of the results still shows the presence of several regres-
sion outliers, therefore we performed again the Forward Search to remove the
atypical units. Table 1 6th column shows the results of the regression model
applied on the clean transformed data. The new value of the pseudo R2 = 0.39,
all the variables are now highly significant and the signs of the coefficients are
in agreement with those suggested by the economic theory. Note that this goal
was reached removing a small percentage of units that were biasing the model
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estimates.

4 Discussion and conclusions

The present paper studies the determinants of labor share dynamics using the
approach developed by Bentolila and Saint-Paul (2003), which characterizes
a one-for-one relationship between the labor share and the capital output ra-
tio, the SK schedule. The sign of the relationship depends on the elasticity of
substitution between labor and capital. An elasticity larger than unity implies
a negative relationship, an elasticity smaller than unity implies a positive re-
lationship, and unit elasticity implies that the labor share is constant. In the
present context, the coefficient multiplying the capital output ratio, measured
as the book-value of tangible assets on value added, highlighting that, as in
most of the literature using micro-data, the productive factors capital and labor
are largely substitute.
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ABSTRACT: This article proposes an innovative model, based on a mixture distribu-
tion, for ordinal time series data. The method is illustrated by its application to the
qualitative perceptions of inflation in Italy.

KEYWORDS: CUB model, ordinal data time series, minimum distance.

1 Introduction

Repeated surveys about opinions, perceptions or attitudes of the interviewees
are regularly carried out by national statistical offices. This is the case of the
surveys concerning the qualitative assessment or anticipations on price level
that ISTAT carries out every month. Earlier studies of perceived and expected
inflation focussed either on quantifying the observed ordinal data in order to
derive indices of perceived (or expected) inflation or on searching explicative
models that could describe data in terms of economic explanatory variables
(Simmons & Weiserbs, 1992). In this article, we discuss an innovative model
for time series ordinal data, that extends the well established CUB model (Pic-
colo et al., 2018) to allow for time varying parameters. For illustrative purpose
the method is applied to consumers’ perceptions of inflation in Italy.

2 The methodology

Let {Yt , t = 1, ...,T} be a collection of random variables describing ordinal data
observed at different time points. We assume that at time t, the variable Yt is
characterized by the following GeCUB distribution:

P(Yt = y|Izwv) = δtDt +(1−δt)

[
πt

(
m−1
y−1

)
(1−ξt)

y−1ξm−y
t +(1−πt)

1
m

]
),

y = 1,2, ...,m.
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with:

πt =
1

1+ e−β0−β1zt−1...βpzt−p
; ξt =

1
1+ e−γ0−γ1wt−1...γswt−s

;

δt =
1

1+ e−α0−α1vt−1...αkvt−k
; (1)

where zt , wt and vt are explanatory variables, Izwv, is the set of information
concerning each of these variables until time (t − 1). Moreover, Dt is a de-
generate distribution such that: Dt = 1 for the shelter category and Dt = 0
for the remaining categories; β = (β0,β1, ...,βp)

′ and γ = (γ0,γ1, ...,γs)
′, and

α = (α0,α1, ...,αk)
′ are the parameter vectors. The model can be easily gener-

alized to the case when each GeCUB parameter is affected by several explana-
tory variables. When the shelter effect is not present the model (1) collapses
to the CUB formulation. Let us denote with [ f1t , f2t , ..., fmt ] the relative fre-
quencies from a random sample of n observations drawn from Yt . We propose
to estimate the model by minimizing the sum of the Pearson’s chi-square dis-
tances (see, Harris & Kanji, 1983 and references therein) between the observed
relative frequencies and the probabilities implied by the model:

G(α,β,γ) =
T

∑
t=1

m

∑
i=1

[ fit − pit ]
2/pit (2)

where pit = P(Yt = i). The goodness of fit of the model is assessed by com-
paring Gmin = G(α̂, β̂, γ̂) with the distance GU , evaluated using the probability:
pit = m−1, ∀(i, t). The uniform distribution, in fact, reflects pure ignorance
about the ordinal data distribution at time t.

3 The empirical study

As an illustration, we have considered data from the survey on consumer qual-
itative perception and expectation of inflation, carried out by ISTAT every
month among about 2000 individuals. The link between inflation perceptions
and actual inflation had been quite strong before 2002, but it collapsed fol-
lowing the euro cash changeover in 2002 in all EU countries. In Italy, this
gap was exceptionally large and persistent, and a similar gap also affected per-
ceived and expected inflation. Only towards the end of 2009, after the global
economic crises, the distance between those measures disappeared as shown
by the pattern of the balance statistic for the expectations and perceptions in
Figure 1. We have applied model (1) to ordinal data originated by the question
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Figure 1. Balance statistic of perceived (solid line) and expected (dashes) inflation

concerning the perception of past price development in the above mentioned
survey: How do you think that consumer prices have developed over the last 12
months? They have: risen a lot; risen moderately; risen slightly; stayed about
the same; fallen. The analysis refers to observations from 1994.01 to 2018.12.
The categories have been recoded from 1 (fallen) to 5 (risen a lot). The ini-
tial points for explanatory variables have been derived from previous surveys.
In particular, we have specified the dynamics of the GeCUB coefficients as
follows:

ξt =
1

1+ e−γ0−γ1wt−1
; πt =

1
1+ e−β0−β1zt−1

; δt =
1

1+ e−α0−α1vt−1
; (3)

where, for any t:
• the parameter ξt depends on wt−1, the mean of the price past trend per-

ceptions (this is simply the mean of the observed ratings) at time t −1;
• the parameter πt depends on zt−1, the mean of the expectations about

future price level at time t −1;
• Dt = 1 for the category: stayed about the same, and 0 otherwise. The

corresponding coefficient δt depends on vt−1 = wt−1 − zt−1, the gap be-
tween price trend perceptions and future trend expectations. When this
gap is small, the perception that prices stayed about the same becomes
stronger (see Greitemeyer et al., 2005 for a discussion of the influence of
expectations on price level judgements).

Table 1 illustrates the estimated coefficients of the model with their stan-
dard errors in parenthesis. Figure 2 shows the pattern of the time varying esti-
mates (δ̂t , π̂t , ξ̂t). When the perceptions and expectations start having a diver-
gent pattern (from 2002 onwards) the weights πt and ξt show a rapid change.
They both increase, whereas the weight of the shelter category rapidly falls to
zero. As matter of facts the GeCUB distribution is left skewed because a great
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Table 1. Estimation results (standard errors in parenthesis)

γ̂0 = 3.581(0.199) γ̂1 = −1.229(0.054) Fitting measures
β̂0 = −0.819(0.883) β̂1 = 0.658(0.282) Gmin = 46.78
α̂0 = 2.213(0.116) α̂1 = −1.050(0.250) GU = 157.32

Figure 2. Time varying coefficients: πt (solid line), ξt (short dashes), δt (long dashes)

part of respondents believe that inflation has increased. For sake of space, it
is not possible to comment further these results, but it is worth pointing out
that the proposed model provides a very parsimonious formulation that well
describes the perceptions of inflation in Italy in the considered years.
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ABSTRACT: Discovery of disease sub-types is one of the fundamental problem in
clinical applications. This is usually accomplished by grouping patients based on
gene expression data. However, microarray data sampling is terribly noisy, and this
undermines the possibility to reach scientific consensus on the empirical evidence. In
this work we discuss the need of robust data analysis methods for gene expression
data. We introduce and discuss recent proposals of clustering methods and algorithms
that can handle noise effectively, and that can scale scale with the typical dimension
of microarray data. The methods and algorithms are tested on a selection of data sets
obtained from the well known “The Cancer Genome Atlas” repository.

KEYWORDS: clustering, high-dimensional data, gene expression, otrimle, snf.

1 Introduction

Sub-typing is the precision medicine task of identifying sub-populations of
similar patients that can lead to more accurate diagnostic and treatment strate-
gies (see Saria & Goldenberg, 2015 and references therein) . Sub-typing has an
enormous practical impact in clinical practice because it allows to refine prog-
nosis for similar individuals, and this reduces the uncertainty in the expected
outcome of a medical treatment.

The main technique to sub-type patients is to use statistics and machine
learning methods to identify clusters of individuals with similar genetic pat-
terns. The problem is particularly difficult for several reasons. First, sub-
typing is to find clusters which is an unsupervised task, therefore the underly-
ing group structure is totally unobservable. Second, there are various sources
of genetic information from different omics data types (miRNA, methylation,
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etc), all these data types have huge dimensionality while few sample units are
usually available. Moreover there is no guarantee that each data types carries
the same information about the same groups, so there is even a difficulty to
choose which data types to look at. Third, although high-throughput omics-
technologies have progressed substantially, these type of data remains terribly
noisy (Marshall, 2004).

In Section 2 we review recent noise-free clustering methods for patient
sub-typing. In Section 3 we discuss applications to cancer data, and we outline
the main conclusions.

2 Clustering methods

There is an abundance of clustering methods used in genomics. Some of these
methods are specifically designed for gene expression data, other methods con-
sists in tuned versions of classical methods (e.g. k-means, hierarchical meth-
ods, etc.). A recent systematic review is given in Kiselev et al. , 2019. How-
ever, none of the classical tools used in this field is noise-resistant. It is well
known that genomic data is terribly noisy, and research have made terrible ef-
forts to cure data acquisition technologies. Despite the huge progresses, this
type of data remain dramatically subject to noise, contamination, and heavy-
tailedness (see Serra et al. , 2018). In this paper we introduce and discuss two
recent additions that, although built from completely different perspectives,
both are designed to be noise-resistant, and both established remarkable per-
formances in benchmark cancer data sets.

SNF ALGORITHM. Wang et al. , 2014 introduced the Similarity Network
Fusion algorithm (SNF). The SNF integrates many different types of measure-
ments (e.g. mRNA expression data, DNA methylation, miRNA expression,
etc.). A similarity network is built for each data input, and a final single data
set is built performing network fusion. Working in the sample network space
allows SNF to overcome the twists caused by different scales, data acquisition
bias, and noise that strongly varies across data input types. The fused network
sample is clustered based on Spectral Clustering. The SNF algorithm has sev-
eral input tunings, however it is shown (experimentally) that the method is not
too sensitive to them. The SNF algorithm gained a wide popularity and it is
considered the state-of-the-art method for genomic data integration and patient
sub-typing.
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Figure 1. Survival curves for the ”Lung Cancer Data” for the OTRIMLE-based
method (left), and the sNF method (right).

OTRIMLE-BASED ALGORITHM. This was introduced by Coretto et al.
, 2018, and integrates several ideas from robust data analysis and clustering.
Differently form the SNF, this methods does not integrates different data types.
It uses only two data inputs: (i) gene expressions (e.g. mRNA expressions), (ii)
patients survival data. A typical situation may be that observe about p = 3,500
genes on n = 100 patients, but much higher concentration ratios p/n are not so
unusual. The correlation structure is captured based on the Robust and Sparse
Correlation matrix estimator (RSC) of Serra et al. , 2018. As for PCA, the
original high-dimensional data gene expression data matrix is projected over
the direction of m << p eigenvectors of the RSC matrix. The OTRIMLE al-
gorithm of Coretto & Hennig, 2016 and Coretto & Hennig, 2017 recovers the
Gaussian-shaped clusters over the projected subspace. The OTRIMLE adapts
to the noise level, but it needs an input parameter, that is the eigen-ratio con-
straint γ, which restricts the relative discrepancy between clusters’ elliptical
shapes. The method looks for several clustering solutions based on different
values of m and γ. The final solution is chosen in order to minimize a criterion
(called RLEDMIN) which measures the overall separation of the cluster-wise
survival curves.

3 Results and conclusions

The two algorithms are extensively compared in Coretto et al. , 2018 on five
distinct experimental data sets from the TCGA database∗. For 4 cancer data
sets out of 5, the OTRIMLE-based method outperformed the state-of-the-art
SNF in terms of survival patters separation. As an example in Figure 1 we

∗Available at https://portal.gdc.cancer.gov/
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report the results for the LUNG cancer data set. The figure shows how the
OTRIMLE-based method can lead to well distinct survival patterns across the
recovered clusters. Of course this is due to the fact that the OTRIMLE-based
method is optimized in order to achieve the best separation in terms of sur-
vival curves. However, in comparative studies survival separation is always
used as the ultimate validation criterion. And in fact the main advantage the
OTRIMLE-based algorithm is to optimize the procedure on a data space, the
survival data, different from that where the clusters are assumed to belong.

The method introduced in Coretto et al. , 2018 deserves further investi-
gations. For example one may change the dimensional reduction technique
(projection using the RSC matrix), or the clustering technique (OTRIMLE) in
the clustering step. However, this is for future researches.
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ABSTRACT: In recent years, computer-assisted diagnostic systems have gained increasing 

interest through the use of deep learning techniques. In this work we show how it is possible 

to classify X-ray images through a multi-input convolutional neural network. The use of 

clinical information together with the images allowed to obtain better results than those 

present in the literature on the same data. 
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1 Introduction 

In recent years, the deep neural networks (DNN) and in particular the deep 
convolutional neural networks (DCNN) have attracted the attention of the 
researchers for their great ability to analyse images. One of the most fascinating and 
advantageous branches for the application of these models is medicine. Thanks to 
them we can now imagine a future in which doctors are helped by computers to 
recognize diseases and make diagnoses. Furthermore, it could be a drastic 
improvement in the underdeveloped countries where the availability of doctors is 
problematic and pathologies such as pneumonia are still one of the main causes of 
death. 

In the classical context of image recognition, the goal is to classify what is 
contained in an image, however, in the analysis of medical images, the challenge is 
quite different. In fact, to emulate the role of the doctor, the model needs much more 
information that cannot be deduced from the analysis of radiographic images only. 
Therefore, it is also necessary to consider many other information collected on the 
patients such as clinical and demographic details. 

The correlation of certain pathologies with age or smoking is well known, for 
example. Other diseases may have genetic predispositions and many diseases can be 
related to each other. Usually, doctors can obtain and use all this information and it 
is advantageous to provide them also to the predictive model. 

From the technical point of view, the goal of including more inputs of different 
nature, images and numerical values, has been achieved using a multi-input neural 
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network architecture. Through this model we were able to obtain a very accurate 
classification, as it is shown in the following sections. 

2 The X-ray data and the previous works 

The availability of large medical databases containing both images and clinical 
information is scarce. Currently, the largest database is the ChestX-ray14, chosen for 
this application. It was released by the United States National Institutes of Health 
(NIH) and contains over 112,000 radiographic frontal chest images of 30,805 
patients. Each of them can be healthy or sick, with one or more of the following 14 
diseases: Atelectasis, Cardiomegaly, Consolidation, Edema, Effusion, Emphysema, 
Fibrosis, Hernia, Infiltration, Mass, Nodule, Pleural thickening, Pneumonia, 
Pneumothorax. Furthermore, a "no finding" category represents the images in which 
none of the previously mentioned diseases have been detected. 

As can be understood by analysing the database, for many patients are available 
multiple results of the tests, which can be useful for capturing the progress of 
diseases over time. 

The labels, corresponding to the pathologies identified in each image, were 
extracted from radiological reports using natural language processing techniques 
with an accuracy that is declared by authors over 90% (Rajpurkar et al. 2017). 
Therefore, we cannot fully trust the labelling process and, furthermore, some 
researchers have raised many doubts about the correctness of the labels. The 
criticism of the radiologist Luke Oakden-Rayner (2017) that, after observing the 
images, states that there are incorrect labels. Finally, it should be noted that many 
diagnoses present more concomitant diseases. 

Fig.1 – Some images of the database ChestX-ray14 

 
This dataset has been already used by many other researchers. Surely, the best-

known work was made by a Stanford’s team (Rajpurkar et al. 2017). They proposed 
an architecture called CheXNet based on the usage of the DCNN architecture called 
DenseNet121 (Huang et al. 2017). This work represents, at this moment, the state-
of-the-art results in terms of AUC scores. 

Other important works are the one of Yao et al. (2017) and the one of Wang et 
al. (2017). The first is mainly based on an architecture consisting of a DenseNet as 
encoder and on a recurrent neural network as decoder. Wang tries to apply some of 
the most famous CNN architectures (excluding DenseNet), achieving the best results 
with ResNet-50. Other interesting and more recent works are the ones of Baltrushat 
(2018) and Guendel (2018). Baltrushat based his work on a ResNet-50 to analyze 
the images, supported by the use of age, gender and view position. 
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3 The proposal and the results 

Inspired by the work of the Stanford team, we decided to improve the model by 
exploiting the few clinical and demographic information available with these 
images. We have considered age, sex, sight position and 14 new variables 
containing the patient's information obtained from previous pathological history 
present in the same data. 

The goal was therefore to improve the DenseNet121 model with another parallel 
neural network, with two small dense layers (32 and 16 neurons), which processes 
the non-image characteristics. The two independent networks are then concatenated 
and connected to the output layer based on 14 neurons with sigmoid activation 
function, whose task is to estimate the probability of the presence of each disease in 
the X-ray image. The final network has a complex structure with 123 ‘main’ layers 
and 7,053,182 parameters. We used the pretrained weights of DenseNet121 on 
Imagenet as initialization of the network. 

To solve this multi-input multi-class problem, we have employed a weighted 
binary cross-entropy loss function with data augmentation. 

Our results provide an interesting improvement of the state-of-the-art, 
confirming our intuition of the architecture’s power. Following the literature, we 
have adopted the AUC index as main tool to evaluate the quality of the predictions. 
In the table 1 we can see the comparison of the performances of our model with the 
best results obtained by other researchers in terms of the mean AUC scores. 

 
 

 Wang et al. 

   (2017) 

 Yao et al.    

  (2018) 

 CheXNet                          

  (2017) 

Our Multi-

input 

Official split  Yes   No   No  Yes 

Atelectasis 0.716 0.772 0.809 0.816 

Cardiomegaly 0.807 0.904 0.925 0.925 

Effusion 0.784 0.859 0.864 0.867 

Infiltration 0.609 0.695 0.735 0.731 

Mass 0.706 0.792 0.868 0.897 

Nodule 0.671 0.717 0.780 0.827 

Pneumonia 0.633 0.713 0.768 0.776 

Pneumothorax  0.806 0.841 0.889 0.927 

Consolidation 0.708 0.788 0.790 0.801 

Edema 0.835 0.882 0.888 0.893 

Emphysema 0.815 0.829 0.937 0.946 

Fibrosis 0.769 0.767 0.805 0.881 

Pleural Thickening 0.708 0.765 0.806 0.827 

Hernia 0.767 0.914 0.916 0.963 

Average 0.738 0.803 0.841 0.863 

Table 1. Comparison of the AUC on test data. 
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We have chosen the subdivision suggested by the data authors, and we have also 
verified that the previously proposed approaches with different splits still obtain the 
same results with this subdivision. The size of the test-set on which the AUC was 
measured has dimensions greater than 25,000 and therefore guarantees a great 
stability of the results with respect to the possible subdivisions. It is evident in the 
table that the average AUC has been significantly improved by our approach and, 
for most classes, we have clearly outperformed previous jobs. 

4 Conclusions 

The results of this application have confirmed the validity of our approach: a 
multi-input neural network architecture can significantly improve predictions. 
Clearly, the idea of combining different sources of heterogeneous information can 
be applied in other fields of medicine, as in the analysis of MRI scans. Whenever the 
patient's clinical and/or demographic information is available, it is possible and 
fruitful to apply this approach. Similarly, this technique can be used in other 
application areas.  
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ABSTRACT: Urban green infrastructure such as parks, gardens and trees, provide several 

ecosystem services and benefits. Particularly trees provide a broad amount of services in 

urban areas, such as improving air quality, mitigating carbon pollution and heat-island effect, 

attenuating storm-water floods, reducing noise and serving as habitat for different species 

among others. Likewise, urban trees provide different social (i.e., social cohesion), economic 

(i.e., increase in property value), psychological (i.e., stress reduction) and medical (i.e., 

increase in longevity of life) benefits (Landry, 2009; Roy et al., 2012; Battisti et al., 2019). 

Although it is well documented that trees are essential for the well-being and health of urban 

areas and their inhabitants, trees are not evenly distributed in urban areas. Previous studies 

have found that urban residents with a deprived socioeconomic status are associated with low 

coverage of urban trees in their communities (Hernández and Villaseñor, 2017; Park and 

Kwan, 2017; Wang and Qiu, 2018). Therefore, environmental justice seeks to ensure that 

green infrastructure and its benefits are distributed equally throughout the territory 

(Anguelovski, 2013; Gould and Lewis, 2017). The objective of this study is to determine 

whether the distribution of urban trees in the city of Guadalajara, Mexico is distributed 

equally or not among its colonies and urban districts. The information is obtained from the 

first and only tree census conducted in the city on June 2018 and treated with geographic 

information systems (GIS). The attributes of the tree dataset include their location (urban 

blocks, streets, parks and gardens), heights and diameters of their canopy (Government of 

Guadalajara, 2019). For the analysis and due to the compositional nature of the data, 

compositional analysis techniques are applied (see Aitchison, 1986; Pawlowsky-Glahn, et al., 

2015; Filzmoser et al., 2018). With this novel approach, we contribute to the existing 

literature. Additionally, Principal Component Analysis (PCA) and cluster analysis are 

performed to identify the distribution of trees in the city. Likewise, to observe the relationship 

between trees and socio-economic variables, a multivariable linear regression is carried out 

respecting the compositional nature of the data. The results from PCA and cluster analysis 

show a clear differentiation in the distribution of trees between the East-West of the city, 

mainly in the compositions with respect to their height and diameter. Likewise, from the  
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multivariate linear regression, considerable significance (p<0.05) is found in socio-economic 

variables. 

KEYWORDS: compositional data analysis, environmental justice, trees, Guadalajara. 
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ABSTRACT: In this paper we explore a new strategy to jointly use factorial methods
and blockmodeling to analyse affiliation (two-mode) networks. Among the methods
that group simultaneously and directly individuals and variables for binary matrices,
we propose using cluster correspondence analysis, in order to (i) look at the way
network positions can be incorporated in the cluster CA; (ii) verify if cluster CA is
apt to represent specific network structures. Finally, an empirical application on an
affiliation network of stage co-productions will be provided.

KEYWORDS: affiliation networks, blockmodeling, cluster ca, data classification.

1 Introduction
Affiliation networks are a special case of two-mode networks which consist
of two disjoint sets: a set of actors and a set of events in which those actors
are involved. One of the main concerns in studying such networks is to es-
tablish equivalent classes of actors that are similarly embedded in the whole
network, following some criterion of equivalence, such as structural equiva-
lence. Blockmodeling, with its recent extensions (Doreian et al., 2005), allow
to perform a clustering of the affiliation network units.

However, other methods proved equally apt to find relational patterns within
affiliation networks. Factorial methods, such as Multiple Correspondence Anal-
ysis (MCA) (Greenacre & Blasius, 2006), permit to synthesize, analyse and
graphically represent the relational structure in a metric space. Thanks to the
relationships between MCA and blockmodeling, as for the measures that cap-
ture structural similarities in the network (D’Esposito et al., 2014a; D’Esposito
et al., 2014b), a joint approach has been proposed to apply a clustering method,
i.e. blockmodeling, along with a given factorial method - but not simultane-
ously (Serino et al., 2017; Ragozini et al., 2018).
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Hence, in this paper we propose using another method, namely cluster
correspondence analysis (cluster CA) (van de Velden et al., 2017), that groups
simultaneously individuals and variables for binary matrices and also permits
to evaluate the relations among groups in terms of proper distances. We present
an application of this approach by analysing the affiliation network of the stage
co-productions released in Campania (Italian region) during the 2012/2013
season.

2 Factorial methods and blockmodeling for analysing affiliation
networks

Recently, a joint approach has been proposed that uses MCA and blockmod-
eling for affiliation networks, relying upon the relationships that exist between
factorial methods and blockmodeling. The network positions (i.e. the clusters),
as derived from the blockmodeling, are incorporated in the analysis made by
MCA as supplementary variables and represented in the metric space (Serino
et al., 2017; Ragozini et al., 2018). In this approach, clustering and factorial
methods, albeit jointly used to analyse the network structure, are kept sepa-
rated in the analytic process. In this paper, as an advancement of such research
line, we propose using a factorial method that performs simultaneously a clus-
tering of individuals and variables for binary matrices, the latter being no less
than the type of variable concerned with event affiliations (participation or
non-participation to a given event).

The method we propose using in this work, namely cluster CA, combines
cluster analysis and CA and allows to obtain both a low-dimensional represen-
tation of clusters and attributes and a clustering of individuals relying on the
profiles related to the categorical variables(van de Velden et al., 2017). There-
fore, it permits to obtain dimension reduction and clustering of categorical data
simultaneously (van de Velden et al., 2017).

3 Applying cluster CA and blockmodeling to affiliation networks
An affiliation network G can be represented by a triple G (V1,V2,R ) composed
of two disjoint sets of nodes, V1 and V2 of cardinality n and m, and a set of edges
or arcs, R ⊆V1×V2. By definition V1∩V2 = /0, the two disjoint sets V1 and V2
refer to different entities i.e. the set V1 = {a1,a2, . . . ,an} represents the actor
set whereas the other, V2 = {e1,e2, . . . ,em}, represents the set of m relational
events. The edge ri j = (ai,e j), ri j ∈ R , is an ordered couple, and indicates
if an actor ai attends an event e j. The set V1×V2 can be fully represented
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by a binary matrix, the affiliation matrix, F(n×m), with element fi j = 1 if
(ai,e j) ∈ R and 0 otherwise.

In affiliation networks the structural equivalence principle states that two
actors are equivalent if they participate exactly to the same events (Pizarro,
2007). Formally, given two actors ai and ai′ , structural equivalence property
≡ states that: ai ≡ ai′ if and only if ri j = ri′ j ∀ j. If two actors ai and ai′ are
structurally equivalent they are indistinguishable, and one equivalent actor can
substitute for the other one because the two relational patterns are the same.

In order to discover the relational structure embedded in F, it is possible
to consider it as an usual case-by-variable matrix and, than, apply a factorial
method like the MCA. In the latter application the indicator matrix Z is de-
rived from the matrix F through the full disjunctive coding. Given that each
relational event e j is a dichotomous variable, the indicator matrix Z contains
two columns for each e j, namely e+j and e−j , where e+j is the value of a dummy
variable coding the participation to the event, and e−j is the value of a dummy
variable coding the non participation. As all the variables in F are dichoto-
mous, the corresponding indicator matrix Z turn to be a doubled matrix.

Given our affiliation matrix F and the (doubled) indicator matrix Z derived
from the former, and following the approach proposed by van de Velden et al.
(2017), we aim to find ZK, i.e. the indicator matrix of dimensionality n×K
which includes the cluster membership considered as a categorical variable
such that Fc = Z′KZ is the table cross-tabulation that includes the associations
between the cluster membership and the binary variables coding the participa-
tion (and non-participation) in events.

Following the iterative procedure described by van de Velden et al. (2017),
skipping its technical details, we propose to apply the algorithm for cluster CA
as follows: 1) generate an initial cluster allocation ZK; 2) find category quan-
tifications by using the usual CA algorithm; 3) construct an initial configura-
tion of the relational patterns for the actors Y (as defined by van de Velden et al.
(2017)); 4) update the membership matrix ZK by applying a clustering meth-
ods to Y; 5) repeat the procedure (i.e. go back to step 2) until convergence. In
the original paper the first solution has been proposed to be randomly assigning
while the clustering algorithm is the k-means. In this paper we compare the
performance of such method with the use of blockmodeling to provide both the
initial cluster allocation ZK and their updating. In this way, the network po-
sitions should be optimally separated with respect to the distributions over the
events and, simultaneously, events with different participation patterns should
be optimally separated (van de Velden et al., 2017).

Hence, our main goals are i) to look at the way network positions, as they
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result from blockmodeling analysis, can be incorporated in the cluster CA
method, and to assess the advantages of this strategy with respect to the one
provided by Ragozini et al. (2018) (see also Serino et al., 2017); ii) to analyse
specific network structures (e.g. core-periphery and/or segmentation) and to
verify if cluster CA is able to reveal and clearly represent such structures. The
proposed approach will be shown by analysing an affiliation network made of
45 co-productions that 44 theatre companies located in the Campania Region
(Italy) jointly released during the 2012/2013 season. In this data structure,
where the rows represent the companies and the columns represent the stage
co-productions, thanks to this approach we expect to find groups of theatre
companies that share similar participation patterns and that are involved in co-
productions with similar characteristics (i.e. belonging to the same genres). At
the same time, we attempt to evaluate the structural similarities between the
groups of companies on the basis of their projections in the metric space.
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ABSTRACT: Network data are relational data recorded among a group of individuals,
the nodes. Multiple relations observed among the same set of nodes may be repre-
sented by means of different networks, using a so-called multidimensional network,
or multiplex. We propose a latent space model for network data that enables clustering
of the nodes in a latent space, with clusters in this space corresponding to communities
of nodes. The clustering structure is modelled using an infinite mixture distribution
framework, which allows to perform joint inference on the number of clusters and the
cluster parameters. An application to terrorist network data will be discussed.

KEYWORDS: multidimensional network, mixture model, latent space model.

1 Introduction

A network is defined by a set of nodes, among which a relation can be es-
tablished. Binary networks record relations that are either present or absent
between nodes, with presences corresponding to edges linking pairs of nodes.
When multiple relations are recorded for a constant set of nodes, a multidi-
mensional network, or multiplex, arises, where different relations coincide
with different networks. Observed connections in network data are hard to
interpret, due to the complexity and potential high dimensionality of networks
themselves. Latent space models (Hoff et al., 2002) are a class of models
which aims at explaining the connections observed in network data in terms
of unobserved similarities among the nodes. In distance latent space models
(Hoff et al., 2002), such similarities are modelled as distances between unob-
served nodes coordinates in a latent space. A sub-class of latent space models
(Handcock et al., 2007) addresses the issue of clustering of the nodes, by clus-
tering nodes latent coordinates.
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We propose an extension to the Latent position cluster model (Handcock et al.,
2007), which allows clustering of the nodes both for single and multidimen-
sional network data. An infinite mixture distribution framework is adopted, so
that joint inference on both the number of clusters and the cluster parameters
can be performed.

2 The model

2.1 Latent position cluster model

The model introduced by Handcock et al., 2007 postulates that nodes have
latent coordinates in a p-dimensional Euclidean latent space, zi, i = 1, . . . ,n,
drawn from a mixture of G spherical Gaussian distributions,

zi ∼
G

∑
g=1

πgMV Np
(
µg,σ2

gI
)
, g = 1, . . . ,G,

where πg, g = 1, . . . ,G, denote the mixture weights and µg, σ2
g the component-

specific means and variances.

2.2 Infinite latent position cluster model

We propose to extend the model by Handcock et al., 2007 assuming that the
latent coordinates are distributed according to an infinite mixture of p-variate
Gaussian components:

zi ∼
∞

∑
g=1

πgM V N p
(
µg,Σg

)
,

where Σg is the covariance matrix of the gth component and component param-
eters are taken to be realizations of a Dirichlet process.
In general, for K-dimensional network data, the probability of observing an
edge between any two nodes i and j in the kth network (k = 1, . . . ,K) is mod-
elled as a function of their distance, d(·), and some other parameters (D’Angelo
et al., 2019):

P
(
y(k)i j | α(k),β(k),zi,z j

)
=

exp
(
α(k)−β(k)d(zi,z j)

)

1+ exp
(
α(k)−β(k)d(zi,z j)

)

The above equation simplifies to that of edge probabilities for single networks
when K = 1. Inference for this model is performed within a hierarchical
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Figure 1. Noordin Top data. The networks.

Bayesian framework, where estimates of model parameters and latent coor-
dinates are obtained using an MCMC algorithm.

3 Noordin Top multiplex data

To illustrate the proposed model, we have used it to analyse the Noordin Top
multiplex data. The data concern four different relationships recorded among
members of the Noordin Top terrorist organization, active in Indonesia in the
early 2000s (see Figure 1).
An Infinite latent position cluster model with diagonal covariance matrices was
estimated, and four different components were found in the latent space for
the Noordin Top data, see Figure 2. Also, Noordin Top was positioned close
to Azahari Husin, who was believed to be Noordin Top right-hand man (“star”
coordinates in Figure 2). Both terrorists are assigned to the same component,
which is also the largest.

4 Discussion

We have introduced an Infinite latent position cluster model to perform clus-
tering of the nodes in network and multidimensional network data, by means
of clustering of their latent coordinates in a latent space representation of the
data. Thanks to the infinite mixture framework, and differently from previ-
ous methods (Handcock et al., 2007), the proposed model is able to perform
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Figure 2. Noordin Top data. Estimated posterior distribution of the number of com-
ponents and estimated nodes latent coordinates and mixture components.

joint inference on the latent coordinates, the component parameters, and the
number of mixture components. Applying this model to the Noordin Top mul-
tiplex data we were able to recover four different components, among which a
larger one (the green component in Figure 2) included the organization most
influential members. From Figure 2, we may also notice that few nodes latent
coordinates are located quite distant from the center of the components they
were assigned to. Such issue may be addressed using a different specification
of the components covariance matrices Σg. Another possible solution for la-
tent coordinates that would still be located far away from components centres
could be to investigate whether such coordinates should be clustered at all. In-
deed, some nodes may not exhibit a clustering behaviour, either because they
connect to only few others or because they connect randomly across different
networks in a multiplex. Such nodes should not be forced to belong to one of
the Gaussian components, as these correspond to social groups in the data. An
extra component, arising from a different distribution (as for example a Uni-
form distribution), could be added to the infinite mixture framework, with the
purpose of grouping together “poorly interacting” nodes.
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ABSTRACT: Road sectioning plays a crucial role in Road Asset Management Systems and 
High Speed laser-based devices are able to collect a huge amount of data on pavement surface 
characteristics. However, this implies a high computational effort in identifying road 
homogeneous sections following a long and meticulous post processing analysis. The 
Geostatistic methodology, in terms of Variogram scheme has been applied for characterizing 
road surface: “Range” and “Sill” values, deriving from the Variogram application, have been 
proposed as macrotexture synthetic indices to characterized different road surfaces. Then a 
dynamic sectioning procedure has been employed to detect homogeneous road pavement 
sections. Preliminary results seem to highlight that the Variogram variables can be promising 
in identifying homogeneous sections in terms of pavement surface macrotexture.  

KEYWORDS: pavement management, road surface macrotexture, dynamic sectioning, 
geostatistics variogram scheme, spatial data analysis. 

1 Introduction 

The quality and the quantity of the data collected by high speed laser-based (HSL) 
texture measuring devices for pavement road monitoring and programming of 
maintenance interventions, open new challenge to Pavement Managers in fact, in 
this context, new skills for filtering, analysing and interpreting of data are requested.  

In order to apply the Pavement Management Systems (PMS) principles, an 
identification of homogeneous sections for subdividing road network is needed. 
These homogeneous sections can be defined as road sections in which the 
parameters, that generally affect the maintenance strategies, can be considered as 
almost constant. Usually the road profile texture data, collected by HSL (here from 
now on called HSL data), can be described as "time series" characterized by 
information on position and height with a fixed sampling frequency on a straight 
alignment. HSL data usually undergo to a pre-processing (filtering) procedure in 
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order to remove noise and invalid readings (as spikes or drop-outs) according to 
several approaches [Losa & Leandri 2011; D'Apuzzo et al. 2015]. 

Relevant macrotexture descriptive indexes, such as Estimated Texture Depth 
(ETD) evaluated according to [ASTM E1845], can be derived from road surface 
filtered profiles, although more reliable macrotexture synthetic indexes have been 
recently proposed [D'Apuzzo et al. 2015]. 

In this paper an innovative approach to describe the macrotexture of road surface 
employing the Geostatistical method applied to characterized 2D road profiles by 
means of the Variogram scheme, is proposed. Transformed data so obtained undergo 
to a sectioning procedure, in order to identify the homogeneous pavement sections. 

2 Methodology 

Geostatistics is a field of the Statistics focused on the study of spatial or regionalized 
phenomena, which are characterized by a spatial correlation. Thanks to this 
peculiarity, several applications within environmental aspects have been performed 
[Chilès & Delfinet 1999; Spacagna et al. 2019] and encouraging results have been 
achieved from preliminary attempts for the road profiles analysis [M. Ech et al. 
2007]. The spatial law can be defined by means of the Variogram, which describes 
the relation between two point at “h” distance and it presents the following structure: 

 

ሺ݄ሻߛ ൌ
1

2ܰሺ݄ሻ
෍൫ܼሺ݅ݔ ൅ ݄ሻ െ ܼሺ݅ݔሻ൯
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ܰሺ݄ሻ

݅ൌ1

 

 
Where: 
γ(h) = Variogram; 
h= distance between couple of points; 
N(h) = number of couple of points at h distance; 
Z(xi) = value at x point; 
Z(xi+h) = value at x+h point. 

In the literature, different Variogram models are presented [Chilès & Delfinet, 
1999] and, in this study, the Spherical model has been used. 

In general, the Variogram is characterized by two values the Sill and the Range. 
Within the Range, Z(x) and Z(x+h) values are related, outside are independent. For 
these reasons it is possible to define the Sill and the Range as the measure of the 
maximum variability and the distance where the variables are correlated, 
respectively. 

Applying the Variogram to the filtered pavement profile, two new "time series", 
the Sill and the Range profiles, are produced and, to identify the homogeneous 
pavement sections, a dynamic sectioning process must be performed. Several 
methods, such as Bayesian methods, Cumulative Sum or Difference (CUMSUM) 
methods, Dichotomic method, minimum standard deviation based methods 
(MINRMS) and Linear models with Multiple Structural Change (LMSC), are 
available to identify homogeneous pavement sections from a series of measured 
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data, and an interesting benchmarking has been previously proposed [D’Apuzzo et 
al., 2012]. In this paper the Dichotomic Method has been employed. 

3 Case Study and Data Analysis 

Pavement profiles measurements have been collected at the Virginia Smart Road, 
(Blacksburg, Montgomery County, Virginia) where more than 15 different 
pavement types and mixes have been laid. HSL device, which performs dynamic 
measurements on a straight alignment, with a laser spot of 0.2 mm and a sampling 
frequency of 64 kHz, has been used for the profile measurements. An example of 
pavement profile collected by HSL device along the entire Smart Road track (about 
2300 m) has been reported in the Figure 1a. 

 

 

 
Figure 1: a) Measured profile; b) Sill and Range representation and Dichotomic 

sectioning restitution. 
 

Following the profile cleaning phase, then the Variogram, with lag = 0.5mm and 
nlag = 40 (20mm), has been calculated, the Spherical Model has been applied and, 
on a window of 1m, Sill and Range have been evaluated with an autofitting process. 
In particular, 1 m long window has been identify as an optimal trade-off between 
precision sectioning needs in pavement asset management and computational effort 
required.  

Graphical result has been summarized in the Figure 1b. As it is possible to see, 
the "time series" describe two different features of the same measured profile thus 
providing additional information on structural changes that can be used by 
sectioning methods. The Dichotomic method, with significance level (α) = 5% and 
sample size of 50, has been used for the identification of the homogeneous pavement 
road sections, and the results has been represented in the Figure 2b. 

152



4 Conclusion 

A Variogram scheme has been applied to the filtered road profile, measured by 
means of the HSL Device. Preliminary results show that Sill and Range can be 
considered as effective macrotexture indices since they can better highlight changes 
in pavement type and mixes. Dynamic sectioning by means of Dichotomic Method 
has been applied, yielding an identification rate of about 90% of real break points. 
Further studies are needed, nevertheless the developed methodology seems 
promising. 

References 

LOSA, M., & LEANDRI, P. 2011. The reliability of tests and data processing 
procedures for pavement macrotexture evaluation. International Journal of 
Pavement Engineering. Vol. 12, No. 1, 59–73, Taylor and Francis.  DOI: 
10.1080/10298436.2010.501866. 

D’APUZZO, M.; EVANGELISTI, A., FLINTSCH; G. W., DE L. IZEPPI, E., MOGROVEJO,
D. E. & NICOLOSI, V. 2015. Evaluation of Variability of Macrotexture 
Measurement with Different Laser-Based Devices. Airfield and Highway 
Pavements: Innovative and Cost-Effective Pavements for a Sustainable Future. 
294-305. TRIS, ASCE. DOI: 10.1061/9780784479216.027. 

ASTM E1845, 2009. Standard Practice for Calculating Pavement Macrotexture 
Mean Profile Depth. American Society for Testing and Materials. 

CHILÈS, J.P. & DELFINER, P. 1999. Geostatistics: Modeling Spatial Uncertainty. 
Wiley, New York. 

SPACAGNA, R.L., MODONI, G., SAROLI, M, 2019. An integrated model for the 
assessment of subsidence risk in the area of Bologna (Italy). Geotechnical 
Research for Land Protection and Development- Proceedings of CNRIG 2019 - 
© Springer Nature Switzerland AG 2020 F. Calvetti et al. (Eds.): CNRIG 2019, 
LNCE 40, pp. 358–368, 2020. https://doi.org/10.1007/978-3-030-21359-6_38. 

ECH M., S. MOREL, B. POUTEAU, YOTTE S., BREYSSE D. 2007. Laboratory evaluation 
of pavement macrotexture durability, Revue Européenne de Génie Civil, 11:5, 
643-662. http://dx.doi.org/10.1080/17747120.2007.9692949. 

D’APUZZO, M. & NICOLOSI, V. 2012 Detecting Homogeneous Pavement Section 
Using Econometric Test for Structural Changes in Linear Model. Transportation 
Research Board 91st Annual Meeting Paper n. 12-2125 , 0–18, Transportation 
Research Board, Washington DC, United States. 

153



A NEW APPROACH TO PREFERENCE MAPPING 

THROUGH QUANTILE REGRESSION
Cristina Davino1, Tormod Næs2, Rosaria Romano1 and Domenico Vistocco3

1 Department of Economics and Statistics, University Federico II of Naples,
(e-mail: cristina.davino@unina.it, rosaroma@unina.it)

2 Nofima, Norway, (e-mail: tormod.naes@nofima.no)

3 Department of Political Science, University Federico II of Naples,
(e-mail: domenico.vistocco@unina.it)

ABSTRACT: The aim of the paper is to propose a new approach to preference map-
ping by exploiting quantile regression. The proposal consists into a multi-steps proce-
dure combining principal component analysis, least squares and quantile regression.
Results of the procedure on a case study show how the classical preference map can
be enriched by information on the variability along the direction of the most preferred
products. Such an additional information is obtained by the use of quantile regression.

KEYWORDS: preference mapping , least squares regression, quantile regression.

1 Introduction

Preference mapping (PREFMAP) exploits multivariate statistical techniques to
analyze consumer acceptance of products. It consists of a two step procedure
combining principal component analysis (PCA) and least squares regression
(LSR) (Næs et al. , 2011). In the first step, a perceptual map of the products
is obtained through a PCA of the product-by-attribute sensory matrix, and the
obtained principal components are called key sensory dimensions. In the sec-
ond step, a regression model is used to fit the liking of each consumer in the
perceptual space. The main assumption is that the preference of each con-
sumer depends linearly on the sensory attributes. Furthermore, as the method
is grounded on LSR, it focuses on the average effects of sensory dimensions.
Evaluating the effect of the sensory dimensions on the whole distribution of
the liking can be a relevant challenge. At this aim, quantile regression (QR)
(Koenker, 2005) has been recently introduced in consumer study for relating
liking to consumer factors (Davino et al. , 2015), and for handling consumer
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heterogeneity (Davino et al. , 2018). Note that QR estimates as many models
as the number of selected quantiles (Davino et al. , 2013, Furno & Vistocco,
2018). The aim of this study is to extend the use of QR to the PREFMAP
in order to provide additional information on the variability along the direc-
tion of the most liked samples for each consumer. This is the most interesting
direction in the perceptual space from a marketing perspective. The proposed
approach will be discussed through a case study from consumer analysis based
on the liking of yogurts. Specifically, 8 samples were profiled by a sensory
panel according to 21 attributes: six odour attributes, three taste attributes, six
flavour attributes and six texture attributes. The same samples were evaluated
by a consumer panel consisting of 101 consumers on a scale from 0=dislike
extremely to 100=like extremely. The details of the experiment can be found
in (Nguyen et al. , 2018).

2 Quantile regression in preference mapping

The proposal consists into a multi-step procedure. In the first step a PCA
of the product-by-attribute sensory matrix is used to obtain a perceptual map
of the products. The score and the loading plots on yogurt data are shown in
Figure 1. Along the first component, one can notice a clear distinction between
the samples on the right side (P3, P4, P7, P8) and the ones on the left side (P1,
P2, P5, P6). The second component is mostly related to distinguishing product
7, characterized by sickening odour and flavour, from product 2 characterized
by fullness and thickness.

Figure 1. Sensory scores and loadings

In the second step, a regression model is used to fit each consumer in the
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perceptual space. Let Y be the matrix of liking values (I × J), where the entry
yik is the measured liking value of product i and consumer j ( j = 1, . . . ,J). The
liking values for each consumer are regressed onto the first sensory dimen-
sions, most often the first two PC’s:

yi j = β j1ti1 +β j2ti2 + fi j (1)

where ti1 and ti2 comes from the PCA model, the β’s represent the regression
coefficients (also called consumer loadings) and fi j represents the residuals.
The intercept can be avoided here since the variables are centered.

In the third step, the direction of the most liked samples is identified by the
βj regression coefficients. Here, each sample i is projected onto the direction
identified in the previous step (in the t1, t2 space):

si j =
(

β̂
T
j β̂ j

)−1
β̂

T
j ti where ti = (ti1, ti2) (2)

Finally, a QR is exploited to evaluate if the distribution of liking is wider
or narrower in the direction of increased liking. Specifically, two quantile
regression models are estimated for θ = 0.25 and θ = 0.75:

ŷi j (θ) = β̂ j0 (θ)+ β̂ j (θ)si j (3)

For each consumer the two QR lines can diverge or converge as a func-
tion of s thus providing information on the variability of the liking along this
direction. Consumers can then be classified according to whether the vari-
ability is larger for the most liked area in the sensory space than for the least
liked samples. In order to measure the degree of such variability, the distance
between fitted values at θ = 0.25 and θ = 0.75 has been computed at two
fixed values of the s regressor corresponding to the first and third quartiles. In
case the two distances between the fitted values differ not more than a fixed
threshold the lines are considered parallel (the choice of the threshold is data
driven). Based on this, we decided to consider 3 consumer categories, parallel,
diverging and converging. Figure 2 depicts the consumer loadings plot from
standard PREFMAP, but now the size of the points is proportional to the vari-
ability measure previously computed (based on the two values of s) and the
shape is related to the distribution around the regression line in the direction
of preference (converging, diverging, parallel). Three consumers C57, C75
and C87 are highlighted as they show different tendencies (C75 is represented
by a very small star above a close diverging consumer). As can be seen from
Figure 2, there is a relatively clear tendency of more convergence to the left
and divergence to the right. In other words, for the sensory region represented
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by samples P3, P4 and P8 in Figure 1, the liking is more ‘flexible’ than in the
opposite direction. With the exception of a few, the parallel consumers seem
to be quite centrally positioned, i.e. most of them are consumers with low or
moderately strong preference pattern (coefficients moderately large).

Figure 2. Consumer loadings plot where the size of the points is proportional to the
QR variability measure.
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ABSTRACT: Investigating how classifiers perform under some data contaminations
is an important issue in robustness studies. While some research is available on the
robustness of classifiers, a little is known about directional classifiers. This work thus
investigates the robustness of the cosine depth distribution classifier, a classification
technique recently introduced for directional data. This latter is a non-parametric
method and it is based on the distribution function of the cosine depth.

KEYWORDS: directional data, supervised classification, unit vectors.

1 Introduction

Directional data occur when observations are recorded as directions. They
can be described as unit vectors on the surface of the (d − 1) dimensional
hypersphere S(d−1) := {x : xT x = 1}. This kind of data can be found in many
scientific areas such as medicine, astronomy, biology and geology, to cite a
few. Applications include cases with d = 2 (circular data), d = 3 (Mardia &
Jupp, 2000) and in higher dimensions (Buchta et al., 2012).

In this work, we consider the problem of classifying directional data ac-
cording to some supervised classification technique, and in particular on a
technique which relies on data depth.

Data depth functions provide basis for nonparametric inference given that
they aim at ordering data in a d-dimensional space according to some centrality
measures. The particular properties of directional data and the complexity of
the sample space imply the need of specific methods to analyze them.

Within the framework of classification, the use of data depth has been
extensively investigated and successfully applied. The max depth classifier
has been firstly developed (Ghosh & Chaudhuri, 2005, after Liu et al., 1990).
Later, the idea has been extended and the DD-classifier has been introduced
(Li et al., 2012).
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A recent interest arises on the use of depth based classifier for directional
data: the use of the directional max-depth classifier based on some new depth
functions has been investigated (Pandolfo et al., 2018a), and the DD-plot clas-
sifier for circular data has been discussed (Pandolfo et al., 2018b).

Even more recently, a depth based distribution classifier was introduced in
the framework of supervised classification to assign points lying on the surface
of hyper-spheres (spherical data) to groups (Demni et al., 2019). It was based
on the cosine depth, and called the cosine distribution depth classifier. Simu-
lation results showed that the cosine depth distribution classifier outperforms
the max depth classifier in term of average misclassification rate also in many
settings.

In supervised classification, the presence of anomalous observations in the
training set can greatly reduce the effectiveness of the classification method
adopted (Vencalek & Pokotylo, 2018). For this reason, it is always of interest
to investigate the robustness of these kind of techniques. Several works dealt
with robust based classifiers (see Dutta & Ghosh, 2012; Li et al., 2012). Pan-
dolfo investigated some robustness aspects of the DD-classifier for directional
distributions (Pandolfo, 2017).

Here, the focus will be on the cosine depth distribution classifier. By means
of a simulation study, it will be investigated to what extent this classifier is able
to deal with contaminated training sets. The rest of the work is organized as
follows. Section 2 introduces the directional cosine depth distribution classi-
fier, while in Section 3 the simulation scheme that will be used to assess its
robustness is provided.

2 The cosine depth distribution classifier

Directions in d-dimensional spaces can be represented as unit vectors x on the
sphere S(d−1) := {x : xT x = 1} with unit radius and center at the origin. A
distribution H with support Ω⊆ S(d−1) is called a directional distribution. By
definition, the cosine depth of a point x ∈ S(d−1) with respect to H is given by:

Dcos(x,H) := 2−EH [(1− x′W )],

where E[.] is the expected value, and W is a random variable from H.
The cumulative distribution function of the cosine depth function FH

D (x) is
given by:

FH
D (x) := P(Dcos(X ,H)≤ Dcos(x,H))
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Suppose now observations come from either the distribution (group) H1 or
H2. Then, the directional depth distribution classification rule (Demni et al.,
2019) is given by:

{
F Ĥ1

D (x)> F Ĥ2
D (x) =⇒ assign x to population 1

F Ĥ1
D (x)< F Ĥ2

D (x) =⇒ assign x to population 2,

where Ĥ refers to the empirical distribution.
If F Ĥ1

D (x) = F Ĥ2
D (x), the classification rule will randomly assign the obser-

vation to one of the two groups with equal probability.

3 A simulation scheme to study the robustness of the cosine depth
distribution classifier

To investigate the robustness properties of the cosine depth distribution classi-
fier for directional data, the following simulation setting will be used.

Let H1 and H2 be two von Mises-Fisher distributions (vMF). That is, their
corresponding density functions h() are given by

h(x; µ,c) :=
(

c
n

)d/2−1 1
Γ(d/2)Id/2−1(c)

exp{cµT x},

where c ≥ 0, ||µ|| = 1, and Iv denotes the modified Bessel function of the
first kind and order v. The parameters µ and c are the mean direction and the
concentration parameter, respectively.

The training set size will be 1000 (500 from each group), while the size of
the testing set will be 500. The number of replications will be set equal to 150
times. For the concentration parameters c1 and c2 of H1 and H2, we consider
two cases: equal concentration (c1 = c2 = 5), and different concentration (c1 =
2 and c2 = 6).

The location parameters for µ1 and µ2 are set to be equal to (0,0,1),
(1,0,0) in dimension d = 3, respectively. The training observations from H1
are contaminated with observations generated from VmF with location param-
eter equal to µ = (0,0,−1) and concentration parameter c = 8.

The location parameters are set to be equal to µ1 = (0,0,0,0,0,0,0,0,0,1),
and µ2 = (1,0,0,0,0,0,0,0,0,0) in dimension d = 10.
Contaminated observations are generated from VmF with location parameter
µ = (0,0,0,0,0,0,0,0,0,−1) and concentration parameter c = 8.

Finally, the contamination levels will be set equal to 0%, 10%, 20%.
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ABSTRACT: One of the most debated questions in scientific network analysis is the
impact of collaboration on scientific performance, that is the effect of actors’ em-
beddedness in co-authorship networks on their individual research outputs. Recent
literature showed that specific centrality measures (e.g., closeness, betweenness) are
correlated with indicators of scientific performance. This contribution intends to ex-
plore the influence of actors’ embeddedness in co-authorship networks in a longitu-
dinal framework. By adopting a Stochastic Actor-Oriented Model, we will model
scientific performance (and its measurement) and authors’ collaborative behaviour as
a particular mechanism of ‘social influence’ over time.

KEYWORDS: scientific collaboration, co-authorship networks, SAO models, social 
influence.

1 Introduction

Several studies have shown that scientific productivity depends, among other
factors, on scientists’ attitudes towards collaboration in research (see Lee &
Bozeman, 2005 and Wuchty et al., 2007). In their collaborative interactions,
scientists can benefit by both methodological and technological complemen-
tarity and synergy, improving the quality and quantity of their research out-
put. In this stream of research, Social Network Analysis (SNA) has become
the privileged theoretical and statistical approach to study the typical collab-
oration patterns within disciplines (for instance, see De Stefano & Zaccarin,
2016, Ferligoj et al., 2015). Collaboration among scientists can be represented
as a network, in which the actors are scholars and ties may be represented by
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various forms of scientific collaboration among them. The most frequent way
of specifying such networks is to take into account formal research activities,
especially co-authorship (i.e., co-production of scientific publications, Bellotti
et al., 2016). One of the most debated questions in collaboration network
analysis is the impact of collaboration on scientific performance, that is the
effect of actors’ embeddedness in co-authorship networks on their individual
research outputs (Abbasi et al., 2011).

In the light of these findings, our contribution intends to add new empirical
evidence on the topic of the impact of collaboration on scientific performance,
exploring the influence of actors’ embeddedness in co-authorship networks in
a longitudinal framework. We will model scientific performance (and its mea-
surement, e.g. h-index) as a particular mechanism of ‘social influence’ over
time. To this end we will use performance and co-authorship data on Italian
statisticians in convenient time periods before and after the two Italian research
evaluation exercises (VQR1 and VQR2 respectively on products published in
the periods 2004-2010 and 2011-2014).

2 Theoretical framework

Several studies recognized research collaboration as a key element in knowl-
edge advancement because it facilitates interactions, exchanges, sharing meth-
ods and techniques – even from different fields – allowing a fertile ground for
the development of new ideas. A further aspect of research collaboration, in-
vestigated in empirical studies, is the association with scientific performance,
especially at individual level.

Melin, 2000 underlined the increase on knowledge and quality deriving
from collaboration. Baker, 2015 documented its crucial role in individuals’
job mobility and academic success. Other authors found that collaboration is a
strong predictor of publishing productivity (Lee & Bozeman, 2005) although
with controversial results depending on the choice of the productivity mea-
sure, while other authors (Abbasi et al., 2011) found evidence of a positive
correlation between performance and several network measures.

Combining co-authorship data from different sources (ISI-WoS, Current
Index to Statistics, and publications in nationally funded projects), De Stefano
et al., 2013 and De Stefano & Zaccarin, 2016 analysed the impact of collab-
oration on scientific performance of the Italian academic statisticians. Their
findings show that specific centrality measures (e.g., closeness, betweenness)
are correlated with indicators of scientific performance, even if this impact is
affected by heterogeneity depending on the discipline and on the data source
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used to construct the co-authorship networks.

3 Data and modelling

The research hypothesis of the present contribution relies on the idea that
across the two evaluation exercises the community under study – Italian aca-
demic statisticians – tends to change their collaboration behavior. Our aim is
to analyze the relation between co-authorship network indicators across the
two VQR exercises in the period 2004-2010 and 2011-2014 and how authors’
position in the co-authorship network affects their scientific performance in a
longitudinal perspective.

In particular, we analyze the co-authorship networks across these two pe-
riods as retrieved from the scientific production of the Italian academic statis-
ticians. That is, those scientists classified as belonging to one of the five sub-
fields established by the governmental official classification: Statistics (Stat),
Statistics for Experimental and Technological Research (Stat for E&T), Eco-
nomic Statistics (Economic Stat), Demography (Demo), and Social Statistics
(Social Stat).We recover the scientific production and the bibliographic meta-
data of the Italian academic statisticians from the novel IRIS platform for pub-
lications data storage (https://www.cineca.it). From the retrieved
metadata we will compute ad hoc indicator for measuring individual scien-
tific performance. Then, we will treat authors’ performance as a behavioral
variable in a Stochastic Actor-Oriented Model (SAOM) in order to disentangle
how co-authorship affects performance (‘behavior’) and viceversa.

SAOM approach allows to model if and what type of local network config-
uration is associated to the increase or decrease of the individual scientific per-
formance. The comparison between different periods will consider explicitly
the temporal dimension. The SAOM describes the development of a network
through time as a result of the relational choices of a set of individual actors
in order to maximize their utility Snijders et al., 2010. It is a combination of
random utility model, continuous time Markov model and simulation. When
actors change their personal network they may face several options, for exam-
ple, to create a new collaboration tie, dropping an existing one or leaving ties
unchanged. Under certain condition, the probability of these choices can be
specified as a multinomial logit model with the utility functions being the lin-
ear cores. The utility function expresses the characteristics of actors’ personal
networks toward which the actors seem to be attracted.

Adding to longitudinal networks the so-called behavior consists in consid-
ering one or more changing nodal variables – performance measures in our

164



case – that are also treated as dependent variables. The network will influence
the dynamics of the behavior, as well as the behavior will influence the dynam-
ics of the network. Roughly speaking, this means to consider the co-evolution
of networks and behavior. In particular, by means of this approach we will
model the change in authors’ performance indicator (for instance the propen-
sity to publish in high impact journals) depending on the embeddedness in the
co-authorship networks between the two VQR exercises periods.
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ABSTRACT: Several approaches exist to avoid singular and spurious solutions in
maximum likelihood (ML) estimation of clusterwise linear regression models. We
propose to solve the degeneracy problem by using a penalized approach: this is done
by adding a penalty term to the log-likelihood function which increasingly penalizes
smaller values of the scale parameters and the tuning of the penalty term is done
based on the data. Another traditional solution to degeneracy consists in imposing
constraints on the variances of the regression error terms (constrained approach). We
will compare the penalized approach to the constrained approach in a broad simulation
study and an empirical application, providing practical guidelines on which approach
to use under different circumstances.

KEYWORDS: clusterwise linear regression, penalized likelihood, scale constraints.

1 Introduction

Let y1, . . . ,yn be a sample of independent observations drawn from the re-
sponse random variable Yi, each observed alongside with a vector of J ex-
planatory variables x1, . . . ,xn. Let us assume Yi|xi to be distributed as a finite
mixture of linear regression models, that is

f (yi|xi;ψψψ) =
G

∑
g=1

pgφg(yi|xi,σ2
g,βββg) =

G

∑
g=1

pg
1√

2πσ2
g

exp
[
− (yi−x′iβββg)

2

2σ2
g

]
,

(1)
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where G is the number of clusters and pg,βββg, and σ2
g are the mixing proportion,

the vector of J + 1 regression coefficients that includes an intercept, and the
variance term for the g-th cluster. The set of all model parameters is given by
ψψψ = {(p1, . . . , pG;βββ0, . . . ,βββG;σ2

1, . . . ,σ2
G) ∈ R(G−1)+(J+1)G+G : p1 + · · ·+ pG =

1, pg > 0,σ2
g > 0, for g = 1, . . . ,G}.

The likelihood function can be specified as

L(ψψψ) =
n

∏
i=1

{ G

∑
g=1

pg
1√

2πσg
2

exp
[
− (yi−xxx′iβββg)

2

2σ2
g

]}
, (2)

which we maximize to estimate ψψψ either by means of direct maximization or
with the perhaps more popular EM algorithm (Dempster et al., 1977). How-
ever, there is a well-known complication in ML estimation of this class of mod-
els: the likelihood function of mixtures of (conditional) normals with cluster-
specific variances is unbounded (Kiefer & Wolfowitz, 1956; Day, 1969).

A traditional solution to the problem of unboundedness is based on the
seminal work of Hathaway (1985) which, in order to have the likelihood func-
tion of univariate mixtures of normals bounded, suggested to impose a lower
bound to the ratios of the scale parameters in the maximization step. The
method is equivariant under linear affine transformations of the data. That is,
if the data are linearly transformed, the estimated posterior probabilities do not
change and the clustering remains unaltered. Recently, in the multivariate case,
Rocci et al. (2018) incorporated constraints on the eigenvalues of the compo-
nent covariances of Gaussian mixtures that are tuned on the data based on a
cross–validation strategy. These constraints are built upon Ingrassia (2004)’s
reformulation and are an equivariant sufficient condition for Hathaway’s con-
straints. Estimation is done in a familiar ML environment Ingrassia & Rocci
(2007), with data–driven selection of the scale balance. Di Mari et al. (2017)
adapted Rocci et al. (2018)’s method to clusterwise linear regression, further
investigating its properties.

Another possible approach for handling unboundedness is to modify the
log-likelihood function by adding a penalty term, in which smaller values of
the scale parameters are increasingly penalized. Representative examples can
be found in Chen & Tan (2009); Chen et al. (2008); Ciuperca et al. (2003).

In this work we review the constrained approach of Di Mari et al. (2017)
and develop a data-driven equivariant penalized approach for ML estimation.
Next, we sketch the bulk of the methodologies.
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2 The methodology

2.1 The constrained approach

Di Mari et al. (2017) proposed relative constraints on the group conditional
variances σ2

g of the kind

√
c≤

σ2
g

σ̄2 ≤
1√
c
, (3)

or equivalently

σ̄2√c≤ σ2
g ≤ σ̄2 1√

c
. (4)

The above constraints are equivariant and have the effect of shrinking the
variances to a suitably chosen σ̄2, the target variance term, and the level of
shrinkage is given by the value of c. This constraints are easily implementable
within the EM algorithm (Ingrassia, 2004; Ingrassia & Rocci, 2007), which is
fully available in closed-form, and the selection of c is based on the data.

2.2 The penalized approach

An alternative to the constrained estimator is the penalized approach, in which
a penalty sn(σ2

1, . . . ,σ2
G) is put on the component variances and it is added

to the log-likelihood. Under certain conditions on the penalty function, the
penalized estimator is know to be consistent (Chen & Tan, 2009). A function
sn that satisfies these conditions is

sn(σ2
1, . . . ,σ

2
G) =−λ

G

∑
g=1

(
σ̄2

σ2
g
+ log(σ2

g)

)
, (5)

where σ̄2, the target variance, can be seen as our prior information on the
scale structure and λ is the penalizing constant that is selected based on the
data. Thus, the penalized log-likelihood can be written as

p`(ψψψ) = `(ψψψ)+ sn(σ2
1, . . . ,σ

2
G) (6)

and the set of unknown parameters is found by ML with computation done by
means of an EM algorithm that is available in closed-form. As well as with
the constrained approach, the penalized approach is equivariant with respect to
linear transformation in the response.
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ABSTRACT: The problem of estimating a circular regression when the predictor is
contaminated by errors is studied. Other than some estimators, we also present a
novel smoothing degree selection rule.

KEYWORDS: deconvolution, measurement error, Simex.

1 Introduction

Statistical regression models are generally based on the assumption that the
independent variables have been measured exactly. However, sometimes the
regressors are, for some reason, not directly observable or measured with er-
rors. When this is the case specific models, known as errors-in-variables or
measurement error models, have to be taken into account.

Formally, suppose that we are interested in estimating the regression of Y
on X∗, denoted as m, and that our data are realizations from variables X =
X∗+η and Y , say (x1,y1), . . . ,(xn,yn). A general model for this case could be

yi = m(x∗i )+ζi (1)
xi = x∗i +ηi

for i= 1, . . . ,n, where X∗ and Y respectively refer to the predictor and response
variable, ζis are observations of the random error term ζ, ηis are realizations
of η. The unobserved variable X∗ is always referred as latent or true vari-
able. Usual assumptions include that ζ is independent from both X∗ and η, the
distribution of ζ is unknown but has mean 0 and constant variance, while the
distribution of η is known.
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Let fX , fX∗ and fη respectively denote the probability density function of
X , X∗ and η. Basic theoretical considerations suggest that fX is the convolution
between fX∗ and fη:

fX(x) =
∫ ∞

−∞
fX∗(x−ν)dFη(ν), (2)

where Fη denotes the distribution function of η. As the consequence, the es-
timators of the free-error model are clearly not consistent. In such a context
there are two approaches to obtain accurate estimates: deconvolution methods
and explicit bias estimation and correction.

In this paper we address the measurement error case when data can be
represented as points on a circumference. Specifically, we present a non-
parametric deconvolution estimator along with a rule for smoothness selection.

2 Circular data

Angular or circular data are collected whenever observations are measured by
means of a periodic scale. They are usually represented as points on the cir-
cumference of a circle with unit radius. Classical examples of such data are
wind directions, animal movements, any phenomenon measured by the 24 h
clock, etc. Once a zero direction and a sense of rotation have been arbitrarily
chosen, these observations can be expressed as angles. Due to their periodic
nature, circular data cannot be analysed by standard real-line methods, there-
fore in the last decades great attention has been devoted to circular statistics.
For a comprehensive account, see the survey paper by Lee, 2010, and the ref-
erences therein.

3 The estimator

Consider a pair of random angles (Θ,∆), i.e. variables taking values on [0,2π).
Given the random sample (Φ1,∆1), . . . ,(Φn,∆n), we can write model (1) as

∆i = (m(Θi)+ εi)mod(2π), (3)
Φi = Θi +ui,

where Θis are independent copies of the circular latent variable Θ, the εis are
i.i.d. random angles independent of the Θis, with zero mean direction and finite
concentration, and the uis are realizations of the random angle U independent
of the Θis.
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A local estimator for m at θ ∈ [0,2π) can be defined as

m̂(θ;κ) = atan2(m̂s(θ;κ), m̂c(θ;κ)), (4)

with

m̂s(θ;κ) =
n

∑
i=1

sin(∆i)Lκ(Θi−θ),

m̂c(θ;κ) =
n

∑
i=1

cos(∆i)Lκ(Θi−θ),

where the function atan2(y,x) returns the angle between the x-axis and the
vector from the origin to (x,y), and Lκ is a circular deconvolution kernel func-
tion depending on γ`(κ) and λ`(κU) which are, for ` ∈ Z, respectively, the `th
Fourier coefficient of the periodic weight function Kκ and the error density fU
whose concentration parameter is κU :

Lκ(θ) =
1

2π

{
1+2

∞

∑̀
=1

γ`(κ)
λ`(κU)

cos(`θ)

}
. (5)

4 Smoothing degree selection

In the context of measurement error the standard cross-validation criterion for
the selection of the smoothing degree κ is not suitable. Indeed, if we knew the
values Θ1, . . . ,Θn in addition to (Φ1,∆1), . . . ,(Φn,∆n) then we could compute
the conventional cross-validation smoothing degree κ̂0 = argminCV0(κ), with

CV0(κ) =
1
n

n

∑
i=1

(1− cos(∆i− m̂−i(Θi))), (6)

where m̂−i denotes the version of m̂ computed by omitting the ith pair of the
sample. However, since Θis are unknown above criterion is not attainable.

However, a cross-validation idea could still be employed through a SIMEX
(simulation-extrapolation) approach proposed by Delaigle and Hall, 2008 by
following the steps listed below:

1. Generate two i.i.d. samples from U denoted as u∗1, . . . ,u
∗
n and u∗∗1 , . . . ,u∗∗n .

Then, for i = 1, . . . ,n, define Φ∗i = Φi +u∗i and Φ∗∗i = Φi +u∗i +u∗∗i and
consider the problem of estimating two regression functions, m1 and m2,
respectively from the contaminated data (Φ∗i ,∆i) and (Φ∗∗i ,∆i).
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2. Define the objective functions CV ∗(κ) and CV ∗∗(κ)

CV ∗(κ) =
1
n

n

∑
i=1

(1− cos(∆i− m̂1,−i(Φi)))

CV ∗∗(κ) =
1
n

n

∑
i=1

(1− cos(∆i− m̂2,−i(Φ∗i )))

in order to obtain κ̂∗1 = argminCV ∗(κ) and κ̂∗∗2 = argminCV ∗∗(κ).
3. The dependence of κ̂∗1 on Φ∗i and κ̂∗∗2 on Φ∗∗i can be removed by averaging

over a large number, say B, of CV ∗ and CV ∗∗ for different simulated
sequences of u∗1, . . . ,u

∗
n and u∗∗1 , . . . ,u∗∗n :

CV1 =
1
B

B

∑
b=1

CV ∗b

CV2 =
1
B

B

∑
b=1

CV ∗∗b

4. Then, we define, for j = 0,1,2,

κ̂ j = argminCVj(κ). (7)

Now, Φ∗∗ approximates Φ∗ in the same way that Φ∗ approximates Φ and
Φ approximates Θ. Therefore we expect that the relationship between κ̂0
and κ̂1 is similar to that between κ̂1 and κ̂2. As the final result, we get

κ̂0 = κ̂2
1/κ̂2. (8)
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ABSTRACT: Quantile Composed-based Path Modeling complements the classical PLS Path 
Modeling. The latter is widely used to model relationships among latent variables and between 
the manifest variables and their corresponding latent variables. Since it essentially exploits 
classical least square regressions, PLS Path Modeling focuses on the effect the predictors exert 
on the conditional means of the different outcome variables involved in models. Quantile 
Composed-based Path Modeling extends the analysis to the whole conditional distributions of 
the outcomes. This paper proposes a procedure to estimate the conditional quantiles for the 
manifest variables of the outcome blocks. Starting from the information related to a grid of 
conditional quantiles, it is possible to define the most accurate model for each health indicator 
and the best predictive model for each Italian province. The proposed method is shown in action 
both on artificial and real data. The real data concerns the prediction of health indicators.  

KEYWORDS: PLS Path Modeling, Quantile Composite-based Path Modeling, 
Conditional Quantile Model-based Prediction.

1 Introduction 

Partial Least Squares Path Modeling (PLS-PM) is a multivariate statistical method 
for studying relationships among latent variables (LVs), each one represented through 
a set of observed variables usually called manifest variables (MVs). The general 
model consists of two sub-models: the structural model and the measurement model. 
The measurement model relates each MV to its own LV, assuming that the conditional 
mean of each MV is a linear function of the corresponding LV. The structural model 
specifies the linear relationships between LVs. The estimation of the model 
parameters proceeds through an iterative algorithm essentially based on a sequence of 
simple and multiple Ordinary Least Squares (OLS) regressions. The obtained 
coefficients measure the rates of change in the conditional mean of the dependent 
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MVs and LVs as a function of changes in the correspondent set of predictors. The 
same holds both in the measurement and structural model.  

Theories behind the application of PLS-PM focus on the estimation of conditional 
expected values, regardless of the distribution of response variables. Although PLS-
PM does not require any assumption about the distribution of LVs, MVs and error 
terms, and it seems to be robust with respect to departure from normality, it is known 
that heavy-tailed or highly skewed distribution may inflate standard errors obtained 
from bootstrapping and that influential outliers affect the OLS regression estimates 
(Hair et al., 2017). Moreover, modeling only the conditional mean may be inadequate 
when the effects of the investigated relationships are expected to vary across the 
different locations of the responses. 

To this end, Davino and Esposito Vinzi (2016) introduced Quantile Composite-
based Path Modelling (QC-PM). This method exploits Quantile regression (QR) 
(Koenker and Basset, 1978) and Quantile correlation (QC) (Li et al., 2014) in the 
classical PLS-PM algorithm for estimating the model parameters. Conditional 
quantile modeling provides a complete description of the relationship among LVs, 
considering the whole distribution of the outcome variables (and not only their 
conditional means). QC-PM is a complementary method to PLS-PM, used to 
investigate if the relationships among LVs change across different parts of the 
dependent LV distributions, when there are outliers in the data and when MVs 
distributions are heavy-tailed or highly skewed. Furthermore, QC-PM can be used to 
provide conditional quantile predictions of the MVs of the dependent blocks given the 
explanatory blocks, which is the main objective of this paper.   

2 Conditional Quantile Model-based Prediction for Health 
Indicators. 

The focus of the present work is on the performance of the QC-PM for predicting 
the θ-th (0 < θ < 1) conditional quantile for the dependent MVs (i.e., the MVs related 
to the endogenous LVs), given the values of all explanatory MVs.   

The proposed approach is mainly based on the idea that using a dense grid of 
quantiles, conditional quantiles offer more flexibility than the conditional mean in 
capturing the unobserved heterogeneity among the statistical units.  The use of 
statistical models, tailored to discover, incorporate and exploit such an unobserved 
heterogeneity, is an old and wide explored issue in the regression model framework 
(Spath, 1979). Following the procedure proposed by Davino and Vistocco (2018) to 
handle heterogeneity in quantile regression, the focus here is on the heterogeneity of 
the dependent block variables and predictor block variables and its use to predict or 
influence the different parts of the conditional distribution of dependent variables. 

The merit of the proposed method will be illustrated through a study concerning 
the relationships among three well-being domains (Education, Economic Well-being 
and Health) measured on Italian provinces. The interest in such an application 
concerns both advances in knowledge about the dynamics that determine the well-
being outcomes at local level (multiplier effects or trade-offs) and a more complete 
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measurement of regional inequalities of well-being. At the province level, inequalities 
can strengthen each other affecting multiple disadvantages or advantages. Therefore, 
in assessing well-being outcomes the conditions within those outcomes are 
determined should be properly considered.  In the path model in figure 1, Health 
variables are placed as response variables. The underlying hypothesis, supported by 
literature and empirical studies, is that Economic well-being and Education affect 
Health. We consider both the direct effects on Health and the interaction between 
Economic well-being and Education (wealthy territories offer better job opportunities 
and therefore attract higher skilled people; human capital is a factor of economic 
growth).  
 

 
Fig. 1 A path model to predict Health outcomes from Education and Economic well-being at local level. 
 

To provide a more in-depth assessment of Health inequalities, the specified path 
model is estimated for a dense grid of equally spaced quantiles through QC-PM, 
producing m estimates for each parameter of the model, where m is the number of 
chosen quantiles. The conditional quantile prediction for each health indicator (i.e., 
the MVs belonging to the health block) can be estimated in correspondence of each 
quantile θ, (0 < θ < 1). The accuracy of prediction is evaluated through quantile 
scoring based on the so-called pinball loss function, the loss function used as the 
objective function in quantile regression (Grushka-Cockayne et al., 2017), the lower 
the pinball loss, the more accurate the conditional quantile prediction. Moreover, a 
modified version of the Conditional Quantile Plot (Wilks, 2005), a graphical approach 
to evaluate the model performance for continuous measurements, will be used as a 
diagnostic verification technique. This plot will show, for each MV, the joint 
distribution between the estimated conditional quantiles (for the median, 25/75th and 
10/90th quantiles) and the corresponding observed values. The estimated conditional 
quantile distributions are compared to the 1:1 diagonal line representing perfect 
prediction, to visualize which predicted conditional quantiles most agree with 
observations across the full MV unconditional distribution.  

Finally, the best predictive model for each Italian province and for each Health 
indicator is defined as follows. Let yip, (i = 1, . . . ,110), (p = 1, . . . , 3), denote the 
observed value for province i on the health indicator p, the best predictive model is 
identified by the quantile that best predict the observed value, namely through the 
quantile which minimizes the absolute difference between the observed value and the 
estimated value: 
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where θip best represents the quantile associated to the best predictive model for each 
unit and each indicator, while  is the correspondent best prediction for yip.  

The proposed procedure is used also to compare the best (i.e., optimal) conditional 
quantile predictions for the Health outcomes, given the Education and Economic 
Well-being levels, with the observed unconditional quantiles. A comparison for each 
province between the conditional θbest value and the unconditional quantile be very 
informative. Best predictive model is obviously subject to overfitting, but this does 
not actually matter here and in general when dataset contains all the population units 
and the objective is not to generalize on different data.   

Finally, the optimal conditional quantile predictions deliver a better prediction 
accuracy than using a single quantile approach or estimating only the conditional 
mean. This is obvious for a single regression model, but it is not for composite-based 
path modeling, where a number of regression models is analysed simultaneously, and 
the predictive model is a combination of two separate models, i.e., the measurement 
and the structural model. First results are very promising and show that the predictive 
model and the proposed procedure drastically improve the in-sample predictive 
capability of models.   

 
Disclaimer: The paper is the result of collaboration among the authors. Istat is not responsible for the 
contents. 
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ABSTRACT: Classification problems with imbalanced class distributions are perva-
sive in a plurality of real-world applications, such as network intrusion detection, fraud
detection and rare disease diagnosis. In this context, most of standard classification
models are heavily compromised, as they tend to focus on the majority class, yet the
minority class is often the one of greatest importance. To tackle the problem, we com-
bine XGBoost, a powerful and recent formulation of the gradient boosting, with a loss
function specifically derived to optimise the Area Under the ROC curve, an evaluation
metric more robust towards class imbalance.

KEYWORDS: AUC, boosting, classification, class imbalance.

1 Introduction

Class imbalance refers to all supervised classification tasks which suffer of
uneven class distributions. The issue has gained ground with some further
implicit assumptions, such that imbalanced data are expected to have rare in-
stances belonging to the class of greatest interest and a (relatively) large num-
ber of units from the other classes. An imbalanced class distribution may
severely affect the performance of classification algorithms, by interfering with
both model estimation and accuracy evaluation phases. Disregarding each
model own specificities, model estimation is typically driven by the optimi-
sation of a global loss function, which favours classification rules ignoring the
rare units as overwhelmed by the prevalent class. A number of techniques have
been developed to cope with imbalanced classes: data level approaches attempt
to re-balance the class distribution before building learning models, whereas
classifier level approaches aim to adapt existing algorithms to focus on the mi-
nority class. The latter group includes cost-sensitive techniques, methods that
replace the loss function with more meaningful measures and combinations of
classifiers, that follow the logic of boosting, bagging and random forests.

†Disclaimer: this document reflects authors’ views, not necessarily shared by ECB.
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Under imbalanced scenarios, assessing the performance of a classifier plays
a role that is at least as crucial as its estimation. Accuracy, which is the most
commonly used metric for classification tasks, is not sufficient, as it is gov-
erned by the majority class. Other performance metrics which account for the
class distribution are preferred in this context, as the G-mean, the F-measure,
and especially the Area Under the ROC Curve (AUC). See Menardi & Torelli
(2014) for a more comprehensive discussion about the imbalance problem.

Within the logic of the approaches at a classifier level, in this work we
derive a differentiable loss function that optimises the AUC to train a gradient-
based model within the boosting family, in order to extend the benefits of the
AUC as evaluation metric to the phase of model estimation. After presenting
the building blocks relevant for a full comprehension of the proposed method,
we discuss our contribution and show some numerical results.

2 Gradient boosting optimisation based on the AUC

Given a training set Tn containing n i.i.d. pairs (xi,yi), i = 1, . . . ,n, where
xi ∈ Rd is a vector of attributes and yi ∈ {Y0,Y1} is a response variable whose
classes are conventionally labeled as negative and positive respectively, a clas-
sifier H : X 7→ R is a function that allows to predict the response variable y,
based on the observed x. The output H (x) measures the confidence of x be-
longing to the positive class, whereas the predicted label ŷ is defined on the
basis of a threshold k ∈ R such that ŷ = Y0 if H (x)< k and ŷ = Y1 otherwise.
A non-negative loss function L(y, ŷ), that measures the discrepancy between
observed and fitted values, is used either to optimize the classifier during the
learning process and to assess the performance of the model.

Even if not specifically developed to tackle the class imbalance problem,
the gradient boosting (Friedman, 2001) has showed to achieve competitive
results in this domain. In broad terms, it exploits the connection between Ad-
aBoost, the first applicable approach of boosting, that relies on the idea of
increasing the weight of the hardest to classify units, and a forward-stagewise
additive modeling approach. At each iteration of the algorithm, a functional
gradient descent optimisation is applied to a loss function, in the n-dimensional
space of the fitted values, and it is then approximated by some simple model.
The final rule is a linear combination of all the previous estimated functions.
A specific formulation of the gradient boosting is XGBoost (Chen & Guestrin,
2016), which, at each iteration, approximates the objective loss function by a
second order Taylor’s series expansion, and estimates a classification model
via its minimisation. This implementation easily supports different loss func-
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tions, as it is sufficient to provide the algorithm with its first two derivatives.
The rationale behind the proposed approach is to integrate into the XG-

Boost a loss function independent on the class distribution. In this perspective,
the AUC - its ones’ complement, in fact - represents a sensible candidate.

Let n+ and n− be the sample size of positive and negative observations re-
spectively, and assume that H (x+i ) and H (x−j ) are the fitted scores respectively
for the i-th positive and the j-th negative instances. The AUC is equivalent to
the normalized Wilcoxon Mann-Whitney statistic, in the form:

AUC =
1

n+n−

n+

∑
i=1

n−

∑
j=1

I0.5(H (x+i )−H (x−j )), (1)

where I0.5(t) is 0 if t < 0, 0.5 if t = 0, 1 otherwise. The AUC estimates the
probability that a positive unit receives a higher score than a negative one by
means of comparisons between instances belonging to different classes. While
the global accuracy of a classifier depends on the choice of a classification
threshold, the AUC evaluates its discriminating ability as the threshold varies
over all its range. This allows to cater for the presence of rare units as, by
construction, it does not place more emphasis on one class over the other.

Unfortunately, two issues prevent the expression (1) from being directly
used as a loss function: first and foremost, the function is non differentiable,
secondly, its argument is not the single observation but rather refers to pairs of
instances. To overcome the first limitation, we consider the following differ-
entiable approximation (Yan et al., 2003):

Us =
1

n+n−

n+

∑
i=1

n−

∑
j=1

S(H (x+i ),H (x−j )), where: (2)

S(H (x+i ),H (x−j ))=

{
(−(H (x+i )−H (x−j )− τ))p if H (x+i )−H (x−j )< τ,
0 otherwise,

(3)
for a given τ ∈ (0,1] and p > 1 selected by the user. A pair of observations
contributes to the loss function when the score of a positive unit exceeds the
one of a negative unit by τ. The authors suggest to choose τ ∈ [0.1,0.7] and
p ∈ {2,3}. The quantity Us is then reformulated to refer to unique instances:

Us =
1

n+n−

n

∑
i=1

[
I(yi=1)

i−1

∑
i′=1

S+
i′ + I(yi=−1)

i−1

∑
i′=1

S−i′
]
, where: (4)

S+
i′ = I(yi′=−1)S(H (xi),H (xi′)) and S−i′ = I(yi′=1)S(H (xi′),H (xi)). Once the

parameters are defined, the computation of the first two derivatives is straight-
forward and the method can be implemented.
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Empirical results reveal that the proposed approach outperforms many other
competitive classifiers, especially in scenarios of extreme rarity and nontrivial
data patterns. In the bidimensional setting illustrated in Figure 1, as well as in
its generalisation in 5 dimensions, rare units lie in small disjunct sets, over-
lapping with the majority class at the margins of each box. The results of the
analysis are outlined in Table 1. As expected, standard models as the logis-
tic regression and the classification tree fail in this domain. The algorithm
SMOTEBoost (Chawla et al., 2003), specifically developed to address the im-
balance, performs even worse than the original AdaBoost. Conversely, the
modified XGBoost achieves better results in the majority of the cases, includ-
ing the hardest.

Figure 1: Simulated data in the
bidimensional space. Red dots
represent the rare instances.

% dim. Logistic
Reg.

Tree
(Gini)

Ada-
Boost

SMOTE-
Boost

Gradient
boosting

Modified
XGBoost

0.6
2

0.500 0.500 0.772 0.602 0.782 0.790
(0.004) (0.000) (0.047) (0.059) (0.043) (0.041)

5
0.500 0.500 0.721 0.563 0.712 0.736

(0.012) (0.000) (0.041) (0.059) (0.040) (0.042)

1
2

0.500 0.501 0.830 0.632 0.838 0.833
(0.003) (0.008) (0.034) (0.059) (0.030) (0.030)

5
0.499 0.501 0.786 0.609 0.777 0.790

(0.008) (0.014) (0.032) (0.067) (0.030) (0.031)

Table 1: Average AUC (and standard deviation) over 300 Monte
Carlo samples of size 1000, with dimension 2 and 5, rare class fre-
quency of 0.6% and 1%. For boosting algorithms 200 iterations were
considered; for the AUC-based loss function τ = 0.7 and p = 2.
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HOW TO MEASURE MATERIAL DEPRIVATION?
A LATENT MARKOV MODEL BASED APPROACH

1 Department of Economics, University Roma Tre,
(e-mail: francesco.dotto@uniroma3.it)

ABSTRACT: Material deprivation can be used to assess poverty in a society. The
status of poverty is not directly observable, but can be measured with error for instance
through a list of deprivation items. Given two unobservable classes, corresponding
to the poor and not poor, we develop a time-inhomogeneous latent Markov model
which allows us to classify households according to their current and inter-temporal
poverty status, and to identify transitions between classes that may occur year-by-year.
Households are grouped by estimating their posterior probability of belonging to the
latent status of poverty.

KEYWORDS: latent markov, material deprivation, EU SILC.

1 Introduction

Measurement of material deprivation has generally followed the “counting ap-
proach”, that is a parsimonious way of classifying a society according to the
number of zero-one deprivation indicators, that lead to a deprivation score. An
individual score of deprivation results from the (possibly weighted) sum of the
dichotomous indicators listed in Table 1. Two individuals with the same de-
privation score are treated equally, even though they do not necessarily lack
the same items. The cut-off, the list of items, and their associated weights
have been a matter of concern and dispute, since they can affect the results
and the consequent policy. To overcome such issues we develop a dynamic la-
tent state model able to classify individuals (or households) according to their
unobserved poverty status from their observed current and inter-temporal de-
privations and to estimate movements into and out of poverty during the whole
observation period (Dotto et al., 2019). In this dynamic perspective, the prob-
ability of being persistently poor is estimated as the joint probability of being
poor over the whole period and transitions between classes (poor and not poor)
that may occur year-by-year can be estimated.

Francesco Dotto1
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2 A sketch of the model

Individuals belong to the latent state of poverty with a probability that depends
on the presence/absence of a specific combination of deprivation items. More
formally, let Yit = (Yit1, . . . ,YitR) be the outcome for the i-th individual at time
t is the R-dimensional configuration. Given the R-dimensional outcome mea-
sures, with error, let Uit be a binary latent variable which represents for each
individual i an indicator of being in the poverty status in the simplest case of
k = 2, and an indicator of being in the j-th latent group at time t, j = 1, . . . ,k
in the more general case. Subjects are allowed to move from one latent state
to another between each measurement occasion, hence Uit is not necessarily
constant over time. In what follows we assume the i-th subject has been mea-
sured at times 1, . . . ,Ti, with T = maxi Ti, and that missing measurements are
not informative. In our analysis Ti = T = 4. The resulting likelihood function
is given by

L(θ) =
n

∏
i=1

(
k

∑
Ui1=1

k

∑
Ui2=1

· · ·
k

∑
UiTi=1

Pr(Ui1)
Ti

∏
t=2

Pr(Uit |Ui,t−1)
Ti

∏
t=1

R

∏
r=1

Pr(Yitr|Uit)

)si

,

(1)
where, in (1), θ is a short-hand notation for all parameters involved and si, i =
1, · · · ,n, the longitudinal sampling weights. To maximize (1) we use an EM-
type procedure whose details are outlined in Bartolucci et al., 2012. At con-
vergence of the algorithm, the obtained MLE for the parameters of interest can
be used for inference, prediction, and their interpretation is explained within
the next section.

3 Results

To validate the proposed methodology we use the 2013 longitudinal compo-
nent of EU-SILC (UDB SILC 2013 rev.2), released in August 2016. The unit
of analysis is the household. Table 1 reports the association between each item
r and the latent categorical variable. For each country, the first column indi-
cates the estimated probability of being poor ( j = 2) in a specific item given
that the latent variable assumes the status of poverty, p̂2r, and it is a measure of
how sensitive the item is. The second column, instead, indicates the specificity
of each item r, 1− p̂1r, that is the probability of not lacking item r given that
the household is not poor. Ideally, item r should have sensitivity and speci-
ficity equal to 100%: whoever is poor lacks that item and whoever is not poor
does not lack that item. It can be seen that generally durable goods (telephone,
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Figure 1. Percentage of deprived households according to varying thresholds

TV, washing machine) are very specific, but not sensitive, attributes. The in-
capacity to afford a meal and to keep the house adequately warm are also very
specific but also quite sensitive. More balanced items, and on the whole more
discriminating, are the incapacity of having one week annual holiday away
from home and of facing unexpected expenses.

Table 1. Estimated probability (percentage) of lacking item r given that the latent state
is poverty (p̂2r=sensitivity) and probability of not lacking item r given that the latent
state is non-poverty (1− p̂1r=specificity). Greece, Italy, and UK separately and as a
whole: 2010–2013.

Greece Italy UK Pooled

Item description p̂2r 1− p̂1r p̂2r 1− p̂1r p̂2r 1− p̂1r p̂2r 1− p̂1r

1 keep the house warm 49.6 92.9 43.4 98.0 21.8 98.1 34.5 98.0

2 one week holiday 88.9 76.0 92.4 82.4 81.0 95.7 87.4 87.5

3 afford a meal 31.7 99.0 30.8 98.9 20.9 99.8 25.8 99.5

4 unexpected expenses 87.3 88.8 83.4 90.3 85.3 91.5 83.5 90.9

5 telephone 1.2 100.0 0.8 100.0 0.2 100.0 0.7 100.0

6 color TV 0.1 100.0 0.8 100.0 0.3 100.0 0.5 100.0

7 washing machine 2.5 99.7 0.9 100.0 1.6 100.0 1.3 100.0
8 car 15.5 97.6 7.9 99.8 17.9 99.2 12.3 99.5
9 arrears 58.5 82.9 26.8 98.3 28.7 99.5 29.8 98.5
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Additionally, for each household i, we estimated the probability of being in
state of current deprivation based on the configuration of the vector of the nine
outcomes: pit = Pr(Yit|Uit = 1). These estimated conditional probabilities
allow to classify households into the state of deprivation or non-deprivation
according to a given threshold, τ. Each household is not classified according to
an established cut-off, but with uncertainty. This does not prevent calculation
of the usual deprivation statistics such as the deprivation rate but leads to a
continuum of solutions represented by curves of the estimates, permitting an
evaluation of their robustness (comapre Figure 1).

4 Conclusions

Measurement of material deprivation which is a relative concept, is still chal-
lenging since involves both methodological and substantive issues. Herein we
proposed a latent Markov model for categorical longitudinal data able to solve
some of the issues raised in measuring deprivation. Our model is able to study
the evolution of individual characteristics that are not directly observable.
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DECOMPOSITION OF THE INTERVAL BASED 

COMPOSITE INDICATORS BY MEANS OF 

BICLUSTERING
Carlo Drago1, 2
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ABSTRACT: Interval-based composite indicators are useful as subjectivities exist
in the choices leading to the construction of a composite indicator. The interval
shows the level of variation which is able to be determined by the different
factors considered on the construction of the composite indicator. We will
explore and analyze different results of the underlying composite indicators
computed on the Monte Carlo simulations using biclustering. The results offer
an understanding and explanation of the sensitivity of the composite indicator
outcomes to the inputs under consideration.

KEYWORDS: composite indicators, interval data, biclustering.

1 Interval-Based Composite Indicators

A relevant problem∗ in the construction of the composite indicators is the
existence of subjectivity in some relevant decisions (JRC European Commission
and OECD, 2008). For instance the choice of the different weights could be
subjective. A sensitivity analysis can be performed in order to evaluate the
robustness of the different results due to changes in the stated assumptions (for
instance the choice of the weights). The construction of a composite indicator
should take into consideration both sensitivity and robustness analysis in order
to validate the results. A possible solution is the use of interval data (Drago,
2017). These interval data take into account the different characteristics of
the different results by their features. A typical composite indicator can be
considered (Aiello & Attanasio, 2006)

Y = f [T1(y1),T2(y2), . . . ,Ts(ys)] (1)

∗Thanks to the anonymous referees for the useful suggestions and professor Filomena
Maggino and dr. Leonardo Alaimo for the productive discussions. Eventual mistakes are mine
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where y1,y2 . . .ys are some indicators and T1,T2 . . .Ts are transformation functions
of the data, and finally f is a specific aggregation function considered. From
the different combinations of possible inputs we can construct the composite
indicator. If we consider the entire set of the output of the composite indicator
considering all the changes on the underlying c assumptions (for instance
weighting) we can have the interval of the different composite indicators (outputs):

I[Y ] = [Y c,Y c
] = {Y ∈ R : Y c ≤ Y c ≤ Y c} (2)

where Y c and Y c are respectively the lower and the upper bounds for the
assumptions considered c for c = 1, . . . ,C. It is important to note that it is
possible to take into account the center

Ycenter =
1
2
(Y c +Y c

) (3)

and also the radius
Yradius =

1
2
(Y c−Y c) (4)

At this point it is of great importance to interpret the different intervals constructed
by considering the different blocks obtained.

2 Decomposition of the Interval Composite Indicators

It is possible to decompose the interval composite indicator into different intervals
which can be contained in the original one.

[Y 1
j ,Y

1
j ], [Y

2
j ,Y

2
j ], . . . , [Y

C
j ,Y

C
j ] (5)

where c for c = 1, . . . ,C are the different assumptions considered , Y 1
j and Y 1

j

are the lower and the upper bounds for each statistical unit j with j = 1, . . . ,J.
We can start from the general matrix A of the simulations obtained. Each
simulation returns a single composite indicator for the each statistical unit
and a rank. At this point we can consider an approach of biclustering in
order to analyze in more depth the different results obtained from the different
simulations (the different simulations returning different outputs or composite
indicators are in columns whereas the statistical units are in the rows). In
particular we are interested in comparing the different simulations used assuming
different weightings or changing the structure of the composite indicator. We
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can validate the biclusters obtained by examining the Jaccard index (Kaiser &
Leisch, 2008):

JI(B1,B2) =
|B1∩B2|

|B1|+ |B2|− |B1∩B2|
where B1 and B2 are two bicluster results. In this way, from the consideration
of the biclustering results it is possible to decompose the interval of the composite
indicator. In fact we are able to analyze and explore the different results of the
factor which cause the variation of the composite indicator. This result is very
important for the operational use of the composite indicator (we are interested
in both in the score of the composite indicator and also in its variability).

3 Analysis of the Criminal Rates in the United States

We consider a composite indicator useful to measure the level of crime in the
US by combining the information of the different criminal indicators. The data
are in McNeil, 1977 and consist of statistics relating to the arrests for assault,
rape and murder in the US (year 1973). The data are related to the 50 US
states. All the different data are per 100,000 habitants. So in this sense we
firstly standardize the different indicators, then we consider the construction
of the interval based composite indicator. The analysis of the matrix of the
simulations is visualized and analyzed by a heatmap (figure 1). Then we apply
the biclustering approach in order to analyze the simulation matrix. Overall
the variables tend to vary much more in the composite indicators than in other
factors such as the weights. We used the biclustering algorithms developed in
Kaiser et al., 2018.

Iowa
Wisconsin
Vermont
New Hampshire
Maine
North Dakota
Connecticut
South Dakota
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Arkansas
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Nevada
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Tennessee
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New York
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North Carolina
Mississippi
Louisiana
South Carolina
Colorado
Arizona
Maryland
New Mexico
Michigan

Figure 1. Simulations for the Interval Based Composite Indicator (in columns the 
different inputs considered; in rows the statistical units).
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4 Conclusions

Composite indicators are often characterized by assumptions which call for
some subjective choices. In this sense it is usually relevant to perform a
sensitivity analysis in order to evaluate the robustness of the composite indicator
constructed. Interval composite indicators allow to take into account all possible
variation sources on a single interval outcome based on all the possible outputs
obtained by the different inputs. In this context biclustering can be usefully
applied so as to detect groups of statistical units which do not vary on the
same simulations. The interval decomposition allows the evaluation and the
exploration of the variability patterns relating to the inputs and more specifically
where inputs lead to higher variation outcomes.
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ABSTRACT: We propose an approach to the cluster ensemble problem based on piv-
otal units extracted from a co-association matrix. It can be seen as a modified ver-
sion of K-means method, which utilizes pivots for careful seeding. Different criteria
for identifying the pivots are discussed, as well as preliminary results concerning the
comparison with alternative ensemble methods.

KEYWORDS: cluster ensemble, pivot, K-means.

1 Introduction

Ensembles methods have recently emerged as a valid alternative to conven-
tional clustering techniques and have shown to effectively improve the quality
of clustering results and achieve robustness (see, e.g., Strehl & Ghosh, 2002,
Jain, 2010). Such methods require a strategy to generate multiple clusterings
of the same data set (the ensemble) and then combine them into a consensus
partition (presumably superior), by following the idea of evidence accumu-
lation, i.e., by viewing each clustering result as an independent evidence of
data structure. A common way to do this is to obtain a new pairwise simi-
larity matrix, or co-association matrix, by taking the co-occurrences of pairs
of points in the same group across all partitions (Fred & Jain, 2005). Then, a
similarity-based clustering algorithm can be applied to this matrix to yield the
final partition.

We propose to use the co-association matrix to find some specific units
(hereafter, pivots) which are representative of the group they belong to (be-
cause they never or very rarely co-occur with members of other groups). Vari-
ous criteria for detecting the pivots are proposed in Section 2. Section 3 illus-
trates the use of pivotal methods for data clustering, and compare the proposed
approach with classical K-means and other common ensemble methods.

Pivotal methods and related clustering procedures are implemented via the
R package pivmet, available from the Comprehensive R Archive Network at
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http://CRAN.R-project.org/package=pivmet.

2 Pivotal methods based on co-association

Let Y = (y1, . . . ,yn) be a set of n observations, where yi ∈ Rd . Consider a set
P = {P1,P2, . . . ,PH} of H partitions of the data points into K disjoint clusters,
derived from an arbitrary clustering algorithm. Note that the number of groups
is pre-specified and equal for all Ph. P can be summarized via the n× n co-
association matrix C with generic element

ci, j =
1
H

H

∑
h=1
|Ph(yi) = Ph(y j)|, (1)

where | · | denotes the indicator function, and Ph(yi), Ph(y j), represent the clus-
ters of the objects yi and y j in Ph, respectively. Clearly, units which are very
dissimilar from each other are likely to have zero co-occurrences; as a conse-
quence, C is expected to contain a non-negligible number of zeros. Given a
large and sparse 0-1 matrix, the Maxima Units Search (MUS) algorithm seeks
those elements, among a pre-specified number of candidate pivots, whose cor-
responding rows contain more zeros compared to all other units (Egidi et al.,
2018c). Define a reference partition, G1, . . . ,GK of y1, . . . ,yn obtained by ap-
plying, for instance, an agglomerative hierarchical algorithm into K groups.
The MUS procedure takes C as input and outputs a set of K units–one for each
group of the reference partition–that exhibit the highest degree of separation
(Egidi et al., 2018b). As an alternative approach, the pivot yik for group Gk
can be chosen so that it is as far as possible from units that might belong to
other groups and/or as close as possible to units that belong to the same group,
according to one of the following objective functions

(a) max
ik

∑
j∈Gk

cik, j (b) min
ik

∑
j 6∈Gk

cik, j (c) max
ik

∑
j∈Gk

cik, j− ∑
j 6∈Gk

cik, j, (2)

where ci, j is defined as in (1). Ideally, the K×K submatrix of C with only the
rows and columns corresponding to i1, . . . , iK will be the identity matrix. In
practice, it may contain few nonzero elements off the diagonal.

3 A simulation experiment

In order to illustrate the proposed algorithm, we simulate bivariate data from
a mixture of three Gaussian distributions with mean vectors µµµ1 = (1,5), µµµ2 =
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Figure 1. Mixture of three Gaussian distributions (sample size n=620). Cluster cen-
ters and/or pivots for each method are marked via asterisks and triangles, respectively.

(4,0), µµµ3 = (6,6), and the 2× 2 identity matrix as covariance matrix. The
components have sample size 20, 100 and 500, respectively (see Figure 1, top-
left panel). The K-means algorithm with random seeds is used to generate a
cluster ensemble of H = 1000 partitions, and obtain the co-association matrix
C. For each simulated dataset, we proceed as follows:

1. For a given number of clusters K, obtain a partition of the data G1, . . . ,GK
(reference partition);

2. Apply the MUS algorithm or one alternative criterion in (2) to the matrix
C to find K (distinct) pivots yi1 , . . . ,yiK ;

3. Run the K-means algorithm using the pivots as initial cluster centers.

The proposed modification of the standard K-means technique introduces a
pivot-based initialization step with the aim of reducing the effect of random
seeding (see also Egidi et al., 2018a). An alternative approach to careful seed-
ing can be found in Arthur & Vassilvitskii, 2007. Figure 1 shows the solu-
tion from K-means, using K = 3, and by pivotal methods MUS and criterion
(b) in Eq. (2), where Average-Linkage (AL) agglomerative clustering is used
to obtain the reference partition. The results of consensus clustering using
PAM (Partitioning Around Medoids) method and AL-agglomerative hierar-
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chical clustering (agnes) are also shown (Single Linkage (SL) and Complete
Linkage (CL) give similar results). Table 1 reports the comparison between
the different methods in terms of Adjusted Rand Index (ARI), used to quantify
the agreement between two partitions. The mean value is considered for 1000
simulations. Preliminary results suggest that the pivot-based approach out-
performs the competing similarity-based ensemble methods and the standard
K-means, which gives a mean ARI of 0.659.

Table 1. 2D Gaussian data: mean ARI (1000 simulations) between the final clustering
and the true data partition. Ensemble methods use dissimilarities 1− ci, j.

Pivotal MUS (a) (b) (c)
methods 0.857 0.865 0.883 0.779
Ensemble agnes (AL) agnes (SL) agnes (CL) PAM
methods 0.512 0.535 0.514 0.506
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ABSTRACT: We propose a model-based clustering procedure for mild and gross out-
liers. Our mixture model is based on heavy-tailed components (e.g., the contaminated
normal distribution), but it is assumed to apply only to a subset of the data. Conse-
quently, a proportion of observations is trimmed. We propose a penalized likelihood
approach for estimation and selection of the proportions of mild and gross outliers,
where the penalty parameter is fixed by formal optimality arguments. We conclude
with an original real data example on the identification of the source from illicit drug
shipments seized in Italy and Spain.

KEYWORDS: tclust, contaminated normal, penalized likelihood.

1 Introduction

In clustering based on the normal mixture model there are two main approaches
to deal with contamination. One is based on the use of heavy-tailed or skewed
component distributions. A recent example in this direction, preserving el-
liptical contours of clusters, are mixtures of contaminated normal (CN) dis-
tributions (Punzo & McNicholas, 2016). Component-wise methods are well
suited to work with mild outliers (Ritter, 2015), and are sometimes labeled as
weakly robust. A separate body of literature has instead worked with outliers
in more general position, including gross outliers, and has usually proceeded
by discarding or at least downweighting a proportion of the observations (Far-
comeni & Greco, 2015). A good example is tclust (Garcı́a-Escudero et al.
, 2008), where a fixed proportion of observations is trimmed and the rest is as-
sumed to follow a normal mixture model. These procedures have often formal
robustness properties, e.g., positive breakdown point asymptotically.

In this work we merge the two approaches above by estimating a CN mix-
ture after trimming a fixed proportion of gross outliers. Our model can be
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seen from two different perspectives. On the one hand, clusters having a dis-
tribution with slightly heavy tails might be desired in order to assign as many
observations to clusters as possible. In this case, it is indeed assumed that
clean observations arise from, for example, a CN model. On the other hand,
the trade off between mild and gross outliers is exploited in order to increase
efficiency: some (mild) outliers are assigned to a cluster and contribute to cen-
troid estimation, therefore decreasing the final mean squared error (MSE).

In this work we tackle also an additional open problem with trimming pro-
cedures, that of selecting the trimming proportion. Our proposal is based on
a penalized likelihood approach, where the trimming proportion is in prac-
tice substituted by a penalty parameter. The advantage is that we can iden-
tify a heuristic but theoretically justified way of choosing an optimal penalty
level, and therefore an optimal trimming proportion. Our fixed-penalty ap-
proach in some sense solves the issue of selecting the trimming proportion
both for our model and the special case of trimmed normal mixture models
(tclust). The methodology proposed in this paper has been implemented
in R functions which can be downloaded from https://github.com/
afarcome/cntclust.

2 Methodology

Let x1, . . . ,xi, . . . ,xn be a sample of n observations in d dimensions. Moreover,
let α0 ≥ 0 denote a trimming proportion of outliers which shall not be used
to estimate model parameters. We assume data arise from the contaminated
spurious outlier model

∏
i∈R

k

∑
j=1

π j fCN(xi;µ j,Σ j,α j,η j)∏
i/∈R

gi(xi), (1)

where R denotes a set of non-trimmed observations of cardinality b(1−α0)nc
and gi are pdfs generating the outliers in general position. Let fN (·;µ,Σ) de-
note the probability density function (pdf) of a d-variate normal (N) distribu-
tion with mean vector µ and covariance matrix Σ. In (1), fCN (x;µ,Σ,α,η) =
(1−α) fN (x;µ,Σ)+α fN (x;µ,ηΣ) denotes the pdf of a d-variate CN distribu-
tion with mean vector µ, scale matrix Σ, proportion of mild outliers α ∈ (0,1),
and degree of contamination η > 1.

To estimate the parameters, we optimize the profile likelihood

`(ϑ) =
k

∑
j=1

∑
i∈R j

`i (ϑ) =
k

∑
j=1

∑
i∈R j

[
lnπ j + ln fCN

(
xi;µ j,Σ j,α j,η j

)]
, (2)
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where R j denotes the set of observations assigned to the j-th cluster. To make
maximization of (2) a well defined problem, we adopt the classical eigenvalue
ratio constraint proposed by Garcı́a-Escudero et al. , 2008.

Model (1) involves the difficult choice of α0,α1, . . . ,αk, where α0 controls
the proportion of gross outliers and α j the proportion of mild outliers in the j-
th cluster. We propose a LASSO-type penalized likelihood approach enforcing
a sparse model selection in which some values in the set (α0,α1, . . . ,αk) might
be set to zero. A general form of penalized log-likelihood is given by

`(ϑ)+P(α0,α1, . . . ,αk), (3)

and we propose using P(α0, . . . ,αk) = − log(n)∑k
j=0 ν jα j. In order to reduce

the number of penalty parameters, we set ν0 = nν and ν j = ν for j > 0.
The choice of the penalty parameter ν has got direct consequences on

the estimated trimming proportion α0. If also α1, . . . ,αk are included in the
penalty, it also affects their estimates. Surprisingly enough, mapping the prob-
lem of selecting contaminating proportions to the scale of the likelihood gives
an asymptotically “optimal” fixed value, ν =

√
2d, which under certain as-

sumptions guarantees that observations outside a chi-square type ellipse from
a bulk of the data are trimmed.

Maximization of (2), and for fixed ν of (3), is carried out using a classifica-
tion expectation-conditional maximization (CECM) algorithm, where eigen-
value ratio constraints are activated at the conditional maximization step is
needed,

3 Example about clustering illicit drug shipments

We analyze data about n = 151 seizures of shipments of cocaine and heroin in
Italy and Spain. They were sent to the forensic laboratories for checking the
nature of the substance and quantifying the absolute and relative contents of
each of several chemical compounds. In modern forensics it is believed that
the contents of certain solvents might be useful for identifying the source, that
is, clustering packages with respect to the illicit laboratory where the drug was
processed. We verify this assumption by focusing on d = 3 compounds: hex-
ane, acetone, and 2-propanol. We fix k = 2 and estimate a classical normal
mixture model and a contaminated normal mixture model without trimming
first. Then we use robust clustering methods: tclust and the contaminated-
normal mixture model with trimming. In Table 1 we report, for values of the
trimming level chosen using our penalized likelihood approach, the adjusted
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Rand-index (ARI) showing the agreement between the class labels and the
true underlying Italy/Spain location of seizure. With no or insufficient trim-
ming one might conclude that there is no relationship between solvent con-
tents and seizure location. On the other hand, after trimming the agreement
becomes fairly high. As expected we note that the optimal trimming level us-
ing tclust is slightly larger than those using CNTCLUST0. While in our
low sample size example this might not have strong consequences in terms of
MSE, d151(0.066− 0.053)e = 2 seizures will not be attributed to a location
using tclust, which can have forensic consequences.

Table 1. Adjusted Rand-index (ARI) for location of drug seizure and clustering. In
parentheses the trimming level. NM: normal mixture, CNM: contaminated normal
mixture, tclust: trimmed NM, CNTCLUST0: trimmed CNM, CNTCLUST: penal-
ized trimmed CNM with ν =

√
2d and fixed trimming level. The trimming level se-

lected with our fixed-penalty approach is indicated with α̂0.

Method ARI

NM -0.076
CNM -0.069

tclust(α̂0 = 0.066) 0.657

Method ARI

CNTCLUST0(α̂0 = 0.053) 0.660

CNTCLUST(α̂0 = 0.053) 0.658
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ABSTRACT: Effective statistical modelling under complex designs for functional data
is still under development and requires innovative theories. In this work, we discuss an
approach for modelling multivariate dependent functional data, where the dependence
can arise via multiple responses, temporal or spatial effects. Specifically, we consider
bivariate functional data and illustrate the proposed methodology in the frameworks
of spatial patterns detection and curve prediction. To account for dominant structural
features, we rely on the theory of Gaussian Processes (GPs) and extend hierarchical
dynamic linear models for multivariate time series to functional data setting. An inter-
esting feature of the proposed framework is that it allows to leverage knowledge from
one process when solving an inferential task for another and to use derivative data for
curve prediction. This framework also leads to the notion of derivative principal com-
ponent analysis, which complements functional principal component analysis, one of
the most popular tools of functional data analysis and facilitates the use of multivariate
statistical techniques..

KEYWORDS: Gaussian processes, functional data, derivative process.
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ABSTRACT: Integration consists in a multidimensional process, which can take place in 
different ways and in different times in relation to each single economic, social, cultural, and 
political dimension. In this paper, we aim at providing a methodological proposal based on 
PLS-SEM to build a composite immigrant integration indicator.  

KEYWORDS: partial least squares, immigrant integration, composite indicator, structural 
equation modelling.  

1 Measuring immigrant integration 

Integration consists in a multidimensional process, which can take place in different 
ways and in different times in relation to each single economic, social, cultural, and 
political dimension. It aims at pursuing mutual respect of ethno-cultural differences 
and peaceful coexistence among populations within a historical and social reality. Its 
goal cannot be reached once for all but must be continuously pursued distinguishing 
different integration processes at economic, cultural, social, and political level. A 
high economic integration level may be quickly achieved, indeed, along with scarce 
or no social or political integration. Each single dimension, diachronically 
positioned over time, generates different integration levels.   Hence, examining 
each single dimension is important as well as building composite indexes 
simultaneously comprehensive of all dimensions in order to obtain a full description 
of a complex phenomenon and to convey a suitable set of information. 

According to the literature (Entzinger, 2000), the concept of integration can be 
broken down into different dimensions. Firstly, the socio-economic dimension refers 
to housing conditions, work conditions and income. Including mostly the theme of 
citizenship, also the legal-political dimension takes into account two sub-
dimensions. The other sub-dimension concerns the rights of political participation - 
from the freedom of association to the voting right - which in some countries can be 
used at local government elections even without having achieved the citizenship 
status of the host country. Finally, the cultural and social dimension considers 
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several elements, among which knowledge of the Italian language, free times 
activities and access to information. 

In this paper, we aim at providing a methodological proposal to build a 
composite immigrant integration indicator, able to measure the different aspects 
related to integration, such as employment, education, social inclusion, and active 
citizenship. With this in mind, we analyse the data collected from European Social 
Survey (ESS), Round 8, on immigration by the Partial Least Squares Path Modelling 
(PLSPM) approach (Tenenhaus et al., 2005). The PLSPM models are Structural 
Equation Modelling suitable to estimate interaction and main effects among multiple 
sets of latent variables. In the present study we use a simultaneous non-hierarchical 
clustering and Partial Least Squares Modelling, named Partial Least Squares K-
Means (PLS-KM), recently proposed by Fordellone and Vichi (2017). In this model, 
centroids are laying the reduced space of the latent variables, ensuring the optimal 
partition of the statistical units on the best latent hyperplane. Estimating the 
measurement relations by the SEM pre-specified model, the latent structure is 
defined.  

2 ESS data 

The data from the eighth iteration of the survey for ESS are until now available from 
18 of the 24 countries, which undertook fieldwork in 2016. The 18 countries 
included in this initial release are: Austria, Belgium, Czech Republic, Estonia, 
Finland, France, Germany, Iceland, Ireland, Israel, Norway, Netherlands, Poland, 
Russia, Slovenia, Sweden, Switzerland and United Kingdom. The included 
questions asked in every round since 2002 on topics including crime, democracy and 
politics, human values, immigration, media consumption, national and ethnic 
identity, perceived discrimination, religion, social exclusion, social trust/trust in 
institutions, subjective wellbeing and socio-demographics and public attitudinal data 
towards welfare, climate change and energy security, personal norms, efficacy and 
trust and energy preferences. The data must be weighted to adjust for different 
selection probabilities, for sampling error and non-response bias as well as different 
selection probabilities. The table 1 shows the topics covered by the survey in the 
collection of questions, classified into two main parts: a core section and a rotating 
section. The core module contains items measuring a range of topics of enduring 
interest to the social sciences as well as the most comprehensive set of socio-
structural variables of any cross-national survey. The rotating modules are carried 
out by multi-national teams of researchers selected to contribute to the design of 
survey. 
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Table 1 - Topics and items of ESS. 
Items Topics 
Core A1-A6 Media use; internet use; social trust 
Core B1-B43 Politics, including: political interest, trust, electoral and 

other forms of participation, party allegiance, socio-
political orientations, immigration 

Core C1-C44 Subjective wellbeing, social exclusion, crime, religion, 
perceived discrimination, national and ethnic identity, 
test questions (sect. I), refugees 

Rotating D1-D32 Climate change and energy, including: attitudes, 
perceptions module and policy preferences 

Rotating E1-E42 Welfare, including attitudes towards welfare provision, 
size of module claimant groups, attitudes towards service 
delivery and likely future dependence on welfare, vote 
intention in EU referendum  

Core F1-F61 Socio-demographic profile, including household 
composition, sex, age, marital status, type of area, 
education and occupation, partner, parents, union 
membership, income and ancestry 

Core Section H Human values scale 
Core Section l Test questions 
Source: www.europeansocialsurvey.org. 
 
The ESS sampling strategy is based on the design and implementation of 

workable and equivalent sampling plans in all participating countries, following key 
principles: 
� samples must be representative of all persons aged 15 and over (no upper 

age limit) resident within private households in each country, regardless of their 
nationality, citizenship or language 
� individuals are selected by strict random probability methods at every stage 
� sampling frames of individuals, households and addresses may be used 
� all countries must aim for a minimum 'effective achieved sample size' of 

1,500 or 800 in countries with ESS populations of less than 2 million after 
discounting for design effects 
� quota sampling is not permitted at any stage 
� substitution of non-responding households or individuals (whether 

'refusals', 'non-contacts' or 'ineligibles') is not permitted at any stage. 
In the present paper, we use ESS Multilevel Data resource in order to analyse the 

ESS-respondents with reference to the context they live in. The resource contains 
data about: 
� individuals (the ESS respondents) 
� regions (mainly data collected from EUROSTAT) 
� countries (data collected from different sources) 
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3 Methodology  
Given the n×J data matrix X, the n×K membership matrix U, the K×J centroids 
matrix C, the J×P loadings matrix , and the errors matrices E, Z, D, 
the Partial Least Squares Structural Equation Modelling K-Means approach can be 
written as follows (Fordellone and Vichi, 2017; Fordellone et al., 2018): 

 
, 
, 

,                                                (1) 
 

under constraints: (i) ; and (ii) , . Where, H is the n×L 
matrix of the endogenous LVs with generic element ,  be the n×H matrix of the 
exogenous LVs with generic element ,  is the L×L matrix of the path 
coefficients  associated to the endogenous latent variables,  is the L×H matrix 
of the path coefficients  associated to the exogenous latent variables, is the 
J×H loadings matrix of the exogenous latent constructs with generic element , 
and is the J×L loadings matrix of the endogenous latent constructs with generic 
element . Thus, the PLS-SEM-KM model includes the SEM estimated via Partial 
Least Squares (PLS) and the clustering equations. The simultaneous estimation of 
the three sets of equations will produce the estimation of the pre-specified SEM 
describing relations among variables and the corresponding best partitioning of units 

There is a relevant aspect to considerate in the application of PLS-SEM-KM 
procedure: when we applying PLS-SEM-KM, the number of groups is unknown and 
the identification of an appropriate number of K clusters is not straightforward. 
Then, often you need to rely on some statistical criterion. In particular, the PLS-
SEM-KM algorithm includes the choice of the number of clusters K classes 
according the gap method criterion (Fordellone and Vichi, 2017).  
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ABSTRACT: The recognition of spatial heterogeneity through spatial techniques is
essential to guide decision-making regarding biodiversity conservation. Many eco-
logical studies concerning a spatial approach for biodiversity have focused only on
species richness or evenness, leading to a partial overview of this complex concept.
For this reason, we propose a spatial functional approach to diversity profiles for as-
sessing spatial biodiversity and identifying groups of curves which are similar in spa-
tial patterns. Specifically, the distance-based LISA algorithm has been extended to the
case of functional diversity profiles in lattice, after smoothing the discretized curves
and specifying a suitable distance measure.

KEYWORDS: spatial FDA, spatial lattice data, LISA map, diversity profile.

1 Introduction

The identification of spatial patterns in species diversity represents an essential
issue to establish conservation strategies and monitoring programs (Hernndez-
Stefanoni et al., 2011). Specifically, mapping biodiversity is crucial to inves-
tigate spatial variations in natural communities. Although spatial patterns of
richness and diversity indices are among the most-studied patterns in ecology,
they do not provide a reliable biodiversity representation as they neglect the
multivariate nature of this complex concept. The use of diversity profiles has
been recommended in the literature to solve this issue (Patil & Taillie, 1982).
Indeed, they provide a graphical representation of a collection of indices be-
longing to the same parametric family. Since diversity profiles are presented as
curves, they have been analyzed in a functional framework (Di Battista et al.,
2016, Di Battista & Fortuna, 2017, Maturo & Di Battista, 2018). However,
these studies have focused on independent curves, which is not a reasonable
assumption in the environmental fields.
For this reason, we propose a spatial functional approach to diversity profiles
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for identifying groups of curves which are similar in spatial patterns and eval-
uating the possibility of improving the accuracy of biodiversity maps. Specifi-
cally, a distance-based LISA map (Delicado & Broner, 2008) has been applied
to functional diversity profiles in a spatial finite lattice. The main advantage
of our approach is that it allows to identify spatial patterns by jointly consid-
ering the two fundamental aspects of biodiversity, that is the richness and the
evenness. Moreover, regarding the data as functions has the advantage of over-
coming some of the problems that are associated with irregularly spaced or
sparse data (Haggarty et al., 2015).

2 Unsupervised spatial classification of functions in lattice

Following Delicado et al. (2010), a spatial functional process can be defined
as follows: {

Fs(x) : s ∈D ⊂Rd , x ∈ X ⊂R
}

(1)

where s is a generic data location in the d-dimensional Euclidean space, Fs(x)
are functional random variables, which are defined as random elements taking
values in an infinite dimensional space, x ∈ X is the domain of the functions,
and the set D ⊆Rd can be fixed or random. The realization of a spatial process,
fs1(x), fs2(x), ...., fsn(x), si ∈ D , i = 1,2, ...,n, constitutes a set of functional
spatial data. The nature of the set D allows to classify spatial functional data
(Cressie, 1993) in geostatistical functional data, functional marked point pat-
tern and functional areal data. We focus on the latter case, that is on functions
observed on a regular grid containing a finite number of sites whose whole
constitutes the entire study region. To detect for the existence of spatial de-
pendence and identify spatial clusters among curves, the distance-based LISA
maps algorithm (Delicado & Broner, 2008) has been applied. It is a general-
ization of the well-known LISA maps for univariate data in lattice (Anselin,
1995) and can be applied to a wide range of data types, provided that a dissim-
ilarity measure can be defined between any pair of observations.
In the functional context, for each location, a number of noise-corrupted raw-
data, say {yi(x j)}J

j=1, are sampled form a random trajectory Fi(x) at J equi-
spaced points of the functional domain. Indeed, functional data are recorded
only for discrete values of x∈X ; thus, for each i-th site, a linear approximation
of the observed discretized trajectory can be computed using spline functions
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(Ramsay & Silverman, 2005) as follows:

fsi(x) =
B

∑
b=1

cibφb(x) = cccT
i ΦΦΦ(x), i = 1,2, ...,n (2)

where ccci = (ci1,ci2, ...,ciB), is the coefficient vector, which defines the linear
combination and ΦΦΦ(x) =

(
φ1(x),φ2(x), ...,φB(x)

)
is the vector of basis func-

tions (Ramsay & Silverman, 2005). In our case, fsi(x) is a diversity profile,
which represents a summary function of the biodiversity of the si area. A spa-
tial cluster is defined as a set of areas that are close to each other having similar
observed values for the variable of interest. This kind of clusters would exist
when the functional variable F (x) presents spatial dependence at local level.
To summarize the spatial relationship among n spatial units, a n× n spatial
weight matrix WWW is specified. It is often defined by neighboring information,
thus its elements wi j are equal to one if si and s j are neighbors and zero other-
wise. Once the neighborhood matrix WWW has been defined, the distance-based
LISA algorithm can be applied, after introducing a distance measure among
the n observed functions. In the L2(X ) space, a suitable distance is the L2

norm:

d
(

fsi(x), fs j(x)
)
=

√∫

X

(
fsi(x)− fs j(x)

)2
dt (3)

which can be written as follows:

di j =

√∫

X
(ccci− ccc j)T MMM(ccci− ccc j) (4)

where MMM =
∫

X ΦΦΦ(x)ΦΦΦT (x)dt is a symmetric square matrix of order equal to
the number of basis functions, and ccci and ccc j are the coefficients of the basis
expansion for fsi(x) and fs j(x), respectively. Then, the distance-based LISA
maps algorithm consists into five steps (Delicado & Broner, 2008):

• Step 1: Detect global outliers.
• Step 2: Mark tracts significantly similar to (and significantly different

from) their neighbors.
• Step 3: Mark non-marked tracts that are similar to a neighbor marked

tract.
• Step 4: Identify spatial clusters by applying any standard clustering al-

gorithm to the ares marked at Steps 2 and 3.
• Step 5: Draw the map.

Regarding the clustering step, standard unsupervised classification algorithms
can be applied to the coefficients of basis functions.
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ABSTRACT: Due to its mathematical tractability, the Gaussian mixture model holds
a special place in the literature. However, in a clustering scenario, using a Gaussian
mixture model when skewness or outliers are present can be problematic. As a result,
in recent years, many different methods have been proposed to account for skewed
clusters. The two most prevalent methods in the literature are modelling skewness
directly by using skewed distributions, and performing clustering alongside a suitable
transformation. Although both these methods have been studied extensively in the lit-
erature and compared for select datasets in terms of relative performance, no extensive
study has been performed to motivate in which situation to use one method over an-
other. Using many different real datasets, and looking at their underlying properties,
such as measures of overlap between clusters, skewness, and kurtosis, we aim to pro-
vide more insight as to when one method - i.e., transformation or a skewed distribution
- might be preferable to another. Simulated data and a large number of multivariate
datasets will be considered.

KEYWORDS: skewed distributions, transformations, mixture models, clustering.
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ABSTRACT: In model based clustering, there are two main distinct approaches de-
pending on whether the mixture or the classification likelihood function is used. It is
well known that both likelihoods are unbounded without any constraint on the cluster
scatter matrices. Constraints also prevent traditional EM and CEM algorithms from
being trapped in (spurious) local maxima. Controlling the maximal ratio between the
eigenvalues of the scatter matrices to be smaller than a fixed constantc ≥ 1 is the
traditional way for setting such constraints. In this paper we discuss other types of
constraints and extend them to the family of the parsimonious Gaussian clustering
models.

KEYWORDS: clustering, mixtures, EM algorith, CEM algoritm.

1 Introduction and notation

The traditional approach of unsupervised learning assumes multivariate nor-
mal components and adopts a maximum likelihood approach for clustering
purposes. With this idea in mind, well-known classification and mixture like-
lihood approaches can be used.

In this work, we denote with symbolφ(·;µ,Σ) the probability density func-
tion of a p-variate normal distribution with meanµ and covariance matrixΣ.

In the classification likelihoodapproach, given a sample of observations
{x1, · · · ,xn} in Rp, we search for a partition{H1, ...,Hk} of the indices{1, · · · ,n},
centresµ1, · · · ,µk in Rp, symmetric positive semidefinitep× p scatter matrices
Σ1, · · · ,Σk and positive weightsπ1, · · · ,πk with ∑k

j=1π j = 1, which maximize

k

∑
j=1

∑
i∈H j

log(π jφ(xi ;µj ,Σ j)) . (1)

On the other hand, in themixture likelihoodapproach, the idea is to maxi-
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mize the expression below

n

∑
i=1

log

(
k

∑
j=1

π jφ(xi ;µj ,Σ j)

)
, (2)

In this latter approach, a partition intok groups can be also obtained, from the
fitted mixture model, by assigning each observation to the cluster-component
with the highest posterior probability.

It is well-known in the statistical literature that the maximization of “log-
likelihoods” like (1) and (2) without constraints on theΣ j matrices is a math-
ematically ill-posed problem, e.g. Day, 1969. It is possible to appreciate this
problem takingµk = x1, πk = 1 and|Σk| → 0 making (2) to diverge to infinity
or (1) also diverge withH1 = {1}.

A simple way of tackling the lack of boundedness is to consider local max-
ima of the likelihood target functions. However, a lot of local solutions are
often found and it is difficult to know which are the most interesting ones.
See McLachlan & Peel, 2000 for a detailed discussion of this issue. In the
literature, non-interesting local maxima are named “spurious” solutions. They
usually are formed by some, almost collinear, observationsand are often de-
tected by the Classification EM algorithm (CEM), traditionally applied when
maximizing (1), and by the EM algorithm, traditionally applied when maxi-
mizing (2). A paper which tackles this problem together withsuggestions for
reducing spurious solutions can be found in Garcı́a-Escudero et al., 2018.

The use of constraints on the relative sizes of the determinant of the Σ j

matrices may be seen as a simple and useful way to overcome these degener-
acy issues and to apply affine equivariant constraints. Thisapproach has been
proposed by McLachlan & Peel, 2000 and lies behind the EVV (equal vol-
ume, variable shape and orientation) parametrization within the well-known
Gaussian parsimonious clustering models Celeux & Govaert,1992; Banfield
& Raftery, 1993. In the following section we show this approach does not
fully avoid the detection of degenerate (spurious) solutions. Moreover, differ-
ent clustering approaches can be defined depending on the strength of these
two, determinant and shape, types of constraints.

2 An approach based on determinant-and-shape constraints

We have seen that|Σ j | → 0, for any j, may be problematic. We could therefore
consider the maximization of (1) and (2) but under
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Determinant constraints:we force

maxj=1,...,k |Σ j |
min j=1,...,k |Σ j |

≤ c1, (3)

for a given fixed constantc1 ≥ 1.

The particular casec1 = 1 forces all the determinants of the scatter matrices
to be equal, i.e.|Σ1| = ... = |Σk|. This case corresponds to the approach in
McLachlan & Peel, 2000 and to the EVV (equal volume, variableshape and
orientation) parametrization within the Gaussian parsimonious family. When
considering 1< c1 < ∞, we relax the exact “equal determinant” assumption
without leaving determinants completely free.

Notice that (3) implies that if any of the determinants|Σ j | goes to 0 then all
the other determinants also have to go to 0 and this solution is not interesting.
It is also trivial to see that this type of constraints is affine equivariant.

However, even when all the|Σ j | determinants are kept away from 0, de-
generacy troubles still may take place, because some eigenvalues of theΣ j

matrices may still go to 0. More in detail, let us consider thewell-known
decomposition for the covariance matricesΣ j

Σ j = λ1/p
j Ω jΓ jΩ′

j ,

whereΩ j is an orthogonal matrix of eigenvectors,Γ j is a diagonal matrix with
|Γ j | = 1 and with elements{γ j1, ...,γ jp} in its diagonal (proportional to the
eigenvalues of theΣ j matrix) and|Σ j | = λ j . TheseΓ j matrices are commonly
known as “shape” matrices, because they determine the shapeof the fitted
cluster components. Notice that (3) can be rewritten as

maxj=1,...,k λ j

min j=1,...,k λ j
≤ c1.

To see that degeneracy problems may still happen, even with controlled de-
terminant sizes, it is enough to setp = 2 and takeµk = x1, πk > 0, λk = 1,
γk1 = C andγk2 = 1/C. The remainingΣ j matrices,j = 2, ...,k, are arbitrarily
chosen but satisfying|Σ2| = ... = |Σk| = 1. Note that the smallest eigenvalue
of Σ1 converges to 0 whenC ↑ ∞ and, then, one of the fitted components can
be made arbitrarily close to a degenerate normal component.

In order to tackle the above explained source for degeneracy, we may con-
sider, besides (3), an additional type of constraint which controls the elements
of the “shape” matrices as:
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Shape constraints:consider the followingk constraints:

maxl=1,...,p γ jl

minl=1,...,p γ jl
≤ c2, for j = 1, ...,k, (4)

wherec2 ≥ 1.

Notice that (4) imposesk independent set of constraints, one for each shape
matrix, and nothing relates the shape matrix elements of onecomponent to the
other components.

The combination of different combinations ofc1 andc2 values, with the
constraints 1≤ c1 < ∞ and 1≤ c2 < ∞, enables us to consider different clus-
tering approaches throughout their associated constrained maximizations.

Note that with a very largec2 value (e.g.,c2 = 1010) we are virtually affine
equivariant. That choice would constitute just mild constraints on the scatter
matrices “condition numbers” (ratios between the largest and smallest eigen-
values). This type of constraint has to be considered as a sort of convenient
“computational precision” protection especially when dimension increases. In
the extended version of the paper the above concept are applied to each mem-
ber (when necessary) of the family of Gaussian parsimoniousclustering mod-
els.
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ABSTRACT: Testing uniformity of a sample supported on the hypersphere is one of
the first steps when analyzing multivariate data for which only the directions (and not
the magnitudes) are of interest. In this work, a projection-based class of uniformity
tests on the hypersphere is introduced. The new class allows for extensions of circular-
only uniformity tests and introduces the first instance of an Anderson–Darling test
in the context of directional data. A simulation study corroborates the theoretical
findings. Finally, a real data example illustrates the usage of the new tests.

KEYWORDS: circular data, directional data, hypersphere, Sobolev tests, uniformity.

1 Setting

Testing uniformity of a sample X1, . . . ,Xn of a random vector X supported on
the hypersphere Ωq := {x ∈ Rq+1 : x′x = 1} of Rq+1, with q≥ 1 is one of the
first steps when analysing multivariate data for which only the directions (and
not the magnitudes) are of interest – the so-called directional data. This kind
of data arise in many applied disciplines, such as astronomy, biology, etc.

The inspiration for this contribution comes from the projection-based test
of Cuesta-Albertos et al. , 2009, which is based on the fact that the distribution
of X is determined by that of a one-dimensional random projection, γ′X. For
each γ (uniformly distributed on Ωq and independent of the sample), Cuesta-
Albertos et al. , 2009 considered a Kolmogorov–Smirnov test statistic on the
projected sample γ′x1, . . . ,γ′xn. This test clearly depends on γ, which Cuesta-
Albertos et al. , 2009 mitigates by taking k random directions γ1, . . . ,γk and
combining the p-values associated to each of the k tests.
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2 Results

Differently from Cuesta-Albertos et al. , 2009, we consider for each γ the well-
known weighted quadratic norm by Anderson & Darling, 1954:

Qw
n,q,γ := n

∫ 1

−1

(
Fn,γ(x)−Fq(x)

)2 w(Fq(x))dFq(x), (1)

where w is a weight function, Fn,γ and Fq are the empirical cumulative distribu-
tion function and the cumulative distribution function of the projected sample,
respectively. In addition, instead of drawing several random directions and
aggregating afterwards the outcomes of the associated tests, our statistic itself
gathers information from all the directions on Ωq: it is defined as the expecta-
tion of (1) with respect to γ. The new class of uniformity tests is thus the one
indexed by the weights w.

Using this formulation, simple expressions for several test statistics are
obtained for the circle and sphere, and relatively tractable forms for higher
dimensions. Despite their different origins, the proposed class and the well-
studied Sobolev class of uniformity tests (see Prentice, 1978) are shown to be
related. Our new parametrization proves itself advantageous by allowing to
derive new tests for hyperspherical data that neatly extend the circular tests
by Watson, Ajne, and Rothman, and by introducing the first instance of an
Anderson–Darling-like test in such context. The asymptotic distributions and
the local optimality against certain alternatives of the new tests are obtained.
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ABSTRACT: In this paper we apply graph theory techniques on real data visitors’
paths recorded during an exhibition to detect clusters of stands. We consider in partic-
ular the dominant set clustering technique, which finds complete heavy subgraphs in
weighted undirected graphs. The resulting overlapping clusters could be used to set a
travel recommendation system, identify market segments and assess stand assignment
effectiveness.

KEYWORDS: trajectory clustering, dominant set, graph theory, fuzzy method.

1 Trajectory unsupervised classification

The spreading of new location referencing systems in smartphones and other
personal devices is favouring the collection of huge amounts of trajectory data.
As showed by Zheng (2015), nowadays many algorithms can be used to extract
interesting insights from these path information. Different techniques have
been used to: preprocess and manage raw data, mine patterns, detect outliers,
classificate trajectories and transform them into graphs, matrices and tensors.
Given the quantity of data collectable and the strict privacy policies spreading
worldwide (that often do not permit to analyze jointly trajectory data and other
information about users), unsupervised classification methods (clustering tech-
niques) are particularly interesting. The main objectives of these techniques in
trajectory data mining are to: identify representative paths or subpaths, find
the most popular route, find the most likely route, detect underlying problems
in a network, calculate similarity between users, discover cluster of locations
with denser connections, calculate user’s interest in unvisited location and set
a travel recommendation system.

∗This research has been carried out in collaboration with Veronafiere S.p.A. and funded by
Regione Veneto with the European Social Fund (1695-29-11-2018, DGR 11/2018).
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Figure 1: Raw trajectory (left) and undirected graphs (right).

In this paper we apply the dominant set clustering technique (Pavan &
Pelillo, 2003), a state-of-the-art unsupervised classification algorithm, to ana-
lyze trajectories recorded during an exhibition. Based only on the information
embedded in the trajectories, we propose a method that can be used to detect
if the visits of certain stands can give information about logistics, provide a
next visit recommendation system for visitors and identify market segments of
stand exhibitors.

The raw information we started working on is a pilot collection of trajec-
tories recorded during a four days marble exhibition through an accurate real-
time positioning technology using Bluetooth Low energy signal from smart-
phones and HAIP Locators mounted on the ceiling of six exhibition halls,
along an area of approximately 58 thousands sqm. The raw data consisted
of 1,192 trajectories defined by a sequence of datetime, latitude and longitude
information, with a theorical capture of one registration per second per device
(see an example of a trajectory in Figure 1 (left)). In total we counted about
1,946 thousands points. However, not all this information has beed used since
permanence at stands showed to be very poor, mainly due to smartphone sleep
settings and open air areas presence. To analyze these data, we transformed
the raw trajectories into undirected edge-weighted graphs with no-self loops:
G = (V,E,w), where V = (1, ...,n) is the set of nodes representing stands vis-
ited for more than 2 seconds in a given trajectory (stay points), E ⊆ V × V
is the edge set, each edge representing that at least one visitor passed by both
stands in the connected nodes and stayed there for more than 2 seconds, and
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w : E→R∗+ is the positive weight function, counting the number of trajectories
including both stands. A representation of the resulting graphs is shown in Fig-
ure 1 (right), where different colours identify nodes (stay points) belonging to
the six exhibition halls. The graphical representation gives an immediate idea
of some possible clusters. However, this representation does not distinguish
between edges with different weight and does not identify complete subgraphs
(in which each node is connected to each other node in the subgraph). These
problems call for the use of a trajectory clustering algorithm.

2 Dominant set algorithm for clustering

Graphical theoretic algorithms basically consist of searching for certain struc-
tures in the graph, such as a spanning tree, minimum cut or maximal com-
plete subgraph. Pavan & Pelillo (2003) proposed an optimization function
and an easy algorithm to find maximal complete subgraphs (dominant set) in
weighted undirected graphs. Basically, the idea is to find a cluster defined by
a set of vertices with higher edge-weights on average. To detect this dominant
set of vertices, they first calculate each node importance, compared to a given
set of vertices, in terms of average edge-weight. If this value is positive (con-
nection higher than average) the node becomes part of the maximal complete
subgraph, otherwise it is kept out. The initial specified set of vertices has to
be changed and calculations must be repeated till convergence. Given a sym-
metric nonnegative n× n matrix A (called weighted adjacency matrix), with
elements equal to w(i, j), if i, j ∈ E and 0, otherwise, they demonstrate that
finding the dominant set is equivalent to find the local maximum x of

f (x) = xT Ax, with x in the standard simplex ∆ of Rn, (1)

where x is an n-dimensional positive vector representing the participation of
each node to the cluster, the function f (x) represents the cohesiveness of the
cluster and the standard simplex constraint serves to normalize x. They solved
this optimization problem using replicator dynamics taken from evolutionary
game theory (more details about the optimization algorithm can be found in
Pavan & Pelillo, 2003). In order to detect more than one dominant set they also
proposed an iterative procedure which alternates the search of the dominant set
in the graph and the deletion of its edge-weights.

The application of the dominant set algorithm to the marble exhibition
trajectory data allowed to identify overlapping clusters of stands. An example
of three dominant sets located in the sixth exhibition hall is shown in Figure 2
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Figure 2: Example of overlapping clusters of visits inside an exhibition hall.

(left and right): one cluster of stands is represented by the blue dots (mainly
cave owners), another by the red dots (mainly natural stones traders) and a third
one by the green dots (mainly design products sellers). The stand represented
by a three colours dot in the bottom right of the exhibition hall (Figure 2, left)
belongs to the three different clusters.

This clustering can be used, for example, to suggest visitors of stands A
and C to visit stands B and D (ordered by edge weights), setting a travel rec-
ommendation system. Moreover, it can be used to enhance stand assignment
by detecting if visitors stop by stands belonging to the same dominant set, but
located in different buildings. Further, the belonging of a stand to different
clusters might be exploited to characterize segments of visitors.

We chose this approach for our clustering problem as it does not supply a
full dendrogram (which is burdensome in the case of huge amounts of data),
and does provide a flexible number of clusters. Moreover it offers a natural
measure of within cluster’s cohesiveness (average edge-weight) and an evalu-
ation of nodes participation to each cluster (corresponding node value in the x
vector), which are desirable features in an exhibition context.
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ABSTRACT: In this contribution we give a survey of our results on analyzing graph
clustering results of graphs with more or less symmetry. These results fall into two
different classes. The first class is purely mathematical: What is the impact of symme-
try on the uniqueness and the stability of optimal partitions? And, how do we compare
optimal partitions of symmetric graphs? The second class is empirical: Are these re-
sults relevant for applications of graph clustering in real life or are they just l’art pour
l’art?
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1 Introduction

In this contribution we give a survey of our results on analyzing graph cluster-
ing results of graphs with more or less symmetry. These results fall into two
different classes. The first class is purely mathematical: What is the impact of
symmetry on the uniqueness and the stability of optimal partitions? And, how
do we compare optimal partitions of symmetric graphs? The second class is
empirical: Are these results relevant for applications of graph clustering in real
life or are they just l’art pour l’art? To answer these questions, we investigated
the presence of symmetries in large sample of graphs from an Internet repos-
itory and the effect of symmetries on the uniqueness and stability of optimal
graph partitions computed by the randomized greedy algorithm.

2 The Automorphism Group a Graph

Graphs with symmetry have non-trivial automorphism groups which are finite
permutation groups (Wielandt, 1964). Recent advances in the implementa-
tion of algorithms for the analysis of the automorphism group of a graph (e.g.
Darga et al. , 2008 and McKay & Piperno, 2014) allow the extraction of the
set of generating permutations of the automorphism group of a graph.
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The existence of such a non-trivial automorphism group of a graph implies
that isomorphisms between at least some graph partitions exist. Given a parti-
tion, the set of all partitions that is generated by the automorphism group of the
graph forms an equivalence class of graph partitions for this partition. When
analyzing graphs with symmetry, we consider the pseudometric space of the
equivalence classes generated by the automorphism group of the graph.

Whenever the equivalence class of the optimal partition of a graph cluster
algorithm contains more than one element, the clustering solution is unstable
and not unique. This solves the analysis of multiple optimal graph partitions
which result from symmetry (see Geyer-Schulz & Ball, 2013). While this is a
progress, this still leaves open the automatic analysis of multiple optimal graph
partitions which are structurally different.

The problem of comparing graph partitions of symmetric graphs has also
been introduced at the CLADAG 2013 conference. We now present its solu-
tion: We start with a minimal example which demonstrates problems of the
Rand Index. Then we prove that this problem affects all existing graph par-
tition comparison measures: They do not work for partitions of graphs with
non-trivial automorphism groups.

As a remedy, we present three ways of building invariant graph comparison
measures based on Hausdorff’s and von Neumann’s construction of invariant
measures on a pseudo-metric space. By a combination of a pseudo-metric and
a metric space we provide a measure decomposition which separates an invari-
ant part which captures the structural difference and a part which is attributed
to the action of the graph automorphism group on the partitions compared. See
Ball & Geyer-Schulz, 2017, and, especially, Ball & Geyer-Schulz, 2018c.

3 Toy Examples: The Karate and the Petersen Graph

We finish the mathematical part with two examples: We show that for Zachary’s
Karate graph the optimal solution is not affected by symmetry, before we turn
to the Petersen graph (Holton & Sheehan, 1993) which is a fully transitive
graph. As far as we are aware, this is the first full analysis of clustering a fully
transitive graph. For doing this, we use an extended version of the random-
ized greedy clustering algorithm (see e.g. Stein & Geyer-Schulz, 2013) and its
ensemble variant (see Ovelgönne & Geyer-Schulz, 2013) and invariant mea-
sures for partition comparison (see Ball & Geyer-Schulz, 2018d and Ball &
Geyer-Schulz, 2020).
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4 Investigations of Graph Symmetry in Real-World Graphs

However, there remains the question of the relevance of the analysis of symme-
try for applications in practice. Or as one reviewer has put it: This research is
completely irrelevant for practical applications and it will never be published
in this journal. For network sciences, for example, in social sciences, com-
puter science and data science, only a few small-scale and restricted studies
of the symmetry of complex real-world graphs exist. These studies show the
existence of symmetry, but not the effects of symmetry e.g. on the stability of
optimal partitions.

In the following, we report on our research on the existence of symmetries
in real-world graphs, and the effects of symmetries on modularity-optimal so-
lutions of real-world graphs.

The answer to the question of existence of symmetries is published in Ball
& Geyer-Schulz, 2018a. In this study an analysis of over 1500 graph datasets
from the meta-repository networkrepository.com has been carried out
and a normalized version of the network redundancy measure has been pre-
sented. It quantifies graph symmetry in terms of the number of orbits of the
symmetry group from zero (no symmetries) to one (completely symmetric),
and improves the recognition of asymmetric graphs. Over 70% of the an-
alyzed graphs contain symmetries (i.e., graph automorphisms), independent
of size and modularity. Therefore, we conclude that real-world graphs are
likely to contain symmetries. This contribution is the first larger-scale study of
symmetry in graphs and it shows the necessity of handling symmetry in data
analysis e.g. by the mathematical tools presented in the previous section.

The second study (Ball & Geyer-Schulz, 2018b) investigates the effect of
graph symmetry on modularity optimal graph clustering partitions and it gives
an insight to the effects of symmetry on optimal graph partitions. The key find-
ing is that there actually exists an impact of graph symmetry, as more than 22%
of the analyzed graphs have an unstable partition. The results are based on an
empirical analysis of 1254 symmetric graphs, which are a subset of the 1699
graphs that were analyzed by Ball & Geyer-Schulz, 2018a. For each graph a
modularity optimal partition is computed by one of the leading graph cluster-
ing algorithms. Additionally, generators for the automorphism group of each
graph are obtained. All computed partitions are tested for stability (see Ball &
Geyer-Schulz, 2018d), which means that the symmetry that is captured by the
automorphism group does not change this partition. Furthermore, definitions
that allow to distinguish local and global symmetry of graphs are presented.
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ABSTRACT: The aim of this study is to understand whether Bayesian networks are an 

appropriate tool to analyse and improve the performance of a microcredit initiative. This 

technique is employed to study simultaneously all the interactions between variables and 

perform what-if analyses. The analysed dataset originates from an important microcredit 

initiative aimed to help damaged firms, after the earthquake struck Italy in 2009. The model 

appears to provide a clear picture of the subject matter and seems to be appropriate to both 

assess risk connected to microcredit and support its development. 

KEYWORDS: Bayesian network, microcredit, NPC algorithm. 

1 Introduction 

Modern microfinance was born in the 1970s as a financial instrument of social and 
economic integration, but rapidly spread all around the world. The first Italian law 
concerning microcredit was introduced in 2010, following Directive 2008/48/EC. 
The laws on the subject evolved during the years. The resulting regulation defines a 
financial instrument tailored on the needs of small firms and individuals, facing 
social and economic vulnerability. The amount of the loan is low but, together with 
every microcredit granted, the lender must provide some supplementary services, 
such as a business plan for firms and a help on how to manage the family budget for 
individuals. This is a very important component of Italian microcredit, since it 
addresses specific needs of the beneficiary and can consistently diminish credit risk. 

A study from Borgomeo&co (2016) highlights that in Italy, from 2005 to 2014, 
individuals and firms are increasingly resorting to microcredit to access financial 
resources. However, performance studies related to recent microcredit programs, are 
barely available to date. It is crucial to start to analyse data, to understand strengths 
and weaknesses of entrepreneurial microcredit, as regulated by the new legislation. 

Bayesian networks (BN) are proposed as a tool to perform the mentioned 
analysis. BNs are causal networks in which the strength of the relation is defined by 
probabilities and they are an effective instrument when reasoning under uncertainty. 
Through BN analysis, beneficiary and loan characteristics will be studied, in order to 
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understand their role in determining the performance of a microcredit provision. The 
results can be useful to promote a healthy development of microcredit regulation and 
help microcredit firms evaluating credit risk. 

2 Motivating data 

The dataset used to fit the model is connected with an Italian microcredit initiative 
which took place between 2011 and 2017 and was promoted by an Italian firm 
called MXIT. The initiative targeted firms affected by the earthquake which struck 
Italy in 2009. The dataset consists of 21 variables and around 1000 units. Variables 
are divided into groups and put in a causal/logical order. Every box, shown in Figure 
1, contains a different group of variables whereas arrows represent the direction of 
causal/logical relations between groups. The proposed configuration originates from 
interviews with MXIT and schematises previous knowledge on the subject. The 
structure summed up in Figure 1, will help defining the skeleton of the model, since 
it will be assumed that each variable can potentially affect only variables contained 
in its group, or in groups situated to the right of the considered variable group.  

 Figure 1. Logical groups of variables 

The first group of variables contains demographics and some basic 
characteristics of financed firms. The second group consists of specific firm-related 
variables, whereas the third group contains the main financial characteristics of the 
credit. Fourth and fifth contain variables which operate a distinction between 
rejected and granted credit applications, or between partially and fully repaid credits. 
The variable performance, contained in the last box, indicates if all the instalments 
were paid on time and is used as a measure of the performance of the loan. 

3 Bayesian network 

A BN consists of a directed acyclic graph, where nodes and directed edges 
respectively identify variables and relations between variables. Each variable must 
have a finite set of mutually exclusive states. When a directed edge points from 
variable A to variable B, A is called parent of B. The strength of these relations is 
described by conditional probability tables assigned to each variable given its 
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parents. Nodes without parents, are instead associated with marginal probability 
tables (Kjærulff and Madsen, 2013). Probability tables are a crucial element of a BN 
and can be either computed through a dataset or derived from experts of the 
analysed phenomenon. The structure of the BN is learnt through the necessary path 
condition algorithm (Kjærulff and Madsen, 2013). This algorithm first discovers the 
undirected graph performing conditional independence tests between variables, then 
assigns the direction to the unoriented edges. It also provides the user with the 
possibility of introducing further subject matter knowledge into the model, allowing 
to determine the presence and the direction of some arcs of the graph, if more than 
one solution is available.  

The software Hugin has been used. The obtained BN (Figure 2) shows several 
connections between variables, which are coherent with the mechanics of the 
provision of microcredit. Every group of variables listed in the previous section is 
identified by nodes of a different colour. Nodes of the graph will be indicated with 
teletype font. Demographics variables are connected between them and with 
financial and firm-related variables, coherently with what expected. For example, 
City dimension affects Economic sector and Italian region is 

Figure 2. Bayesian network built on the dataset 
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connected with Lending bank. Each variable of the network shows a direct or 
indirect connection with Performance. This could suggest that every variable 
plays a role in determining the probability of paying all the loan instalments on time. 

Once the network has been estimated, the associated inference engine enables 
the users to efficiently make inference on the probability tables. The network can 
thus be interrogated, and what-if analysis can be carried out: different scenarios are 
simulated and their impact on the target variable is evaluated in terms of change in 
probability tables. The algorithms used for propagating evidence and updating the 
marginal probability tables are based on the junction tree (Kjærulff and Madsen, 
2013). The efficiency of the propagation algorithms with the easy-to-read graphical 
representation of the relations among the variables, are the main reasons why BNs 
are increasingly used as a tool to support decision under uncertainty. In the obtained 
model for example, if we enter evidence about a firm hit by the earthquake and run 
by an adult male, after propagating the evidence throughout the network, we find a 
probability of 57.65% associated to the scenario where all the instalments are paid 
on time. If we consider the same situation, with a female entrepreneur, the same 
probability drops to 52.91%. The observed decrease could be due to the gender 
inequality that female entrepreneurs still face when running a business. What-if 
analysis can also be performed backwards, for instance by entering evidence about a 
specific state of performance, to find out the most probable profile of 
entrepreneur associated to that state. 

4 Conclusion 

BNs seem to provide a clear picture of how all the selected variables interact in 
the provision of microcredit. What-if analysis allows to study the strength and the 
effects of these interactions, in order to assess the risk connected to a specific 
microcredit provision. On the other hand, it allows to analyse which kind of 
microcredit provision is more suitable to a particular beneficiary, to promote a 
healthy development of the instrument. Existing BN could be also enlarged with 
additional modules accounting for new variables that are important in the light of the 
fast evolution of microcredit. For example, it will be very interesting to study how 
supplementary services affect performance results and which kind of service works 
best in a certain situation. The flexibility of the model, its clear graphical interface, 
the possibility to take into account subject matter knowledge and its efficient 
inference engine could make BN an appropriate model to analyse and improve the 
performance of entrepreneurial microcredit in the future. 
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ABSTRACT: Factor analysis is a well-known model for describing the covariance structure 

among a set of manifest variables through a limited number of unobserved factors. When the 

observed variables are collected at various occasions on the same statistical units, the data 

have a three-way structure and standard factor analysis may fail to discover the interrelations 

among the variables. To overcome these limitations, three-way models can be adopted. 

Among them, the so-called Parallel Factor (Parafac) model can be applied. In this article, the 

structural version of such a model, i.e. as a reparameterization of the covariance matrix, is 

studied by discussing under what conditions factor uniqueness is preserved. 

KEYWORDS: three-way factor analysis, maximum likelihood, factor uniqueness property. 

1 Introduction 

Factor analysis (FA) (Bartholomew et al., 2011) is a well-known method 
explaining the relationships among a set of manifest variables, observed on a sample 
of statistical units, in terms of a limited number of latent variables. In FA data are 
stored in a matrix, say X, of order (I × J) being I and J the number of statistical units 
and variables, respectively. Thus, FA deals with two-way two-mode data, where the 
modes are the entities of the data matrix, i.e., statistical units and manifest variables, 
and the ways are the indexes of the elements of X, i.e., i = 1, …, I and j = 1, …, J. In 
many practical situations, it may occur that the scores on the same manifest 
variables with respect to a sample of statistical units are replicated across K different 
occasions, e.g. time, locations, conditions etc. In this case, there are three sets of 
entities (statistical units, manifest variables and occasions), hence three modes and 
the available information is stored in the so-called array, or tensor, usually denoted 
by X of order (I × J × K). Its generic element is xijk, i = 1, …, I, j = 1, …, J and k = 1, 
…, K, expressing the score of statistical unit i on manifest variable j at occasion k. 
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Therefore, the elements have three indexes and the array three ways. For all of these 
reasons data are three-way three-mode (see, e.g., Kroonenberg, 2008). 

The basic FA model is not adequate to handle three-way three-mode data. It has 
been extended in order to take into account and exploit the increasing complexity of 
three-way three-mode data. The most famous three-way three-mode extensions of 
FA are the Tucker3 (Tucker, 1966) and Parafac (Harshman, 1970) models, where 
the latter can be seen as a particular case of the former with a useful property of 
parameter uniqueness (Kruskal, 1977). Such extensions were born as suitable 
generalizations of Principal Component Analysis (PCA) and are mainly devoted to 
fit the model to the data according to a certain criterion. Some authors revised these 
proposals as structural models for the covariance structure of the manifest variables 
(e.g., Bentler et al., 1988). In this paper, after recalling the main features of the 
Parafac model following the above-mentioned two approaches, a structural 
extension of Parafac is considered and its uniqueness property is analysed when 
some specific factors are correlated across occasions, or variables.  

2 The Parafac model 

The Parafac model (Harshman, 1970) summarizes the three-way three-mode 
tensor X by looking for a limited number of components for the modes. Let XA be 
the matrix of order (I × JK) obtained by juxtaposing next to each other the frontal 
slabs of X, i.e. the standard two-way two-mode matrices Xk (k = 1, …, K) of order (I 
× J) collected at the different occasions. The Parafac model can be formulated as 

 

 XA = A(C•B) + EA, (1) 

 
where the symbol ‘•’ denotes the Khatri-Rao product of matrices, i.e., it is C•B = 
[c1b1, …, cSbS], where bs and cs are the s-th columns of B and C, respectively (s 
= 1, …, S), being S the number of components for the modes, and the symbol ‘’ 
denotes the Kronecker product of matrices. The matrices A, B, C have order (I × S), 
(J × S), (K × S), respectively, and give the scores of the entities of the various modes 
on the components. Like Principal Component Analysis, the parameter estimates are 
found in the ordinary least squares (OLS) sense by minimizing the sum of squares of 
the error term EA. For this purpose, alternating least squares (ALS) algorithms can 
be applied. 

The most interesting feature of Parafac is that under mild conditions the factors 
are essentially unique. This point has been deeply investigated by Kruskal (1977), 
who has found the following result. Let us denote by k-rank(Z) the so-called k-rank 
of a matrix Z. It is defined as the largest number k such that every subset of k 
columns of Z is linearly independent. Moreover, let (A, B, C) and (AT, BT, CT) be 
two optimal Parafac solutions. Kruskal (1977) has shown that if  

 
 k-rank(A) + k-rank(B) + k-rank(C) ≥ 2S + 2 (2) 

 
then, by considering (1), 
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 A(C•B) = AT(CT•BT) (3) 

 
implies that there exists a permutation matrix P and three diagonal matrices DA, DB 
and DC, for which DADBDC = I, such that 
 

 AT = APDA, BT = BPDB, CT = CPDC. (4) 
 
Starting from the original formulation in (1) we can derive what is the 

corresponding covariance structure. We limit our attention to the i-th row of XA, say 
xAi, pertaining to the i-th statistical unit. xAi is the vector of length JK containing the 
scores of statistical unit i on the J manifest variables during the K occasions. By 
explicitly considering a vector of intercepts and rewriting the model in terms of 
column vectors, we get 

 
 xAi = μ + (C•B)ai + eAi. (5) 
 

As usual in standard FA, we assume that the common factors ai and the specific 

factors eAi are random with E(ai) = 0 and E(eAi) = 0, without loss of generality 

because of μ, and E(aieAi) = 0. If E(aiai) = Φ and E(eAieAi) = Ψ are positive 

definite, then the covariance matrix of xAi is given by 

 

 Σ = E[(xAi − μ)(xAi − μ)] = (C•B)Φ(C•B) + Ψ. (6) 

 

The generic element of the matrix Σ (of order JK × JK), jk,jk, holds the covariance 

between manifest variable j at occasion k and manifest variable j at occasion k (j, j 

= 1, …, J; k, k = 1, …, K). Bearing in mind the standard FA model, it should be 

clear that the Parafac model is a constrained version of standard FA. If we set  = 

(C•B), then (6) coincides with the oblique FA model where  is the matrix of factor 

loadings having a particular form depending on the three-way three-mode structure 

of the data. Maximum likelihood theory is used for estimating the parameters of the 

structural Parafac model assuming that the vectors xAi, i = 1, …, I, are independent 

and identically distributed as a multivariate normal.  

3 Results 

In this work we analyzed whether the constraints  = (C•B) affect the parameter 

identifiability under different covariance structure of the specific factors. In 

particular, we proved that the Parafac model in the structural formulation maintains 

the uniqueness property when, as in the standard FA model, the specific factors are 

assumed to be uncorrelated, i.e. the matrix Ψ is diagonal, and when the specific 

factors of the different variables are correlated within the same occasion, i.e. the 

matrix Ψ is block-diagonal, i.e.,  
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 Ψ = diag(Ψ11, …, Ψkk, …, ΨKK), (7) 

 

where Ψkk denotes the covariance matrix of order (J  J) for the specific factors at 

occasion k, k = 1, …, K. The Parafac covariance model in (6) with the correlation 

structure of the specific factors given in (7) represents a more realistic model able to 

fit reasonably well in many practical three-way three-mode studies. It is important to 

note that what follows can be extended to the case where the specific factors of the 

same variable are correlated across the different occasions. Such an extension can be 

easily obtained by exploiting the symmetry of the model with respect to variables 

and occasions. When Ψ is diagonal, the proof is based on Theorem 5.1 of Anderson 

& Rubin (1956). When Ψ is block-diagonal, the conditions of Anderson & Rubin 

(1956) cannot be longer applied. To prove the uniqueness, the results of Browne 

(1980), formulated in the context of the FA model for multiple batteries of tests, is 

considered. For further details, see Giordani et al. (2019). During the meeting, we 

show how the factor uniqueness property hold in the above described cases. 

Moreover, we illustrate the effectiveness of the proposal by means of a real-life 

example in the multitrait-multimethod analysis framework. 
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ABSTRACT: A method for variable selection and structure discovery in the context
of nonparametric regression in high dimensions is proposed in a forthcoming paper,
where a small subset of variables are relevant and may have nonlinear effects on the
response. The proposed method, called the GRID, is an extension of the RODEO
method of Lafferty & Wasserman, 2008 (which only makes variable selection). In
this paper we briefly describe the method and present the main theoretical founda-
tions of the two stages of the procedure: (i) variable selection with linear/nonlinear
classification of the covariates and (ii) identification of interactions.

KEYWORDS: Variable selection, nonparametric regression, high dimension.

1 The GRID method

In this paper we describe a new method, called the GRID method, for simulta-
neous variable selection, classification of the relevant covariates between linear
and nonlinear, and estimation of the low-dimensional structure of the regres-
sion function. This method is an extension of the RODEO method proposed
by Lafferty & Wasserman, 2008 and it is proposed and deeply investigated in
a forthcoming paper by Giordano et al., 2019. To briefly describe the method-
ology, consider the nonparametric regression model

Yt = m(Xt)+ εt , t = 1, . . . ,n, (1)

where the Xt represents the Rd-valued covariates and the errors εt are iid with
zero mean and variance σ2. The errors εt are independent of Xt , and are as-
sumed to be Gaussian, as in Lafferty & Wasserman, 2008. Here m(Xt) =

E(Yt |Xt) : Rd → R is the multivariate conditional mean function. We use the
notation Xt = (Xt1, . . . ,Xtd) to refer to the covariates. We assume that the num-
ber of covariates d → ∞ but only r of these covariates are relevant for model
(1), where r� d is considered bounded or unbounded.
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The acronym GRID derives from Gradient Relevant Identification of Deriva-
tives, meaning that the procedure is based on testing the significance of partial
derivative estimators (derived by the Local Linear Estimation methodology).
We now illustrate the idea behind the GRID procedure with the following ex-
ample: let d = 10 and let the true model be given by

Yt = 2Xt1 +X2
t2Xt3 +10Xt4Xt5Xt6 + exp(Xt7)Xt2 + εt , t = 1, . . . ,n. (2)

The first stage of the GRID procedure identifies (the indices of) the follow-
ing sets of covariates (variable selection and classification).

C = {2,7}, A = {1,3,4,5,6}, U = {8,9,10}.

The selected variables are automatically classified by the procedure as linear
(denoted by the set A) and nonlinear (denoted by the set C). The other ones
constitute the set U of irrelevant variables.

The second stage of the GRID procedure derives (the indices of) the fol-
lowing sets of interactions

I1 = {1}, I2 = {2,3,7}, I3 = {3,2}, I4 = {4,5,6}, I5 = {5,4,6},

I6 = {6,4,5}, I7 = {7,2},
where I j includes the interactions of variable j with other covariates. By de-
fault, each set I j automatically includes the index j (self-interaction). There-
fore, if the set I j has the only component j, then X j appears in the model as an
isolated additive covariate, like X1 in model (2).

2 Theoretical basis for the two stages of the GRID algorithm

Local linear estimation (LLE) is a nonparametric method for estimating the
regression function m(·) in (1) (cf. Ruppert & Wand, 1994). To estimate m(·)
at x = (x1, . . . ,xd), the LLE performs a locally weighted least squares fit of a
linear function. Let

β̂(x;H)≡ arg min
β0,β1

n

∑
t=1

{
Yt −β0−βT

1 (Xt − x)
}2

KH(Xt − x), (1)

where the function KH(u) = |H|−1K(H−1u) gives the local weights with a d-
variate product Kernel function K(u) = ∏d

j=1 K1(u j). The bandwidth matrix H
controls the bias and the variance of the resulting LLE of m(x). For simplicity,
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we shall suppose that H = diag(h1, . . . ,hd) is a diagonal matrix with strictly
positive entries. The estimator β̂(x) can be written in a closed form as:

β̂(x;H) = (ΓTWΓ)−1ΓTWϒ, (2)

where ϒ = (Y1, . . . ,Yn)
T and

Γ =




1 (X1− x)T

...
...

1 (Xn− x)T


 , W =




KH(X1− x) . . . 0
...

. . .
...

0 . . . KH(Xn− x)


 .

Note that β̂(x;H) gives estimators of the function m(x) and its gradient:

β̂(x;H) =

(
β̂0(x;H)

β̂1(x;H)

)
≡
(

m̂(x;H)

D̂(x;H)

)
. (3)

The theoretical foundations of the GRID procedure are based on the following
assumptions and the theorem below.

A1) The bandwidth H is a diagonal matrix with strictly positive diagonal entries:
H = diag(h1, . . . ,hd), with c1 ≤ h j for j = 1, . . . ,d for some c1 ∈ (0,∞).

A2) The d-variate kernel function K is a product kernel, based on a nonnegative and
symmetric univariate kernel density function K1 ∈ C 1[−c2,c2] for some c2 > 0
such that 0 < x j− c2h j < x j + c2h j < 1 for all j = 1, . . . ,d.

A3) All the partial derivatives of the function m(x) up to and including order five are
bounded.

A4) X1 is uniformly distributed on the unit cube (0,1)d .

Theorem 1 Under model (1) and assumptions A1-A4, we have:

E
{

∂m̂(x;H)

∂h j

∣∣∣∣χn

}
=

{
θ0 j 6= 0 if j ∈C
0 otherwise +op(1) (4)

E

{
∂D̂(i)(x;H)

∂h j
, i 6= j

∣∣∣∣∣χn

}
=

{
θi j 6= 0 if i ∈ I j, j ∈C
0 otherwise +op(1) (5)

for i, j = 1, . . . ,d and i 6= j, where χn = {Xt : t = 1 . . . ,n} and the exact expres-
sions for θ0 j and θi j can be derived following Giordano et al., 2019.

Note that Theorem 1 can be used to identify the relevant (nonlinear!) covari-
ates and interactions, by using a proper threshold technique on θ0 j and θi j,
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d = 20 d = n/2 d = 2n
n R C I(6,7) R C I(6,7) R C I(6,7)

X6 300 0.975 0.330 0.900 0.855 0.335 0.720 0.630 0.330 0.365
500 1.000 0.610 1.000 0.990 0.595 0.985 0.810 0.480 0.620

1000 1.000 0.910 1.000 1.000 0.915 1.000 0.910 0.835 0.815
X7 300 0.940 0.325 0.900 0.875 0.335 0.720 0.580 0.250 0.365

500 1.000 0.370 1.000 0.995 0.635 0.985 0.765 0.515 0.620
1000 1.000 0.935 1.000 1.000 0.890 1.000 0.835 0.815 0.815

X10 300 1.000 * - 1.000 * - 0.995 0.035 -
500 1.000 * - 1.000 * - 1.000 * -

1000 1.000 * - 1.000 * - 1.000 * -

Table 1. Simulation results for different dimensions d and sample sizes n. The values show
the proportion of times that a given covariate Xi is classified as a relevant covariate (R), as a
nonlinear covariate (C), and as part of an interaction term (I). The symbol (∗) denotes a value
≤ 0.025 while the symbol (−) means zero.

as suggested in Lafferty & Wasserman, 2008 and Giordano et al., 2019. How-
ever, this theorem cannot be used to identify the linear covariates. To overcome
this, we consider an auxiliary regression where all those covariates that have
not been selected in the first pass, are to be transformed, so that the linear
covariates of the original model become nonlinear in the auxiliary model.

3 Some simulation results

The Monte Carlo simulation is based on 200 iterations. The covariates are
uniformly distributed. We consider the model Yt = m(Xt) + εt with m(x) =
x3

6x3
7 +x10 and εt ∼ N(0,1) for all t. The additive components of the model are

standardized so that they all have variance equal to one, to make them compa-
rable each other. The Kernel function is K1(u) = 1/C1

(
5−u2

)
I{|u|≤√5}, as in

Lafferty & Wasserman, 2008, where C1 is a scale factor to make the integral
equal one. The simulation results are shown in Table 1.
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ABSTRACT: Part-of-speech (POS) tagging is the basis of many Natural Language
Processing tasks and, nowadays, there exist several algorithms able to determine the
POS tag for a specific word. However, the increasing usage of Internet and the explo-
sion of blogs and microblogs changed the way people communicate, and POS taggers
trained on structured corpora lost the ability to catch this new tendency. The proposed
algorithm is an auxiliary POS tagger which aims at predicting unknown POS tags. It is
based on the Bayesian Networks and it uses information regarding POS tags that pre-
cede and follow the unknown POS tag. The well-known Brown Corpus and the more
recent Ark dataset are the datasets over which the proposed methodology is tested.

KEYWORDS: microblogs, part-of-speech tagger, bayesian networks.

1 Introduction

Part-of-speech (POS) tagging is the basis of many Natural Language Process-
ing (NLP) tasks and there are several algorithms able to determine the POS tag
for a specific word. However, the increasing usage of Internet and the explo-
sion of blogs and microblogs changed the way people communicate, involving
an increasing usage of slang, abbreviations, symbols and emoticons, creating
the so called cyber-slang. To extract and analyze such novel information from
Web2.0 is a pretty new challenge for many NLP tasks, as POS taggers. In
fact, traditional POS taggers, trained on structured corpora, lost their ability
when applied to blog and microblog data. POS tagging’s earlier works were
mainly based on grammar rules and morphemes. Thanks to the progress in
computational technology and the growing interest in machine learning mod-
els, new research has been done focusing, for example, on Markov Models
and their variants (Cutting et al., 1992) and deep learning algorithms (Plank et
al., 2016). Some research tried to extend traditional POS tagger to blogs and
microblogs data, obtaining poor performances, as shown for example in Nand
and Perera (2015). Following the limitations of existing POS taggers for blogs
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and microblogs, this paper wants to propose a novel approach to assign a POS
tag to unknown words based on the information deriving from the POS tag
sequence. The proposed method can be interpreted as an auxiliary POS tagger
because it intervenes after the initial POS tagging step of the corpus, predict-
ing the remaining unknown POS tags that, for any reasons, do not match any
vocabulary. It uses a Bayesian Network as predictor of the probability distri-
bution of the unknown POS tag.

2 The proposed approach and preliminary results

In order to predict the unknown POS tag, the proposed approach needs to
identify a suitable Bayesian Network (BN). The BN is a model that explicits,
through a Directed Acyclic Graph (DAG), a set of (conditional) dependence
and independence properties among the variables under study (Kjaerulff &
Madsen, 2008). A DAG G is composed by a set of nodes V , which cor-
responds to a set of random variables XV indexed by V , and a set E of di-
rected links between pairs of nodes in V . A BN is composed by the pair
(G,P ), where G is a DAG and P is the set of conditional probabilities in-
volved in the factorization, according to G, of the joint probability distribution
P(XV ) = ∏ν∈V P(Xν|Xpa(ν)), where Xpa(ν) denotes the set of parent variables
of the variable Xν for each node ν ∈ V . A BN can be used, for example, to
compute the effect of a new piece of information on one or more target vari-
ables, computing the corresponding posterior distribution (Koller & Friedman,
2009). In order to construct a BN, firstly the DAG is identified, then the joint
probability distribution is computed, estimating the set of conditional prob-
ability distributions P(Xν|Xpa(ν)). Several algorithms have been proposed to
automatically find the structure of a BN. In this paper two score-based algo-
rithms, including Hill Climbing (HC) and Tabu search, were evaluated, consid-
ering the Bayesian Dirichlet equivalent uniform score (BDE) and the Bayesian
Information criterion (BIC) as possible scores.

In order to predict the unknown POS tag, denoted by tagt , it is necessary
to identify the most suitable length of the tag sequence and to extract the pre-
dicted attribute from the probability distribution given by the estimated BN.
Most of the previous works only rely on the information linked to the two pre-
ceding POS tags, however, in the subsequent analysis three possible sets of
information were investigated:
Tagt−/+1 = {tagt−1, tagt , tagt+1},
Tagt−/+2 = {tagt−2, tagt−1, tagt , tagt+1, tagt+2},
Tagt−/+3 = {tagt−3, tagt−2, tagt−1, tagt , tagt+1, tagt+2, tagt+3}.
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t− i (t + i) indicates the position of the tag that precedes (follows) tagt .
Regarding the way in which the predicted probability distribution of the

unknown POS tag can be summarized in a predicted POS tag, three criteria
were evaluated, including the Mode criterion, the Max. Dist. criterion, which
consists in computing the difference between the predicted POS tag proba-
bilities and the corresponding sample frequencies and choosing the attribute
corresponding to the maximum difference, and the Hybrid criterion, which
uses the Max. Dist. criterion when each frequency associated with the modal
attribute is less than 0.5, and the Modal criterion otherwise.

The identification and estimation of a suitable BN was performed with bn-
learn R package (Scutari, 2010), making use of the Brown Corpus, which is a
classical and widely used POS tagged dataset. Its predictive performance was
evaluated through the following metrics: Area Under the Curve (AUC) of the
Receiver Operating Characteristic curve, average accuracy (Av Acc), macro
precision (M Prec), macro-averaging F1-score (MAF1) and overall accuracy
(Acc) (Sokolova & Lapalme, 2009, Witten et al. 2016). A 10-fold cross-
validation procedure was applied to select the best information set combina-
tion, predictive criterion and BN, resulting in the following choice: Tagt−/+3
set of variables, Max. Dist. criterion, and BN obtained applying the HC algo-
rithm with BDE score (iss=5000). Figure 1 shows the chosen BN.

Figure 1. The chosen BN

The predictive performances of the best BN in estimating the unknown
POS tags were evaluated on the Brown Corpus and the Ark Dataset, which
comprises POS tagged Twitter messages. Moreover, a domain adaptation anal-
ysis was performed, consisting in using the Brown Corpus as a training do-
main, and the ARK dataset as a target domain. The choice to perform the do-
main adaptation analysis is due to the fact that few and relatively small labeled
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datasets for Twitter and Web 2.0 data are available. Table 1 reports the results
in terms of evaluation metrics for the Brown Corpus, the ARK Dataset and the
domain adaptation case obtained by computing the metrics on each fold of a
10-fold cross validation procedure, and then averaging the 10 outcomes. The

Table 1. Evaluation metrics

AUC Av Acc MAF1 M Prec Acc
Brown → Brown 0.731 0.444 0.533 0.344 0.624
ARK → ARK 0.629 0.355 0.364 0.259 0.474
Brown→ ARK 0.613 0.337 0.318 0.242 0.399

results obtained on the Brown Corpus are overall better than the ones on the
ARK dataset. Comparing the performances of the models that used only the
ARK dataset (ARK→ ARK) with respect to the cross domain setting (Brown
→ ARK), one notices a slight decrease of the evaluation metrics.
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ABSTRACT:

The model-based clustering framework provides well established methods that
uncover sub-groups of observations in data. Such methods bestow several desirable
benefits: reproducibility due to their statistical modelling basis, objectivity through the
availability of principled model selection tools and interpretability through the provi-
sion of parameter estimates and their associated uncertainties.

However, model-based clustering approaches begin to lose traction as data di-
mension increases, whether in terms of number of observations, variables, timepoints
etc. This loss of applicability is often due to stability issues associated with high di-
mensional covariance matrices, optimisation difficulties and/or the expensive nature
of computing the likelihood function.

Here we consider recent advances in model-based methods to clustering data
where the number of variables p is large. In particular, we explore developments
in factor analytic approaches, which are well known models for big p data, and recent
work utilising composite likelihood methods that facilitate computation of intractable
likelihood functions. The utility of such methods is illustrated through benchmark and
real data sets.

KEYWORDS: high dimensional data, factor analytic models, composite likelihood.
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ABSTRACT: This work gives a contribution to the emerging literature on the use
of regression trees for hierarchical data to increase the flexibility and the predictive
ability of random effects models. The proposed procedure extends random effect re-
gression trees considering a random effect model with both a tree component and a
linear component. Moreover, it is suggested to decompose the effects of predictors
within and between clusters. The performance of the proposed procedure is evaluated
through a simulation study and an application to INVALSI data on students achieve-
ment.

KEYWORDS: CART, hierarchical data, random effects.

1 Introduction

Mixed or multilevel models (Snijders & Bosker, 2012) are useful tools to deal
with hierarchical data. In general, hierarchical data are composed by level 1
units nested into level 2 units (clusters), such students within schools (indi-
vidual cross-sectional data) or children growth evaluated at several time points
(repeated measures). Model specification is a challenging task in mixed mod-
els. A worthwhile approach exploits regression trees (Breiman et al., 1984) to
capture nonlinear fixed effects. This technique has been extended to clustered
data by modelling fixed effects with a decision tree, while accounting for ran-
dom effects with a linear mixed model in a separate step (Hajjem & Larocque,
2011; Sela & Simonoff, 2012). It is shown that random effect regression trees
are less sensitive to parametric assumptions and provide improved predictive
power compared to linear models with random effects and regression trees
without random effects. The literature has grown with variants and extensions
(e.g. Hajjem & Larocque, 2014; Miller & Lubke, 2017).

Our proposal extends random effect regression trees in two directions: (i)
incorporating a linear component in the final random effect model, and (ii)
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allowing a decomposition of the effect of a given predictor within and between
clusters.

2 A tree embedded linear mixed model

To take into account both non-linear and interaction effects and cluster mean
dependencies, we are proposing here a random effect model, called Tree em-
bedded linear mixed model, where the regression function is piecewise-linear,
consisting in the sum of a tree component and a mixed effect linear compo-
nent. The proposal is the mixed effect version of the semi-linear regression
trees (Vannucci, 2019; Vannucci & Gottard, 2019).

The prosed model can be ideally divided into three parts: a fixed effect
linear part, a fixed effect non-linear part based on a tree and a random effect
part. In this work, we limit our attention to the case of random intercept mixed
models, but the extension to random slopes is straightforward. The resulting
model can be formulated as

Yi j = Xi jβββ+Z jγγγ+T (Xi j,Z j)+U j + εi j (1)

where Yi j is the response variable for level 1 unit i belonging to level 2 unit j,
Xi j is the vector of the level 1 predictors, βββ the associated fixed effect coeffi-
cients, Z j is the vector of the level 2 predictors, γγγ the associated fixed effect
coefficients. Then, T (Xi j,Z j) is the tree based predictor depending on some
or all the level 1 and the level 2 explanatory variables. Finally, U j ∼ N(0,σ2

u)
is the random intercept for level 2 unit j and εi j ∼ N(0,σ2

ε).
The model is additive in its components where the tree-component acts as

a region-specific intercept. As an alternative, the model can be written as

Yi j = Xi jβββ+Z jγγγ+
M

∑
m=1

µmI{(Xi j,Z j) ∈ Rm}+U j + εi j, (2)

where R1, . . . ,RM is the partition of the predictor space corresponding to the
tree-component. When the unknown regression function can be assumed to be
quasi-linear (Wermuth & Cox, 1998), the number of leaf nodes M can be kept
small to avoid overfitting.

To disentangle the within and between effects of an level 1 predictor, say
Wi j, we decompose Wi j into the cluster mean W j = (1/n j)∑n j

i=1Wi j and the
deviation W̃i j =Wi j−W j. Then, we include W j in Z j and the deviation W̃i j in
Xi j (Snijders & Bosker, 2012).
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Model fitting is obtained by the iterative procedure described in Algorithm
1. This procedure is based on the backfitting algorithm (Breiman & Friedman,
1985), and recently applied in semilinear regression trees (Vannucci, 2019;
Vannucci & Gottard, 2019). The convergence of the algorithm is evaluated

Algorithm 1: Backfitting algorithm for tree embedded linear mixed
models

Data: (Yi j,Xi j,Z j), i = 1, . . . ,n j, j = 1, . . . ,J
Result: Fitting of the tree embedded linear mixed model (2)

1 Initialization step: The tree is initialized at depth 0: T̂ (Xi j,Z j) = Y i j;
2 Iteration step: repeat
3 Compute the tree-based residuals Y ∗i j = Yi j− T̂ (Xi j,Z j);
4 Fit a linear random intercept model of Y ∗i j on Xi j and Z j and

compute the predicted Ŷ re
i j (fixed part + Û j);

5 Compute the model-based residuals: Y ∗∗i j = Yi j− Ŷ re
i j ;

6 Fit the regression tree of Y ∗∗i j on Xi j and Z j and compute the
predicted values T̂ (Xi j,Z j);

7 until convergence criteria is met;
8 Estimation step: Estimate the parameters of model (2) using the

partition selected by the tree at convergence.

comparing the mean square error in two successive iterations. At the final
step, model (2) is fitted using the partition associated to the tree selected at
convergence. The leaf node parameters µm are estimated jointly with the other
model parameters βββ, γγγ, σ2

u, σ2
ε . Algorithm 1 is implemented in a user written

R code.
The main difference of our procedure with respect to previous proposals

(Hajjem & Larocque, 2011; Sela & Simonoff, 2012), is the inclusion of the
linear component Xi jβββ+Z jγγγ in the random effect model (2). This inclusion
allows to avoid overfitting and helps interpretation. Moreover, since the µm are
jointly estimated in the final step, standard hypothesis tests and confidence in-
tervals can be used for model selection and evaluation, together with the mean
squared error computed on a test data set for prediction accuracy evaluation.

We will show via a simulation study and an application to INVALSI data on
students achievement that our proposal improves the predictive performance of
the model in presence of quasi-linear relationships (Wermuth & Cox, 1998),
avoiding overfitting and facilitating interpretation.
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ABSTRACT: This contribution deals with robust estimation of mixtures by develop-
ing a weighted likelihood methodology, which relies on a suitable modification of the
EM (or Classification EM) algorithm. In the proposed algorithm, the likelihood equa-
tions in the M-step are replaced by weighted likelihood estimating equations, which
are characterized by the presence of data dependent weights aimed at downweighting
outliers. The weights are based on the Pearson residuals and the residual adjustment
function. Formal rules for robust clustering and outlier detection can be defined based
on the fitted mixture model. Mixtures of multivariate Gaussian components and re-
gression models will be considered.

KEYWORDS: classification, EM, mixture, outliers, Pearson residuals.

1 Introduction

It is well known that maximum likelihood estimation (MLE) is likely to lead
to unreliable results when the sample data are contaminated by the occurrence
of outliers. In mixture modeling, in the presence of such data inadequacies,
the bias of at least one of the component parameters estimate can be arbitrarily
large and model based clustering strategies become unfeasible in recovering
the true underlying grouping structure in the data at hand. Actually, the oc-
currence of outliers could lead to find spurious clusters and/or merge together
genuine separate groups. The reader is pointed to the book by Farcomeni &
Greco, 2015 for a gentle introduction to robustness issues with a particular
emphasis on multivariate problems and cluster analysis.

Here, in order to take into account the possible presence of outliers, it
is suggested to replace maximum likelihood by weighted likelihood estima-
tion. Maximum likelihood estimation of mixture models is commonly ob-
tained by resorting to the EM algorithm. An alternative strategy is given by
the (penalized) Classification EM (CEM) algorithm. Weighted likelihood es-
timation of mixture models can be achieved by developing a modified ver-
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sion of the EM (or CEM) algorithm. Actually, in the M-step, the likelihood
equations are replaced by a different set of estimating equations whose sin-
gle term contributions are attached a weight aimed at downweighting out-
liers. In particular, weighted likelihood estimation is achieved by evaluating
weights stemming from Pearson residuals (Markatou et al. , 1998). The Pear-
son residual gives a measure of the agreement between the assumed model
m(y;τ) and the data, that are summarized by a non-parametric density estimate
m̂n(y) = n−1 ∑n

i=1 k(y;yi,h), based on a kernel k(y; t,h) indexed by a bandwidth
h, that is

δ(y) =
m̂n(y)
m(y;τ)

−1 , (1)

with δ∈ [−1,∞). In regression and multivarate problems, the Pearson residuals
can be evaluated as

δ(y) =
m̂n(g(y;τ))

m(y)
−1 , (2)

where g(y;τ) is an appropriate pivotal transformation: (standardized) residuals
in regression (Agostinelli & Markatou, 1998, Alqallaf & Agostinelli, 2016)
and Mahalanobis distances in multivariate estimation (Agostinelli & Greco,
2018 ). The weight function is defined as

w(δ(y)) =
[A(δ(y))+1]+

δ(y)+1
, (3)

where [·]+ denotes the positive part and A(δ) is the Residual Adjustment Func-
tion (RAF, Basu & Lindsay, 1994). When the model is correctly specified, the
Pearson residual function (1, 2) evaluated at the true parameter value converges
almost surely to zero, whereas, otherwise, for each value of the parameters,
large Pearson residuals detect regions where the observation is unlikely to oc-
cur under the assumed model. The RAF plays the role to bound the effect
of large residuals on the fitting procedure, as well as the Huber and Tukey-
bisquare function bound large distances in M-estimation and we assume is such
that |A(δ)| < |δ|. One can consider the families of RAF stemming from the
Symmetric Chi-Squared divergence, the family of Power divergence or Gen-
eralized Kullback-Leibler divergence measures. The resulting weight func-
tion (3) is unimodal and decline smoothly to zero as δ(y)→−1 or δ(y)→ ∞.
Hence, those observations lying in such regions are attached a weight that de-
creases with increasing Pearson residual. Large Pearson residuals and small
weights will correspond to data points that are likely to be outliers.
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2 Weighted EM and CEM

Let y = (y1,y2, . . . ,yn)
T

be a random sample of size n from the mixture model

m(y;τ) =
K

∑
k=1

πk p(yi;θk) ,

where τ = (π1, . . . , piK ,θ1, . . . ,θK), θk denotes the vector of component spe-
cific parameters and K is the number of groups, that is assumed to be fixed in
advance. The weighted EM (WEM) algorithm iteratively alternates between
the standard E-step, in which posterior probabilities uik ∝ πk p(yi;θk) are ob-
tained, and a weighted M-step in which one solves the estimating equations

n

∑
i=1

k

∑
j=1

ui j
∂
∂τ

[logπ j + logφp(yi;µ j,Σ j)]wi j = 0 , (4)

where wi j denotes the weight for the i-th unit with respect to the j-th com-
ponent. In the weighted CEM algorithm (WCEM), after the E step, let ki =
argmaxkuik, then uiki = 1 and uik = 0 for k 6= ki. Therefore, in the modified
M-step one is allowed to compute one single weight per unit, conditionally on
the current cluster assignments, in equation (4), i.e wi j = wiki .

The WCEM automatically provides a classification of the sample units,
whereas a Maximum-A-Posteriori criterion can be used for cluster assignment
after running the WEM algorithm. Such criteria lead to classify all the obser-
vations, both genuine and contaminated data, meaning that also outliers are
assigned to a cluster. Actually, we are not interested in classifying outliers and
for purely clustering purposes outliers have to be discarded. Outlier detection
should be based on the robust fitted model and performed separately by using
formal rules. Outlyingness of each data point is measured conditionally on the
final assignment. For instance, for a mixture of Gaussian components, a com-
mon rule is to flag outliers when d2

iki
> χ2

p;1−α, where diki is a robust distance
and χ2

p;1−α is the (1−α)-quantile of a χ2
p variate. In the case of mixtures of

linear regressions, in a similar fashion, the outlier detection rule can be based
on standardized residuals and their reference standard normal distribution.

Let us consider a couple of illustrative examples on synthetic data. Figure
1 displays the results stemming from the WEM algorithm for a mixture of
bivariate normal distributions (left) and a mixture of linear regressions (right)
in the presence of outliers. The cluster assignments and the detected outliers
are also given. The classical procedures fail, whereas the proposed methods
lead to robust solutions with a satisfactory accuracy in fiitting, clustering and
outlier detection.
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Figure 1. Fitted mixture of bivariate normal distributions with outliers (left). Fitted
mixture of linear regressions with outliers (right). Clusters are denoted by using dif-
ferent colors and symbols. Outliers are represented as circles (left) or crosses (right).
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MULTIBLOCK METHODS  
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ABSTRACT: We introduce a representation called canonical representation of multiblock 

methods from a factorization lemma for partitioned matrices. We show that this canonical 

representation highlights the strategy adopted by these methods for analyzing multiblock data. 

This strategy involves two analyzes: (i) a global analysis described by a factorization of the 

whole data matrix. (ii) a block analysis described by the factorization of each block. The link 

between parameters of these two analyses is simple and will be presented in detail. The 

interpretation and visualization of parameters are based on the same principle as the usual 

Principal Component Analysis. 

KEYWORDS: multiblock data analysis, matrix factorization, principal component analysis. 

1 Introduction and motivation 

Extracting relevant information from multiblock data by reducing dimensionality, 

summarizing the information in an understandable way or visualizing multiblock data 

for interpretation purposes, are challenges often raised in chemometrics. When K data 

blocks denoted kX  Kk 1  are available and each data block kX reflects the

measurements of kp  quantitative variables on n individuals, several multiblock 

methods are proposed in the literature. We limit ourselves to five methods widely used 

in chemometrics as listed in Table 1. 

Table 1. List of widely exploratory multiblock methods used in chemometrics 

HPCA Hierarchical  Principal Component Analysis [1,2] 

CPCA Consensus Principal Component Analysis [1,2] 

MCOA Multiple Co-inertia Analysis [5,6] 

CCSWA Common Components and Specific Weights Analysis [3,4,5] 

STATIS  Structuration de Tableaux A Trois Indices de la Statistique [7,8] 

Linking these methods to each other aims to have a comprehensible picture. This 

issue was modestly studied in the literature. A monotony property of HPCA was 
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disclosed and an optimization criterion was exhibited [10] pinpointing the equivalence 

between HPCA and CCSWA. In the same manner [9], new properties of CPCA were 

disclosed and pinpoint its connection to MCOA and PCA of the whole blocks. Indeed, 

CPCA and PCA of the whole blocks are equivalent and the main difference between 

CPCA and MCOA being in the deflation step. In addition, a new formulation of 

CCSWA was introduced [11] by means of a new criterion which brought it closer to 

MCOA and CPCA. 

Despite these important clarifications, the access to these methods by users 

continues to be difficult. One of the reasons resides in the heterogeneity of the outputs 

which makes evaluation of methods difficult. From one method to another, the outputs 

have neither the same aspect nor the same form. The user is often lost. 

The present paper introduces a "canonical representation" of multiblock methods 

listed in table 1 in order to harmonize their outputs. Several data sets will be used to 

show how canonical representation of methods listed in table 1 makes easy the 

evaluation and comparison of these methods. 

2 Main contribution 

The main idea of canonical representation of multiblock methods takes its origin 

in the following factorization lemma of a partitioned matrix. 

Let X  be a  matrix  of dimension  pn,  partitioned  by columns in K  blocks  kX  

with dimension  kpn, , there exist a matrix V , K  matrices kU  and  1K  

diagonal matrices D  , kD   Kk 1  such that :  

T

kk UDVX      Kk 1 , 

T

  UDVX                           

with r

T
IVV  ,  Tdiagonal VV  T

kkdiagonal UU rI  Kk 1  

 and  r is the rank of X . 

The decomposition of data blocks kX   Kk 1  as described by the lemma 

is called: canonical representation. It will be shown that multiblock methods listed in 

table 1 looking for a factorization as presented in the above lemma. In other words, 

the matrices V , kU  Kk 1 , kD  Kk 1  and D  are the main 

parameters of these methods. Although the parameters differ from one method to 

another the representation of the parameters remains the same through the 

factorization.  
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Figure 1. Highlighting the main parameters of multiblock methods through their 

canonical representation 

  
Also, canonical representation highlighted the strategy adopted by these methods. 

This strategy involves two analyses: (i) a global analysis described by the factorization 
of X , (ii) a block analysis described by the factorization of kX . The link between 
parameters of these two analyses is simple and will be presented in detail. The 
interpretation and visualization of parameters are based on the same principle as the 
usual Principal Component Analysis. 

References 

CHESSEL, D., HANAFI, M. 1996. Analyse de la co-inertie de K nuages de points. Revue 

de Statistique Appliquée, XLVI, (2), 35-60 

GOURVENEC, S., STANIMIROVA, I., SABY, C-A.,  AIRIAU C.Y., MASSART. D.L. 2005. 

Monitoring batch processes with the STATIS approach. Journal of Chemometrics, 

19: 288–300 

HANAFI, M., KOHLER, A., QANNARI E. M. 2011. Connections between Multiple Co-

inertia Analysis and Consensus Principal Component Analysis. Chemometrics and 

Intelligent Laboratory Systems, 106(1) : 37-40. 

HANAFI, M., KOHLER, A., QANNARI E. M. 2010. Shedding new light on Hierarchical 

Principal Component Analysis. Journal of Chemometrics, 24(1): 703-709. 

HANAFI, M., QANNARI E.M. 2008. Nouvelles propriétés de l’Analyse en Composantes 

Communes et Poids Spécifiques. Journal de la  Société Française de Statistique, 

149(2): 75-97. 

WOLD, S., KETTANEH, N. AND TJESSEM, K. 1996. Hierarchical multi-block PLS and 

PC models for easier interpretation and as an alternative to variable selection. 

Journal of Chemometrics, (10), 463-482. 

HANAFI, M., MAZEROLLES, G., DUFOUR, E., QANNARI, E. M. 2006. Common 

components and specific weight analysis and multiple Co-inertia analysis applied 

249



to the coupling of several measurement techniques. Journal of Chemometrics, 

(20)5, 172-183. 

LAVIT, C., ESCOUFIER,Y.,  SABATIER, R., TRAISSAC. P. 1994. The ACT (Statis 

method). Computational Statistics & Data Analysis, 18(1):97 119.  

MAZEROLLES, G., HANAFI, M., DUFOUR, E., QANNARI, E. M., BERTRAND, D. 2006. 

Common Components and specific weights analysis: a chemometric method for 

dealing with complexity of food products. Chemometrics and Intelligent 

Laboratory Systems, (81), 41- 49. 

QANNARI E. M,. WAKELING I., COURCOUX PH., MACFIE M.F. 2000. Common 

Components and specific weights analysis performed on preference data. Food 

Quality and Preference, 11, 151-154. 

WESTERHUIS, J. A, KOURTI, T., MACGREGOR J. F. 1998. Analysis of Multiblock and 

Hierarchical PCA and PLS Models. Journal of Chemometrics, (12), 301-321. 

250



AN ADEQUACY APPROACH TO ESTIMATING THE
NUMBER OF CLUSTERS

Christian Hennig1

1 Department of Statistical Sciences “Paolo Fortunati”, University of Bologna, 
 (e-mail: christian.hennig@unibo.it)

ABSTRACT: I propose a general approach for estimating the number of clusters in a
model-based setting. The idea is to choose the smallest number of clusters that pro-
vides an “adequate” model, where “adequacy” means that according to one or more
suitable criteria, the dataset to be analysed looks like a (more or less) typical dataset
generated from the model. Parametric bootstrap can be used to generate datasets from
the model, and adequacy can then be assessed by bootstrap tests. For finding mean-
ingful clusters, it may often not be required that the model fits perfectly, so adequacy
could be assessed based on smaller than the actually available sample sizes to allow
for imprecise fits. Adequacy criteria and application to some model-based clustering
methods are discussed.

KEYWORDS: Model-based clustering, parametric bootstrap, OTRMLE, k-quantiles 
clustering.

1 Introduction

A problem with standard methods to estimate the number of clusters in model-
based clustering such as the BIC is that they are critically dependent on the
model assumptions. For example, for Gaussian mixtures, if clusters are not
exactly Gaussian and datasets are big enough, the BIC will often fit more than
one Gaussian distribution to every cluster.

The proposal introduced here is to choose the smallest number of clus-
ters that provides an “adequate” model. The principle of adequacy goes back
to Davies, 1995. The idea is that a model is “adequate” for a dataset if the
dataset cannot be distinguished from (more or less) typical datasets generated
from the model by some criteria that are relevant to the application. Davies &
Kovac, 2004 applied the approach to density estimation; they tried to find the
density with the smallest number of modes that is “adequate” in terms of the
Kolmogorov distance between the fitted and the observed distribution.

The assessment of adequacy relies on criteria measuring the quality of
approximation. In cluster analysis, it is often of interest to find meaningful
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clusters that do deviate slightly from the model assumptions. When fitting a
Gaussian mixture, some unimodal and fairly symmetric data subsets should be
counted as a single cluster even if they could be fitted slightly better by two
or more very close Gaussian mixture components. Therefore, very high preci-
sion of approximating the dataset by the fitted model is not required. Rather
the modelled clusters should correspond to meaningful clusters in the data.
This can be reflected by appropriate quality criteria. Some imprecision in the
fit that makes it possible to tolerate clusters for which the model assumption is
only roughly appropriate can be achieved by basing the adequacy assessment
on a number of observations that is lower than the number of actual observa-
tions. Given an adequacy criterion, adequacy can be assessed using parametric
bootstrap testing.

2 The adequacy algorithm

Here is an outline of the general adequacy approach.

1. Apply a model-based clustering method to dataset D for a range R of
numbers of clusters G ∈ R.

2. For all G∈ R, generate B datasets DG,b, b = 1, . . . ,B from the fitted mod-
els (parametric bootstrap).

3. Apply the clustering method to DG,b, b = 1, . . . ,B, fixing G.
4. Compute statistics S that measure the quality of the clustering for all

fitted clusterings on the real data and on the bootstrapped data.
5. G is adequate if S(D,G) is not significantly worse than the distribution

of S(DG,b,G).
6. Choose the smallest adequate G.

3 Clustering methods, outliers

The adequacy principle can be applied to all model-based clustering methods,
and even to clustering methods that are not model based, as long as a model
can be specified and fitted to generate the parametric bootstrap datasets (see
Hennig & Lin, 2015 for the use of parametric bootstrap with non-model based
clustering methods). In case of model-based clustering, the model to be used
is obviously the fitted model.

Two methods for which up to now no other methods have been proposed
to estimate the number of clusters are k-quantiles clustering (Hennig et al. ,
2018), based on a fixed partition model with asymmetric Laplace distributions,
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and the Optimally Tuned Robust Improper Maximum Likelihood Estimator
(OTRIMLE, Coretto & Hennig, 2016; Coretto & Hennig, 2017), which fits
a Gaussian mixture allowing for noise and outliers. In the latter case, some
observations are not assigned to any cluster, and better clustering of the non-
outliers can be achieved if more observations are classified as outliers. This can
be taken into account by looking for the adequate clustering with smallest G+
π̂0
p0

, where π̂0 is the estimated proportion of outliers, and p0 is the borderline
proportion of outliers that the user is willing to trade in for a model with one
cluster more.

4 Clustering quality measures

Many clustering quality measures can be used as statistic S. Using multiple
testing corrections (Davies, 1995), even more than one statistic can be used
(see Hennig, 2017 for some proposals).

Here is one proposal that measures to what extent the found clusters are
unimodal. The measure is first defined for one-dimensional data; for more
dimensions variable-wise (or principal component-wise) measures can be ag-
gregated.

Apply the following to every cluster with j ∈ {1, . . . ,G} being the current
number of clusters:

(a) Compute a kernel density estimator at q equidistant points y1 < y2 < .. . <
yq covering a large probability range (say 99%) under the fitted model,
yielding f̂ (y1), . . . , f̂ (yq).

(b) Separately sort those on the left and those on the right side of the mode
of the fitted model: f̂ (1)l ≤ . . .≤ f̂ (ql)

l , f̂ (1)r ≥ . . .≥ f̂ (qr)
r , q = ql +qr.

(d) Compare with kernel density left and right of the mode of the fitted
model:

sl =
ql

∑
i=1

( f̂ (yi)− f̂ (i)l )2,

sr =
q

∑
i=ql+1

( f̂ (yi)− f̂ (i)r )2,

Tj(y1, . . . ,yq) =

√
1
q
(sl + sr).

In case of unimodality where the mode is as close as possible to the fitted model
mode, this yields Tj = 0. It may be advisable to standardise Tj by its mean and
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variance under the assumed model in order to make clusters of different sizes
comparable.

The resulting measures Tj need to be aggregated over clusters:

S(D,G) =

√√√√
G

∑
j=1

(Tj)2.

A version that averages pairs of density values and aggregates the same density
values on the left and right side of the mode can be defined if clusters are meant
to be symmetric.

5 Conclusion

The algorthm introduced in Section 2 with S as defined in Section 4 can be used
to find the smallest G so that the empirical within-cluster distribution does not
deviate significantly from the quality S as expected if the fitted model is in fact
true; i.e., clusters look as unimodal (and symmetric, if required) as generated
by the fitted model.
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ABSTRACT: In classification tasks with geochemical of chemometric data, it fre-
quently happens that observations are of relative (compositional) nature. It means
that the relevant information is contained in ratios rather than in the absolute values
of components due to the possible influence of the size effect. The logratio approach
to compositional data analysis offers a concise methodology replacing the original
scale invariant positive data by reasonable real variables, which are formed by ratios
of the components or their amalgamation, prior to further statistical processing. The
preferred type of such logratio variables corresponds to orthonormal coordinates with
respect to the Aitchison geometry of compositional data, and particularly to such a
coordinate system, where the first coordinate aggregates all logratios with the specific
part of interest and can be thus linked to that component - we refer to so-called pivot
coordinates. However, including all respective logratios into the first pivot coordinate,
specifically those logratios reflecting differences between groups to a coordinate cor-
responding to a non-biomarker, may lead to an artificial occurrence of false positive
biomarker detection. Accordingly, biased picture concerning sources for classifica-
tion of groups can be expected. Therefore, in the contribution, we propose a method
excluding aberrant logratios so that the coordinate which is afterward considered to
be the pivot one in the resulting coordinate system contains already just the cleaned
information about the relative dominance of the specific component. Importantly, the
alternative choice of pivot coordinates, which we suggest to call selective pivot co-
ordinates, does not influence the quality of classification itself since both coordinate
systems are just rotations of each other. The effect of such a choice of coordinates
will be presented with the partial least squares regression - discriminant analysis of
metabolomic data.

KEYWORDS: compositional data, logratio coordinates, partial least squares regres-
sion - discriminant analysis, biomarker detection.
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ABSTRACT: Multivariate data are typically represented by a rectangular matrix (ta-
ble) in which the rows are the objects (cases) and the columns are the variables (mea-
surements). When there are many variables one often reduces the dimension by prin-
cipal component analysis (PCA), which in its basic form is not robust to outliers.
Much research has focused on handling rowwise outliers, i.e. rows that deviate from
the majority of the rows in the data (for instance, they might belong to a different
population). In recent years also cellwise outliers are receiving attention. These are
suspicious cells (entries) that can occur anywhere in the table. Even a relatively small
proportion of outlying cells can contaminate over half the rows, which causes rowwise
robust methods to break down.
In this paper a new PCA method is constructed which combines the strengths of two
existing robust methods, DetectDeviatingCells and ROBPCA, in order to be robust
against both cellwise and rowwise outliers. At the same time, the algorithm can cope
with missing values. As of yet it is the only PCA method that can deal with all three
problems simultaneously. Its name MacroPCA stands for PCA allowing for Missings
And Cellwise & Rowwise Outliers. Several simulations and real data sets illustrate its
robustness. New residual maps are introduced, which help to determine which vari-
ables are responsible for the outlying behavior. The method is well-suited for online
process control. The function MacroPCA has been incorporated in the R package
cellWise on CRAN, which also contains a vignette with real data examples.

KEYWORDS: detecting deviating cells, outlier map, residual map.
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MARGINAL EFFECTS FOR COMPARING GROUPS IN
REGRESSION MODELS FOR ORDINAL OUTCOME
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ABSTRACT: This contribution deals with effect measures for covariates in ordinal
data models to address the interpretation of the results on the extreme categories of
the scales. It provides a simpler interpretation than model parameters both in standard
cumulative models with proportional odds assumption and in the recent extension
of the CUP models, the mixture models to account for uncertainty in the process of
selection of the score. Visualization tools for the effect of covariates are proposed and
the measure of relative size and marginal effects based on rates of change are evaluated
by use of a case study.

KEYWORDS: cumulative link models, CUP models, extreme categories, marginal ef-
fects, uncertainty.

1 Background and Preliminaries

Traditional models for rating data analysis are Generalized Linear Models
(GLM) that employ nonlinear link functions to cumulative probabilities (Mc-
Cullagh, 1980). Recent attention on the uncertainty detected when a subject se-
lects a score on a rating question led to the alternative CUP models (Tutz et al.,
2017). They represent a special-case in the framework of the Generalized
Mixture with Uncertainty (GEM) models (Iannario & Piccolo, 2016) in which
CUB models are the starting point. Indeed, they are a Combination of two
components referred to the individual indecision (Uncertainty) expressed on
the selection or motivated by the context and to a deliberate choice of a re-
sponse category determinated by the Preference of the respondent.

As a consequence of the nonlinearity model parameters are not as simple to
interpret as slopes and correlations for ordinary linear regression. The model
effect parameters relate to measures, such as odds ratios and probits, may not
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be easily understood or can even be misinterpreted. Furthermore, the interest
in some specific fields to the correct interpretation of the effect of categories in
the extreme of the scale (the worst/best of the selection) motivates the present
contribution. Indeed it surveys simpler ways to interpret the effects of the
explanatory variables simplifying the interpretation of the models, describing
and visualizing average and global marginal effects. Section 2 is devoted to the
introduction of the model and marginal effects whereas Section 3 concludes
with a case study and some remarks.

2 Marginal effect measures for covariates in CUP models

In a CUP model (Tutz et al., 2017), the probability distribution of the ordi-
nal response variable Ri, for i = 1,2, . . . ,n, describing the rating assigned by
respondent i, is given by

P(Ri = r|xxxi) = πiPM(Yi = r|xxxi) + (1−πi)P(Ui = r), r = 1,2, . . . ,m,

where PM(Yi = r|xxxi) (Prefence part) is obtained via a cumulative link model
on an appropriate set of covariates, and a logit link is usually assigned on the
uncertainty parameter πi. Here, the second component of the mixture P(Ui = r)
follows a discrete Uniform distribution.

One natural way to interpret the effect of one explanatory variable is to
consider the corresponding marginal effects (MEs). A ME shows how a vari-
ation in one variable affects the outcome distribution, holding all the other
variables constant. We refer to Greene & Hensher, 2010 for a discussion of the
interpretation of marginal effects in ordered response models.

As an exemplification, the marginal effect of a continuous explanatory
variable on P(R = i) will be reported. The rate of change in P(R = 1) with
respect to a continuous variable xik involved in the preference part of the model
is the partial derivative of P(R = 1) with respect to xik

∂P(Y = 1|xxx∗i )
∂xik

=−γk f (α1− xxxiγ),

where f () is the density function corresponding to the examined cumulative
model, and the other explanatory variables having fixed values xxx∗i . In a similar
way we obtain the rate of change in P(Y = 1) with respect to yik involved in
the uncertainty part of the model

∂P(R = 1)
∂yik

= β1 f (β0 + yikβ1)(F(α1− xxxγ)−1/k).
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Here, F() is the cumulative distribution funnction. Further details are in Ian-
nario & Tarantola, 2019.

3 Example

Data was provided by the Survey of Health, Ageing and Retirement in Eu-
rope (SHARE) from wave 1, 2004. In this contribution, a rating concerning
the perceived Pain collected on a 4 points Likert scale (Never=1, Rarely=2,
Every Ones in a While=3, Almost Always=4) has been analyzed. Covariates
introduced for the analysis are Gender (0 = Male,1 = Female) and Body Mass
Index (BMI from 2.563 to 76.950, with average=26.592 and s.d.=4.310). The
sample of n = 3458 elderly people (average age=62) is overall overweight (av-
erage BMI=26.590)

Table 1. CUP models fitted to perceived pain assessment.

β̂1 (Gen) β̂2 (BMI) α̂1 α̂2 α̂3
0.770(0.089) 0.085(0.011) 1.992(0.334) 3.646(0.374) 5.468(0.476)

Estimated results of CUP models are reported in Table 1. It lists estimated
parameters β̂ j, j = 1,2 and cutpoints α̂ j, j = 1,2,3 with asymptotic standard
errors (in parentheses). Here the AIC index is 8603.609 compared with a stan-
dard CUB model with AIC=8610.932 whereas the π parameter is 0.916(0.051)
with respect to πCUB = 0.789(0.022) highlighting the different role of uncer-
tainty in the selected model. Average ME are in Table 2. Given the sign con-
vention, as expected, it is possible to observe a positive effect on the Female
(Gen) (they perceived more pain) and on increasing level of BMI on perceived
pain. Group comparisons with relative marginal effects are in Figure 1. There
is evidence that the first category effectively thresholds those having absolutely

Table 2. Average Marginal Effect for CUP models - SHARE data.

ME.1
effect std.error z.value p.value

Gen -0.152 0.017 -9.002 0.001
BMI -0.017 0.002 -7.713 0.001
ME.4

effect std.error z.value p.value
Gen 0.041 0.006 7.470 0.002
BMI 0.005 0.001 7.537 0.005
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Figure 1. Group comparisons, Male (blue) and Female (red) versus BMI, for marginal
effects (First marginal effect on left panel, last in right panel). Top panel is about BMI
marginal effect, bottom panel on gender marginal effect.

no pain. The last one highlights the difference in gender groups.
An extended study has been planned to validate the efficacy of the proposal

and the impact of the results.
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ABSTRACT: The key role of a portfolio manager is to establish a suitable strategy of
asset allocation. The composition of a portfolio does not only depend on both return
and risk of each asset, but it is also influenced by various factors. The final decision
making belongs to a multiple criteria problem. Our aim is to apply a multi-criteria
approach to select the attractive securities for a portfolio according to the resulting
clustering of time-varying beta of the stocks. To reach this aim, we propose a two-
step approach that consists in applying before a k-means algorithm on the time-varying
beta computed on a suitable Capital Asset Pricing Model. Then, we rank these stocks
by a Multi Criteria Decision Making model.

KEYWORDS: CAPM, time-varying beta coefficient, P-spline, cluster analysis, MCDM.

1 Introduction

From the milestone work of Markowitz, 1952, Capital Asset Pricing Model
(CAPM) proposed by Sharpe, 1964 was the most famous model of financial
market equilibrium. The CAPM states a linear relationship between a stock
return and its risk, measured by a coefficient known as beta. It explains the
systemic risk that is related to market itself (thus not decreases by the diversi-
fication step). Under the (unrealistic) CAPM hypothesis, the beta coefficients
do not vary over time. This characteristic is very restrictive and not readily
found in the reality. In facts, the beta of the assets can vary at any point in
time depending on (among the other) the information available at the given
time about the financial markets, the overall economic conditions, the specific
firms. Taking into account all the above mentioned characteristics, the portfo-
lio selection problem belongs to a Multi Criteria Decision Making (MCDM)
framework (Xidonas et al., 2010). It consists of a set of different methodolo-
gies taking into consideration conflicting several criteria to support decision
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makers in solving a decision problem. MCDM are useful tools in portfolio se-
lection and management (see, e.g. Zopounidis et al., 2015). Within the MCDM
problems, the aggregation of all the evaluation criteria can be carried out by us-
ing different models (outranking relations, utility function or decision rules).
One of them is the Elimination and Choice Translating Reality (ELECTRE)
method proposed by Roy, 1968. The ELECTRE family in MCDM problems
consists of two steps: (i) the outranking relations are constructed then (ii) the
procedures of choosing, selection, sorting or ranking among the alternatives
are applied. During the years, the ELECTRE method evolved into a number
of other variants that are based on the same foundation, but they differ slightly.
Among these methods, ELECTRE III (Roy, 1991) was designed for ranking
problems, also providing different advantages in a decision making process.

2 The key idea

The static (with constant βs) CAPM formulation is given by:

ri(t) = r f +βi(rm(t)− r f ), (1)

where ri is the return for asset i, r f is the risk-free rate (which is known), βi
is the sensitivity of the expected asset returns to the the market returns rm (as
measured by a stock market index for example). To allow the risk factors to
vary over time, we follow the varying-coefficient model proposed by Hastie &
Tibshirani, 1993. The following relationship holds:

ri(t) = r f +βi(t)(rm(t)− r f ). (2)

In this paper, we propose to model βi(t) using P-spline (Eilers & Marx, 2002).
Equation (2) can then be formulated as

yi(t) = a0,i +diag{x(t)}Bai,i + εi(t) = (1|U)αi + εi(t) = Qαi + εi(t), (3)

where εi(t) is a zero mean error term with constant variance, yi(t) = ri(t)− r f ,
x(t) = rm(t)− r f , αi = (a>0,i,a

>
1,i)
>, a0,i is an asset-specific intercept term, a1,i

is the vector of spline coefficients for the time-varying risk factor for asset
i, B is a B-spline matrix and U = diag{x(t)}B with diag{x(t)} aligning the
predictors with the appropriate smooth slope values. If Q = (1|U), then the
penalized estimation problem for asset i becomes:

Si = ‖yi(t)−Qαi‖2 +λi
∥∥D̆dαi

∥∥2
, (4)
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Figure 1. Beta varying coefficients clustered by k-means procedure with Pearson’s
correlation coefficient based distance. For each subplot the horizontal axis represents
the time and the vertical axis the systematic risk level. The gray lines reproduce the
beta series assigned to each cluster. The dots indicate the estimated optimal beta
coefficients for cluster center. The black solid lines indicate the center functionals.

where D̆d shrinks only the a1,i coefficients in αi and λi is a smoothing param-
eter. The solution of (4) is then

α̂i = (Q>Q+λiD̆>d D̆d)
−1Q>yi(t), (5)

from which it follows that β̂i(t) = Bâ1,i.
We propose a two-step procedure combining hard clustering of risk factors
and ELECTRE III ranking procedure, for the selection of asset to compose an
investment portfolio by evaluating the associated systematic risk. In analogy
with Iorio et al., 2016, we propose to cluster the beta coefficients for a set of
assets. We model the risk indicators by means of P-spline whose coefficients
are clustered so that each group is characterized by stocks with similar sys-
temic risk profiles. Figure 1 shows the results of our proposal on a data set of
48 stocks constituent the S&P500 Index collected monthly from january 2006
to december 2010 (source yahoo.finance.com). In a second step, we compute
for each stock a series of risk-adjusted performance measures that are used as
criteria of ELECTRE III method to obtain a stock ranking useful for the asset
selection step. Then a portfolio manager can select the n < N top stocks ac-
cording to ranking, given the previous screening clustering based on different
profiles of systemic risk, ensuring a better diversification of portfolio.
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3 Conclusion

In this paper, we proposed a portfolio composition method within a multi-
criteria framework. The procedure is based on a cluster analysis of the time-
varying betas, estimated by using P-spline, so that each resulting group con-
tains different level of systemic risk. Then we computed some risk adjusted
performance measures for the stocks of the recognized clusters. Finally, we use
these indexes as input of the ELECTRE III method to obtain a stock ranking
useful for the asset selection phase.
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ABSTRACT: The paper deals with the clustering trajectories of moving objects. A
prototype-based clustering using Euclidean distance between piece-wise linear curves
is used. The main novelty of the paper is the opportunity of considering in the clus-
tering procedure two steps: a step that automatically weights the importance of sub-
trajectories of the original ones and an alignment step for expressing the prototypal
trajectory which uses the Dynamic Time Warping algorithm. The algorithm uses an
adaptive distances approach and a cluster-wise weighting. The algorithm is tested
against some workbench trajectory datasets.

KEYWORDS: trajectory clustering, adaptive distances, time warping.

1 Introduction

Nowadays, surveillance systems or the global positioning system (GPS) sen-
sors integrated into devices produce a huge amount of data about moving ob-
jects expressed as trajectories. The extraction of patterns from trajectories is
increasingly challenging and demanding. Clustering is a very useful tool for
extracting patterns and trajectory clustering has some peculiarities involving
spatial and time information.

Thus, the problem of clustering trajectories depends on how trajectories
are compared, or if a trajectory is considered as a set of sub-trajectories or not.
Depending on time, a trajectory can be considered as a two or three dimen-
sional time-series. Trajectories clustering looks for groups of trajectories, or
of sub-trajectories, such that they represent a movement pattern in the data.
The subject is surveyed in Yuan et al., 2017. In the literature, two main al-
gorithms are considered: the Lee et al., 2007 and the Nivan et al., 2013. In
Lee et al., 2007, a distance between sub-trajectories is defined and the algo-
rithm implements an extension of a density dased algorithm for grouping set
of sub-trajectories. In Nivan et al., 2013, the idea is to estimate k predefined
vector fields that represent group of trajectories observed in a 2D space. This
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application, is inspired by the problem of monitoring and predicting storm or
hurricane paths. In a functional data analysis approach, a trajectory is consid-
ered as a curve in a 2D or 3D space. In order to be analyzed a smoothing,
interpolation, or alignment step is performed and then the trajectory are ana-
lyzed Sangalli et al., 2010.

In this paper, we consider a prototype based approach for grouping tra-
jectories. We show how to decompose the Euclidean distance between two
trajectories and use such a decomposition for explaining some aspects of the
compared trajectories. We enrich the algorithm with a step that automatically
assign a relevance weights to the aspects. Further, considering that trajecto-
ries may be misaligned in time, we introduce an alignment step for defining
a prototype of the cluster using Dynamic Time Warping (DTW). We remark
that, considering that DTW bassed distances do not allow convex optimization
problems, the proposed algorithm is only inspired to the classical k-means one
and we show its convergence to a stable result only empirically.

Finally, we show some preliminary results on some benchmark datasets.

2 Data and distances

A trajectory is a sequence of ordered space-time points (namely, a point has
two or three spatial coordinates and a time-stamp), where the order follows
time. A trajectory Pi is a collection of ordered pairs of data (si

j, t
i
j), j = 1, . . . ,T ,

sampled in T time-points where si
j is a spatial location (namely. a 2D or a 3D

vector of spatial coordinates) and t i
j is a time-stamp. A set of N trajectories is

a collection of trajectories denoted as Pi. We assume that each trajectory may
have a different number of sampled time-points Ti. Clustering is based on a
distance/dissimilarity measure between objects. In our case, the computation
of a distance between two trajectories may require a normalization step for
comparing them. Such a step, depending on the application domain and on the
aim of analysis, may be questionable.

The hypothesis that a trajectory is piece-wise linear curve is computation-
ally useful for computing a continuous version of the Euclidean distance be-
tween two trajectories.

Under this assumption, the Euclidean distance between two 2D trajecto-
ries∗ having the same k time stamps normalized in [0,1] as follows. Given two
normalized trajectories P1 =

{
{(x1

0,y
1
0),0}, . . . ,{(x1

j ,y
1
j),τ1

j}, . . . ,(x1
T1
,y1

T1
),1}

}

∗The trajectory is on a plane, but the extension to 3D spaces is straightforward.
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and P2 =
{
{(x2

0,y
2
0),0}, . . . ,{(x2

j ,y
2
j),τ2

j}, . . . ,{(x2
T2
,y2

T2
),1}

}
. Considering the

piece-wise linear assumption, and constant speed between each pair of sam-
pled points, it is possible to express the two trajectories with a common set
of τ’s by a linear interpolation. Once the two trajectories are registered such
that they have the same normalized L∈ [min(T1,T2),(T1+T2)] time-stamps we
compute the squared Euclidean distance between P1 and P2 as follows:

d2
E (P1,P2) =

1∫
0

[
(x1(τ)− x2(τ))2 +(y1(τ)− y2(τ))2

]
dτ =

=
L
∑
`=1

(τ`− τ`−1)

{
|x̄1(`)− x̄2(`)|2 + |ȳ1(`)− ȳ2(`)|2+
+1

3

[
|ẋ1(`)− ẋ2(`)|2 + |ẏ1(`)− ẏ2(`)|2

]
} (1)

where:

• x̄1(`) =
x1(τ`)+x1(τ`−1)

2 , x̄2(`) =
x2(τ`)+x2(τ`−1)

2 , ȳ1(`) =
y1(τ`)+y1(τ`−1)

2 , and
ȳ2(`) =

y2(τ`)+y2(τ`−1)
2 . The points (x̄1(`), ȳ1(`)) and (x̄2(`), ȳ2(`)) are, re-

spectively, the centers of the segment that starts from (x1(τ`−1),y1(τ`−1))
and arrives at (x1(τ`) , y1(τ`)), respectively, the centers of the segment
that starts from (x2(τ`−1) , y2(τ`−1)) and arrives at (x2(τ`),y2(τ`));
• ẋ1(`) =

x1(τ`)−x1(τ`−1)
2 , ẋ2(`) =

x2(τ`)−x2(τ`−1)
2 , ẏ1(`) =

y1(τ`)−y1(τ`−1)
2 , and

ẏ2(`) =
y2(τ`)−y2(τ`−1)

2 . The value (ẋ1(`), ẏ1(`)) and (ẋ2(`) , ẏ2(`)) are, re-
spectively, the pairs of the component-wise half widths of the segment
that starts from (x1(τ`−1) , y1(τ`−1)) and arrives at (x1(τ`) , y1(τ`)), re-
spectively, of the segment that starts from (x2(τ`−1) , y2(τ`−1)) and ar-
rives at (x2(τ`) , y2(τ`)).

Distance in Eq. 1 can be naturally decomposed for sub-trajectories. In a k-
means like algorithm, it is important to define an average object. Indeed, k-
means algorithms rely on the definition of a within cluster homogeneity crite-
rion that usually is expressed as a distance between objects and a representative
of the cluster. In this case, being trajectory depending on time, it is possible
that a misalignment occurs, biasing the average (prototype) object trajectory.
In each representation step of the algorithm, we suggest computing the proto-
type after a recursive alignment of the trajectories belonging to the cluster and
the average one such that a minimum DTW distance criterion is minimized.

The alignment step does not guarantee that the algorithm converges toward
a minimum squared distance criterion (like in k-mean).

Using some benchmark data we show its empirical convergence and the
obtained results. Some other warping methods will be discussed.
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ABSTRACT: The Mallows and Generalized Mallows models are compact yet pow-
erful and natural ways of representing a probability distribution over the space of per-
mutations. This short paper, which is a summary of the long paper of the same title,
deals with the problems of sampling and learning such distributions when the metric
on permutations is the Cayley distance. We propose new methods for both operations,
and their performance is shown through several experiments. An application in the
field of biology is given to motivate the interest of this model.

KEYWORDS: permutations , Mallows model , sampling , learning , Cayley distance , 
Fisher-Yates-Knuth shuffle.

1 Introduction

The presence of data in the form of permutations or rankings of items is ubiqui-
tous in many real world scenarios, from the computational social choice Brandt
et al. , 2016 to preference learning Lu & Boutilier, 2011 or bioinformatics
Critchlow, 1988. When it comes to handle uncertainty in permutation spaces
the Mallows and the Generalized Mallows model are two of the the most pop-
ular alternatives Mallows, 1957; Critchlow et al. , 1991.

Both models rely on a distance for permutations and in this paper we fo-
cus on the Cayley distance∗. It counts the number of swaps (not necessarily
adjacent) to transform a given permutation into another one so it is closely re-
lated with the cyclic structure of permutations: the number of swaps to convert
π into the identity permutation, and thus the Cayley distance d(π), equals n
minus the number of cycles of π.

∗This is a difference with most literature on the topic, where the Kendall’s-τ distance is
usually considered
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Most results in this paper are based on a decomposition of the Cayley dis-
tance of a permutation π, d(π)† which is denoted as X(π). This X(π) is a vector
of length n− 1 where each position is defined as X j(π) = 0 if j is the largest
item in its cycle in π, and X j(π) = 1 otherwise. Note that d(π) = ∑n−1

j=1 X j(π).

2 Mallows and Generalized Mallows models

The Mallows model is an exponential-location probability model for permuta-
tions based on distances. It is defined by a central permutation (the location
parameter) denoted as σ0 and the dispersion parameter, denoted θ. It can be
expressed as follows:

p(σ) = ψ j(θ j)
−1exp(−θd(σ,σ0)). (1)

The GMM is defined on the distance decomposition vector for Cayley,
X(σ). Specificly, for a central permutation σ0 and dispersion parameter vector
(θ1, . . . ,θn−1) the GMM under the Cayley distance is defined as follows

p(σ) = ψ j(θ j)
−1

n−1

∏
j=1

exp(−θ jX j(σσ−1
0 )). (2)

It is worth noticing that by setting every dispersion parameter θ j to the
same value we recover the MM. For both models, the mode is σ0 provided that
θ,θ j > 0. The idea of the GMM is that the displacements at different positions
should affect in a different way to the probability of a permutation, and this is
controlled by setting different values to different dispersion parameters θ j.

One of the best known references in the literature of statistical models on
permutation data Critchlow et al. , 1991 shows how to exploit the properties
on exponential models to obtain efficient expressions to work with these mod-
els. In particular, based on computable expressions for the moment generating
function, the authors are able to reformulate p(X j) and the normalization con-
stant ψ efficiently. In this paper, we extend their work and propose computa-
tionally efficient exact sampling and learning algorithms. We will illustrate the
links between MM and GMM under the Cayley distance to other known mod-
els in the literature and adapt classical algorithms to these statistical problems
by unraveling new properties of the algorithms.

†for notational convenience we use one of the permutations to be the identity, but these
results apply in general.
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3 Sampling

The first problem approached consists on obtaining a random permutation from
a MM or a GMM. It is known that the probability of the distance decomposi-
tion vector can be expressed‡ and sampled efficiently Critchlow et al. , 1991.
Therefore, sampling a permutation can be done by (1) sampling a distance de-
composition vector X and (2) obtaining a permutation σ such that X(σ) = X.
Unfortunately, there exist possibly many permutations with this decomposition
and obtaining uniformly at random one of those is not trivial.

In the long version of this paper we show how to use the Chinese Restau-
rant Process and the Fisher-Yates-Knuth (FYK) algorithms to sample permu-
tations uniformly at random. We discuss which is the cyclic structure of the
obtained permutations and consequently, Cayley distance decomposition vec-
tor. Finally, we propose an adaptation of the FYK algorithm to sample from
a GMM in linear time, which is one of the main results of the paper. The ex-
perimental section compares the performance of our proposed sampler with an
adaptation of a Markov chain Monte Carlo algorithm, on both time an quality
results.

4 Learning

The learning task has been approached as a Maximum Likelihood Estimation
of the parameters of a given sample of permutations. It can be shown that the
MLE in MM can be broken in two stages, which are (1) finding the central
permutation that minimizes the sum of the distances to the sample and then
(2) computing the dispersion parameters. On the other hand, the learning pro-
cess of the GMM cannot be broken in stages and it is done by looking for
the permutation that maximizes the likelihood of the sample. However, both
learning problems can be seen as looking for a permutation that optimizes a
fitness function (sum of distances in MM and likelihood in GMM). Therefore,
we refer to the learning as an optimization problem for the rest of the section,
for which we propose two algorithms, one exact and one approximate for both
MM and GMM.

The exact algorithm explores the tree of partial permutations looking for
the permutation that optimizes the fitness function. The number of leaves in
this tree is much larger than the number of permutations, so a raw search on
this tree would be highly inefficient. However, for each partial permutation a

‡We should note that this paper corrects typos of the original version.
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lower bound on the value of the objective function for every node in the brach
can be computed efficiently. By making use of this clever lower bound, in
practice we can prune the tree and search a large space efficiently. As usually
occurs in this scenarios, the performance of the algorithm is highly increased
if we consider a good initial candidate solution.

The experimental evaluation shows the performance of both methods for
samples of various degrees of consensus. It concludes that as the sample dif-
fers from uniformity both algorithms quickly improve their performance: the
quality in the case of the approximate and the time performance in the case of
exact algorithm.
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ABSTRACT: The research in this paper introduces the Gender Parity Index (GPI) to
analyze gender differences in higher education. The GPI is applied to the time that it
takes students to graduate beyond the recommended time period for a Greek Univer-
sity. Interesting insights from this analysis shows a significant difference in time to
graduation for male and female students where female students, in general, have also
obtained higher graduation marks.

KEYWORDS: Gender parity index, higher education, time to graduation.

1 Introduction

Gender is considered to have a fundamental influence on research in higher ed-
ucation. Access and enrolment to higher education have their own correspond-
ing importance in higher education research involving gender. More reecently
the research has focused on students’ outcomes, where gender has its own
relevance in terms of students’ and institutions’ success and performance or
students’ and institutions’ efficacy, effectiveness and efficiency. Even though
there is no consensus regarding the definition and measurement, those most
commonly used fit into two categories; degree completion (percentage of de-
grees completed, non-completed, or rates of completion, drop-out rates) and
time-to-degree, more generally considered as length of studies. The focus of
this current research is on students’ length of studies defined as the time du-
ration between date of first enrolment to a university institution and up to the
occurrence of an event that terminates studies in this same university. This
paper draws on research of one individual level data set derived from social
sciences-oriented departments in a University in Greece. In this institution 46
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months is the minimum time for graduation but there is no maximum. In such
data all possible situations of termination of study can occur for instance, if the
student graduates on time, or drops out from their course. The paper is struc-
tured as follows. In the second section, we describe the GPI, while in Section
3 we report the results and section 4 presents the study’s conclusions.

2 The Gender Parity Index

The Gender Parity Index (GPI) (UNESCO, 2017) is a socioeconomic index de-
signed to measure the relative access to education of males and females. This
index is commonly used by international organizations, such as UNESCO,
but it is poorly mentioned by the literature accounting for gender differences
(Hippe & Perrin, 2017). The GPI at t time is defined as follows:

GPIt =
IndFt

IndMt
(1)

where IndFt is the female value of an indicator at t time, while IndMt is the male
value of the same indicator at t time. A GPI value equal to 1 indicates parity
between females and males. In general, a value less than 1 for GPI indicates
a disparity in favour of males and a value greater than 1 indicates a disparity
in favour of females. The interpretation should be the other way round for
indicators where normally, the approach to 0% is the ideal (e.g. repetition,
dropout, illiteracy rates, etc). In these cases, a GPI of less than 1 indicates a
disparity in favour of females and a value greater than 1 indicates a disparity
in favour of males.

3 Data and results

The majority of university undergraduate curricula in Greece takes the form
of four academic years; exceptions correspond to medicine engineering, vet-
erinary science and agriculture. Graduation is possible at the end of the pre-
scribed time interval if a certain number of course units have been successfully
completed by the students. Students can graduate at exactly 46 months after
the date of their first enrolment. Students who fail to do so can proceed to the
next examination period for an unlimited number of times until the course unit
condition is satisfied and they graduate. Student data are provided by Panteion
University in Greece. The focus is on four cohorts of students who enrolled
at the university for the first time from September 2000 to September 2003.
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Enrolled students who transferred from other universities are excluded. More-
over, students who dropped out during the study time at the university are ex-
cluded. Every student was observed from the enrolment up to 40 months after
the minimum legal duration of studies. The study data consist of 6219 stu-
dents that are still enrolled at the beginning of the observation period. There
is 70% of students who are female. It is interesting to consider the GPI in the
following way:

GPIt =
S(t)F

S(t)M
(2)

with respect to the estimates of Kaplan-Meier survival function (Kaplan &
Meier, 1958) for each time from after the minimum legal duration of studies.
If GPI is less than 1, this indicates a disparity in favour of female. In fact, it
means that at t time the proportion of ”survived” female students (still enrolled
at the university) is lower than the same proportion for male students. On
the contrary, if GPI has a value greater than 1, this indicates a disparity in
favour of males. In Figure 1 Kaplan-Meier survival functions for male and
female (left panel) and the GPI (right panel) are reported. The Kaplan-Meier
estimates show that graduation rates are lower for male students for each ttime,
even if in the first months the graduation rates for male and female are very
similar. The log-Rank test indicates to reject the hypothesis that the survival
curves for females and males are identical (z=−15.354, p−value< 0.00001)
hence suggesting a different student behaviour with respect to gender. The GPI
assumes to always have a value lower than 1, underling a disparity in favour of
females. The shape of the curve shows it is constantly decreasing in the first
20 months of TGaT then it decreases slowly and it seems to be constant at 0.6
after 30 months of TGaT, showing that the proportion of female students still
enrolled to be lower than 40% with respect to the same enrolled male students.

4 Conclusions

This paper reports the analysis of the time it takes undergraduate students to
complete their degree beyond that of the University’s expected time period.
The analysis provides empirical evidence of gender gaps on length of studies
for a Greek University in social sciences departments. Like most public in-
stitutions these universities have not publicly reported on whether gender is a
factor in length of studies and timely graduation. This paper confirms through
the use of GPI and survival functions that gender differences do exist.
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Figure 1. Kaplan-Meier survival functions and GPI curve.
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ABSTRACT: Co-clustering designs in a same exercise a simultaneous clustering of the
rows and the columns of a data array. The Latent Block Model (LBM) is a probabilis-
tic model for co-clustering, based on a generalized mixture model. LBM parameter
estimation is a difficult problem as the likelihood is numerically untractable. How-
ever, deterministic or stochastic strategies have been designed and the consistency
and asymptotic normality have been recently solved when the number of blocks is
known. We address model selection for LBM and propose here a class of penalized
log-likelihood criteria that are consistent to select the true number of blocks for LBM.

KEYWORDS: Latent block model, co-clustering, model selection, BIC, ICL.

1 Introduction

Clustering is an essential unsupervised tool to discover hidden structure from
data by detecting groups of observations that are similar within a group and
dissimilar from one group to another one. The challenge of modern data is to
learn from observations xi ∈ Rd with a large number n of units observed on a
large number d of variables, and the question is not only to cluster the obser-
vations, but also to cluster simultaneously the observations and the variables,
leading to a tremendous parsimonious data representation.

This is called co-clustering and has many applications in many fields such
as recommendation systems (to cluster simultaneously customers and goods),
text mining (to co-cluster words and documents), genomics (to co-cluster genes
and experimental conditions) for example. As for clustering, there are many
ways to perform co-clustering, and we will focus here on the latent block
model (LBM). We present the model and its asymptotical properties. In par-
ticular, we shall analyze the log-likelihood ratio under model order misspeci-
fications, and derive a class of penalized log-likelihood criteria asymptotically
consistent, results that are new for LBM.
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Figure 1. n×d = 450×600 observations (left) and their reorganization according to
the underlying structure in 4×5 blocks (right)

2 The latent block model

LBM is a probabilistic model for co-clustering. Upon a data matrix X = (xi j)
of n rows and d columns, it defines a block clustering latent structure as the
Cartesian product of a row partition z by a column partition w with three main
assumptions:

- row assignments (or labels) zi, i = 1, . . . ,n, are independent from column
assignments (or labels) w j, j = 1, . . . ,d : p(z,w) = p(z)p(w);

- row labels are independent, with a common multinomial distribution:
zi ∼ M (1,π = (π1, . . . ,πg)); in the same way, column labels are i.i.d.
multinomial variables: w j ∼M (1,ρ = (ρ1, . . . ,ρm)).

- conditionally to row and column assignments (z1, . . . ,zn)×(w1, . . . ,wd),
the observed data Xi j are independent, and their (conditional) distribution
ϕ(.,α) belongs to the same parametric family, which parameter α only
depends on the given block:

Xi j|{zikw j` = 1} ∼ ϕ(.,αk`)

where zik is the indicator membership variable of whether row i belongs
to row-group k and w j` is the indicator variable of whether column j
belongs to column-group `.

Hence, the complete parameter set is θ = (π,ρ,α), with α = (α11, . . . ,αgm).
With these assumptions, the likelihood of the complete data is

p(x,z,w;θ) = p(z;θ)p(w,θ)p(x|z,w;θ) = ∏
i,k

πzik
k ∏

j,`
ρw j`
` ∏

i, j,k,`
ϕ(xi j;αk`)

zikw j`

The labels are usually unobserved, and the observed likelihood is obtained by
marginalization over all the label configurations:
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p(x;θ) = ∑
z∈Z,w∈W

(
∏
i,k

πzik
k ∏

j,`
ρw j`
` ∏

i, j,k,`
ϕ(xi j;αk`)

zikw j`

)

LBM deals with matrix of homogeneous data, such as binary (Govaert &
Nadif, 2008), Gaussian (Lomet, 2012), categorical (Keribin et al., 2015) or
count (Govaert & Nadif, 2010) data. It involves a double missing data struc-
ture z for rows and w for columns, and the observed likelihood can not be fac-
torized as a product of the mixing density as for simple mixture models. This
implies that the likelihood is rapidly not tractable numerically even for few ob-
servations and few blocks, as the marginalization involves kn×dm terms. The
estimation can however be performed either with numerical approximations
(such as variational methods) or with Bayesian approaches (VBayes algorithm
or Gibbs sampling).

3 Asymptotic properties

The double missing structure also leads to a very challenging and interesting
study to state the asymptotic behavior of the maximum likelihood (MLE) and
variational (VE) estimators. This question was first studied on the Stochastic
Block Model (SBM) which is a LBM with the same statistical units in rows
and columns, used to model graph adjacency matrices. In this case, there is
only one set of latent variables z. Celisse et al., 2012 first proved that under
the true parameter value, the conditional distribution of the assignments of
a binary SBM converges to a Dirac of the real assignments. Assuming the
existence of an estimator of α converging at rate at least n−1, they obtained the
consistency of MLE and VE. Mariadassou & Matias, 2015 presented a unified
framework for LBM and SBM for observations coming from an exponential
family, but cannot get rid off the previous assumption to prove consistency.
Using a different approach, Bickel et al., 2013 showed for binary SBM (i) the
consistency and aymptotic normality of the MLE in the complete model where
the labels are known (ii) these properties can be transferred to the MLE of the
observed model. Recently, Brault et al., 2017 solved the consistency and the
asymptotic normality of the MLE and VE for LBM observations coming from
an exponential family.

These results were obtained when the true order (K×L) of the model is
known. The question of the choice of K and L is crucial, and well-posed in
the probability framework of LBM. Let K′ (resp. L′) be misspecifications of
the number of row (resp. column) clusters. In this talk, we will study the
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likelihood ratio statistics

DKK′,LL′ = log
supθ∈ΘK′,L′

p(x;θ)

supθ∈ΘK,L
p(x;θ)

for K′ 6= K or L′ 6= L or both. Extending Wang et al., 2017 methodology
for SBM, we deal with the LBM double asymptotic in row and column to
provide an appropriate penalty term and define a class of selection criteria
asymptotically consistent.

References

BICKEL, P., CHOI, D., CHANG, X., ZHANG, H., et al. 2013. Asymptotic
normality of maximum likelihood and its variational approximation for
stochastic blockmodels. The Annals of Statistics, 41(4), 1922–1943.

BRAULT, V., KERIBIN, C., & MARIADASSOU, M. 2017. Consistency and
asymptotic normality of latent blocks model estimators. arXiv preprint
arXiv:1704.06629.

CELISSE, A., DAUDIN, J.-J., PIERRE, L., et al. 2012. Consistency of
maximum-likelihood and variational estimators in the stochastic block
model. Electronic Journal of Statistics, 6, 1847–1899.

GOVAERT, G., & NADIF, M. 2008. Block clustering with bernoulli mixture
models: Comparison of different approaches. Computational Statistics &
Data Analysis, 52(6), 3233–3245.

GOVAERT, G., & NADIF, M. 2010. Latent block model for contingency table.
Communications in Statistics—Theory and Methods, 39(3), 416–425.

KERIBIN, C., BRAULT, V., CELEUX, G., & GOVAERT, G. 2015. Estimation
and selection for the latent block model on categorical data. Statistics and
Computing, 25(6), 1201–1216.
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INVARIANT CONCEPT CLASSES FOR 

TRANSCRIPTOME CLASSIFICATION
Hans Kestler1, Robin Szekely1, Attila Klimmek1 and Ludwig Lausser1
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ABSTRACT: The field of classification is famous for its tremendous number of struc-
tural concept classes suitable for categorizing objects. Nevertheless, they are more
likely to be chosen according to ad–hoc simulations than by sophisticated considera-
tions on their theoretical properties. In this work, we discuss the idea of invariances
properties as an a priori criterion for concept class selection. These invariances de-
scribe the data transformations that cannot affect the predictions of any member of the
concept class.

As an example, we outline the landscape of linear classifiers for transcriptome
classification and report four linked subclasses with distinct invariances. We show that
the corresponding structural constraints may be incorporated in learning algorithms
for general linear classifiers, such as linear support vector machines.

Surprisingly, we were able to attain comparable or even superior generalisation
abilities to the linear one on the 27 investigated RNA-Seq and microarray data sets.
This indicates that a-priori chosen invariant models can replace ad-hoc robustness
analysis by interpretable and theoretically guaranteed properties in transcriptome cat-
egorization.

KEYWORDS: classification, invariance, linear classifier.
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CLUSTERING OF TIES DEFINED AS SYMBOLIC DATA 

Luka Kronegger1

1 University of Ljubljana, Slovenia, (e-mail: luka.kronegger@fdv.uni-lj.si)

ABSTRACT: In the talk we are presenting the analysis of UK road network in which
ties are defined as symbolic objects. The data descriptions of the units are called
”symbolic” when they are more complex than the standard ones due to the fact that
they contain internal variation and are structured (Diday 2012). In our particular case
the data are discrete distributions that present an overall annual traffic counts on road
sections by vehicle types. In the analysis we used clamix package (Korenjak-Černe
et.al 2011) available in R, to cluster ties into several categories applied to further
analyzed and visualized road network.

KEYWORDS: network analysis, clustering, symbolic data, traffic.

283



APPLICATION OF DATA MINING IN THE HOUSING 

AFFORDABILITY ANALYSIS

Viera Labudová1 and Ľubica Sipková1
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 (e-mail: viera.labudova@euba.sk, lubica.sipkova@euba.sk) 

ABSTRACT: Data mining is lately one of fastest growing new disciplines oriented on gaining 

knowledge from databases. Data mining uses artificial intelligence techniques, neural 

networks and advanced statistical tools (such as cluster analysis) to reveal trends, patterns and 

relationships, which might otherwise have remained undetected. This article describes the use 

of predictive data mining tools in housing affordability analysis. 

KEYWORDS: EU SILC, housing affordability, logistic regression, decision trees, neural 

networks. 

1 Introduction, Data and Methods 

Housing affordability represents a challenge everyone faces when covering the costs 
of their current or potential housing and costs unrelated to their housing within the 
limits of their own income. One of the first definitions of housing affordability is 
provided by Howenstine: ”The ability of the household to acquire decent 
accommodation by the payment of a reasonable amount of its income on shelter”. In 
fequently cited definition of housing affordability by MacLennan and Williams 
affordability is concerned with securing some given standard of housing (or 
different standards) at a price or rent which does not impose, in the eyes of some 
third party (usually government) an unreasonable burden on household incomes. 
Wong and Sendi consider the lack of a definition of the term “unreasonable burden”. 
An explanation of the last term in the definition of “to be a detriment” is necessary 
to be expressed more accurately for measuring purposes. 

The European Union uses an indicator-based approach to quantifying housing 
affordability, in which the household cost burden is calculated. The HCB (household 
cost burden) is defined as the ratio of housing costs (HH070*12 – annual total) less 
housing allowances (HY070G – annual total) to total available household income 
(HY020 – annual total), less housing allowances (in percentage after multiplying by 
100): 

100*
070020

07012*070

GHYHY

GHYHH
HCB






The value of the variable HCB is assigned to every person living in the given 
household. The binary dependent variable has been created for modelling which 
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equals ‘1’ if an person lives in a household where total housing costs (net of housing 
allowances) represents more than 40% of the household’s total disposable income 
(net of housing allowances) and ‘0’ if not. The aim of this paper is to analyse the 
relationship between the characteristics of individuals and household cost burden 
(HCB) in Slovak Republic. The analysis was carried out using an individual-level 
data extracted from EU SILC 2016 cross-sectional component provided by the 
Statistical Office of the Slovak Republic (EU SILC 2016, UDB 27/04/2017). In this 
article, we compare results from logistic regression and artificial neural networks 
with other popular classification algorithms from the data mining field, such as 
decision tree.  

All analyses were carried out with SAS Enterprise Miner 12.1 software, which is 
SAS’ solution for data mining. Building models with SAS Enterprise Miner enables 
the analyst to access a comprehensive collection of data mining tools through a 
graphical user interface and to create process flow diagrams. Figure 1 shows the 
process flow for modelling on the EU SILC dataset containing data on 14,101 
inhabitants aged 16 years and over. 

Figure 1. Process flow diagram (Source: own elaboration) 

Train data subset (70% of the data) was used for preliminary model fitting. We 
tried to find the best model weights using this data set. The validation data set (30% 
of the data) was used to evaluate the adequacy of the model in the Model 
Comparison node.  

Before creating neural network models, we reduced the number of input 
variables with stepwise elimination procedure in the logistic regression models (p-
value > 0.05) (Hosmer & Lemeshow, 2004). We created two regression models 
Reg1 and Reg2. These models differ by using the AROPE variable. With the Reg1 
model we selected these variables: AROPE (seven dummy variables indicating 
whether the person is either at risk of poverty, or severely materially deprived or 
living in a household with a very low work intensity; the reference category are 
persons not present in any sub-indicators), region (three dummy variables refers to 
the region of the residence of the household at the date of interview: 
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SK01/Bratislava Region, SK02/Western Slovakia and SK03/Central Slovakia; and 
SK04/Eastern Slovakia is our reference category), tenure status (four dummies 
indicating whether the person is owner paying mortgage, or tenant or subtenant 
paying rent at prevailing or market rate, or tenant or subtenant paying lower price 
than the market price, or tenant or subtenant who does not pay a rent; the reference 
category is outright owner), household type (eight dummy variables: single person, 
two adults younger than 65 years, households without dependent children, single 
person with dependent children, two adults with one dependent child, two adults 
with two dependent children, two adults with three or more dependent children, 
households with dependent children; two adults younger than 65 years is the 
reference category) and the logarithm of equalised household disposable income. In 
the second regression analysis (Reg2) we selected these variables: region, household 
type, tenure status and the logarithm of equalised household disposable income. The 
variable AROPE has been replaced by the following variables: poverty status 
(ARPT60i) (a dummy indicating whether the household's equalised disposable 
income (after social transfer) is above the at-risk-of-poverty threshold, which is set 
at 60 % of the national median equalised disposable income after social transfers), 
low work intensity of the household (LWI) (a dummy indicating whether the 
household's work intensity is not very low).  

These variables have also been used in neural network models: (Neural network1 
– with AROPE, Neural network2 and Autoneural without AROPE) (Kantardzic,
2003; Matignon, 2007). 

In decision tree models, ordering the attributes for splitting is based on their 
entropy. For selection of variables it is important to work out how much the entropy 
of the entire training set would decrease if we choose each particular variable for the 
next classification step in a node of the tree (Kantardzic, 2003; Matignon, 2007). 
The most relevant variables in the first decision tree model (Decision Tree1) were: 
equalised household disposable income, household type and AROPE. In the second 
model (Decision Tree2) these were: equalised household disposable income, 
household type and low work intensity of the household. 

2 Results 

The Model Comparison tool selected the neural network model as the model with 
the smallest average squared error and the decision tree model with input variable 
AROPE as the model with the smallest validation misclassification rate (Table 1, 
Table2). Detected relationships facilitated identification of the factors with 
a significant influence on the housing cost burden for the inhabitants of Slovakia. 

In addition to summary statistics, the Model Comparison tool also provides 
graphical model performance summaries. Plotting the trade-off between sensitivity 
and false positive fraction across all selected fractions of data creates a receiver 
operating characteristic (ROC) curve. For training and validation sample, ROC 
curves for logistic regression models, decision trees models and neural network 
models were analysed.The ROC chart on the validation data set showed the neural 
networks as the best models, followed by the regression models. 
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Table 1  Fit Statistics Table for different models 

 Fit Statistics (depth=10 %)  
Decisi

on 

Tree1 

Decisi

on 

Tree2 

Neur

al 

Netw

ork1 

Neura

l 

Netw

ork2 

ANN Reg1 Reg2 

Average Squared Error 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

Roc Index 0.88 0.87 0.94 0.94 0.93 0.93 0.93 

Cumulative Percent Captured 

Response  
70.57 70.07 68.48 70.29 67.75 69.57 67.39 

Percent Captured Response  21.69 21.61 21.74 22.10 22.83 25.00 21.74 

Misclassification Rate 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Mean Square Error - - 0.04 0.04 0.04 0.04 0.04 

Cumulative Percent 

Response 
45.93 45.61 44.58 45.75 44.1 45.28 43.87 

Percent Response  28.24 28.14 28.3 28.77 29.72 32.55 28.3 

Table 2  Event Classification Table 

Model Data 
FALSE 

Negative 

TRUE 

Negative 

FALSE 

Positive 

TRUE 

Positive 

Misclassification 

Rate 

Decission Tree1 TRAIN 365 9131 94 280 0.046505 

Decission Tree1 VALID 156 3916 39 120 0.046088 

Decission Tree2 TRAIN 367 9134 91 278 0.046403 

Decission Tree2 VALID 158 3917 38 118 0.046325 

Regression1 TRAIN 455 9140 85 190 0.05309 

Regression1 VALID 183 3928 27 93 0.049634 

Regression2 TRAIN 448 9142 83 197 0.053799 

Regression2 VALID 187 3930 25 89 0.050106 

Neural Network1 TRAIN 418 9119 106 227 0.05309 

Neural Network1 VALID 169 3914 41 107 0.049634 

Neural Network2 TRAIN 450 9151 74 195 0.05309 

Neural Network2 VALID 182 3927 28 94 0.049634 

AutoNeural TRAIN 431 9133 92 214 0.052989 

AutoNeural VALID 177 3923 32 99 0.049397 

This paper is a result of the research project VEGA 1/0770/17: Availability and 
affordability of housing in Slovakia.  
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CYLINDRICAL HIDDEN MARKOV FIELDS∗

Francesco Lagona1
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ABSTRACT: Cylindrical hidden Markov fields are proposed as a parsimonious strat-
egy to analyze spatial cylindrical data, i.e. bivariate spatial series of angles and intensi-
ties. These models are mixtures of copula-based bivariate densities, whose parameters
vary across space according to a latent Markov random field. They enable segmenta-
tion of spatial cylindrical data within a finite number of latent classes that represent
the conditional distributions of the data under specific environmental conditions, si-
multaneously accounting for spatial auto-correlation.

KEYWORDS: composite likelihood, copula, cylindrical data.

1 Introduction

Cylindrical spatial series are bivariate vectors of angles and intensities that are
simultaneously observed at a number of sites in an area of interest. Their name
is motivated by the special domain of these data, because the pair of an angle
and an intensity can be described as a point on a cylinder. Cylindrical spatial
series arise frequently in environmental and ecological studies. Examples in-
clude hurricane wind satellite data, wave directions and heights, speeds and di-
rections of marine currents, as well as telemetry data of animal movement. The
analysis of cylindrical spatial series is complicated by the cross-correlations
between angular and linear measurements across space. Additional compli-
cations arise from the multimodality of the marginal distribution of the data,
which are often observed under heterogeneous, space-varying conditions.

A cylindrical hidden Markov random field (MRF) model is proposed here
to account for the specific features of cylindrical spatial series. The model is
based on a mixture of copula-based cylindrical densities, whose parameters
vary across space according to a latent Potts model. The Potts model is a cat-
egorical MRF, i.e. a multinomial process in discrete space, which fulfills a

∗This work is supported by the 2015 PRIN project ’Environmental processes and human
activities: capturing their interactions via statistical methods’, funded by the Italian Ministry of
Education, University and Scientific Research.
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spatial Markovian property. It segments an area of interest according to an in-
teraction parameter that captures the correlation between adjacent observations
and controls the smoothness of the segmentation.

Hidden MRFs for data with circular components have been already pro-
posed in the literature, by exploiting specific parametric distributions for circu-
lar and cylindrical data (Ranalli et al., 2018; Ameijeiras-Alonso et al., 2019).
These proposals can be extended by considering copula-based cylindrical den-
sities (Lagona, 2019). Copulas allow the marginal densities and the joint de-
pendence structure to be modeled separately. As a result, they provide a gen-
eral method for binding any pair of univariate marginal distributions together
to form a bivariate distribution. This is particularly advantageous in the cylin-
drical setting, because a copula can be exploited to bind two marginal densities
that do not necessarily have the same support.

2 A copula-based hidden Markov field

A cylindrical sample is a pair z = (x,y), x∈ [0,2π), y∈ [0,+∞). Let f (x;α) be
a density on the circle, known up to a parameter α, with cumulative distribu-
tion function (cdf) F(x;α), defined with respect to a fixed, although arbitrary,
origin. Moreover, let f (y;β) be a density on the semi-line, known up to a
parameter β, with cdf F(y;β). Finally, let g(u;γ),u ∈ [0,2π) be a parametric
circular density, known up to a parameter γ. Then,

fq(z;θ) = 2πg(2π(F(x;α)−qF(y;β))) f (x;α)) f (y;β)) q =±1 (1)

is a parametric cylindrical density with support [0,2π)× (0,+∞), known up to
the parameter vector θ = (α,β,γ), having the marginal densities f (x;α) and
f (y;β). Equation (1) is a typical example of a copula-based construction of
a bivariate density, obtained by de-coupling the margins from the joint distri-
bution. When the binding density g is the uniform circular distribution, say
g(x) = (2π)−1, then equation (1) reduces to the product of the marginal den-
sities. Otherwise, the dependence between x and y is captured by the concen-
tration of g: when g is highly concentrated, the dependence is high; when
g is more diffuse, dependence is low. Finally, the constant q = ±1 deter-
mines whether the dependence between x and y is positive (q = 1) or negative
(q =−1).

The Potts model is a multinomial process in discrete space with K classes.
Given a lattice that divides an area of interest according to n observation sites
i = 1, . . . ,n, a sample that is drawn from a spatial multinomial process is a seg-
mentation of this area, obtained by associating each site with a segmentation
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label k = 1, . . . ,K. Formally, each observation site i is associated with a multi-
nomial random variable Ui = (Ui1, . . . ,UiK) with one trial and K classes. A
specific segmentation of the area can be accordingly represented as a sample
drawn from the multinomial process U = (U1, . . .Un). Under a simple one-
parameter specification, each segmentation u is associated with a single suffi-
cient statistic n(u) that indicates the number of neighboring sites which share
the same class k 6= K. Accordingly, the probability of a specific segmentation
u is known up to a single parameter ρ and it is given by

p(u;ρ) =
exp(ρn(u))

W (ρ)
, (2)

where W (ρ) is the normalizing constant. The parameter ρ is an autocorrelation
parameter: if it is positive (negative), then it penalizes segmentations with a
few concordant (discordant) neighbors.

The specification of the cylindrical hidden MRF is completed by assum-
ing that the cylindrical observations at the n sites of an areal partitioning are
conditionally independent, given a segmentation generated by the Potts model.
Formally, we assume that the conditional distribution of the observed process
z = (zi, i = 1, . . . ,n), given the latent process, takes the form of a product den-
sity, say

f (z|u;θ) =
n

∏
i=1

K

∏
k=1

fq(zi;θk)
uik , (3)

where θ = (θ1 . . .θK) includes K label-specific parameters and fq(z;θk),k =
1, . . . ,K are K copula-based densities defined in (1) and known up to the label-
specific vector of parameters θk. Under this setting, the segmentation labels
generated by the Potts model can be interpreted as latent classes, which cluster
observation sites according to label-specific cylindrical distributions.

3 Parameter estimation and data segmentation

The maximum likelihood estimates, ρ̂ and θ̂, of the parameters can be in prin-
ciple obtained by maximizing the likelihood function

L(ρ,θ;z) = ∑
u

p(u;ρ) f (z | u;θ). (4)

These parameter estimates can be usefully exploited to infer a posterior seg-
mentation of the study area, by computing the posterior probabilities p(uik =
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1 | z; ρ̂, θ̂) and exploiting a maximum-a-posterior (MAP) criterion: site i is
associated to class k if

p(uik = 1 | z; ρ̂, θ̂)> p(uih = 1 | z; ρ̂, θ̂)

for each h 6= k. According to this rule, data are clustered according to the latent
class that is conditionally expected at each location, given the observed data
and the estimated parameters.

When ρ = 0, data are independent and the proposed hidden MRF reduces
to a latent class model that involves K cylindrical densities. In this setting,
standard EM algorithms for mixture models can be exploited to maximize
the likelihood function and maximum likelihood estimates can be exploited
to compute posterior class membership probabilities. However, by assuming
ρ = 0, we take a latent class approach to spatial segmentation and the cylindri-
cal observations are clustered according to similarities in the variables space,
i.e. the cylinder [0,2π)× (0,+∞). More generally, by allowing ρ 6= 0, we ac-
count for the redundancy of the data which is due to spatial correlation. As a
result, on the one side, taking a hidden MRF approach to segmentation, data
clustering is not only based on similarities in the variables space, but also on
similarities that occur in a spatial neighborhood. On the other side, assuming
spatial dependence complicates maximum likelihood estimation and requires
special approximation methods. We propose a computationally feasible EM
algorithm to estimate the parameters of the model, by relying on composite
likelihood methods that have been recently developed for hidden Markov fields
(Ranalli et al., 2018).
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COMPARING TREE KERNELS PERFORMANCES IN 

ARGUMENTATIVE EVIDENCE CLASSIFICATION
Davide Liga1
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ABSTRACT: The purpose of this study is to deploy a novel methodology for clas-
sifying argumentative support (or evidence) in arguments. The methodology shows
that Tree Kernel can discriminate between different types of argumentative evidence
with high scores, while keeping a good generalization. Moreover, the results of two
different Tree Kernels are evaluated.

KEYWORDS: argument mining, argumentation, tree kernels, evidence detection.

1 Introduction, the Argument Mining pipeline

Argument Mining is relatively new field in the scientific community and sev-
eral works have been written about this topic in the last few years (Cabrio &
Villata, 2018, Lippi & Torroni, 2015). Broadly, its aim is to detect argumenta-
tive units from data and predict their relations. The achievement of this aim is
not trivial and involves the resolution of multiple problems. In fact, Argument
Mining can be seen as a a multifaceted problem and it is often considered
as a pipeline. For example, Cabrio & Villata (Cabrio & Villata, 2018) de-
scribed it as a pipeline composed of two steps, where the first step involves the
identification of arguments and the second involves the prediction of argument
relations. The first step includes both the classification argumentative vs non-
argumentative and the identification of the arguments’ components (claims,
premises, etc.) along with their boundaries. The second step comprises pre-
dicting the nature of argument relations (e.g. supports, attacks) and the links
between evidences and claims. The two steps are strictly dependent on the un-
derlying argumentative model (e.g. the Waltonian claim/evidence dichotomy).

In this paper, a further step is considered, which involves fitting the achieved
argumentative units into an Argument Schemes model, e.g. Walton’s classifi-
cation of Argument Schemes (Walton et al. , 2008). To achieve this aim, it is
crucial to create classifiers capable of differentiating among different kinds of
argumentative evidence (e.g. argument from Expert Opinion, argument from
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Example). The proposed methodology is based on a Tree Kernel approach able
to discriminate between different kinds of argumentative support.

2 Related Works

This work presents a method for classifying evidence typology within argu-
ments using Tree Kernels (Moschitti, 2006), since being able to classify dif-
ferent kinds of support is crucial when dealing with Argument Schemes.

The advantage of Tree Kernels is the possibility to calculate similarities
between different tree-structured data instead of engineering sophisticated fea-
tures. Tree Kernels have already been used successfully in several NLP-related
works. However, the application of Tree Kernel in the domain of Argument
Mining has been relatively limited. One of the first implementations was pre-
sented by Rooney et Al. (Rooney et al. , 2012). Three years later, Lippi and
Torroni suggested to exploit the ability of Tree Kernels of leveraging structural
information to detect arguments (which can be considered the first step in the
above-mentioned Argument Mining pipeline) (Lippi & Torroni, 2015).

This work is the continuation of a previous work (Liga, 2019) which aimed
to classify argumentative support. A similar work (Liga & Palmirani, 2019)
aimed to to classify argumentative opposition. Both these studies show that
combining Tree Kernels and TFIDF vectorization can be a good strategy for
this kind of classification. Particularly, the present approach tries to discrim-
inate between two different kinds of evidence (or premise), comparing two
different Tree Kernel functions.

3 Methodology

Following the method in Liga, 2019, two important Argument Mining datasets
have been considered: the first (DS1) is taken from Al Khatib et al. (Al Khatib
et al. , 2016) the second (DS2) from Aharoni et al. (Aharoni et al. , 2014).
These two datasets have been built for different tasks but they share a very
similar labelling system, which is the reason why the can be used jointly. More
precisely, DS1 and DS2 classify argumentative texts depending on three com-
mon labels (i.e. Study/Statistics, Expert/Testimony, Anecdote). In particular,
only the first two labels have been considered, with the aim of classifying evi-
dences from study and from expert.

Two groups of classifiers were created using KeLP (Filice et al. , 2015), the
first group was trained on DS1 while the second on DS2. For each classifier,
a combination of a Linear Kernel and a Tree Kernel was employed, using a
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GROUP 1 Performance on DS1
TFIDF + PTK TFIDF + SPTK
P R F1 P R F1

Study 0.90 0.87 0.88 0.91 0.89 0.90
Expert 0.89 0.91 0.90 0.90 0.92 0.91
Average F1 (macro) 0.89 0.91

Performance on DS2
Study 0.74 0.68 0.71 0.78 0.66 0.72
Expert 0.76 0.80 0.78 0.75 0.85 0.80
Average F1 (macro) 0.75 0.76

GROUP 2 Performance on DS2
TFIDF + PTK TFIDF + SPTK
P R F1 P R F1

Study 0.69 0.69 0.69 0.69 0.69 0.69
Expert 0.74 0.74 0.74 0.74 0.74 0.74
Average F1 (macro) 0.72 0.72

Performance on DS1
Study 0.83 0.80 0.82 0.82 0.80 0.81
Expert 0.86 0.87 0.86 0.85 0.87 0.86
Average F1 (macro) 0.84 0.84

Table 1. Results of the two groups of classifiers (P=precision, R=recall, F1=F1 score)

TFIDF vectorization and a GRCT (Grammatical Relation Centered Tree) rep-
resentation. For the choice of the Tree Kernel function, two strategies have
been attempted: the first deploys a Partial Tree Kernel (PTK, Moschitti, 2006),
while the second deploys a Smoothed Partial Tree Kernel (SPTK, Croce et al.
, 2011). To be sure that the classifiers were able to generalize, they were tested
both on DS1 and on DS2 to detect whether sentences where an evidence from
“Study/Statistics” or from “Testimony/Expert”.

4 Results

As can be seen from Table 1, SPTKs outperform PTKs in group 1, while their
performances in group 2 are mostly equal. Importantly, both Partial Tree Ker-
nels and Smoothed Partial Tree Kernels keep a high degree of generalization,
which is one of the main reasons why this methodology can be valuable for
many classification problems in the Argumentation Mining pipeline.
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ABSTRACT: This talk is divided in two parts and presents insights into methodological aspects 

of recent statistical machine learning developments and large scale comparison of different 

architectures. We will first discuss the use of graph neural networks to analyse dynamical 

systems, cross modal, space and temporal systems and image data. We will describe the effect 

of hierarchical multi co-attention for Interpretable architectures using neurological data. In the 

second part we will focus on recent work on generative autoencoders to integrate image and 

omics data towards better understanding of breast cancer. We will present several autoencoder 

architectures that integrate a variety of cancer patient data types (e.g., multi-omics and clinial 

data). We perform extensive analyses of these approaches and provide a clear methodological 

and computational framework for designing systems that enable clinicians to investigate 

cancer traits and translate the results into clinical applications. 

KEYWORDS: deep learning, graph representation, biomedical data. 
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ABSTRACT: Bias reduction is a methodology that aims at lowering the asymptotic
bias of a reference estimator. The effectiveness of the approach hinges on the bias
function of the estimator, which must be calculated at the actual, albeit unknown,
underlying distribution. If the postulated distribution is misspecified, then the result-
ing bias function is in error and bias reduction becomes ineffective. To circumvent
this problem, it is proposed an empirical approximation to the bias function which is
fully driven by the data, so that its validity does not rely upon the knowledge of the
underlying distribution.

KEYWORDS: bias reduction, estimating function, model misspecification, pseudo-
likelihood.

1 Introduction

Let y1, . . . ,yn be realisations of the random vectors Y1, . . . ,Yn having common
distribution function G(y), y⊆Rd , d ≥ 1. Suppose to specify a working model
for G(y) in which the only unknown quantity is the parameter θ⊆ Rp, p≥ 1.
A point estimator θ̂ for θ can be defined as the root of either an estimat-
ing function Ψ(θ) = ∑n

i=1 ψ(θ;yi) or as the maximiser of a pseudo loglike-
lihood function PL(θ) = ∑n

i=1 pl(θ;yi), where ψ(·; ·) : Rp ×Rd → Rp and
pl(·; ·) : Rp×Rd → R are known functions (Godambe, 1991, Besag, 1974).
The estimator θ̂ is asymptotically unbiased as long as the first Bartlett’s iden-
tity holds, i.e., either EG{Ψ(θ)} = 0 or EG{∂PL(θ)/∂θ} = 0, where EG(·)
denotes expectation under G(y).

Estimating functions and pseudolikelihoods are appealing as they provide
both valid inferential results under minimal assumptions about G(y) and are
computationally efficient. However, flexibility and minimal assumptions may
reflect on the bias of θ̂, which may not negligible for small to moderate sample
sizes. It is then possible to resort to the ideas underlying the bias reduction
approach by Firth, 1993. The methodology was originally conceived for the

297



maximum likelihood estimator so that, unless otherwise stated, in the sequel
PL(θ) stands for the loglikelihood function and Ψ(θ) = ∂PL(θ)/∂θ for the
score function. Bias reduction defines an estimator θ̃ as the root of the modified
score function

Ψ(θ)+
{

∂Ψ(θ)
∂θT

}
b(θ), (1)

where b(θ)⊆ Rp is the leading term of the bias expansion of θ̂, i.e.,

EG{θ̂−θ}= b(θ)+ r(θ).

Under the assumption that b(θ)=O(m−1) and r(θ)=O(m−2), it can be proved
that the leading term in the bias expansion of θ̃ is b̃(θ) = O(m−2), meaning
that θ̃ has smaller asymptotic bias than θ̂ (Firth, 1993); here m is an index of
information about θ and does not necessarily coincide with the sample size n.

The core of bias reduction is b(θ) whose calculation involves expectations
at the underlying distribution G(y), implying that bias reduction comes along
with shortcomings. From the one hand, even mild forms of model misspec-
ification can affect the expression of b(θ): when estimating functions and
pseudolikelihoods are considered, the second’s Bartlett identity fails and the
expression of b(θ) given by Firth, 1993 needs to be revised, otherwise the
asymptotics justifying bias reduction are ruled out (see, e.g., Lunardon &
Scharfstein, 2017). From the other hand, the applicability of bias reduction
is hampered whenever the numerical evaluation of the working model is infea-
sible or a working model cannot be specified; max-stable processes provides
such an instance (Padoan et al. , 2010, Genton et al. , 2011).

2 Proposal

Because of the highlighted problems and in order to extend bias reduction
outside the maximum likelihood framework, e.g., to general estimating func-
tions and pseudolikelihoods, we devise an empirical approximation to the sec-
ond summand in (1). Let Ψ(θ) be an estimating function for θ satisfying
EG{Ψ(θ)} = 0 and differentiable up to fifth-order. The proposed approxi-
mation is

a(θ) = ∂ log{|Ip +h−1(θ) j(θ)|}/∂θ,

where Ip is the identity matrix of order p, | · | is the determinant operator, and

h(θ) = ∂Ψ(θ)/∂θT , j(θ) =
n

∑
i=1

ψ(θ;yi)ψ(θ;yi)
T .
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The function a(θ) satisfies a(θ) =
{

∂Ψ(θ)/∂θT
}

b(θ)+op(1) so it can be used
to define the modified estimating function

Ψ(θ)+a(θ). (2)

The estimator θ̄, defined as the root of (2), is a bias reduced version of θ̂ in that
EG{θ̄−θ}= O(m−3/2).

The approximation a(θ) suggests how to achieve bias reduction when in-
ference is rooted on a pseudolikelihood function. Once h(θ) and j(θ) are rede-
fined as h(θ) = ∂2PL(θ)/(∂θ∂θT ) and j(θ) = ∑n

i=1{∂pl(θ;yi)/∂θ}{∂pl(θ;yi)/
∂θ}T , it is possible to define the modified pseudo loglikelihood function

PL(θ)+ log{|Ip +h−1(θ) j(θ)|}. (3)

Denoted by θ̄ the maximiser of (3), the relation EG{θ̄− θ} = O(m−3/2) still
holds because the first partial derivative of (3) matches the structure of (2).

3 Simulation study - Gaussian max-stable process

The density function of a Gaussian max-stable process observed at K site lo-
cations in R2 involves a number of summands given by the K-th Bell number
(Genton et al. , 2011). The evaluation of the loglikelihood is therefore viable
for few site locations and a computationally appealing replacement can be a
pairwise loglikelihood. Nonetheless, bias reduction would be computationally
infeasible as the calculation of b(θ) still involves integrals with respect to the
joint density for the K site locations. We aim to define a bias reduced estimator
θ̄ through (3) when PL(θ) is the pairwise loglikelihood by Padoan et al. , 2010.

The simulation experiment resembles the one in Padoan et al. , 2010,
Sect. 4, so it is supposed that n independent replicates of a Gaussian max-
stable process are observed at K = 50 sites locations in [0,40]× [0,40] and
θ = (σ2

1,σ2
2,σ2

12), where the components control the range of the spatial depen-
dence in the bivariate density functions. The parameter value is θ=(2000,3000,
1500), the considered sample sizes are n = {20,40,80,160}, and the corre-
sponding number of Monte Carlo simulations is n jN, N = 500, j = 1, . . . ,4.

The logarithm of the theoretical asymptotic rate for the bias of θ̂ and θ̄ are
respectively− logn and−(3/2) logn. In Figure 1, we contrast these quantities
with their Monte Carlo counterparts, i.e., log |ÊG{θ̂−θ}| and log |ÊG{θ̄−θ}|,
as functions of logn. The figure confirms the O(n−1) rate for the bias of θ̂ and
reveals that the theoretical rate for the bias of θ̄ is slightly conservative.
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Figure 1. Logarithm of the absolute bias of θ̂ (black) and θ̄ (gray): solid and dashed
lines refer respectively to the Monte Carlo estimate and theoretical version.
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ABSTRACT: We present different ways of modelling information from social network
sites based on a general data model known as multilayer network, and we discuss some
approaches to identify communities in these networks using generalized clustering
algorithms.

KEYWORDS: online social networks, multilayer networks, multiplex networks, tem-
poral text networks, community detection.

1 Introduction and motivation

Social and information networks have been studied for a long time in dis-
ciplines such as social network analysis, and a core task in social network
analysis for which clustering methods are commonly used is to identify com-
munities, to explain why groups of entities (actors) belong together based on
the explicit ties among them and/or the implicit ties induced by some simi-
larity measures given some attributes of these entities. Since members of a
community tend to generally share common properties, revealing the commu-
nity structure in a network can provide a better understanding of the overall
functioning of the network at large.

While social network analysis has often used simple graphs as a mathe-
matical representation, reality is rarely mono-dimensional. A large amount of
human-generated information is available online in the form of text exchanged
between individuals at specific times, forming what we call human information
networks. Examples include social network sites, online forums and emails.

This contribution focuses on the problem of clustering this complex infor-
mation, that is, identifying parts of the data that are more similar or related to
each other than to other parts of the data.

As a motivating example, consider Figure 1. One typical usage of social
media data in research is to study how information propagates online. In one
of the many studies on this topic, the authors have analyzed different aspects of
the propagation process considering the online reactions generated by the death
of a well-known Italian TV anchorman (Magnani et al., 2010). In the figure
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Figure 1. Three aspects of a human information network: time, text and topology

we have reproduced the text of some of the posts generated about this event,
the information propagation network (topology), showing which posts con-
tained information obtained by which others, and a temporal pattern indicating
the number of comments per day. While each of these pieces of information
alone reveals something, putting them together into a temporal text network
(right-hand side) we obtain a much more comprehensive understanding of the
process. On the one hand, we can see that for the posts representing explicit
attempts to propagate information (e.g., Mike passed away) publication time
is fundamental to determine their success, and only the first of this type of
posts generated a large and sudden burst of reactions in a very short time; on
the other hand, conversational posts evolving from it (e.g., How has television
changed?) can appear later and still create long but less dense chains of reac-
tions. Other posts not present in the information propagation network neither
explicitly give the news nor ask for an answer, generating no or few reactions,
but still have the role of re-activating the information cascade so that even the
latecomers can find a trace of it; some of these posts (e.g., Bye granpa Mike!)
form what has been called an online mourning ritual. In summary, time, text
and topology together can lead to a deeper understanding of how this network
evolved into its current status and how information propagated through it.

2 Multilayer networks: models, clustering and applications

To represent complex data such as the online human information networks
mentioned above, several extended models have been proposed, such as net-
works of networks, multiplex networks, etc., leading to a fragmented literature
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on how to analyze complex network data. Recently, a model unifying sev-
eral of the existing approaches has been defined, known as multilayer network
model (Kivelä et al., 2014; Dickison et al., 2016). In this presentation we give
a quick overview of these models, up to recent work on a data-cube-based ver-
sion aiming at reconciling database models for graphs and the models used in
network analysis.

Then we discuss different approaches to identify communities in multi-
layer networks used to represent human information networks. We start pre-
senting a community detection method for multiplex networks (Tehrani et al.,
2018), showing how to extend an existing simple-graph method. The clique
percolation method (Palla et al., 2005) is based on the intuition that the pres-
ence of a community can be observed in a social network through the presence
of cliques, that is, sets of actors who are all adjacent to each other. This method
has a set of features that make it well-suited to the discovery of communities in
social networks: (1) it allows to specify how much connectivity is necessary to
recognize the presence of a community (minimum clique size k), (2) it allows
the same actor to be present in multiple communities (overlapping), and (3) it
does not force all actors to be part of a community (partial). Here we show
how these features can be ported to multiplex networks. Then we discuss how
to use multiplex network clustering approaches to include also the information
exchanged among online users and the temporal traces of their interactions.
In particular, we present the temporal text network model (Vega & Magnani,
2018) as a special type of multilayer network, showing that it captures the main
features of existing approaches used in the literature, and we also show how
clusters can be identified in this model.

We conclude presenting practical examples of the clustering approaches
mentioned above when applied to Twitter data, to emphasize the challenges
encountered when abstract algorithms are used in real contexts (Vega & Mag-
nani, 2018; Hanteer et al., 2018). Twitter data is significantly different from
the data that can be extracted from other more structured social network plat-
forms. On the one hand, on Twitter we can observe finer-grained social inter-
actions: we can see if a user has mentioned another specific user, and we have
also access to the text they exchanged. On the other hand, categorization of
information on Twitter often relies on hashtags, that are not created through
some centralized decision-making process. This can lead to different hashtags
referring to the same topic, single hashtags used to refer to different topics in
different tweets, as well as many tweets not explicitly mentioning any hashtag.

Ideally, we would like to use Twitter data to perform various types of analy-
sis based on clustering: what is discussed in the tweets, where are the different
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topics appearing, when are they discussed (for example, when they emerge for
the first time and when they reach a peak of popularity), who is leading the
discussion on specific topics, and finally a joint analysis putting all these as-
pects together to map online conversations. In practice, some of these analyses
are indeed possible given some assumptions and limitations, some are not, and
to extract more knowledge from the data we may require frequent input from
domain experts.
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ABSTRACT: Statistical matching is a technique used for combining information
when variables of interest are not jointly observed. In this paper we propose the use of
Bayesian Networks to deal with the statistical matching problem. Bayesian networks
admit a recursive factorization of the joint distribution useful both for data integration
and for evaluating the statistical matching uncertainty in the multivariate context. The
notion of uncertainty in statistical matching when BNs are used is discussed.

KEYWORDS: Bayesian network, collapsibility, uncertainty.

1 Introduction

Let (X,Y,Z) be a multivariate random variable (rv) with joint discrete distri-
bution P. Without loss of generality, let X = (X1, . . . ,XH), Y = (Y1, . . . ,YK)
and Z = (Z1, . . . ,ZT ) be vectors of rvs of dimension H, K, T , respectively.
Furthermore, let A and B be two independent samples of nA and nB indepen-
dent and identically distributed records from (X,Y,Z). Assume that (X,Y) are
observed in sample A while (X,Z) are observed in sample B. Then, the units
in A have Z missing values and the units in B have Y missing values.

Statistical matching aims at combining information obtained from differ-
ent non-overlapping sample surveys. The main target is in estimating the joint
probability distribution (pdf) of (X,Y,Z) from the samples A and B and con-
structing a complete synthetic data set where all the variables of interest are
jointly observed, see D’Orazio et al., 2006b.

The lack of joint observations on the variables (X,Y,Z) leads to uncer-
tainty about the data generating model. In order to overcome this problem,
three approaches can be distinguished. The first approach uses techniques
based on the conditional independence assumption between Y and Z given
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X (CIA assumption) see, e.g., Okner, 1972. The second approach uses tech-
niques based on the external auxiliary information regarding the statistical re-
lationship between Y and Z, as in Singh et al., 1993. The third group of
techniques addresses the so called identification problem. The sample infor-
mation provided by A and B is actually unable to discriminate among a set of
plausible models for (X,Y,Z). Uncertainty in statistical matching is analyzed
in Rässler, 2002, D’Orazio et al., 2006a, Conti et al., 2012, Conti et al., 2013,
Conti et al., 2017 and Conti et al., 2016 and references therein.

In this paper we propose the use of Bayesian networks (BNs) to deal with
the statistical matching problem. The use of BNs is motivated by the following
advantages: (i) BNs are widely used to describe dependencies among variables
in multivariate distributions; (ii) BNs admit convenient recursive factorizations
of their joint probability useful both for parameters estimation and for uncer-
tainty evaluation in a multivariate context.

2 Statistical Matching by BNs

Bayesian networks (BN) are multivariate statistical models satisfying sets of
conditional independence statements contained in a directed acyclic graph (DAG),
see Pearl, 1995. Let X = (X1, . . . ,XH) be a random vector, then a BN specifies:
(i) the set of conditional independence statements by means of a DAG and (ii)
the set of conditional probability distributions associated to the nodes of the
graph. The joint probability distribution can be factorized as follows:

P(x1, . . . ,xH) =
H

∏
h=1

P(xh|pa(xh))

where P(xh|pa(xh)) is the probability distribution attached to node xh given its
parents pa(xh), h = 1, . . . ,d, i.e. all the nodes linked to xh by an arrow pointing
to xh.

As previously stressed, the statistical model of (X,Y,Z) is not identifiable
on the basis of sample data, that is both the components of the BN (i.e. DAG
and its parameters) can not be estimated from the available sample informa-
tion. Then, the uncertainty can be decomposed as follows: (i) the uncertainty
regarding the association structure, that is the presence or absence of an edge
between the components of Y and Z; (ii) the uncertainty regarding the network
parameters, that is the local probability distributions.

Let PGXY Z be the pdf of (X,Y,Z) associated to the DAG GXY Z and let us
denote by PGXY and PGXZ the pdfs associated to GXY and GXZ , the DAGs esti-
mated on sample A and B, respectively. First of all, the DAG GX is estimated
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on the overall sample A∪B. Secondly, given GX , we proceed to estimate the
association structure for (X,Y) and (X,Z) on the basis of sample data in A and
B, respectively. As far as PGXY Z is concerned, one can only say that it lies in
the class of all joint probability distributions for (X,Y,Z) satisfying the esti-
mate collapsibility over Y and Z, respectively. Formally, we say that PGXY Z is
estimate collapsible over Zt (a component of the vector Z) if

P̂GXY Z (X,Y,Z\{Zt}) = P̂GXY Z\{Zt }(X,Y,Z\{Zt}). (1)

That is, the estimate P̂GXY Z (X,Y,Z\{Zt}) of PGXY Z (X,Y,Z\{Zt}) obtained by
marginalizing the maximum likelihood estimate (MLE) of P̂GXY Z (X,Y,Z) un-
der the original DAG model (GXY Z,PGXY Z ) coincides with the MLE under the
DAG model (GXY Z\{Zt}), see Kim & Kim, 2006. Estimate collapsibility over
a set Z is defined similarly. Then, the class of plausible joint distributions for
(X,Y,Z) can be described as follows

PXY Z = {PGXY Z : P̂GXY Z (X,Y) = P̂GXY (X,Y), P̂GXY Z (X,Z) = P̂GXZ (X,Z)}.(2)

All the joint probability distributions in (2) are equally plausible. In terms
of graphs, estimate collapsibility implies c-removability, such a concept al-
lows to define the class GXY Z of plausible DAGs given the available sample
information.

Under the CIA, the class (2) is composed by a single pdf PCIA
GXY Z

corre-
sponding to the DAG GCIA

XY Z = GXY
⋃

GXZ where Y and Z are d-separated by
the set X. Under the CIA, both the dependence structure and the BN param-
eters are estimable from the sample data. When the CIA does not hold, extra
sample information or experts judgment can be used to choose a plausible joint
probability distribution from the class (2).

Suppose that a DAG G∗XY Z has been selected from the class of plausible
DAGs GXY Z . Let P∗G∗XY Z

be the pdf associated to G∗XY Z . According to G∗XY Z
the joint probability distribution P∗G∗XY Z

can be factorized into local probability
distributions some of which can be estimated from the available sample in-
formation while other not due to the absence of joint observation on Y and Z
variables.

In the case of categorical variables, uncertainty is dealt with in D’Orazio
et al., 2006a where parameters uncertainty is estimated according to the max-
imum likelihood principle and the set of maximum likelihood estimates is
called likelihood ridge. In order to exclude some parameter estimates, it is im-
portant to introduce constraints characterizing the phenomenon under study.
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These constraints can be defined in terms of structural zero and inequality
constraints between pairs of distribution parameters, as specified in D’Orazio
et al., 2006a. Their introduction, as the introduction of auxiliary information
regarding the association structure, is useful for reducing the overall parameter
uncertainty.
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ABSTRACT: The study aims to observe the presence of different behaviours by en-
trepreneurs in the hiring processes of new graduates varying on the gender of the re-
spondent. In particular, the analysis is based on the Education-for-Labour Elicitation 
from Companies’ Attitudes towards University Studies Project involving 471 enter-
prises operating in Lombardy with 15 or more employees. The preference analysis of 
the recruiters is carried out using Conjoint Analysis.

KEYWORDS: Gender bias, graduates, conjoint analysis.

1 Introduction

In recent decades, tertiary-level Education has expanded rapidly across many
countries, as well as in Italy. In general, the expectation is that higher education
should prepare young people to become highly productive and successful in
the labour market. Sometimes, the skills required of the graduates for the job
do not coincide with the skills offered by the graduates applying, creating a
mismatch between education and the labour market.

Beyond this mismatch, another bias could be generated by gender in the
recruitment process. But, if there is a huge literature in gender gap during
the recruitment process about politics or academic world (Hardin et al., 2002,
Van den Brink et al., 2010), here the gender bias has been considered for the
respondents and not for candidates. The aim of this paper is to understand
if there exists a difference in the evaluation of possible candidates for a new
hiring when the recruiter is male or female.

The paper is structured as follows: after this introduction, section 2 in-
troduces the methodology of Conjoint Analysis, section 3 presents the results
from the Electus research and section 4 gives the conclusions.
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2 Conjoint Analysis

Conjoint Analysis (CA) is among the methods most used to analyse consumer
choices and to assign consumers utility drawn from the properties of single
characteristics of goods, services or, as in this application, jobs being offered
on the market. In this paper, the conjoint rating response format is used to
gather and use additional information about respondent’s preferences. This
preference model uses a part-worth utility linear function. Part-worth utilities
are also assumed for each level of the various attributes estimated by using
OLS multiple regression. In this formulation, attention is focused on a rating
scale, opting for a very general preference model used in traditional CA. The
utility function is defined as follows:

Uk =
n

∑
i=0

βi jxik (1)

where x0 is equal to 1 and n is the number of all levels of the attributes
which define the combination of a given good. Each xik variable is a dichoto-
mous variable, which refers to a specific attribute level. This variable equals 1
if the corresponding attribute level is present in the combination of attributes
that describes the alternative k. Otherwise, that variable will be 0. As a result,
the utility associated with the alternative k (Uk) is obtained by summing the
terms βi j xik over all attribute levels, where βi j is the partial change in Uk for
the presence of the attribute level i, with all other variables remaining constant.

The range of the utility values for each attribute from highest to lowest,
provides an indicator of how important the attribute is compared to the others.
The larger the utility ranges the more important is the role that the attributes
play. For any attribute j, the relative importance can be computed by dividing
its utility range by the sum of all utility ranges as follows:

I j =
max(Wj)−min(Wj)

∑J
j=1 [max(Wj)−min(Wj)]

, (2)

where J is the number of attributes and Wj is the set of part-worth utilities
referring to the various levels of attribute j. Usually, importance values are
represented as percentages with a total score of one hundred.
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3 Application and results

Data for this research concerns labour market comprehension policies for new
graduates and the relationships among enterprises and universities. The study
is based on the multi-centre research project, Education-for-Labour Elicita-
tion from Companies’ Attitudes towards University Studies (Fabbris & Scioni,
2015), which involved several Italian universities. Main results about this
project have been already published (Mariani et al., 2018b, Mariani et al.,
2018a). Here, the analysis is attempting to give a comparative view of the
differences in terms of choice according the gender of the respondent to the
questionnaire.

The survey was conducted in 2015 using Computer-Assisted Web Inter-
viewing (CAWI). The questionnaire contained two sections: the first con-
cerned the conjoint experiment for the five job positions and the second con-
tained general information about the company. The five job positions consid-
ered for the new graduates, were Administration clerk, HR assistant, Market-
ing assistant, ICT professional and CRM assistant. Six attributes were used
to specify the candidates’ profile: Field of Study, Degree Level, Degree Mark,
English Knowledge, Relevant Work Experience, Willingness to Travel. As far
as the Milano-Bicocca research unit was concerned, there were 471 final re-
spondents. The frequency distribution about gender was equally balanced with
male (41%) and female (59%). For space reasons, here results about gender
bias of the respondent are shown only for the Administration Clerk in table 1.

Table 1. Best profile and importance indexes of competences for Administration Clerk

Respondent’s gender
Male Female

Competence Best Importance Best Importance
Field of Study Economics 40.47% Economics 59.21%

English Knowledge Suitable 20.81% Suitable 12.62%
Relevant work experience Regular 16.12% Regular 13.72%

Degree Mark High 14.30% High 10.72%
Willingness to travel Long 4.17% Long 3.20%

Degree level Bachelor 4.13% Bachelor 0.53%

The gender bias is present not in the detection of the best profile but in
terms of importance indexes. In fact, if on one hand, the best competencies for
each attribute are equal generating the same best profile, on the other hand
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there is a lot of difference in computing the importance indexes of the at-
tributes. When the respondent of the survey is a woman, Field of study has
a very high importance index very close to 60%, this index is just over the
40% when the respondent is a man. Secondly, men tends to overestimate the
importance of the English Knowledge, that is the second best competence with
20.81%. For women, the importance of this attribute is only 12.62%.

4 Conclusions

This paper proposed the use of Conjoint Analysis to measure a possible gen-
der bias in the recruiters during a process of new hiring. Data referring to the
Electus project applied in Lombardy, showed the existence of different kinds
of attributes more or less important in addressing the choice of the candidate.
Competencies were measured according to the perceived importance and Field
of Study was proven to be the most relevant, whatever the gender of the respon-
dent and Economics were preferred for the role of Administration Clerk. The
high importance of Field of Study resulted different on the basis of the gender
of the recruiter. Women overrated this importance with a value very close to
60%, and they underestimated the English Knowledge that was overtook by
Relevant work experience as second best competence.
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ABSTRACT: Dynamic Stochastic Block Models (SBMs) represent an attractive field
of research as they provide a flexible modeling tool for the dynamic clustering of net-
work data. However, full maximum likelihood (ML) for this class of models is not
a viable estimating strategy due to the intractability of the likelihood function: vari-
ational inference represents quite a standard alternative in the frequentist framework.
However, despite its simplicity, it may lead to non-optimal estimators and may suffer
from local maxima solutions. We extend the hybrid ML approach developed in the
context of static SBMs to deal with dynamic networks also considering both weighted
and unweighted relations as well as nodal attributes which may potentially affect the
block structure.

KEYWORDS: stochastic blockmodels, latent Markov models, approximate inference.

1 Introduction

Stochastic Block Models (SBMs; e.g. Snijders & Nowicki, 1997) are widely
employed in the social network literature when the focus is on clustering nodes
with respect to their social behavior. Recently, a growing interest has focused
on the evolution of networks over time. Dynamic SBMs (e.g., Yang et al.,
2011, Matias & Miele, 2017, Bartolucci et al., 2018) assume that the probabil-
ity of observing a connection between two nodes depends on the corresponding
block membership only. The evolution of the latter over time is represented by
a homogeneous, discrete, latent Markov chain. Nodes belonging to a given
block (state) at a given occasion share similar social behaviors.

Besides the easiness of interpretation of the model, Maximum Likelihood
(ML) inference remains problematic due to the intractability of the likelihood
function. Among approximate solutions available in the statistical literature,
the variational approach represents a quite standard choice in the frequentist
framework (e.g. Matias & Miele, 2017).
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Here, we extend the hybrid ML approach recently introduced by Bartolucci
et al., 2017 in the framework of static SBM to deal with its dynamic counter-
part, also relaxing the homogeneity assumption underlying the latent structure
of the model. Moreover, to account for both binary and valued relations, we
further modify the estimation algorithm to accommodate different types of
(conditional) response distributions.

2 Dynamic stochastic block models

For a network of n nodes observed at T occasions, let YYY (t) denote the n× n
adjacency matrix observed at occasion t, whose generic element Y (t)

i j , i, j =
1, . . . ,n, j 6= i, summarizes the relation existing between node i and j at oc-
casion t. In the case of binary relations, Y (t)

i j will be a binary variable taking

only zero/one values; in the case of valued relations, Y (t)
i j will be a count or a

continuous variable. Without loss of generality, we focus on undirected rela-
tions without self-loops, so that YYY (t) denotes a symmetric matrix with missing
values on the main diagonal. Finally, let Y = {YYY (1), . . . ,YYY (T )}.

Dynamic SBMs (e.g., Yang et al., 2011, Matias & Miele, 2017, Bartolucci
et al., 2018) assume that each node in the network belongs to one of k dis-
tinct blocks identified by individual- and time-specific, discrete, latent vari-
ables U (t)

i ∈ {1, . . . ,k}. These evolve over time according to a homogeneous
latent Markov chain with initial probabilities λu, u = 1, . . . ,k and transition
probabilities πu|v, u,v = 1, . . . ,k. Also, the dynamic SBMs postulate a lo-

cal independence assumption between nodes: conditional on U (t)
i = u1 and

U (t)
j = u2, responses Y (t)

i j are independent and identically distributed with dis-
tribution function depending on u1 and u2 only; that is,

[
Y (t)

i j |U
(t)
i = u1,U

(t)
j = u2

]
∼ p

(
y(t)i j | ψψψu1 u2

)
,

with ψψψu1 u2
being a suitable vector of parameters. Therefore, at each occasion,

the response variable distribution only depends on the block membership of
nodes i and j at that occasion.

2.1 Assessing the impact of nodal attributes on block structure

In some cases, the homogeneity assumption underlying the latent structure
of the model may be too restrictive. For instance, in a friendship network,
individual features, such as gender or age, may play a role in determining
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the evolution of the block structure over time. To enhance the flexibility of the
model, initial and transition probabilities defining the latent Markov chain may
be parametrically specified as follows:

log
λiu

λi1
= τu,λ + xxx′i,λφφφu,λ, u = 2, . . . ,k,

log
πiu|v
πiu|u

= τuv,π + xxx′i,πφφφuv,π, u,v = 1, . . . ,k,v 6= u.

Here, τu,λ and τuv,π denote state specific intercepts, while φφφu,λ and φφφuv,π denote
the parameters measuring the impact of nodal attributes in xxxi,λ and xxxi,π on the
initial and the transition probabilities of the latent Markov chain, respectively.

2.2 Model inference

Let U = {UUU i, i = 1, . . . ,n} denote the overall set of latent variables in the
model, with UUU i = (U (1)

i , . . . ,U (T )
i )′; the observed network distribution (i.e.,

the likelihood) is obtained by marginalizing out all these latent variables from
the joint distribution of Y and U. That is,

p(Y ) = ∑
U

{
n

∏
i=1

[
λ

iu(1)i

T

∏
t=2

π
iu(t)i |u

(t−1)
i

T

∏
t=1

∏
j>i

p(y(t)i j |U
(t)
i = u(t)i ,U (t)

j = u(t)j )

]}
,

(1)
where ∑U denotes the sum over the support of U. Due to such a summation,
computing the likelihood in eq. (1) becomes prohibitive even for small n and
T . To overcome the issue, an alternative inferential procedure based on a vari-
ational approximation to the likelihood function is frequently considered in the
literature (e.g., Matias & Miele, 2017). Although this method is well princi-
pled and computationally fast, it may lead to non-optimal estimators, and it
may suffer from local maxima solutions.

3 Hybrid ML inference for dynamic SBMs

In this work, we extend the hybrid ML approach introduced by Bartolucci
et al., 2017 in the framework of static SBMs to make inference on model
parameters. This lies in between a full ML and a classification likelihood in-
ference. In this latter, the realization of the discrete latent variables in the
models are considered as fixed parameters to be estimated. In this respect, the
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following hybrid log-likelihood function is defined:

`hyb =
n

∑
i=1



log ∑

u(1)i ...u(T )i

λ
iu(1)i

T

∏
t=2

π
iu(t)i |u

(t−1)
i

T

∏
t=1

p(yyy(t)i |U
(t)
i = u(t)i ;UUU (t)

(−i) = ũuu(t)(−i))



 ,

where yyy(t)i is the vector of all observed responses y(t)i j , j 6= i, for unit i at oc-

casion t, UUU (t)
(−i) denotes the vector of latent variables referring to time t and

associated to all nodes in the network, but for the i-th one, and ũuu(t) denotes
the corresponding realization. These latter are considered as fixed discrete pa-
rameters in the model taking values in the set {1, . . . ,k}. Last, p(yyy(t)i |U

(t)
i =

u(t)i ,UUU (t)
(−i) = ũuu(t)(−i)) = ∏ j 6=i p(y(t)i j |U

(t)
i = u(t)i ;UUU (t)

(−i) = ũuu(t)(−i)).
Let θθθ denote the vector of all model parameters; this can be estimated

by alternating the following steps until convergence: (i) Classification step
– `hyb is maximized wrt ũuu(t), t = 1, . . . ,T , by identifying the configuration in
the set {1, . . . ,k} providing the highest log-likelihood value; (ii) Expectation
step – for each i, the expected value of the individual complete-data (hybrid)
log-likelihood is computed, given the current parameter estimates θθθ and ũuu(t);
(iii) Maximization step – the expected value of the complete-data (hybrid) log-
likelihood is maximized wrt θθθ.
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ABSTRACT: Several methods for joint dimension reduction and cluster analysis of
categorical, continuous or mixed-type data have been proposed over time. These
methods combine dimension reduction (PCA/MCA/PCAmix) with partitioning clus-
tering (K-means) by optimizing a single objective function. Cluster stability assess-
ment is a critical and inadequately discussed topic in the context of joint dimension
reduction and clustering. We introduce a resampling scheme that combines boot-
strapping and a measure of cluster agreement to assess global cluster stability of joint
dimension reduction and clustering solutions and a Jaccard similarity approach for
empirical evaluation of the stability of individual clusters. Both approaches are imple-
mented in the R package clustrd.

KEYWORDS: dimension reduction, k-means, cluster stability, cluster validity.

1 Joint dimension reduction and clustering

Joint dimension reduction refers to a set of algorithmic or non-model based
techniques aimining at simultaneously finding an optimal reduction of the vari-
ables and an optimal partitioning of the objects of a rectangular data set. Re-
duced K-means (De Soete & Carroll, 1994) and Factorial K-means (Vichi &
Kiers, 2001) combine Principal Component Analysis (PCA) for dimension re-
duction with K-means for clustering and are suitable for data sets with contin-
uous variables. In the case of categorical variables, MCA K-means (Hwang,
Dillon & Takane, 2006), IFC-B (Iodice D’Enza & Palumbo, 2013) and Cluster
Correspondence Analysis (van de Velden, Iodice D’Enza & Palumbo, 2017)
a variant of Correspondence Analysis is used in the dimension reduction step
and K-means is used for clustering. In the case of mixed-type data, that is when
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the data set contains both continuous and categorical variables, one can resort
to GROUPALS (Van Buuren & Heiser, 1989) and Mixed Reduced/Factorial K-
means (Vichi, Vicari & Kiers, 2009). These methods combine PCA for mixed
data with K-means.

The general objective can be formulated as follows:

minφCDR (B,ZK) = α
∥∥X−XBB′

∥∥2
+(1−α)‖XB−PXB‖2 (1)

where X is a n×Q data matrix, B a Q× d columnwise orthonormal loadings
matrix, d is the user supplied dimensionality of the reduced space, ZK a n×K
binary matrix indicating cluster memberships of the n observations into the K
clusters, P = ZK (Z′KZK)

−1 Z′K is a projection matrix, and G = PXB a K× d
cluster centroid matrix.

For categorical variables, the CDR objective can easily be adjusted by sub-
stituting D−1/2

z MZ for X in all equations. Similarly, for mixed-type data, X is
set to

(
X D−1/2

z MZ
)

.
For given α, the following alternating least-squares algorithm is used to

minimize the loss function in Eq.1:

1. Generate an initial cluster allocation ZK (e.g., by randomly assigning
subjects to clusters).

2. Find loadings B by taking the eigendecomposition of
X∗′ ((1−α)P− (1−2α)I)X.

3. Update the cluster allocation ZK by applying K-means to the reduced
space subject coordinates XB.

4. Repeat the procedure (i.e., go back to step 2) using ZK for the cluster
allocation matrix, until convergence. That is, until ZK remains constant.

Note that, for α = 1 CDR reduces to PCAMIX, for α = 1/2 we get mixed
RKM method and for α = 0 we have mixed FKM.

2 Global and local cluster stability via resampling

Cluster validation is important because cluster analysis presents clusters in
almost any case. Here we focus on the stability of a partition in the case of
joint dimension and clustering, that is, given a new sample from the same
population, how likely is it to obtain a similar clustering? Stability can also be
used to inform the selection of the number of clusters because if true clusters
exist, the corresponding partition should have a high stability.
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Resampling approaches (that is, bootstrapping, subsetting, replacement of
points by noise) provide an elegant framework to computationally derive the
distribution of interesting quantities describing the quality of a partition (Hen-
nig 2007, Dolnicar & Leisch 2010). Simulations so far seem to suggest that
resampling makes a lot of difference; the exact scheme used is not that impor-
tant. Leisch (2015) provides a generic scheme for assessing cluster stability
via resampling. Based on this scheme, we provide below two algorithms, one
for assessing global stability, or the overall stability of a clustering partition,
and one for assessing local or cluster-wise stability, or the stability of each one
of the clusters in a given partition.

Algorithm GLOBAL STABILITY
Resampling: Draw bootstrap samples S i and T i of size n from the data and use
the original data as evaluation set E i = X. Apply a joint dimension reduction
and clustering method to S i and T i and obtain CS ,i and CT ,i.
Mapping: Assign each observation xi to the closest centers of CS ,i and CT ,i us-
ing Euclidean distance, resulting in partitions CXS ,i and CXT ,i, where CXS ,i is
the partition of the original data X predicted from clustering bootstrap sample
S i (same for T i and CXT ,i).
Evaluation: Use the Adjusted Rand Index (ARI, Hubert & Arabie, 1985) or
the Measure of Concordance (MOC, Pfitzner 2008) as measure of agreement
and stability.
Inspect the distributions of ARI/MOC to assess the global reproducibility of
the clustering solutions.

Algorithm LOCAL STABILITY
Resampling: Draw bootstrap samples S i and T i of size n from the data and use
the original data as evaluation set E i = X. Apply a joint dimension reduction
and clustering method to S i and T i and obtain CS ,i and CT ,i.
Mapping: Assign each observation xi to the closest centers of CS ,i and CT ,i

using Euclidean distance, resulting in partitions CXS ,i and CXT ,i.
Evaluation: Obtain the maximum Jaccard agreement between each original
cluster Ck and each one of the two bootstrap clusters, CXS ,i

k′ and CXT ,i
k′ as mea-

sure of agreement and stability, and take the average of each pair:

si
k =

(
max

i≤k′≤K

Ck∩CXS ,i
k′

Ck∪CXS ,i
k′

+ max
i≤k′≤K

Ck∩CXT ,i
k′

Ck∪CXT ,i
k′

)
/2

Inspect the distributions of si
k to assess the cluster level (local) stability of the

solution.
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The two algorithms are implemented in the R package clustrd via functions
global bootclus() and local bootclus(), respectively.

3 Conclusions

Stability is an important aspect of clustering quality. Resampling approaches
provide an elegant framework to assess global stability of Joint Dimension Re-
duction and Clustering solutions, as well as local quality of a cluster. However,
maximizing stability for estimating the number of clusters amounts to implic-
itly defining the “true clustering” as the one with highest stability, which may
not be appropriate. A comprehensive simulation study trying different combi-
nations could offer guidance what works best in which situations.
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ABSTRACT: Hidden Markov Models (HMMs) are a very popular tool used in many
fields to model time series data. Usually, HMMs are used to model sequences of uni-
variate or multivariate data. In this work, we extend the HMMs to the case of high
dimensional data. Specifically, we focus on the case of functional data, by taking into
consideration a sequence of multivariate curves that evolves in time. The functional
observations are linked to the state of the HMM according to a similarity function,
which depends on some metric in Hilbert spaces. After constructing a model that de-
scribes the time evolution of the functions, we apply the Viterbi algorithm to group the
functional data into clusters. We assess our results in a simulation study, comparing
our algorithm with a functional k-means.

KEYWORDS: clustering, functional data, hidden Markov models.

1 Introduction

Hidden Markov Models (HMMs) are a popular method for modeling time se-
ries. They consist of a Markov model in which the underlying states visited
by the Markov process are unobservable (i.e. hidden) but the distribution that
generates the output depends on the state (see Rabiner, 1989). In this work, we
only consider models where the state space of the hidden variables is discrete.
In the literature, HMMs usually consider an univariate or multivariate output;
we extend the use of HMMs to functional observations and we use Viterbi
algorithm to perform functional data clustering. In Section 2 we present the
model, presenting some information about the theory of HMMs while in Sec-
tion 3 we present a simulation study to assess its performance. All the analysis
have been carried out using the statistical software R (R Core Team, 2017).
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2 The model

The aim of this work is to develop a proper Hidden Markov Model (HMM)
in the multivariate functional framework to cluster sequences of curves. Typ-
ically, HMMs are used to model univariate or multivariate data taking values
in Rd , d ≥ 1. Let us consider a multivariate random curve X = {X(t)}t∈I =
{X1(t), . . . ,XJ(t)}t∈I , with J ≥ 1 and I compact interval of R, as a random el-
ement of L2(I;RJ) equipped with the Borel σ-algebra, such that {X j(t)}t∈I ∈
L2(I) for any j ∈ {1, ..,J}.

We can define a Hidden Markov Model (see Cappé et al., 2005) as a
process {(Qk,{Xk(t)}t∈I)}k≥0 on a given probability space (Ω,F ,P), where
{Xk(t)}t∈I is a multivariate random curve and {Qk}k≥0 is a Markov chain with
a discrete and finite state space {s1, . . . ,sN}, with N ≥ 1, transition matrix A =
{ai j}= P(Qk = s j|Qk−1 = si) and initial distribution ννν, where νi = P(Q0 = si).
Given the process {Qk}k≥0, {{Xk(t)}t∈I}k≥0 is a sequence of conditionally in-
dependent multivariate functions and {Xk(t)}t∈I only depends on Qk for each
k . We denote the emission function of Xk conditionally on the event {Qk = si}
with bi( · ;µµµi), for any i = 1, . . . ,N, where µµµi is a functional representative of
state si; specifically, bi( · ;µµµi) is the likelihood that the function Xk is emitted
from state si. We can completely define our HMM with the set of parameters
λ = (ννν,A,µµµ1, . . . ,µµµN). In this work, we use distances between functions to
construct the emission functions bi( · ;µµµi), i = 1, . . . ,N. Let us denote with d a
generic distance in L2(I;RJ); the likelihood that a realization of the stochastic
process X is emitted from state si is bi( · ;µµµi) = h(d( · ,µµµi)), where h : R→R is
a function that transforms the distance into a similarity measure. In particular,
we will use the L2 distance.

Using the Baum-Welch algorithm, we are able to find the set of parameters
λ∗ = argmax

λ
L(λ|x) that maximizes the log-likelihood of our model

log(L(λ|x)) =
N

∑
j=1

γ1( j) logν j

︸ ︷︷ ︸
term 1

+
N

∑
i=1

N

∑
j=1

(
K

∑
k=2

ξk(i, j)

)
logai j

︸ ︷︷ ︸
term 2

+
N

∑
j=1

K

∑
k=1

γk( j) logbi(xk;µµµ j)

︸ ︷︷ ︸
term 3

.

(1)

where ξk(i, j) = P(Qk = si,Qk+1 = s j | X1 = x1, . . . ,Xk = xk,λ) and γk(i) =
P(Qk = si | X1 = x1, . . . ,Xk = xk,λ) (see Zucchini & Langrock, 2016 for fur-
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ther details). To estimate the functional representatives (µi j)i=1,...,N; j=1,...,J of
the states of the HMM, we extend all the estimators commonly used in the
functional data framework into the theory of functional HMM. Then, the esti-
mator of µµµ in the HMM framework is µ̂µµ = (∑K

k=1 γk( j)XXXk)(∑K
k=1 γk( j))−1.

Finally, we are able to cluster all the multivariate curves by finding the
best state sequence Q. To solve this problem, we use the Viterbi algorithm.
For every k, we want to find δk(i), i.e. the highest probability on a single path
at time k the partial sequence x1, . . . ,xk. By applying this algorithm, we are
able to retrieve the best state sequence and obtain the clustering labels of the
curves, by keeping track of the time evolution of the system.

3 Simulation Studies

We generate three samples of length n of i.i.d. realizations for three inde-
pendent bivariate stochastic processes X,Y,Z in L2(I;RJ), with J = 2. Each
sample is emitted from a different state of the following 3-state Markov Model:

• State 1: ν1 = 1,a11 = 0.6,a12 = 0.3,a13 = 0.1, m1(t) =
(

t(1− t)
2t

)
;

• State 2: ν2 = 0,a21 = 0.1,a22 = 0.8,a23 = 0.1, m2(t) =
(

t2(1− t)
t2

)
;

• State 3: ν3 = 0,a31 = 0,a32 = 0,a33 = 1, m3(t) =
(

t(1− t)2

1
2 t3

)
.

where ννν = (νi) is the vector of the initial probabilities of the state, A = (ai j) is
the transition matrix and mi(t), i = 1, . . . ,N, represent the real means of each
sample. For each state, the sample is generated using the same exponential
covariance kernel C(s, t) = ae−b|s−t|, a = 0.1, b = 0.3. We choose the number
of states, i.e. the number of clusters, by running our algorithm for N = 2, . . . ,5
states and by computing each time the AIC and BIC criteria. Since both cri-
teria reach the minimum value for N = 3, we choose this value as the “opti-
mal” number of states for the HMM. After choosing the number of states, we
summarize our results along 100 repetitions of our algorithm to estimate the
parameters of the HMM. In Tab. 1 we can see the mean square error (MSE)
and the standard deviation (SD) of the parameters along the repetitions. As we
can see, all the parameters are very well estimated, both in terms of mean and
standard deviation of the parameters.

Moreover, we can obtain some further information about the clustering
structure of our data. Specifically, we use our model and apply the Viterbi al-
gorithm on the output obtained from the Baum-Welch algorithm, to estimate
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Parameter MSE (SD)
a11 3.71 ·10−2 (9.23 ·10−3)
a12 8.30 ·10−3 (1.17 ·10−2)
a13 8.01 ·10−2 (4.10 ·10−2)
a21 2.89 ·10−2 (2.32 ·10−3)
a22 2.07 ·10−3 (1.70 ·10−3)
a23 9.72 ·10−4 (1.69 ·10−3)
a31 1.31 ·10−3 (9.29 ·10−3)
a32 7.10 ·10−8 (3.54 ·10−7)
a33 1.32 ·10−3 (9.31 ·10−3)
ν1 2.00 ·10−2 (1.41 ·10−1)
ν2 2.00 ·10−2 (1.41 ·10−1)
ν3 < 2 ·10−16(< 2 ·10−16)

Table 1. MSE (SD) of the HMM parameters for 100 simulation runs of the Baum-
Welch algorithm with N = 3 states for the HMM.

the best state sequence and compare it with the output of the k-means algo-
rithm (see Tarpey & Kinateder, 2003 for further details), based on the same
distance. In particular, we obtain a Correct Classification Rate (CCR) of 0.857
by applying our method against a CCR of 0.591 by applying the functional
k-means algorithm. We can conclude that, not only our method is able to de-
tect the time structure behind the sequences of functional data and estimate
all the parameters of the underlying hidden states but, by applying the Viterbi
algorithm, we can also cluster the curves obtaining good values of accuracy.
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COMPOSITE LIKELIHOOD INFERENCE FOR 
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REDUCTION OF MIXED-TYPE LONGITUDINAL DATA 
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ABSTRACT: We introduce a multivariate hidden Markov model (HMM) for mixed-
type (continuous and ordinal) variables. As some of the considered variables may not
contribute to the clustering structure, we built a hidden Markov-based model such that
we are able to recognize discriminative and noise dimensions. The variables are con-
sidered to be linear combinations of two independent sets of latent factors where one
contains the information about the cluster structure, following an HMM, and the other
one contains noise dimensions distributed as a multivariate normal (and it does not
change over time). The resulting model is parsimonious, but its computational burden
may be cumbersome. To overcome any computational issue, a composite likelihood
approach is introduced to estimate model parameters.

KEYWORDS: mixed-type data, data reduction, HMM, composite likelihood, EM al-
gorithm.

1 Introduction

In this work we focus our attention on longitudinal multivariate-mixed type
data (continuous and ordinal variables). This means there are three major
dependency structures: correlation between multivariate variables, temporal
dependence and heterogeneity. Furthermore, to be realistic, we assume the
presence of dimensions (named noise) that are uninformative for capturing the
heterogeneity over time and could obscure the true data structure. To simplify,
the aim of the proposal is to recover the cluster structure underlying the data
that varies over time through some discriminative factors. Following the the
Underlying Response Variable (URV) (see e.g. Jöreskog, 1990, Lee et al. ,
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1990) approach, both the continuous and the categorical ordinal variables fol-
low a Gaussian mixture model (Mclachlan & Peel, 2000), where the ordinal
variables are only partially observed through their ordinal counterparts. To take
into account the temporal dependence, we assume that the Gaussian mixture
changes over time according to the realizations of an homogeneous first order
Markov chain. In other words we are assuming a partially observed hidden
Markov model (HMM). This extends the mixture model for mixed-type data
(Everitt, 1988; Ranalli & Rocci, b 2017) over time. As regards the presence
of noise variables, in literature there are approaches based on a family of mix-
ture models which fits the data into a common discriminative subspace (see
e.g. Bouveyron & Brunet, 2012; Kumar & Andreou, 1998; Ranalli & Rocci,
2017). The key idea is to assume a common latent subspace to all latent states
that is the most discriminative. This allows to project the data into a lower
dimensional space preserving the clustering characteristics over time, leading
to a better and more parsimonious visualization and interpretation of the un-
derlying structure of the data. The model can be formulated as a HMM with
a particular set of constraints on the latent state parameters. The parameter
estimates is based on a composite likelihood approach (Lindsay, 1988). The
material is organized as follows. In section 2, we present the model specifica-
tion. In section 3, we outline the model parameter estimation. The EM-like
algorithm and an example of application on real data showing the effectiveness
of the proposal will be presented elsewhere for lack of space.

2 Model specification

Let xt = [x1, . . . ,xO]
′ and yŌ

t = [yO+1, . . . ,yP]
′ be O ordinal and Ō = P−O con-

tinuous variables, respectively, with t = 1, . . . ,T . The associated categories
for each ordinal variable are denoted by ci = 1,2, . . . ,Ci with i = 1,2, . . . ,O.
Following the URV approach, the ordinal variables x are considered as a cat-
egorization of a continuous multivariate latent variable yO

t = [y1, . . . ,yO]
′. We

assume that the temporal evolution of these data is driven by a multinomial
process in discrete time ξξξ 1:T = (ξξξ t , t = 1, . . . ,T ), where ξξξ t = (ξt1, . . . ,ξtK) is
a multinomial random variable with K classes. We specifically assume that
such process is distributed as a homogeneous Markov chain, whose distribu-
tion, say p(ξξξ 1:T ; ppp), is known up to a vector of parameters p that includes
the initial probabilities and the transition probabilities of the chain. Condi-
tionally on the value assumed each time by the Markov chain, the distribution
of the data at time t depends on the specific component parameters of a par-
tially observed multivariate normal. Formally, let define K initial probabilities
as pk = P(ξ1k = 1) with ∑K

k=1 pk = 1 and K2 transition probabilities as phk =
P(ξtk = 1 | ξ(t−1)h = 1) with h,k = 1, . . . ,K and ∑K

h=1 phk = 1. It follows that
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the Markov chain process is p(ξξξ 1:T ,p) = ∏K
k=1 pξ1k

k ∏T
t=1 ∏K

h=1 ∏K
k=1 p

ξ(t−1)hξtk

hk .
According to the URV, the joint distribution of x and yŌ can be constructed
as follows. The latent relationship between x and yO is explained by the
threshold model, xi = ci ⇔ γ(i)ci−1 ≤ yi < γ(i)ci , with ci = 1, . . . ,Ci and where

−∞ = γ(i)0 < γ(i)1 < .. . < γ(i)Ci−1 < γ(i)Ci
= +∞ are the thresholds defining the Ci

categories collected in a set ΓΓΓ whose elements are given by the vectors γγγ(i).
To accommodate both cluster structure and dependence within the groups, we
assume that the distribution yt = [yO′

t ,yŌ′
t ]′ given a particular point in time,

say t and conditioning on ξξξ t , follows a partially observed multivariate normal,
f (ynt | ξξξ t) = ∏K

k=1 φP (ynt | µµµk,ΣΣΣk)
ξnkt , where the ξnkt is a Bernoulli variable

that assumes value 1 if the n−th observation is classified in state k at time t,
φP (y; µµµk,ΣΣΣk) is the density of a P-variate normal distribution with mean vector
µµµk and covariance matrix ΣΣΣk.
Let us set ψψψ = {p,µµµ1, . . . ,µµµK ,ΣΣΣ1, . . . ,ΣΣΣK ,ΓΓΓ} ∈ ΨΨΨ, where ΨΨΨ is the parameter
space. For a random i.i.d. sample of size N, (x1,yQ̄

1 ), . . . ,(xN ,yQ̄
N), the log-

likelihood is

`(ψψψ) =
N

∑
n=1

log


∑

ξξξ 1:T

p(ξξξ t ,p)φŌ(y
Ō
nt | ξξξ t ,µµµ

Ō
k ,ΣΣΣ

Ō
k )πnt

(
µµµO|Ō

nt;k ,ΣΣΣ
O|Ō
k ,ΓΓΓ,ξξξ t

)

 , (1)

where, with obvious notation

πnt

(
µµµO|Ō

n;k ,ΣΣΣO|Ō
k ,ΓΓΓ,ξξξ t ,

)
=
∫ γ(1)c1

γ(1)c1−1

· · ·
∫ γ(O)

cO

γ(O)
cO−1

φO(unt ; µµµO|Ō
nt;k ,ΣΣΣ

O|Ō
k )dunt ,

where πn

(
µµµO|Ō

nt;k ,ΣΣΣ
O|Ō
k ,γγγ

)
is the conditional joint probability of response pat-

tern xnt = (c(1)1 , . . . ,c(O)
O ) given the cluster k and the continuous variables yŌ

nt .
In order to identify the discriminative dimensions, it is assumed that there is a
set of P latent factors ỹt , formed of two independent subsets.
In the first one, there are Q (with Q≤ P) factors that have some clustering in-
formation distributed as a mixture of Gaussians with class conditional means
and variances equal to E(ỹQ | k) = ηk and Cov(ỹQ | k) = Ωk, respectively. In
the second set there are Q̄= P−Q noise factors defining the so-called noise di-
mensions, that are independent of ỹQ and their distribution does not vary from
one class to another: E(ỹQ̄ | k) = η0 and Cov(ỹQ̄ | k) =Ω0. The link between ỹ
and y is given by a non-singular P×P matrix A, as y = Aỹ. The final step is to
identify the variables that could be considered as noise. Intuitively yp is a noise
variable if it is well explained by ỹQ̄. Exploiting the independence between ỹQ

and ỹQ̄, it is possible to compute proportions of each variable’s variance that
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can be explained by the noise factors, and by one’s complement, the propor-
tions of each variable’s variance that can be explained by the discriminative
factors at each time point.

3 Construction of surrogate functions

The corresponding complete-data log likelihood involves multidimensional in-
tegrals that makes the maximum likelihood estimation computationally de-
manding and infeasible. To overcome this, we adopt a composite likelihood
approach (Lindsay, 1988) based on O(O− 1)/2 marginal distributions each
of them composed of two ordinal variables and Ō continuous variables. The
parameter estimates are carried out through an EM-like algorithm along with
Baum-Welch recursion, that works in the same manner as the standard EM for
HMMs.

References

BOUVEYRON, C., & BRUNET, C. 2012. Model-based clustering of high-dimensional
data: A review. Computational Statistics & Data Analysis, 71, 52–78.

EVERITT, B.S. 1988. A finite mixture model for the clustering of mixed-mode data.
Statistics & Probability Letters, 6(5), 305–309.
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ABSTRACT: We propose a bivariate semi-parametric mixed-effects model where the 
random effects are assumed to follow a discrete distribution with an unknown number 
of support points, together with an Expectation-Maximization algorithm to estimate 
its parameters - the BSPEM algorithm. This model for hierarchical data can be ap-
plied in many multivariate classification p roblems a nd e nables t he i dentification of 
subpopulations within the higher level of the hierarchy. In the case study, we ap-
ply the BSPEM algorithm to data about Italian middle schools, considering students 
nested within classes, and we identify subpopulations of classes that have different 
class effects on reading and mathematics student achievements.

KEYWORDS: EM algorithm, multivariate statistics, semi-parametric mixed-effects 
models, student achievements.

1 Introduction

In this work, exploiting previous results in the research about school and class
value-added in the Italian education context, we propose a study that is innova-
tive both from a methodological and an interpretative point of view. First of all,
we develop a bivariate, i.e. for a bivariate response variable, semi-parametric
mixed-effects linear model. Secondly, we show how this new method can be
effective in the research about class effectiveness, by applying it in a case study
that faces the new issue of the identification of clusters of Italian classes, stand-
ing on their joint effect on student achievement trends in reading and mathe-
matics. The model that we propose is a bivariate two-level linear model where
the coefficients of random effects, under semi-parametric assumptions, follow
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a bivariate discrete distribution with an unknown number of mass points. This
model is the multivariate extension of the semi-parametric mixed-effects linear
model proposed in ?, that is totally new to the literature. In particular, it enters
in the research line about the identification of subpopulations of the Growth
Mixture Models (?) and of Latent Class Mixture Models (?), but with the nov-
elty and the advantage that, contrarily to these existing methods, it does not
need to fix a priori the number of latent subpopulations to be identified. In
the application to the INVALSI data, the two-levels model, in which we con-
sider students as first level and classes as second one, aims at identifying a
latent clustering structure of classes where, within each cluster, the effect of
the classes on their student achievement trends across years are similar.

2 The Dataset

The INVALSI database (www.invalsi.it) contains information about 18,242
students attending the third year of junior secondary school in the year 2016/2017,
nested within 1,082 classes. At pupil’s level, we consider reading and mathe-
matics INVALSI test scores at grade 8 (RS and MS); reading and mathematics 
INVALSI test scores at grade 5, three years before, of the same students; the 
socio-economic index (ESCS), the gender and the immigrant status of stu-
dents. Moreover, INVALSI in the survey 2016/2017, by means of teacher 
questionnaires, collected information about teachers characteristics (age, edu-
cation, gender...), teaching practices, class-body composition and geographical
area.

3 Methodology

We consider the case of a bivariate semi-parametric two-level model with P
fixed covariates, one random intercept and one random covariate. The model
takes the following form:

Yi =
(
y1,i y2,i

)
= Xi

(
β 1
β 2

)T

+Zi

(
c1,m
c2,k

)T

+ ε i

i = 1, . . . ,N m = 1, . . . ,M k = 1, . . . ,K

εT
i =

(
ε1,i
ε2,i

)
∼N2(0,Σ) ind.

(1)

where, in our application, N is the total number of classes; Yi is the (ni×
2)-dimensional matrix of student achievements in reading and mathematics
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at grade 8 in class i; Xi is the (ni × P)-dimensional matrix of ESCS, gen-
der and immigrant status of students in class i (P = 3); Zi is the (ni × 2)-
dimensional matrix of the same students achievements in reading and math-
ematics at grade 5 (three years before) in class i and the intercepts. Σ is the
(2× 2)-dimensional variance-covariance matrix of the errors. β =

(
β 1 β 2

)

is the (P× 2)-dimensional matrix of coefficients of Xi, while each cmk =(
c1,m c2,k

)
is the (2× 2)-dimensional matrix of coefficients of Zi and fol-

lows a discrete distribution P∗ with M×K support points, where M and K are
not known a priori. P∗ can then be interpreted as the mixing distribution that
generates the density of the stochastic model in (1). The ML estimator P̂∗ of
P∗ can be expressed as a set of points (c11, . . . ,cMK), where M ≤N, K ≤N and
cmk ∈ R4 for m = 1, . . . ,M, k = 1, . . . ,K and a set of weights (w11, . . . ,wMK),
where ∑M

m=1 ∑K
k=1 wmk = 1 and wmk ≥ 0 for each m = 1, . . . ,M and k = 1, . . . ,K.

Given this, we develop an EM algorithm for the joint estimation of Σ, β ,
(c11, . . . ,cMK) and (w11, . . . ,wMK), that is performed through the maximiza-
tion in closed form of the likelihood, mixture by the discrete distribution of the
random effects,

L(β ,cmk,Σ|y) =
M

∑
m=1

K

∑
k=1

wmk√
|det(2πΣ)|J

×

×exp

{
N

∑
i=1

ni

∑
j=1
−1

2

(
y1,i j− c1,1m−∑P

p=1 β1px1p,i j− c1,2mz1,i j

y2,i j− c2,1k−∑P
p=1 β2px2p,i j− c2,2kz2,i j

)T

Σ−1

(
y1,i j− c1,1m−∑P

p=1 β1px1p,i j− c1,2mz1,i j

y2,i j− c2,1k−∑P
p=1 β2px2p,i j− c2,2kz2,i j

)}
(2)

with respect to Σ, β and (cmk,wmk), for m = 1, . . . ,M and k = 1, . . . ,K. Each
class i, for i = 1, . . . ,N is therefore assigned to a cluster mk, for m = 1, . . . ,M
and k = 1, . . . ,K. J = ∑N

i=1 ni. Moreover, given N starting support points,
during the iterations of the EM algorithm, we reduce the support of the discrete
distribution introducing a tuning parameter D: if two points are closer than D
(in terms of Euclidean distance) they collapse to a unique point (e.g. two points
cl∗ and cm∗ closer than D collapse to a unique point c(lm)∗=

cl∗+cm∗
2 with weight

w(lm)∗ = wl∗+wm∗).
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4 Results

The BSPEM algorithm applied to INVALSI data identifies 5 subpopulations
for the class effects in mathematics and 4 subpopulations for reading. Esti-
mates of the parameters are shown in Table 1.

First response variable

ĉ1,1 ĉ1,2 ŵ1 β̂11 β̂12 β̂13
(intercept) (math5) (weight) (ESCS) (gender) (immigrant)

m=1 0.295 0.719 0.458

0.089 −0.055 0.048
m=2 −0.181 0.463 0.384
m=3 0.762 0.463 0.025
m=4 −1.301 0.112 0.064
m=5 0.366 0.291 0.069

Second response variable

ĉ2,1 ĉ2,2 ŵ2 β̂21 β̂22 β̂23
(intercept) (read5) (weight) (ESCS) (gender) (immigrant)

k=1 −2.848 −0.101 0.019

0.095 0.219 −0.083k=2 −0.622 0.262 0.095
k=3 −1.556 0.188 0.018
k=4 0.054 0.544 0.868

Table 1. Estimates of the coefficients of Eq. (1) obtained by the BSPEM algorithm.
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ABSTRACT: The aim of this work is to find individual and joint change-points in a
large multivariate database of climate data. We model monthly values of precipitation,
minimum and maximum temperature recorded in 360 stations covering all Italy for 60
years (12× 60 months). The proposed three variate Gaussian change-point model lets
us estimate a different change-point model for each station. As stations possibly share
some of the parameters, this model framework provides an original definition of the
change-points corresponding to changes in any subset of the 9 model parameters. In
this paper, results for two stations in Southern Italy are shown as an example.

KEYWORDS: change-point model, hierarchical Dirichlet process, climate data.

1 Introduction

Climate elements and regimes, such as temperature, precipitation and their
annual cycles, primarily affect the type and distribution of plants, animals, and
soils as well as their combination in complex ecosystems. From a botanical
perspective, the analysis of change-points allows to detect abrupt changes in
the climatic behaviour and supports inferences of the potential effects of these
changes on ecosystem composition, functionality, distribution, and dynamics
at different spatial and time scales (Liu & Lei, 2015).

In order to simplify the joint distribution modeling of the climate variables,
we standardize the temperatures and rescale the precipitation with its standard
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deviation; the latter is then seen as the realization of a latent variable belonging
to the real line (R) (Mastrantonio et al. , 2019) . At each station the trivariate
time series can then be assumed to come from a change-point (CP) model with
multivariate normal emission distribution, parametrized using 9 parameters: 3
intercepts, 3 variances and 3 correlations. We define the CP model using a
modified version of the hierarchical Dirichlet process (Teh & Jordan, 2010),
which allows that different time series can share a subset of the 9 parameters
and that some or all of these parameters change at each change-point.

2 The model

We consider monthly records of precipitation and min/max temperature at 360
monitoring stations over 60 years (1951-2010). Almost all original time series
are affected by variable amounts of missing data. The full database reports
360×60×12 entries.

Let us denote with yt,s,2 and yt,s,3 the standardized minimum and maximum
temperature, respectively, and yt,s,1 be a “latent” standardized precipitation,
assuming values in R, where the negative values are associated to the event “no
precipitation” (Mastrantonio et al. , 2019), where s∈S are spatial coordinates
and t ∈ T temporal indices. Our main idea is to model each trivariate time
series yt,s using a CP model with a multivariate normal emission distribution
and the following features:

f (y|θ) = ∏
s∈S

∏
t∈T

φ3(yt,s|θ t,s), (1)

θ t,s|(θ t−1,s = θ ∗s,k)∼
∞

∑
j=k

πs, j

1−∑k−1
h=1 πs,h

δθ ∗s, j , (2)

Gs = ∑
k∈Z

πs,kδθ ∗s,k ∼ Dir(α,G0), (3)

G0 =
9

∏
h=1

Gθh (4)

Gθh = ∑
k∈Z

ξθhδθ ∗∗j ∼ Dir(γ,Hθ j), h = 1, . . . ,9 (5)

where φ3() is a trivariate normal density, θt,s contains the 3 regressive coeffi-
cients (β ), 3 variances σ2 and 3 correlations ρ that parametrize the likelihood,
and δ· is the indicator function.
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Figure 1: Posterior distributions and time-series of the number of change-
points for all parameters (a b) and for the intercept (c d) for the stations Lucera
(a c) and Vieste (b d).

The trivariate normal density in (1) is parametrized using 9 parameters.
For each of them we have a corresponding distribution drawn from a Dirichlet
process, in (5).All these distributions are combined to obtain the discrete distri-
bution G0 in (4), with atoms given by (5) and weights obtained as the products
of the ones of (5). As in the standard Hierarchical Dirichlet process, a com-
mon Dirichlet based distribution, here G0, is used as base distribution for DP
draws, see (3). The Gs distributions share the same set of atoms with different
weights. Equations (1) -(2) define CP models for each station. At each time
t, the values of the parameters are drawn from a discrete distribution which
allows them to assume the same value of the previous time or a new one that
has never been observed previously at the specific location s. The occurrence
of a change point does not imply that all 12 parameters change. Further, Gs
and Gs′ have the same set of atoms, implying that the two time series can have
all or some of parameters in common.

3 Some Results

We describe part of the results for the stations Lucera and Vieste. The maxi-
mum a posteriori (MAP) number of change-points in Lucera is three, two CP’s

335



have high probability too, while in Vieste we observe two CP’s. Figures 1 (a)
and (b) show the probability that at a given time (horizontal) the time series is
following a specific regime (vertical), the darker the color the largest the prob-
ability. We can observe that even if Lucera (a) registers three possible regimes,
the second one lasts less than one year. Figures 1 (c) and (d) show the posterior
densities of the considered parameter for each time point. The time points are
represented by the x-axis, in the y-axis there are the values assumed by the
parameter and the color represents the density, with blue equals to zero and the
darkest red the maximum value. We can see a clear change of value at point
320, for the precipitation at Lucera while no strong evidence of change-point
is obtained for the precipitation in Vieste. Notice that, starting from time 320
(when Lucera’s change-point is found), there is a probability of 0.7 that the
intercept of the precipitation has the same value in the two stations, as we can
see from Figures 1 (c) and (d). The code is written in R/C++, and uses the
openMP library to perform parallel computing. Our proposal allows for a very
rich inference on the joint CP detection. Posterior estimates are obtained in 2
days, with 40000 iterations per day and 10 GB of ram usage.
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ABSTRACT: We propose an extension of the stochastic block model for recurrent in-
teraction events in continuous time, where every individual belongs to a latent group
and conditional interactions between two individuals follow an inhomogeneous Pois-
son process with intensity driven by the individuals latent groups. We show that the
model is identifiable and rely on a semiparametric variational expectation-maximization
estimator. We develop two versions of the method, one using a nonparametric his-
togram approach with an adaptive choice of the partition size, and the other using
kernel intensity estimators. The number of latent groups is selected by an integrated
classification likelihood criterion. Synthetic experiments and two datasets illustrate
the performance and utility of our approach, also compared with competing methods.

KEYWORDS: expectation-maximization algorithm, link streams, longitudinal network,
variational approximation, temporal network.

1 Introduction

The past few years have seen a large increase in the interest for modelling
dynamic interactions between individuals. Continuous-time information on
interactions is often available, for example as email exchanges between em-
ployees in a company or face-to-face contacts between individuals measured
by sensors, but most models use discrete time.

Clustering individuals based on interaction data is a well-established way
to account for the intrinsic heterogeneity and to summarize information. For
discrete-time sequences of graphs, many recent approaches propose general-
izations of the stochastic block model to a dynamic context. Stochastic block
models posit that all individuals belong to one of finitely many groups, and
given these groups all pairs of interactions are independent. Stochastic block
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models induce more general clusterings than do community detection algo-
rithms. Indeed, clusters are not necessarily characterized by intense within-
group interaction and low interaction frequency towards other groups.

2 Method

We introduce a semiparametric stochastic block model for recurrent interaction
events in continuous time, which we refer to as the Poisson process stochastic
block model. Interactions are modelled by conditional inhomogeneous Pois-
son processes, whose intensities only depend on the latent groups of the inter-
acting individuals. We do not rely on a parametric model where intensities are
modulated by predefined network statistics; they are modelled and estimated
in a nonparametric way. The model parameters are shown to be identifiable.
Our estimation and clustering approach is a semiparametric ver sion of the
variational expectation-maximization algorithm, where the maximization step
is replaced by nonparametric estimators of the intensities. We propose two
different estimators of the nonparametric part of the model: a histogram ap-
proach where the partition size is adaptively chosen, and a kernel estimator.
With the histogram approach, an integrated classification likelihood criterion
is proposed to select the number of latent groups.

Synthetic experiments and the analysis of two datasets illustrate the strengths
and weaknesses of our approach. The first dataset uses the cycle hire usage
data from the bike-sharing system of the city of London while the second is
the Enron corpus containing emails exchanges among people working at En-
ron, during the period of the affair that led to the bankruptcy of the company.

3 Details

This talk is a presentation of the paper Matias et al. , 2018. The code is avail-
able in the R package ppsbm.
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ABSTRACT: In recent decades, clustering techniques based both on functional data
analysis (FDA) and fuzzy logic theory have captivated the attention of many scholars.
In these two areas of research, many metrics have been introduced over time to identify
similarity among statistical units. This study underlines that, in the field of FDA, to the
best of our knowledge, research has always focused on the so-called crisp clustering.
The latter considers that a statistical unit can uniquely be associated with a single
group. On the other hand, fuzzy clustering techniques, in a non-functional context,
contemplate the feasibility that a statistical unit can belong to diverse groups at the
same time. Therefore, the objective of this article is to blend the two strategies and
offer an unsupervised fuzzy functional classification approach.

KEYWORDS: clustering, FDA, fuzzy clustering, k-means, fuzzy functional k-means.

1 Introduction

In contemporary statistical language, the term classification encompasses un-
supervised (classification) that refers to clustering, where the class labels are
latent, and supervised (classification) that indicates procedures such as linear
discriminant analysis, logistic regression, and nearest neighbours where the
group labels are known and can be adopted for learning classification rules to
deal with further data. In addition to the classical statistical approaches, super-
vised and unsupervised classification methods can be based both on functional
data analysis (FDA) and fuzzy logic theory. In these latter settings, classifica-
tion techniques have also attracted the consideration of scholars from various
research areas. Mainly, unsupervised classification techniques, i.e. clustering,
have been very flourishing and led to copious utilisation in these two contexts.
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Focusing on the k-means algorithm, to the best of our knowledge, FDA schol-
ars have always concentrated on the so-called crisp functional clustering. The
latter contemplates that a statistical unit can uniquely be associated with a sin-
gle group.

On the other hand, fuzzy clustering techniques, in a non-functional con-
text, consider the feasibility that a statistical unit can belong to distinct groups
at the same time. The main reason behind this idea is that reality is shaded
and, in some contexts, forcing a statistical unit to belong to a single group, as
illustrated by Zadeh (1975) and his followers (Bezdek, 1981; Bora and Gupta,
2014; Ferraro and Giordani, 2015; Betti, 2016), provides a forced image of
reality. It is sufficient to think of all those cases in which, by performing a
k-means, we are obligated to provide a stopping rule because a statistical unit
moves continuously from one group to another at each iteration. Sometimes,
it is more reasonable to think that a statistical unit belongs to multiple sets si-
multaneously with a different degree of truth, which is the basic idea of fuzzy
clustering, where the level of truth is the so-called membership function in
[0,1].

Accordingly, the purpose of this study is to combine FDA and fuzzy logic
to offer an unsupervised fuzzy functional classification procedure for cluster-
ing functional data.

2 Material and Methods

The fundamental concept of FDA is to manage data functions as single objects.
However, in real applications, functional data are regularly observed as a se-
quence of point data. The first step in FDA is to transform the observed values
yi1,yi2, ...,yiT for each unit i = 1,2, ...,N to a functional form computable at
any desired point x ∈ℜ. To estimate the functional datum, several techniques
are available, but the basis approximation is the most used (Ramsay, 2005):

x(t) = ∑
j∈N

c jφ j(t)≈
K

∑
j=1

c jφ j(t) (1)

where c j is the vector of coefficients defining the linear combination and
φ j(t) is the vector of basis functions.

The functional principal component decomposition (FPCA), is also widely
adopted in the FDA framework. FPCA allows us representing the functions by
a linear combination of a small number of functional principal components
(FPCs). Thus, the functional data can be approximated by:
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x̂i(t) =
K

∑
i=1

νikξk(t) (2)

where νik is the score of the generic FPC ξk for the generic function xi
(i = 1,2, ...,N). In the FDA context many metrics and semi-metrics have been
proposed over time to group functional data using a crisp approach (see e.g.
Ferraty and View, 2006; Febrero-Bande and de la Fuente, 2012; Jacques and
Preda, 2014; Cuevas, 2014).

On the other hand, in a non-functional context, Bezdek (1981) introduced
the fuzzy k-means, i.e. an algorithm that proceeds iteratively through the min-
imisation of the objective function:

Jm(U,v) =
G

∑
g=1

n

∑
i=1

um
igd2

ig (3)

where dig = |xi− vg| is a suitable norm on Rp for example the Euclidean
norm, xi ∈ Rp is the i-th component of units vector, vg ∈ Rp is the g-th com-
ponent of the centroid vector, U is the matrix of the degree of membership of
dimension n× c, and m ∈ [1,+∞).

In this setting, for each unit, it is determined the degree of membership
to the G groups. The degree of membership of the ith unit to the gth group,
denoted by uig, satisfies the constraints 0 ≤ uig ≤ 1 and ∑G

g=1 uig = 1 where
i= 1,2, ...,n and g= 1,2, ...,G. The objective function depends on the distance
dig, between the i-th unit and the centroid of the g-th group, and the parameter
m which adjusts the level of fuzziness.

The basic idea of this study is to propose a fuzzy k-means clustering of
functional objects according to the following procedure:

1. Smooth the original data using Equation 1. This phase is actually op-
tional because it is possible to skip to the next phase. In reality, this
phase makes it possible to exploit the representation of data to obtain
additional information such as derivatives and other functional tools;

2. Perform the FPCs decomposition as in Equation 2;
3. Select the first S FPCs explaining 70%-80% of the total variability;
4. Get the first S scores νik with k = (1,2, ...,S);
5. Use the scores to compute the objective function Jm(U,v) as in Equation

3;
6. Obtain the membership functions for each group and for each functional

object, so that each functional object belongs to all groups in a nuanced
manner.
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This procedure has interesting implications in real cases, where we deal
with functional data with complex behaviours and thus, depending on the part
of the domain considered, they might have a different tendency to belong to
one group rather than another. Instead, forcing these functions to belong to a
single group uniquely as in the classical k-means approach, could reduce the
information available with respect to the proposed procedure.
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MIXTURE MODELLING WITH SKEW-SYMMETRIC
COMPONENT DISTRIBUTIONS

Geoff McLachlan1

1 Department of Mathematics, University of Queensland,
(e-mail: g.mclachlan@uq.edu.au)

ABSTRACT: In recent years there has been an increasing use of finite mixtures of
skew distributions for the modelling and analysis of heterogeneous and nonnormal
data. These models adopt component densities that offer a high degree of flexibility in
distributional shapes. In particular, the skew-symmetric family of distributions, which
include the classical skew normal and skew t-distributions, has become increasingly
popular. But besides improving on existing models, there is also a need to provide a
critical comparison of the available proposals to make them more accessible and easier
to understand to people outside of the area, including to practitioners and researchers
from other disciplines. We shall present a short review of the more commonly used
skew distributions before focussing on recent proposals.

This is joint work with Sharon Lee

KEYWORDS: multivariate skew normal mixtures, CFUST distributions, EM algo-
rithm.
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ABSTRACT: Pairwise overlap between components is defined as the sum of two mis-
classification probabilities and can be used as a measure of their proximity. The clus-
tering complexity of data can be assessed based on the magnitude of pairwise overlap
values. In other words, components with low overlap produce well-separated clusters
and those that exhibit high overlap are expected to yield more misclassifications. This
can be used to simulate data that are either easy or difficult to group and study the
systematic properties of clustering algorithms in various settings.

The efficient calculation of overlap values is available for Gaussian components.
It is implemented in the R package MixSim that allows simulating clusters from Gaus-
sian mixtures according to the pre-specified level of average or maximum overlap.
However, Monte Carlo simulations are used for non-Gaussian mixtures. This affects
the computing speed and makes the procedure for finding mixtures with pre-specified
overlap level nearly impractical.

We propose novel methodology for the efficient calculation of overlap values in
the case of mixtures of skewed components, heavy-tailed ones, as well as mixtures of
regressions. This methodology can be used for simulating clusters with non-Gaussian
characteristics and evaluating clustering algorithms in a broad range of settings.

KEYWORDS: pairwise overlap, misclassification probability, skewed components,
data simulation, MixSim.
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ABSTRACT: The Plackett-Luce distribution (PL) is one of the most successful para-
metric options within the class of multistage ranking models to learn the preferences
on a given set of items from a sample of ordered sequences. It postulates that the
ranking process is carried out by sequentially assigning the positions according to the
forward order, that is, from the top (most-liked) to the bottom (least-liked) alterna-
tive. This assumption has been relaxed with the Extended Plackett-Luce model (EPL),
thanks to the introduction of the reference order parameter describing the rank attri-
bution path. Starting from the recent formulation of the Bayesian EPL, in this work
we investigate the further extension into the finite mixture approach as a method to
explore the group structure of ranking data.

KEYWORDS: Ranking data, Plackett-Luce model, mixture model, Gibbs sampling,
Metropolis-Hastings algorithm.

1 Introduction

A ranking is an ordered sequence resulting from the comparative evaluation of
a given set of items according to a specific criterion. This framework is typi-
cal in several areas of research, involving surveys on preferences for consumer
goods, psychological/behavioral studies on attitudes, voting systems and the
competition/sport context, see Marden, 1995 for a broad review of the statisti-
cal literature on methods and models for analysing ranking data.

Formally, a ranking of K items is a vector π = (π(1), . . . ,π(K)), where
the entry π(i) indicates the position attributed to the i-th alternative. Data can
be equivalently collected in the ordering format π−1 = (π−1(1), . . . ,π−1(K)),
where the component π−1( j) denotes the item ranked in the j-th position.
Thus, ranking data take values in the set of permutations SK of the first K
integers.
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This work concentrates on the parametric family of stagewise models. In
particular, our interest is in the Extended Plackett-Luce model (EPL), originally
proposed by Mollica & Tardella, 2014, both in its basic form and into the
finite mixture framework. In that work, inference on the EPL mixture was
addressed in the frequentist domain via the EM algorithm. Starting from the
recent contribution by Mollica & Tardella, 2019, here we explored the further
extension of the Bayesian EPL into the finite mixture approach.

2 The Bayesian EPL mixture

2.1 The Extended Plackett-Luce model

The EPL proposed by Mollica & Tardella, 2014 relies on the relaxation of the
conventional forward order assumption of the popular PL class through the
introduction of the reference order parameter ρ = (ρ(1), . . . ,ρ(K)), indexing
the position assignment order. So, the generic entry ρ(t) indicates the rank
attributed at the t-th stage of the ranking process and the entire vector ρ is a
discrete parameter represented by a permutation of the first K integers. The
probability of a generic ordering under the EPL can be written as

PEPL(π−1|ρ, p) = PPL(π−1ρ|p) =
K

∏
t=1

pπ−1(ρ(t))

∑K
v=t pπ−1(ρ(v))

π−1 ∈ SK .

The support parameters pi’s are proportional to the probabilities for each item
to be selected at the first stage and, hence, to be ranked in the position indicated
by the first entry of ρ.

2.2 Mixture model setup

In the EPL finite mixture scenario, one assumes that the random sample of
N orderings π−1 = (π−1

1 , . . . ,π−1
N ) is drawn from an heterogenous population

represented by a convex combination of G subpopulations (or groups), each of
which is modelled with a specific EPL distribution. Formally, we set

π−1
s |ρ, p,ω iid∼

G

∑
g=1

ωg PEPL(π−1
s |ρg, p

g
),

where ρg, p
g

and ωg are, respectively, the reference order, the support param-
eters and the weight of the g-th mixture component.
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In order to make Bayesian inference for the G-component EPL mixture
analytically tractable, a joint data augmentation strategy combining two sets
of latent variables has to be suitably introduced, specifically:

1. the unobserved group labels of each sample unit s = 1, . . . ,N

zsg =

{
1 if unit s belongs to the g-th mixture component,
0 otherwise;

2. the latent quantitative variables y= (yst) for s= 1, . . . ,N and t = 1, . . . ,K,
associated to each entry of the data matrix and linked to the component
memberships z through the following parametric assumption

f (y|π−1,z,ρ, p) =
N

∏
s=1

K

∏
t=1

fExp

(
yst

∣∣∣∣
G

∏
g=1

(
K

∑
ν=t

pgπ−1
s (ρg(ν))

)zsg
)
.

Thus, the complete-data likelihood can be written as

Lc(ρ, p,ω,y,z) =
N

∏
s=1

G

∏
g=1

(
ωg

K

∏
i=1

pgie−pgi ∑K
t=1 δstigyst

)zsg

,

where

δstig =

{
1 if i ∈ {π−1

s (ρg(t)), . . . ,π−1
s (ρg(K))},

0 otherwise.

To complete the Bayesian model specification, we considered the following
joint prior distribution for the unknown parameters (ρ, p,ω)

ρg
iid∼ Unif{SK} pgi

i∼ Ga(cgi,dg) ω∼ Dir(α1, . . . ,αG),

where the Gamma densities are indexed by the shape and rate parameters.

2.3 Estimation via MCMC methods

Under the Bayesian model setup described in Section 2.2, the MCMC method
proposed by Mollica & Tardella, 2019 to estimate the basic EPL can be easily
adapted for the G-component EPL mixture. The outline of the (l+1)-th itera-
tion of the tuned joint Metropolis-Hasting within Gibbs sampling algorithm to
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approximate the posterior distribution turns out to be

ω(l+1)|z(l) ∼ Dir
(

α1 +N(l)
1 , . . . ,αG +N(l)

G

)
,

ρ(l+1)
g , p′g|π

−1,z(l) ∼ KTJM ◦KSM,

y(l+1)
st |π−1

s ,z(l)s ,ρ(l+1), p′ ∼ Exp




G

∏
g=1

(
K

∑
i=1

δ(l+1)
stig p′gi

)z(l)sg


 ,

p(l+1)
gi |π−1,y(l+1),z(l),ρ(l+1)

g ∼ Ga

(
cgi +N(l)

g ,dg +
N

∑
s=1

z(l)sg

K

∑
t=1

δ(l+1)
stig y(l+1)

st

)
,

z(l+1)
s |π−1

s ,y(l+1)
s ,ρ(l+1), p(l+1),ω(l+1) ∼ Multinom

(
1,
(

m(l+1)
s1 , . . . ,m(l+1)

sG

))
,

where N(l)
g = ∑N

s=1 z(l)sg and

m(l+1)
sg ∝ ω(l+1)

g

K

∏
i=1

p(l+1)
gi e−p(l+1)

gi ∑K
t=1 δ(l+1)

stig y(l+1)
st .

With KTJM ◦KSM we denote the composition of two kernels, namely a tuned
joint Metropolis (TJM) and a local swap move (SM) needed to solve the ref-
erence order simulation step and ensure an adequate mixing. For the mixture
setting, the TJM and the SM are performed on the subsamples determined by
the group memberships to iteratively draw the specific reference orders ρg.

The determination of the optimal number of mixture components can be
addressed with the popular DIC (Spiegelhalter et al. , 2002).
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ABSTRACT: This work is rooted in the statistical anti-fraud activity conducted by the
European Commission for the protection of the financial interests of the European
Union. We extend a recent framework for detecting outliers and level shifts in short
time series that may have trend and seasonal patterns. Our contribution focuses on
the inclusion of an autoregressive component in the model and on model selection.
We also provide substantial evidence of the importance of fraud detection analysis for
policy support.

KEYWORDS: Fraud detection, level shift, robust time series analysis.

We support the European Commission in the protection of the financial inter-
ests of the European Union, as foreseen by the founding treaties. We use statis-
tical methods to address fraud control problems such as deflection of trade and
mis-declaration of product and origin. The patterns to detect include upward
spikes in trade flows and structural changes such as level shifts.

This contribution extends a new framework introduced by Rousseeuw et al.
(2019) for detecting outliers (isolated or consecutive) and level shifts in short
time series that may have trend and seasonal patterns, possibly relevant in our
anti-fraud context. The original framework is based on a parametric approach
to estimate level shifts that differs from the nonparametric smoothing methods
in Fried and Gather (2007) or robust methods for REGARIMA models (Bianco
et al.(2001)). The approach combines ideas from the FastLTS algorithm for ro-
bust regression with alternating least squares. Software for this framework
is available in the MATLAB FSDA toolbox (http://fsda.jrc.ec.europa.eu or
http://rosa.unipr.it/fsda.html).

The model works well on the typical trade time series, which are quite
short: typically few tens of observations, one per month. When the time series
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are longer, the dependencies on the previous values cannot be neglected and
an auto regressive component of some type needs to be included. This is our
first proposal.

There are several thousands of relevant combinations of a product at fraud
risk, a country of origin and a country of destination to analyze each month.
This requires an automatic and computationally efficient approach that is able
to report accurate information on outliers and the positions and amplitudes of
level shifts. The precondition for this is to be able to identify the proper model
for each case: our second proposal is a robust procedure conceived for the
selection of the model components, in the spirit of Occam’s razor.
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ABSTRACT: We consider model-based clustering methods for continuous, correlated
data that account for external information available in the presence of mixed-type fixed
covariates by proposing the MoEClust suite of models. These models allow different
subsets of covariates to influence the component weights and/or component densities
by modelling the parameters of the mixture as functions of the covariates. A familiar
range of constrained eigen-decomposition parameterisations of the component covari-
ance matrices are also accommodated. This paper thus addresses the equivalent aims
of including covariates in Gaussian parsimonious clustering models and incorporating
parsimonious covariance structures into all special cases of the Gaussian mixture of
experts framework. The MoEClust models demonstrate significant improvement from
both perspectives in applications to both univariate and data sets. Novel extensions to
include a uniform noise component for capturing outliers and to address initialisa-
tion of the EM algorithm, model selection, and the visualisation of results are also
proposed.

KEYWORDS: Model-based clustering, mixtures of experts, multivariate response, co-
variates, noise component.
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ABSTRACT: Many classification procedures based on data depth suffer from the “out-
sider problem” — observations outside the convex hulls of the training data remain
unclassified. We use the paradigm of illumination from convex geometry to solve this
problem. Simultaneous use of the halfspace depth and illumination allows to devise
affine invariant, highly robust classification rules that are asymptotically optimal in a
broad class of scenarios.

K EYWORDS: depth, halfspace depth, illumination, optimality, Tukey depth.

1 Depth in classification

Data depth substitutes quantiles and order statistics when multivariate datasets,
or more generally, multivariate probability measures, are involved. Proposed
by Tukey, 1975, the (halfspace) depth of a pointx∈ Rd with d ≥ 1 with respect
to a Borel probability measureP onRd is given as the minimumP-probability
of a halfspace that containsx, that is

hD(x;P) = inf
u∈Rd\{0}

P(〈x,X〉 ≤ 〈x,u〉) , (1)

whereX is a random vector with distributionP. hD(·;P) applied toP= Pn the
empirical measure of a random sample inRd ranks the observations from the
deepest ones (also called depth medians) to the least deep ones far from the
central part of the dataset. For a recent survey see Nagyet al., 2019.

Here, we focus on the use of the depth in classification. Given two indepen-
dent random samplesPni ,i from unknown, different probability distributionsPi ,
and a single pointx that was generated from one ofPi , i = 1,2, our task is to
find which probability measure generatedx. Equivalently, we want to deter-
mine to which of the data cloudsPn,i the pointx fits better. Themaximum depth
classifierassignsx to that group which maximizeshD(x;Pn,i). As shown by

∗This work was supported by the grant 19-16097Y of the Czech Science Foundation, and
by the PRIMUS/17/SCI/3 project of Charles University.
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Ghosh & Chaudhuri, 2005, under appropriate conditions it is asymptotically
optimal. Its performance can be substantially enhanced using more sophisti-
cated depth-based techniques, see e.g. Liet al., 2012.

The known depth-based classification rules are fully affine invariant, rela-
tively fast and somewhat robust. They also perform very well in practice, with
one notable exception that Langeet al., 2014 called theoutsider problem. It is
easy to see thathD(x;Pn,i) = 0 for all x outside both convex hulls of the train-
ing samples. Such points naturally remain unclassified when depth is used.
This appears to be a challenging problem, especially in higher dimensionsd
where many points remain unclassified due to the curse of dimensionality.

We solve this problem in a way that is conceptually and computationally
simple, and at the same time affine invariant and highly robust. It is based on
illumination, a tool dual to the halfspace depth. It allows to rank points outside
the convex hulls ofPn,i in a way analogous to the depth.

The results presented in this note with complete proofs will appear as Nagy
& Dvořák, 2019.

2 Floating bodies and illumination

A convex bodyis a compact convex subset ofRd with non-empty interior.
Convex bodies can be identified with uniform probability measures on those
sets. Remarkably, the halfspace depth with respect to these uniform measures
has been studied in geometry for decades — thefloating bodies, known since
1820’s, and their variants can be shown to be equivalent with the depth (1).
For an account on the history and applications of floating bodies, and their
connections to the depth, we refer to Nagyet al., 2019.

Illumination, first advanced by Werner, 1994, serves in geometry as a no-
tion complementary to floating bodies. While floating bodies rank points in-
side the convex bodyK, the illumination compares the fit of points outside of
K. For a convex bodyK andx ∈ Rd, theilluminationof x ontoK is

I (x;K) = vold (co(K ∪{x}))/vold (K) ,

where vold (·) is the Lebesgue measure, and co(·) is the convex hull operator.
Note that ifx ∈ K, I (x;K) = 1. Many important properties of the illumination
are known in geometry:

1. illumination bodiesgiven as
{

x ∈ Rd : I (x;K) ≤ δ
}

with δ > 1 are nested
affine equivariant convex supersets ofK. ForK an ellipsoid they are also
ellipsoids;
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Figure 1.A convex body and several of its halfspace depth central regions (left panel),
and illumination bodies (right panel).

2. the rate at which illumination bodies approachK asδ → 1+ from the
outside is proportional to the rate at which (convex) floating bodies (and
the depth) approachK asδ → 0+ from the inside;

3. illumination bodies and convex bodies are dual to each other when one
takes into account polarity considerations.

Thus, the ranking of points according to their illumination is linked to that
based on the depth. Consider now illumination for probability measures: for
x ∈ Rd, P a probability measure onRd andα ∈ (0,supy∈Rd hD(y;P)), theα-
illuminationof x ontoP is given by

Iα (x;P) = I (x;Pα) , wherePα =
{

y ∈ Rd : hD(y;P) ≥ α
}

(2)

is an upper level set of the depth (1). In other words, we illuminate onto a
depth-central regionPα. The latter regions are known to be adequate represen-
tatives of both location and scatter of the majority of mass ofP. In fact, for
many distributions they are known to characterizeP completely.

3 Robust LDA

Suppose we are given random samples of sizesn = 500 from bivariate nor-
mal distributionsPi = N2(µi , I2) with µ1 = (0,0)T, µ2 = (2,2)T, P1 contami-
nated with several outliers from N2

(
(20,20)T, I2

)
. Ghosh & Chaudhuri, 2005

demonstrated that when no outliers are present, the maximum depth classifier
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is asymptotically optimal. We propose to assignx into Pi if its illumination (2)
with respect toPni ,i is minimal. Only if Iα1(x;Pn,1) = Iα2(x;Pn,2) we use the
maximum halfspace depth to classifyx. The tuning parametersαi are chosen
so that the central regions in (2) contain 50 % of the data. In Table 1 we com-
pare the maximum depth classifier (hD), LDA, and our new procedure (I ), in
terms of the average misclassification rate over 100 runs. In most settings, il-
lumination convincingly outperforms both the maximum depth rule and LDA.
Further experiments are described in Nagy & Dvořák, 2019.

All points Outsiders
I LDA hD I LDA hD

0 % 0.079(0.0062) 0.079(0.0061) 0.086(0.0069) 0.051(0.030) 0.048(0.030) —
1 % 0.080(0.0063) 0.083(0.0064) 0.106(0.0089) 0.042(0.033) 0.053(0.042) —
5 % 0.080(0.0060) 0.176(0.0477) 0.168(0.0151) 0.047(0.042) 0.170(0.135) —
10 % 0.094(0.0077) 0.493(0.0633) 0.232(0.0190) 0.054(0.042) 0.520(0.149) —

Table 1. Average and standard deviation (in brackets) of misclassification rates in a
numerical experiment depending on the contamination levels. In the first part of the
table, all testing data are considered. In the second part, only outsiders are taken.
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ABSTRACT: A multidimensional unfolding technique that is not prone to degener-
ate solutions and is based on multidimensional scaling of a complete data matrix is
proposed. We adopt the strategy of augmenting the data matrix, trying to build a
complete dissimilarity matrix, by using Copulas-based association measures among
rankings (the individuals), and between rankings and objects (namely, a rank-order
representation of the objects through tied rankings). The proposed technique leads to
acceptable recovery of given preference structures.

KEYWORDS: copulas, unfolding, multidimensional scaling.

1 The copulas function

Copulas are functions that join multivariate distribution functions to their mar-
ginal distribution functions (Nelsen, 2013). They describe the dependence
structure existing across pairwise marginal random variables. In this way we
can consider bivariate distributions with dependency structures different from
the linear one that characterizes the multivariate normal distribution.

A bivariate copula C : I2→ I, with I2 = [0,1]× [0,1] and I = [0,1], is the
cumulative bivariate distribution function of a random variable (U1,U2) with
uniform marginal random variables in [0,1]

C(u1,u2;θ) = P(U1 ≤ u1,U2 ≤ u2;θ), 0≤ u1 ≤ 1 0≤ u2 ≤ 1 (1)

where θ is a parameter measuring the dependence between U1 and U2.
The following theorem by Sklar (Nelsen, 2013) explains the use of the

copula in the characterization of a joint distribution. Let (Y1,Y2) be a bi-
variate random variable with marginal cdfs FY1(y1) and FY2(y2) and joint cdf
FY1,Y2(y1,y2;θ), then there always exists a copula function C(·, ·;θ) with C :
I2→ I such that

FY1,Y2(y1,y2;θ) =C
(
FY1(y1),FY2(y2);θ

)
, y1,y2 ∈ IR. (2)
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Conversely, if C(·, ·;θ) is a copula function and FY1(y1) and FY2(y2) are
marginal cdfs, then FY1,Y2(y1,y2;θ) is a joint cdf.
If FY1(y1) and FY2(y2) are continuous functions then the copula C(·, ·;θ) is
unique. Moreover, if FY1(y1) and FY2(y2) are continuous the copula can be
found by the inverse of (2):

C(u1,u2) = FY1,Y2(F
−1

Y1
(u1),F−1

Y2
(u2)) (3)

with u1 =FY1(y1) and u2 =FY2(y2). This theorem states that each joint distribu-
tion can be expressed in term of two separate but related issues, the marginal
distributions and the dependence structures between them. The dependence
structure is explained by the copula function C(·, ·;θ). Moreover the (2) pro-
vides a general mechanism to construct new multivariate models in a straight-
forward manner. By changing the copula function we can construct new bi-
variate distributions with different dependence structures, with the association
parameter indicating the strength of the dependence, also different from the
linear one that characterizes the multivariate normal distribution.

Each copula is related to the most important measures of dependency: the
Pearson correlation coefficient and the Spearman grade correlation coefficient.
The Spearman grade correlation coefficient (see Nelsen, 2013 pp. 169-170 for
the definition of the grade correlation coefficient for continuous random vari-
ables) measure the association between two variables and can be expressed as
a function of the copula. More precisely, if two random variables are continu-
ous and have copula C with parameter θ, then the Spearman grade correlation
is

ρs(C) = 12
∫

I2
Cθ(u1,u2)du1du2−3. (4)

For continuous random variables it is invariant with respect to the two marginal
distributions, i.e. it can be expressed as a function of its copula. This property
is also known as ’scale invariance’. Note that not all measures of association
satisfy this property, e.g. Pearson’s linear correlation coefficient (Embrechts
et al. , 2002).

In the following, we focus on observations Yik of the latent continuous
random variable Y ∗ik, describing the preference of the consumer i (i ∈ N =
{1, ...,n}) for the object k. Let yi = (yi1, ...,yik) be the vector of ranks of
consumer i for the k objects, where yik is the rank of object k for the sub-
ject i− th. Be U = F(Y ∗ik) and V = F(Y ∗jk) the marginal cumulative distri-
butions (cds). We assume that (Yik,Yjk) correspond to the bivariate discrete
random variable obtained by a discretization of the continuous latent variable
(U = F(Y ∗ik),V = F(Y ∗jk)) with support [0,1]× [0,1] and cdf given by Cθ(·, ·).
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Let Ar,s = [ur−1,ur]× [vs−1,vs] r,s = 1, ...,k be rectangles defining the dis-
cretization. Let pk,k be the joint probabilities corresponding to the rectangle
Ar,s for r,s = 1, ...,k with value 1/k if the pair (yik,y jk) is observed and 0 oth-
erwise. Let VCθ(A11), . . . ,VCθ(Akk) be the volumes of the rectangles under the
copula Cθ, then there exists a unique element in the family of copula for which
the following relationship holds true:

(VCθ(A11), . . . ,VCθ(Akk)) = (p11, . . . , pkk). (5)

Given the ranking of two subjects i and j, a k× k contingency table Krs
(r,s = 1, ...,k) is defined. A cell in this table takes value 1/k if (yik,y jk) is
observed and 0 otherwise. This contingency table provides the basis for our
estimation procedure.

Fixed the copula Cθ and defined the Spearman grade correlation coeffi-
cients ρs(Cθ) (Nelsen, 2013) to each pair (Yik,Yjk), i 6= j with i, j ∈ N, we
define the dissimilarity coefficient di j:

di j =

√
1− ρs +1

2
(6)

where ρs performs well in measuring the agreement between two rankings Yik
Yjk.

Notice that other ways of findings a correlation-type distance matrix have
been provided in the literature (Kaufman & Rousseeuw, 2009). For instance,
one may consider di j = 1−ρ or di j = 1−|ρ|.

The parameter θ can be estimated via maximum likelihood. Estimating the
value of the copula dependence parameter θ we obtain the grade of association
between two rankings.

2 Unfolding as a special case of multidimensional scaling on Cop-
ulas based association between rankings

Unfolding applies multidimensional scaling (Cox & Cox, 2000) to an off-
diagonal n×m matrix, usually representing the scores (or the rank) assigned to
a set of m items by n individuals or judges (Borg & Groenen, 1997). The goal
is to obtain two configuration of points representing the position of the judges
(X) and the items (Y ) in a reduced geometrical space. Each point representing
the individuals is considered as an ideal point so that its distances to the object
points correspond to the preference scores (Coombs, 1964). Unfolding can
be seen as a special case of multidimensional scaling because the off-diagonal
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matrix is considered as a block of an ideal distance matrix in which both the
within judges and the within items dissimilarities are missing. The presence
of blocks of missing data causes the phenomenon of the so-called degener-
ate solutions, i.e., solutions that return excellent badness of fit measures but
not graphically interpretable at all. To tackle the problem of degenerate solu-
tions, several proposals have been presented in the literature (Borg & Groenen,
1997). By following the approach introduced by Van Deun et al. , 2007, we
adopt the strategy of augmenting the data matrix, trying to build a complete
dissimilarity matrix, and then applying any MDS algorithms. In order to aug-
ment the data matrix, we use Copulas-based association measures among rank-
ings (the individuals), and between rankings and objects (namely, a rank-order
representation of the objects through tied rankings). Both experimental eval-
uations and applications to well-known real data sets show that the proposed
strategy produces non-degenerate non-metric unfolding solutions.
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ABSTRACT: Micropatterns are a representation of design decisions in code, which
can be detected from the source code with an automatic tool. These microstructures
can help identify portions of code which should be improved (anti-patterns), or well-
designed parts which need to be maintained. The definition of the concepts expressed
in these design decisions is at class-level. In this paper, we present a longitudinal
dataset of more than 200K software metrics, collected from 113 versions of Tomcat.
The dataset can be used for various empirical research studies in software engineering,
and we exploit the dataset to predict the complexity of a software release based on the
release metrics. We used four different machine learning classifiers, and we found that
the C5.0 algorithm is the best classifier with 0.96% of accuracy.

KEYWORDS: tomcat, micropatterns, software quality, prediction models.

1 Introduction

Software quality is a complex concept to measure, and efforts in this direction
would be helpful for both software developers and managers in controlling and
improving software development. Quality is quite an intangible concept, and
when talking about software, given its immateriality, it becomes even more
elusive. What are the characteristics of a high-quality software? We can start
discussing meeting the requirements defined by the customer who commis-
sioned the software, or about the results of testing activities, or the evolution
of the software metrics throughout all the phases of the development. Numer-
ous concepts have been introduced and used to control, measure and engineer
the software development process, such as software metrics [Chidamber & Ke-
merer, 1994] and design patterns [Gamma, 1995], which represent a general
concept or methodology used for designing a piece of software.

In this work, using our previous dataset [Destefanis et al. , 2018] as base-
line, we present an enriched dataset containing information about micropat-
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terns detected from 113 versions of Tomcat*, an open source Java Servlet
Container developed by the Apache Software Foundation (from version 3.3.2
to version 8.0.9) and largely used for empirical software engineering stud-
ies [Monperrus & Martinez, 2012, Destefanis et al. , 2017].

The dataset (in SQL format), which contains 113 SQL views with met-
rics and micropatterns for all the detected classes, is openly available at the
following link https://bitbucket.org/giuseppedestefanis/tomcatmpattern19. We
exploit the dataset to answer the following research question:

Is it possible to predict the Complexity of a release based on release met-
rics?

This paper is structured as follows. In Section II, we illustrate the process
of construction of the complexity prediction algorithms and the comparison
among the selected classification algorithm.

2 Results

Is it possible to predict the Complexity of a release based on release metrics?
To answer this question, we built four machine learning algorithms to eval-

uate the complexity of a software release based on other software release met-
rics. Tomcat Software is written in Java, which is an Object-Oriented lan-
guage; thus, the whole software is organised in classes. For each class, the
dataset provides the version along with 57 software metrics. We first evaluated
the average of each metric per software version obtaining a dataset of 113 ver-
sions, and computed the Complexity metric of a version as a binary variable
of the Average Cyclomatic Complexity [Watson et al. , 1996], 0 meaning less
than the median, 1 otherwise. We used the median to obtain a balanced dataset.
We then restricted the number of metrics to 35 using correlation analysis and
filtering out those metrics with a Pearson correlation greater than ±0.7.

We then used a feature selection algorithm [Gevrey et al. , 2003] to refine
the remaining features. We used the algorithm with a general linear model as
predictor and a repeated-cross-validation as method to measure the variables’
importance. Figure 1 shows the importance of the 35 metrics selected. An
importance of 0.50 means that the predictor survived the filter in half of the
re-samples, thus we kept only those feature with importance greater than 0.5.

We then selected four machine learning algorithms, C5.0, SVM, Bayes
Generalized Lineal Model and KNN. We used a repeated-cross-validation
method to evaluate the performance of selected algorithms. Figure 2 shows

*http://tomcat.apache.org
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the results in terms of accuracy. The best classifier is the C5.0 algorithm with
an average accuracy of 0.96%.

3 Conclusion

This paper provides a longitudinal micropatterns dataset collected from 113
versions of Tomcat (from version 3.3.2 to 8.0.9). We merged the micropatterns
data with a previous Tomcat longitudinal dataset containing software metrics
[Destefanis et al. , 2018]. We exploit this dataset to perform an analysis of
release complexity prediction using the release metrics, we build four different
machine learning classifiers, and we found that the best classifier is the C5.0
with and accuracy of 0.96%.

References

CHIDAMBER, S. R., & KEMERER, C. F. 1994. A metrics suite for object
oriented design. IEEE Transactions on software engineering, 20(6), 476–
493.

DESTEFANIS, G., ORTU, M., COUNSELL, S., SWIFT, S., TONELLI, R., &
MARCHESI, M. 2017. On the randomness and seasonality of affective
metrics for software development. Pages 1266–1271 of: Proceedings of
the Symposium on Applied Computing. ACM.

DESTEFANIS, G., ARZOKY, M., COUNSELL, S., SWIFT, S., ORTU, M.,
TONELLI, R., & MARCHESI, M. 2018. 113 times Tomcat: A dataset.
PeerJ Preprints, 6, e26491v1.

GAMMA, E. 1995. Design patterns: elements of reusable object-oriented
software. Pearson Education India.

GEVREY, M., DIMOPOULOS, I., & LEK, S. 2003. Review and comparison of
methods to study the contribution of variables in artificial neural network
models. Ecological modelling, 160(3), 249–264.

MONPERRUS, M., & MARTINEZ, M. 2012. Cvs-vintage: A dataset of 14 cvs
repositories of java software.

WATSON, A. H., WALLACE, D. R., & MCCABE, T. J. 1996. Structured test-
ing: A testing methodology using the cyclomatic complexity metric. Vol. 
500. US Department of Commerce, Technology Administration, National 
Institute of Standards and Technology.

364



COMPARISON OF SERIOUS DISEASES MORTALITY 

IN REGIONS OF V4 

Viera Pacáková1 and Lucie Kopecká1

1 Department of Mathematics and Quantitative methods, Faculty of Economics and

Administration, University of Pardubice,  (e-mail: viera.pacakova@upce.cz,
lucie.kopecka1@student.upce.cz)

ABSTRACT: This article is about comparing the regions of V4 according to mortality caused by 

the most common serious diseases (cardiovascular and oncological diseases) and growing 

serious diseases mainly due to aging of population (mental diseases). Mortalities are indicators 

of health quality. The significant differences exist among individual countries of Europe or EU, 

mainly in case of Western and Eastern part. But the significant differences also exist among 

regions of these countries. This article is focused on the NUTS 2 regions of V4 countries 

(Poland, Czech Republic, Slovak Republic and Hungary). The main aim is to compare the V4 

regions according to serious diseases mortality by using hybrid approach which combines 

multidimensional scaling (MDS) with linear ordering. The data were obtained from Eurostat 

database. 

KEYWORDS: Serious diseases mortality, V4 regions, hybrid approach. 

1 Introduction 

The significant differences in health status of population exist among European 
countries. The health status in the Visegrad group (V4) involving the four following 
member countries the Czech Republic (CR), Hungary, Poland and Slovak Republic 
(SR) is not good in comparison with the most of European countries. According to 
Pacáková, Kopecká (2018) the countries such as Hungary and Slovak Republic did 
not record significant improvement in health status during the time period 2000 – 2015 
in contrast with the CR and Poland. Inequalities in health status in European countries 
have been revealed by using multivariate statistical methods such as factor analysis, 
cluster analysis, multidimensional comparative analysis etc. The level of health status 
of population can be different not only among the countries but also among the 
individual regions. This is the reason for assessment of mortality due to serious 
diseases at regional level according to NUTS 2 classification in V4 countries based 
on Eurostat health database, 2018. According to NUTS 2 classification Poland has 16 
regions, CR has 8 regions, SR has 4 regions and finally Hungary has 7 regions. The 
cardiovascular and oncological diseases are the most serious causes of death across 
all these countries. Also mental disorders are on the rise mainly due to aging of 
population in V4 by health profiles of countries (European Commission, 2017). 
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2 Data and Methods 

The main objective of this article is to compare the 35 NUTS 2 regions of V4 countries 
by using hybrid approach based of variables which represent crude death rate per 
100 000 population due to following 12 oncological, cardiovascular and mental 
diseases: C1 – malignant neoplasm of stomach, C2 – malignant neoplasm of colon 
and rectum, C3 – malignant neoplasm of liver, C4 – malignant neoplasm of pancreas, 
C5 – malignant neoplasm of trachea, bronchus and lung, C6 – malignant neoplasm of 
breast, C7 – malignant neoplasm of cervix uteri, C8 – leukaemia, H1 – ischaemic heart 
diseases, H2 – acute myocardial infarction, H3 – cerebrovascular diseases, M1 – 
mental and behavioural disorders.  

The data source has been the database Eurostat, 2018. 
Hybrid approach combines multidimensional scaling (MDS) with linear ordering, 

as describe Walesiak, 2016. In general, the goal of this analysis is to detect meaningful 
underlying dimensions that allow to explain observed similarities or dissimilarities 
(distances) between the investigated objects. It is possible to analyse any kind 
of similarity or dissimilarity matrix with MDS. The input matrix into MDS is for 
example matrix of distances between objects n x n, where n is number of objects. Then 
the matrix is analysed and it is specified that the distances will be reproduced in R-
dimensions. In general then, MDS attempts to arrange objects in a space with a 
particular number of dimensions (two-dimensional is the most common) so as to 
reproduce the observed distances. The actual orientation of axes in the final solution 
is arbitrary. We could rotate the map in any way, because the distances between 
objects remain the same. Multidimensional scaling is a way to "rearrange" objects in 
an efficient manner, to reach configuration that best approximates the observed 
distances, as describes Schiffman et al., 1981.  

Finally, the results of MDS (the coordinate system for the first and second 
dimension) are used for linear order of the objects. The objects are ordered according 
to aggregate measure di, which is given by formula (1) 

𝑑𝑖 = 1 − √∑ (𝑣𝑖𝑗 − 𝑣+𝑗)
22

𝑗=1 √∑ (𝑣+𝑗 − 𝑣−𝑗)
22

𝑗=1⁄ , (1) 

where vij is j-th coordinate for the i-th object, v+j is j-th coordinate for the Pattern 
object and v-j is j-th coordinate for the Anti-pattern object.  

The high values of aggregate measure indicate low level of mortalities (Pattern 
object equals to 1) and low values of this measure indicate high level of mortalities 
(Anti-pattern object equals to 0), see Walesiak, 2016. 

3 Results and Discussion 

The input matrix into the hybrid approach is a matrix of Euclidean distances which is 
obtained from original data matrix. As mentioned above, original data matrix contains 
data of 12 mortality variables for 35 objects (regions). The size of Euclidean distance 
matrix is 37 x 37, because two “artificial” regions are added, namely Pattern object 
(P) and Anti-pattern object (AP). The Pattern object is created by the minimum values 
of all original variables and Anti-pattern object is constructed from their maximums.  

366



Figure 1 displays the results of MDS in two dimensions. The largest distance exists 
between hypothetic “best” P and “worst” AP objects. It is possible to classify and to 
identify the regions with the similar level of mortalities but with different 
combinations based on Figure 1. Three circles which divide the distance between P 
and AP objects into the three equally large parts are able to create three logical groups 
of regions with the similar level of health quality. Quality of health measured by 
cardiovascular, oncological and mental mortality indicators is the worst in Hungary. 
The regions of Hungary are closer to AP object which has been created by maximum 
level of these mortalities. The middle annulus situated exactly between P and AP 
objects is created by the regions of the SR and the CR. Similar health situation exists 
among regions of the SR and Moravia, Silesia and Northwest regions of the CR. These 
regions are again closer to AP. The best quality of health according to mentioned 
mortality indicators is in regions of Poland in comparison with regions of CR, SR and 
Hungary. Only two polish regions, Podlaskie and Malopolskie, lies nearly in the same 
circle which is the closest to the P. This situation indicates nearly the same level of 
quality of health but with different combinations of mortalities.  

Figure 1: The results of MDS in two-dimensions 

SOURCE: OWN CALCULATIONS (EUROSTAT, 2018) 

Figure 2 displays the map of the three groups of V4 NUTS 2 regions according to 

aggregate measure by formula (1) and allows visual comparison of the health status. 
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Figure 2: Visualization of inequalities in NUTS 2 regions of V4 according to di

SOURCE: OWN CALCULATIONS (EUROSTAT, 2018) 

4 Conclusion 

The main aim of this article has been to compare the NUTS 2 regions of V4 by health 

status of population that as a multidimensional category has been specified by twelve 

indicators of mortality due to serious diseases. For the comparison, the hybrid 

approach has been chosen. The graphical outputs allows a visual overview of the 

population's health status in individual countries of the V4 grouping and theirs 

regions.  
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ABSTRACT: Nowadays, battery electric vehicles (BEVs) constitute prominent alternatives to 

vehicles with combustion motors. Since the competition between manufacturers of BEV-

batteries increases, it is key for them to design batteries, which perfectly meet the needs of 

BEV manufacturers. However, the needs of BEV manufacturers are actually derivative needs 

of BEV customers. We, therefore, conduct an empirical discrete choice experiment with BEV 

customers in China and estimated Latent Class analysis. We found substantial preference 

heterogeneity of BEV customers, which transfers into varying needs of BEV manufacturers 

w.r.t. batteries. Using these results, we worked out price and product design strategies for 

manufacturers of BEV-batteries.  

KEYWORDS: latent class analysis, discrete choice experiment, derivative demand.

1 Motivation 

Nowadays, battery electric vehicles (BEVs) constitute prominent alternatives to 
vehicles with combustion motors. As it is documented, the demand of BEVs has 
increased tremendously in recent years: While in 2014 approx. 750,000 BEVs were 
registered worldwide, it nearly quintupled to 3.2 mio in 2017 (Statista, 2019). Here, 
China yields the most impressive growth rate for electro mobility and has emerged 
as the most important market for BEVs.  

With an increasing demand for BEVs, the demand for BEVs’ batteries 
derivatively increases, too. The battery is the core component of a BEV and is one 
of the main BEV’s cost drivers. Since the competition between manufacturers of 
BEV’s batteries is prevalent, battery manufacturers have to accurately design their 
products and use sophisticated pricing strategies to gain a competitive advantage. 

A battery manufacturer could increase its competitive ability, if its battery solves 
the components of the problem cluster of electro mobility, namely, driving range, 
(charging) infrastructure and purchase price. Therefore, battery manufacturers have 
to take into account the preferences of BEV customers, who, in turn, determine the 
preferences of BEV manufacturers, as it is shown in Figure 1.  

Figure 1: Preference relationships.
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2 Empirical Analysis 

In order to gain information on customers’ preferences for BEVs, we use the data of 
a discrete choice experiment (DCE) that was conducted in China.1 The final sample 
includes 194 respondents. The DCE was built up of 10 choice sets with three BEV 
alternatives and a ‘no purchase’ option. The BEVs were explained by the attributes 
driving range (150km, 250km, 350km), charging time (4h, 6h, 8h), purchase price 
(60,000¥, 160,000¥, 260,000¥) and car-body design (sedan, estate car, SUV). All 
attributes were chosen in accordance to the attributes in recent literature on DCE 
within the BEV category in China (Nie et al. 2018, Quia & Soopramanien, 2011). In 
addition, the first three attributes cover the problem cluster of electro mobility. The 
levels conform to the most prevalent realizations of the top 20 best-selling BEV 
models in China in 2017 (EV-Sales, 2017). However, we did not incorporate the 
models of Tesla, because Tesla’s BEVs are much more expensive and yield a wider 
driving range and shorter charging time than all other top 20 BEVs in the Chinese 
market. 

We used the data of eight choice sets for the estimation of Latent Class – 
Multinomial Logit (LC-MNL) models and considered two hold out choice sets. The 
estimation was performed with the Latent Class module of Sawtooth Software 
(Sawtooth Software, 2004). We considered effects-coding of the attributes and part-
worth utilities for all attribute level. We estimated LC-MNL models for one up to 
eight segments and chose the segment-solution, that displays the best trade-off 
between fit (measured by ABIC and mean posterior (post.) segment memberships 
(memb.)) and predictive validity (measured by first choice (FC) hit rates). Table 1 
displays the results of the information criteria and FC hit rates:  

number of 
segments 

ABIC Mean post. memb. FC hit rates 

1 3780 100% 48% 
2 3619 97% 52% 
3 3552 91% 52% 
4 3486 91% 58% 
5 3435 90% 58% 
6 3426 92% 59% 
7 3429 90% 57% 
8 3431 90% 56% 

Table 1: Values of criteria for model selection 

The six segment solution displays the best model fit, i.e. lowest ABIC value, and 
predictive validity, i.e., highest FC hit rate. In addition, the mean posteriori segment 
membership is markedly higher than those of the 5- or 7-segment-solution. Hence, 
we select the 6-segment-solution.  

1 We thank Yundi Cheng for collecting the data. 
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Table 2 contains the segment-specific part-worth utility estimates and the 
segment weights as well as the segment-specific relative attribute importances of the 
6-segment-solution.  
 

 seg. 1 seg. 2 seg. 3 seg. 4 seg. 5 seg. 6 
       
weights 0.361 0.162 0.103 0.070 0.184 0.120 
       
Part-worth utilities 
Driving range (in [km]) 
150 
250 
350 

-1.334 
 0.342 
 0.992 

-2.044 
 0.491 
 1.553 

-3.629 
-0.162 
 3.792 

 0.059 
-0.122 
 0.062 

-0.224 
 0.152 
 0.072 

-0.586 
 0.322 
 0.263 

Charging time (in [h]) 
4 
6 
8 

 0.221 
 0.244 
-0.465 

 0.621 
 0.094 
-0.715 

 1.716 
-0.353 
-1.363 

-1.085 
 0.193 
 0.892 

 0.471 
-0.141 
-0.330 

 0.135 
-0.158 
 0.023 

Purchase price (in [¥]) 
  60,000 
160,000 
260,000 

 0.856 
 0.222 
-1.078 

 0.664 
 0.072 
-0.735 

-1.157 
 0.102 
 1.055 

-1.197 
 0.660 
 0.537 

 0.329 
 0.223 
-0.552 

-0.561 
 0.168 
 0.393 

Car-body design 
estate car 
sedan 
SUV 

 0.175 
-0.572 
 0.397 

-0.241 
 0.448 
-0.208 

 0.153 
 0.113 
-0.266 

-0.225 
 0.309 
-0.084 

-0.925 
 1.015 
-0.090 

-0.142 
-1.564 
 1.706 

       
Attribute importances (in [%]) 
Driving 
range 

39.16 51.23 56.51   4.05   9.40 16.73 

Charging 
time  

11.96 19.03 23.45 43.41 20.03   5.40 

Purchase 
price  

32.56 19.93 16.85 40.78 22.06 17.59 

Car-body 
design 

16.32   9.81 3.19 11.75 48.51 60.28 

Highest segment-specific values are bold. 

Table 2: Segment specific estimates 
 
The inspection of Table 2 reveals, that all segments are of meaningful size. SUV 
customers attach the highest importance to the driving range and purchase price of 
the BEV (segment 1) or on car-body design (segment 6). Estate car customers 
(segment 3) attach the highest importance to the driving range and prefer higher 
prices, i.e., they view price as a quality signal. Sedan customers either exclusively 
care about the car-body design (segment 5) or about the attributes associated with 
the problem cluster of electro mobility (segment 2 and segment 4).  
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In order to derive inferences for a manufacturer of BEV-batteries, we could rely on 

the preferences of different BEV customers. Batteries build for SUVs and estate cars 

need a high reservoir capacity. Batteries for sedans must have a quick recharging 

technique as well as a high reservoir capacity. Customer of estate cars view a higher 

price as a quality signal, hence, batteries for estate cars could be offered by higher 

prices and, therefore, may inhibit higher costs to fulfil the preference towards a wide 

driving range and a quick charging time. For product design and price decisions, this 

means, that even identically constructed batteries could be offered by a higher price 

to manufacturers of electric estate cars, because they could smoothly offer higher 

prices to their BEVs’ customers. 

3 Conclusion 

The increasing demand of BEVs derivatively increases the demand of batteries for 
BEVs. Since the competition is strong, battery manufacturers have to take the 
preferences of BEVs’ manufacturers (and, therefore, the preferences of BEVs’ 
customers) into account. Based on the data of a DCE, we estimated a Latent Class 
analysis and draw inferences concerning price and product design strategies for 
manufacturers of BEVs’ batteries. We found that batteries build for SUVs, sedans 
and estate cars need a high reservoir capacity. In addition, batteries for sedans must 
have a quick recharging technique. Furthermore, we found customers of estate cars 
to view price as a quality signal. Therefore, batteries for electric estate cars could be 
more expensive (and could be sold at higher prices), because BEV manufacturers 
could smoothly pass their higher costs to their BEVs’ customers. 
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ABSTRACT: A definition of a density–based distance function for data on the surface
of cylinders is introduced. It is able to deal with the correlation structure of cylindrical
data.

KEYWORDS: Mardia–Sutton distribution, linear–circular data.

1 Introduction

Cylindrical data arise from the joint distribution of a circular (i.e., bounded in
[0,2π)) and a linear variable. This type of data arises in many scientific fields
such as meteorology, geology and industry. One common example concerns
the study of wind directions together with speed, or temperature.

Within this setting, little efforts have been dedicated to the problem of
defining suitable distance measures. To clarify, the standard Euclidean distance
on the cylinder does not take into account the data correlation structure. On
the other hand, correlated cylindrical data are widely present in nature (see e.g.
Lagona, 2018).

For these reasons, this work aims at introducing a new distance measure.
More specifically, in analogy with the widely used Mahalanobis distance for
data in linear multivariate spaces, a density based distance measure for cylin-
drical data is introduced. This way, the proposed distance will be able to deal
with the specific structure and nature of such data.

Several distributions for cylindrical data can be found in the literature. The
best known examples are probably the Mardia–Sutton distribution Mardia &
Sutton, 1978, which is based on a conditioning argument from a trivariate
normal distribution, and the Johnson–Wehrly cylindrical distribution Johnson
& Wehrly, 1978, based on maximum entropy.
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For the purpose of this work, the Mardia–Sutton cylindrical distribution is
considered. In the following, we first briefly recall this distribution and then
present our proposal.

2 The Mardia–Sutton distribution

The Mardia–Sutton cylindrical distribution is derived by a conditioning ar-
gument on a trivariate normal distribution, where the circular component is
obtained by conditioning a bivariate normal. Its probability density function is
given by

f (x,θ) = {2πI0 (κ)}−1 exp{κcos(θ−µ0)}
(
2πσ2

c
)− 1

2 exp
[
−
{
(x−µc)

2 /2σ2
c

}]
,

where−∞< x<∞ is the linear component, 0< θ≤ 2π the angular component,
and κ > 0 indicates the dispersion level of the circular component (larger val-
ues mean less variability). Furthermore, I0 (κ) is the modified Bessel function
of first kind and order zero, while

µc = µ+σκ
1
2 {ρ1 (cosθ− cosµ0)+ρ2 (cosθ− cosµ0)} ,

σ2
c = σ2 (1−ρ2) , ρ =

√(
ρ2

1 +ρ2
2

)
0≤ ρ≤ 1.

In this model, the circular variable Θ is distributed as a von Mises distribution
M (µ0,κ), while the conditional distribution of X given Θ is a normal distri-
bution N

(
µ,σ2

)
with the two correlation parameters ρ1 = corr (x,cosθ) and

ρ2 = corr (x,sinθ).

3 A Mahalanobis-like cylindrical distance

In the multivariate Euclidean space, given a center µ = (µ1,µ2, . . . ,µn)
′ and a

covariance structure Σ, the Mahalanobis distance of a point x = (x1,x2, . . . ,xn)
′

from the center is defined as:

dMah(x;µ) :=
√
(x−µ)′Σ−1 (x−µ).

In analogy, within a cylindrical setting, and assuming a Mardia-Sutton
probability structure, a Mahalanobis-like distance function for cylindrical data
can be defined:

dCyl(x,θ;µ0,µc) :=

√
κ · (1− cos(θ−µ0))+

(x−µc)
2

2σ2
c

.
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(a) (b)

Figure 1: A sample drawn from a Mardia-Sutton distribution (a). The corre-
sponding Mahalanobis-like cylindrical distance contours in the linear-angular
space (b).

To illustrate, a 3D view of 10000 random points drawn from a Mardia-
Sutton distribution with µ0 = π, κ = 50, µ = 0, ρ1 = ρ2 = 0.3 and σ2 = 300 is
displayed in Figure 1, panel (a). The corresponding Mahalanobis-like distance
contours are displayed through color intensity in panel (b), where the data
have been mapped to the (θ,x) plane. It seems the distance contours are able
to catch well the underlying data structure.

4 Remarks and further work

A new Mahalanobis–like distance measure for analyzing data on the surface
of a cylinder is proposed. It appears to be able to capture the structure of data
on the surface of a cylinder. Potentially, it can be exploited in many statistical
contexts (e.g. cluster analysis, measures of variability, statistical tests etc.).
Further work may include the definition of density based distances for poly–
cylindrical data (see the new distribution introduced by Mastrantonio, 2018).
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Abstract: Statistics and machine learning can significantly speed up human knowl-
edge development, helping to determine the basic categories in a relatively short
amount of time. The concept of categorization implies data summarization in a limited
number of well-separated groups that must be maximally and internally homogeneous
at the same time. This contribute presents a categorization approach that is based on
the interval archetypal analysis.
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1 Introduction and motivation

Knowledge consists basically of categorizations: humans learn new concepts
very fast by building complex relationships between a set of miscellaneous
items or categories, as long as the total number of objects remains limited at
most five/six objects (for example see Cowan, 2010). With the explosion of big
data, the stored data represent an incredible source of knowledge, providing that
they can be summarized in a (small) number of categories that are consistent
with the human cognitive capabilities. However, in some conditions, data are
not punctual and are naturally described by a complex data structure. Interval-
valued data are probably one of the most widely considered kinds. They can
result from several sources (Billard, 2008). A very interesting condition arises
when data are naturally interval-valued; this is the situation of the European
football league dataset considered in this paper. In football, as in all sports,
tens of performance measuring variables accurately summarize any match. It
is known and evident that teams (almost all) have a different game strategy
playing at home and away. Averaging home and away data may cause rele-
vant information losing, whereas considering home and away data as the two
extremes of interval-valued variables allows important information recovering.

The present proposal aims to show how the archetypal analysis (AA) (Cutler
& Breiman, 1994) can fruitfully contribute to summarize complex data in few
categories that we call prototypes after the Rosch’s definition (Rosch, 1973).
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Because of the sake of space, the paper does not go into the details of
methodological aspects and gives just a brief description of the analysis flow.
Interested readers may refer to the literature. The real world dataset that con-
siders the five major European football leagues will be instructive to understand
the efficacy of the categorization process that exploits the archetypal analysis
properties. The cognitive process of categorization through statistical learning
techniques relying on the conceptual spaces framework is presented (Garden-
fors, 2000).

2 Prototypes and ideal categorization: an integrated procedure

Initially introduced by E. Rosch (Rosch, 1973), in cognitive sciences as well as
in statistical learning, the concept of the prototype is adopted to synthesize and
represent categories. Prototypes are those elements (observed or unobserved)
that better than others can represent a category. Their representativeness de-
gree is measured using a distance function to a salient entity of the category
(Fordellone & Palumbo, 2014; Ragozini et al. , 2017). Albeit, cluster analysis
algorithms are the most used prototyping approaches, D’Esposito et al. , 2012
and Ragozini et al. , 2017 proposed the archetypal analysis (Cutler & Breiman,
1994) to identify the prototypes.

Archetypal analysis relies on the idea of “pure individual types” (the arche-
types), a few points lying on the boundary of the data scatter and characterizing
the archetypal pattern in the data. Let {xi, i = 1, . . . ,n} be a set of multivari-
ate data in <p, xi = (xi1, . . . , xip)′. Archetypal analysis looks for a set of
m p-vectors

{
aj(m), j = 1, . . . ,m

}
that are convex combinations of the input

data xi’s and such that each data point is a convex combination of the vectors
aj’s. Formally, given the data matrix X = (x1, . . . ,xn)′, X ∈ <n×p, the ar-
chetype matrix A(m) = (a1(m), . . . ,am(m))′, A(m) ∈ <m×p, and the convex
combination coefficients:

βj(m) = (βj1(m), . . . , βjn(m))′ and γi(m) = (γi1(m), . . . , γim(m))′,
the archetypes aj(m), j = 1, . . . ,m are defined as the p-vectors that satisfy the
following conditions:

a′j(m) = β′j(m)X, j = 1, . . . ,m, βji(m) ≥ 0 ∀ j, i, β′j(m)1 = 1 ∀ j; (1)

x′i = γ′i (m)A(m), i = 1, . . . ,n, γi j(m) ≥ 0 ∀i, j, γ′i (m)1 = 1 ∀i. (2)

The prototypes are defined starting from the archetypes (step 1), in order
to exploit their properties of pureness, separability and strong characterization.
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As the archetypes approximate the convex-hull of the data cloud, if K > J,
they identify a convex region of the space (with K number of archetypes and
J number of variables). Generally, for K relatively small, archetypes ensure a
good approximation of the convex hull. Then, the center of the clusters around
archetypes in the space spanned by the archetypes are computed (step 2). The
first prototypes (step 1) and the second prototypes (step 2) are combined to get
the final prototypes.

In the following, our interest focuses on the case when p interval-valued
variables describe N statistical units. An interval-valued variable X ⊂ R
is represented by a series of sets of values delimited by ordered couples of
bounds referred to as minimum and maximum: X = [X,X], where X ≤ X. An
equivalent description for X considers the midpoint Xc = 1

2 (X + X) and the
range Xr = 1

2 (X − X). In analogy with the single value case, we define the
archetypesA for interval valued data (D’Esposito et al. , 2012). Considering the
midpoint and range spaces, two sets of archetypes, Ac andAr are defined. Each
data should be expressed as a unique convex combination of the interval data
archetype in terms of midpoints and ranges. Therefore the mixture coefficients
γ′i are imposed to be the same in the two spaces. Hence the γ′i coefficients
represent the algebraic linkage of the two optimizations, and hence the linkage
between the two spaces. Given the metric space provided by the Frobenius
norm and the distance between interval matrices, for each m, the m interval
valued archetypes A(m) can be determined by minimizing X − X̃(m), and
X̃(m) = Γ(m)A(m), X̃(m) ∈ IRn×p, i.e., the data matrix reconstructed by
m archetypal hyper-rectangle. The optimization procedure to derive interval
archetypes is based on the use of Hausdorff distance and Frobenius norm and
can be found in Corsaro & Marino, 2010.

3 Results and final remarks
The five most important European football leagues are in England, France,
Germany, Italy and, Spain. They globally consist of 98 football teams that
play in their respective national leagues consisting of 18 or 20 teams. Each
team plays 34 or 38 matches (home and away) per season. Original data
refer to five statistics (home and away) recorded for any single match, national
championships 2016-17 and are available on the Kaggle web site http://
www.kaggle.com. The analysis considers the seasonal arithmetic means of
the following variables measured for the at home and awaymatches: possession
(percentage), dribbles won (number per match), successful passes (number per
match), key passes (number per match), aerials (number per match). Figure 3

379



shows the five archetypes and the 98 football team on the first Midpoint-Radii
Principal Component Analysis (MR-PCA) (Palumbo & Lauro, 2003) factorial
plan (81.5% of explained variance).

Figure 1. Statistical units and archetypes on the first MR-PCA factorial plan.
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ABSTRACT: This work provides a fully Bayesian analysis of a copula model, in
which both the dependence structure and the marginal variables have a skew-elliptical
specification.
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1 Introduction

Skewed Student-t distributions represent a very flexible parametric family of
distributions (see, for example, Genton, 2004). In this paper, we will consider
the skew-t distribution obtained by Azzalini & Capitanio, 2003.
Even if this model has been thoroughly studied both in a frequentist and in a
Bayesian setup, an interesting approach to further generalize this family is rep-
resented by the construction of copula models involving a skew-t distribution
for the marginal components or the dependency structure.
We propose a fully Bayesian analysis of a p-variate Gaussian copula model
with skew-t margins. Notice that this model is not nested in the p-variate skew-
t model.
The use of a copula representation of a multivariate distribution in our pro-
posed model allows a large amount of flexibility because each single marginal
may have its own number of degrees of freedom. On the other hand, the de-
pendence structure is modeled in a different way. Although we restrict our
attention to a Gaussian copula in this note, it is possible to implement a more
general approach, as for example, in Wu et al. , 2015 where a non parametric
mixture of Gaussian copulae is adopted.
The prior distribution of the model parameters have been selected in order to
be minimimally informative.
Even if the structure of the model is conceptually simple, its estimation is ham-
pered by several problems. Our approach offers a number of advantages with
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respect to existing procedures. In particular, as we use a Monte Carlo strat-
egy we don’t rely on convergence arguments; moreover, the evaluation of the
Bayes factor comes as a simple by-product of the sampler.

2 The model

Given a sample yyy from a p-variate random variable YYY , the model likelihood is
given by (see Smith, 2011)

f (yyy|Θ,R) = |R|−n/2
n

∏
i=1

(
exp
{
−1

2
xxx′i
(
R−1− Ip

)
xxxi

} p

∏
j=1

f j(yi j|Θ j)

)

xi j = Φ−1(ui j)

ui j = FST (yi j|Θ j)

where

• f j(yi j|Θ j) denotes the distribution of the j-eth component of YYY , that is a
univariate skew-t distribution,
• Θ = {Θ j, j = 1,2, . . . , p} collects the parameters of the marginal distri-

butions,
• R is a correlation matrix and Ip is the identity matrix of size p.

To fully specify a Bayesian model, we elicit a uniform prior on R, as in Joe,
2006, while we use the same priors of Parisi & Liseo, 2018a for the parameters
of the marginal distributions. Rearranging terms, we can write

π(Θ,R|yyy) ∝ π(R)π(Θ) f (yyy|Θ,R)

= π(R)|R|−n/2
n

∏
i=1

[
exp
{
−1

2
xxx′i
(
R−1− Ip

)
xxxi

}]
π?(Θ|yyy),

Where

π?(Θ|y) = π(Θ)
n

∏
i=1

p

∏
j=1

f j(yi j|ΘΘΘ j)

=
p

∏
j=1

[
π(Θ j)

n

∏
i=1

f j(yi j|ΘΘΘ j)

]
.

In order to evaluate the integral

I =
∫

g(Θ,R)π(Θ,R|yyy)dΘdR
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it is possible to implement a Bayesian version of the “inference for margin”
procedure: we draw N values Θ(k) from π?(Θ|y) and R(k) from π(R) and eval-
uate the integral as

I ≈
N

∑
k=1

g(Θ(k),R(k)) w̄(k),

where w̄(k), denotes the importance weights

w(k) = |R(k)|−n/2
n

∏
i=1

(
exp
{
−1

2
(xxx(k)i )′

(
(R(k))−1− Ip

)
xxx(k)i

})
,

w̄(k) = w(k)/∑(w(k))

The procedure is divided in two steps

• in the first step, a PMC is implemented for each marginal component in
order to draw N particles Θ(1), . . . ,Θ(N) from π?(Θ|y),
• in the second step, for each particle Θ(k), draw a value R(k) from its prior

distribution.

It is possibile to use the mvst package (Parisi & Liseo, 2018b) in order to
obtain the particles from the first step. For the second step, a sampler is imple-
mented in the function rcorrmatrix of the R package clusterGeneration.

3 Application

As a final illustration of the proposed algorithm, we analyze the same dataset
used in Liseo & Parisi, 2013, namely the returns of two stocks in the NYSE
composite index, namely the “ABM Industries Incorporated” and “The Boeing
Company” (240 monthly observations).

The estimate of a bivariate skew-t model gives the following results

Estimate Std.Error Q5% Me Q95%
ξ1 0.0111 0.0039 0.0059 0.0102 0.0182
ξ2 0.0167 0.0040 0.0104 0.0166 0.0221

G1,1 0.0032 0.0004 0.0027 0.0032 0.0040
G1,2 0.0008 0.0002 0.0004 0.0008 0.0011
G2,2 0.0033 0.0004 0.0028 0.0032 0.0040
ψ1 −0.0032 0.0027 −0.0076 −0.0026 −0.0002
ψ2 −0.0019 0.0028 −0.0074 −0.0006 0.0004
ν 3.0890 0.2373 3.0000 3.0000 3.4945
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with log-marginal likelihood equal to 462.2794.

The estimate of the copula model provides results which are consistent
with the previous ones, both in terms of the skewness and kurtosis, but the
additional flexibility allows a better fit. In fact, the log-marginal likelihood
is evaluated as 473.2288. Hence, under equal prior model probabilities, the
Bayes factor will prefer the copula model over the skew-t one.

References

AZZALINI, A., & CAPITANIO, A. 2003. Distributions generated by perturba-
tion of symmetry with emphasis on a multivariate skew t distribution. J.
R. Statist. Soc. B, 65, 367–389.

GENTON, M.G. (ED.). 2004. Skew-Elliptical Distributions and Their Appli-
cations: A Journey Beyond Normality. London: CRC/Chapman & Hall.

JOE, H. 2006. Generating random correlation matrices based on partial corre-
lations. Journal of Multivariate Analysis, 97(10), 2177–2189.

LISEO, B., & PARISI, A. 2013. Bayesian inference for the multivariate skew-
normal model: a population Monte Carlo approach. Comput. Statist. Data
Anal., 63, 125–138.

PARISI, A., & LISEO, B. 2018a. Objective Bayesian analysis for the mul-
tivariate skew-t model. Statistical Methods & Applications, 27(2), 277–
295.

PARISI, A., & LISEO, B. 2018b. Statistical inference with skew t distribu-
tions: the mvst R package. Annali del dipartimento di metodi e modelli
per l’economia, il territorio e la finanza, Nov, 97–115.

SMITH, M. 2011. Bayesian Approaches to Copula Modelling. ERN: Bayesian
Analysis (Topic), 12.

WU, J., WANG, X., & WALKER, S. G. 2015. Bayesian nonparametric esti-
mation of a copula. Journal of Statistical Computation and Simulation,
85(1), 103–116.

384



CONTAMINATION AND MANIPULATION OF TRADE
DATA: THE TWO FACES OF CUSTOMS FRAUD

Domenico Perrotta1, Andrea Cerasa1, Lucio Barabesi2, Mario Menegatti3

and Andrea Cerioli3

1 European Commission, Joint Research Centre, Ispra, (e-mail: 
domenico.perrotta@ec.europa.eu, andrea.cerasa@ec.europa.eu)
2 Department of Economics and Statistics, University of Siena,
(e-mail: lucio.barabesi@unisi.it)

3 Department of Economics and Management, University of Parma, Parma, (e-mail: 
andrea.cerioli@unipr.it, mario.menegatti@unipr.it)

ABSTRACT: We consider statistical tools for the detection of frauds in customs data
collected in international trade, by developing a principled framework for goodness-
of-fit testing of Benford’s law. Our approach relies on a trader-specific contamination
model, under which fraud detection has close connections with outlier testing. We
also compare the performance of this approach with alternative tools based on robust
statistics that rely on a different transaction-specific contamination model.

KEYWORDS: Benford’s law, contamination, outlier detection.

1 Motivation

The contrast of fraud in international trade is a crucial task of modern eco-
nomic regulations. For instance, import operations have a significant weight in
the budget of the European Union (EU), through tax revenues that EU Mem-
ber States receive from import duties, excise duties and VAT. The volumes
involved are huge and typically correspond to a major share of the total own
resources of the EU. Correspondingly, huge losses may occur when the value
of imported goods is under-reported. Monitoring transactions in international
trade is also important for the fight against criminal activities, as they are of-
ten used for illegal capital movements and for money laundering operations.
As a consequence, there has been an increasing interest in the development of
statistical procedures that could help to identify potential fraudsters among in-
ternational traders, thus providing guidance to anti-fraud investigators (Cerioli
& Perrotta, 2014; Barabesi et al., 2016).

Outlier detection methods typically play a prominent role among statisti-
cal anti-fraud techniques for international transactions. The rationale is that
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the bulk of international trade data is made of legitimate transactions and ma-
jor frauds may stand out as highly suspicious anomalies. In this work we focus
on a peculiar framework for outlier identification that has recently attracted
considerable interest for anti-fraud purposes and that we explore it in the case
of international trade. The approach that we consider is based on testing con-
formance to Benford’s law.

2 Benford’s law

Benford’s law (BL, for short) is a fascinating phenomenon which rules the
pattern of the leading digits in many types of numerical data and mathematical
sequences. Informally speaking, the law states that the digits are not uniformly
scattered – as one may naively expect – but follow a logarithmic-type distribu-
tion in which the leading digit 1 is more likely to occur than the leading digit 2,
the leading digit 2 is more likely than the leading digit 3, and so on. Indeed, the
simplest form of BL (Benford, 1938) gives the probability that the first leading
digit equals d1, for d1 = 1, . . . ,9, as

log10

(
1+

1
d1

)
. (1)

In a probabilistic setting, a deep analysis of BL was first carried out by Hill,
1995, who proved a limit theorem for the significant-digit distribution. We
refer to two recent books (Berger & Hill, 2015; Miller, 2015) for a thorough
description of the mathematical properties of BL and for a survey of its main
application areas. We also remark that scientists and practitioners have re-
cently applied the law in diverse settings, fraud detection in business account-
ing being perhaps the most noticeable one (Nigrini, 2012).

3 Challenges in fraud detection

To our knowledge, most of the available applications of BL to anti-fraud prob-
lems fall into three main categories. The first group deals with aggregated data,
such as those referring to the whole market for a specific product, or to the pop-
ulation of taxpayers (or electors) in a given country. In this instance, rejection
of the hypothesis of conformance to BL often provides compelling evidence
of fraud, but precise identification of the fraudsters must be left to further and
possibly non-statistical investigations. In the second type of examples indi-
vidual companies, or customers, are scrutinized by means of a formal test of
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conformance, relying on a large sample of reported digits. Therefore, the final
decision rests upon a statistically principled criterion, but potential usefulness
is limited to a restricted number of situations. The third case is that of suspi-
cious individuals for which only a limited number of digits is available. This
instance often takes a less formal route, ending up with visual inspection of
the data and simple numerical comparisons between BL and the observed digit
distribution. It is apparent that none of these strategies is suitable for routine
analysis of international trade data, where many thousands of traders must be
inspected under a wide variety of conditions on their number of transactions
and market behavior. Therefore, the aim of our study is to fill the gap through
a sound statistical methodology that might be eventually applied by anti-fraud
and customs officers on the majority of traders operating in a given market, and
even on those for which only a moderate number of transactions is available.

4 A contamination model for customs data

We phrase our BL anti-fraud approach within the framework of a trader-specific
contamination model where each fraud corresponds to an outlier. We define
πt(d1, . . . ,dk) to be the joint probability of observing the k-ple of significant
digits d1, . . . ,dk for trader t. Let T denote the total number of traders in the
market. For t = 1, . . . ,T and each k ∈ Z+, the general form of our contamina-
tion model is

πt(d1, . . . ,dk) = (1− τt)Ψt(d1, . . . ,dk)+ τtϒt(d1, . . . ,dk), (2)

where Ψt(d1, . . . ,dk) is the probability of observing d1, . . . ,dk for trader t in
the absence of fraud, ϒt(d1, . . . ,dk) is the probability of the same event for a
manipulated transaction, and 0≤ τt ≤ 1 is the probability of fraud for trader t.

A remarkable feature of model (2) is that standard tests of the hypothesis
H0 : τt = 0 are consistent even when the model holds with τt > 0 and multiple
outliers (i.e., frauds) are present in the data. This property arises from the fact
that no parameter must be estimated when Ψt(d1, . . . ,dk) is BL, for which (1)
provides the one-digit marginal. Therefore, the usual tools of robust estimation
are not needed to avoid masking in this context (Rousseeuw & Hubert, 2011).

5 Summary of results

In our work we address the following issues, which are crucial for effective
implementation of BL in anti-fraud analysis of trade data.
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• We explore the conditions under which Ψt(d1, . . . ,dk) is BL for genuine
customs data (Cerioli et al., 2019; Lacasa, 2019).
• We address the problem of reducing the false-positive rate, both by adopt-

ing multiple-testing strategies (Barabesi et al., 2018) and by defining
tests based on alternative characterizations of BL.
• We compare the results obtained by testing H0 : τt = 0 in model (2) with

those derived under a different, and more commonly applied, transaction-
specific contamination model, in which outlier detection follows robust
regression estimation of fair prices for the traded products.
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ABSTRACT: Bayesian model-based clustering is a widely applied procedure for dis-
covering groups of related observations in a dataset. These approaches use Bayesian
mixture models, estimated with MCMC, which provide posterior samples of the model
parameters and clustering partition. While inference on model parameters is well es-
tablished, inference on the clustering partition is less developed. A new method is
developed for estimating the optimal partition from the pairwise posterior similarity
matrix generated by a Bayesian cluster model. This approach uses non-negative ma-
trix factorization (NMF) to provide a low-rank approximation to the similarity matrix.
The factorization permits hard or soft partitions and is shown to perform better than
several popular alternatives under a variety of penalty functions.

KEYWORDS: Bayesian clustering, non-negative matrix factorization (NMF).

1 Introduction

The goal of clustering is to discover partitions that assign observations into
meaningful groups. A favorable property of Bayesian model-based cluster-
ing is that it provides versatile posterior uncertainty assessment on both the
model parameters and cluster allocation estimates. However, while inference
on model-specific parameters and mixing weights follow standard Bayesian
practice, more development on estimating the clustering partition is needed.

To better clarify the notion of optimal partitioning, [Binder, 1978] in-
troduced a loss function approach. This considers optimal clustering as a
Bayesian action which attempts to minimize the expected loss of the parti-
tion. Under Binder’s linear loss function, the problem reduces to searching
for a partition ccc∗ that produces a binary affinity matrix πππ∗ nearest to the pair-
wise posterior similarity matrix πππ with πi j = p(ci = c j|yyy). [Fritsch & Ickstadt,
2009] showed that minimizing Binder’s linear loss is equivalent to maximiz-
ing the Rand index. One extension, the adjusted Rand index, corrects for the
chance of random agreement in the Rand index [Hubert & Arabie, 1985]. More
recently, [Wade & Ghahramani, 2018] use a loss function based upon variation
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of information [Meilă, 2007] as well as providing a method of assessing the
uncertainty in the estimated partition.

We find that there are several places where these current approaches can
be improved. The optimization strategy of directly shuffling the clustering
labels to find a binary matrix πππ∗ closest to the posterior similarity πππ can be
notoriously slow. Furthermore, conventional methods can only provide hard
clustering by the nature of direct label manipulation. They possess no capa-
bility of accounting for ambiguous observations. Moreover, they tend to favor
two extremes which either treat all uncertain points as singleton clusters or
simply lump them into a major neighbor cluster.

This paper proposes the use of non-negative matrix factorization (NMF) to
identify optimal partitions from Bayesian model-based clustering models. We
find the NMF approaches not only outperform alternative methods on clus-
tering accuracy but can also provide deeper interpretations of the partition-
ing results. Additionally, the clustering solutions produced by NMF are more
compelling since they can carefully balance between the singleton-preferred
and dominant-preferred extremes.

2 Methodology

A convenient way to summarize the partition information from a Bayesian
mixture model, which is unaffected by label switching and can be used when
the number of clusters K is not equal for all MCMC samples, is with the pair-
wise posterior similarity matrix. Intuitively, two data points are more likely to
be members of the same cluster when they appear together frequently in the
partitions ccc(1),ccc(1), . . . ,ccc(M). To quantify this relationship, a pairwise posterior
similarity matrix πππ =

{
πi j
}

is defined by πi j = p(ci = c j|yyy) , where ci and c j
are the cluster assignments of observations yi and y j. When the true probabil-
ities are unknown, the posterior similarity can be estimated from the MCMC
samples

π̂i j = p̂(ci = c j|yyy) =
1
M

M

∑
m=1

1{c(m)
i = c(m)

j } , (1)

where 1{c(m)
i = c(m)

j } equals 1 if c(m)
i = c(m)

j and 0 otherwise.

2.1 NMF Formulation

Nonnegative matrix factorization (NMF) decomposes a data matrix into lower-
rank matrices which can help reveal underlying patterns of the data. The con-
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nections between NMF and clustering have been well established and suc-
cessfully applied to many research fields [Hosseini-Asl & Zurada, 2014; Ding
et al., 2005; Kuang et al., 2012; Wang & Zhang, 2013].

Let the posterior similarity matrix πππ be the data matrix to be approximated.
In practice this would be the approximation π̂ππ from (1Methodologyequation.2.1).
The basic NFM problem [Lee & Seung, 2001] is finding two lower-rank ma-
trices that solve the optimization

(ŴWW , ĤHH) = argmin
WWW ,HHH>0

||πππ−WWWHHH||2F , (2)

where F indicates the Frobenius norm, πππ ∈ Rn×n
+ , WWW ∈ Rn×K

+ and HHH ∈ RK×n
+ .

The non-negativity in NMF indicates that matrix elements must be non-negative.
This least-squares type of NMF problem has a natural clustering inter-

pretation for nonnegative data because the columns of ŴWW can be considered
centroids and the columns of ĤHH are the cluster weights of the observations
[Kuang et al., 2012]. This provides a close connection with the K-means al-
gorithm [Ding et al., 2005]. While K-means restricts ĤHH to be a binary matrix
which implies hard assignment of cluster allocation, the NMF method results
in a real-valued positive matrix ĤHH which contains both hard and soft clustering
information. Specifically, the hard cluster allocation of observation i can be
estimated using the following equation

ĉi = argmax
k=1:K

Ĥki , (3)

which is similar to MAP method. In other words, the row index of the maxi-
mum value of a column represents the cluster membership of the correspond-
ing observation. In addition, the soft label assignment of ith observation can be
obtained by standardizing the columns of ĤHH

ĉccsofti =
ĤHH i

∑K
k=1 Ĥki

, (4)

where ĤHH i is the ith column of matrix ĤHH. To interpret the soft clustering, the
vector ĉccsofti describes the confidence levels of assigning observation i into the
clusters. The higher the value of ĉccsoftik , for example, the more confidence there
is in assigning observation i into cluster k. To further understand the soft clus-
tering nature of NMF, one can follow the claim by [Ding et al., 2005] that a
strictly orthogonal HHH matrix leads to hardened partitions and a near-orthogonal
HHH provide soft clustering which can be interpreted as posterior cluster proba-
bilities.
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3 Conclusions

This paper addresses the problem of estimating the optimal partition from
Bayesian cluster models. Particularly, a non-negative matrix factorization (NMF)
framework has been proposed that uses the pairwise posterior similarity matrix
constructed from the MCMC clustering samples to obtain the most appropri-
ate clustering estimates under various penalty functions. Instead of a direct
optimization using label manipulation, the NMF approach implicitly induces
the partition from the weight matrix HHH supplied by the flexible low-rank ap-
proximation πππ ≈WWWHHH. Another favorable property of the NMF models is a
soft/probabilistic interpretation of the clustering label assignment which can
be helpful in understanding the uncertainty in the partition.
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ABSTRACT: The study of international mobility flows across different European coun-
tries has become an important research topic due to the relevance of internationalisa-
tion process in the university context. The analysis of the factors pulling and pushing
students and/or university academic staff in a foreign country in higher education is,
indeed, a key feature for the implementation of university policies. The present contri-
bution aims at analysing the student and staff mobility flows by considering a network
analysis approach (Derszi, 2011, Breznik, 2015, Barnett, 2016). In particular, the
main purposes are to discover if a gender gap exists across countries/universities and
subject areas. Thanks to the European Union Open Data Portal (EU ODP), a sta-
tistical overview of Erasmus mobility of students and academic staff from the period
2008/09 to 2013/14 is obtained with respect to the gender. At macro-level perspective,
temporal network data structures are defined in which the nodes are the countries and
the links represent the students and staff mobility exchanges between countries with a
weight proportional to the number of students and staff involved. Hence, the directed
networks are built considering the outgoing and the incoming subjects.

KEYWORDS: Gender gap, Erasmus student mobility, European open data, social net-
work analysis.
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ABSTRACT: Network data may be collected as actor-event information, where two
types of nodes describe the interactions in the network itself: actors are units - individ-
uals - recorded as attending events. Same examples are people voting in an election,
users likes and dislikes, and so forth. Discovering communities, also called clusters,
of units by exploiting their patterns of attendance to the events is an intuitive and rea-
sonable criterion to define such groups. Here we propose an extension of the model
called manet: our contribution includes covariates in the model, while retaining the
characteristic of parsimony and interpretability of the original model. We assess the
performance of our approach in a simulated comparative environment.

KEYWORDS: Bayesian inference, two-mode network, MCMC, probit regression.

1 Introduction
Methods and approaches for network data have witnessed an increasing usage
and demand, following the growing interest of many practitioners in the ap-
pealing capability of network analysis to model complex interactions. Some
of these methods and models are reviewed in Kolaczyk, 2009. Among data
types in network analysis, some are coded as a set of interactions between
two types of nodes forming a network structure, i.e. units - actors - attending
events. These are called two-mode networks, bimodal networks, or affilia-
tion networks (Wasserman & Faust, 1994, Chapter 8). A recent approach for
model-based clustering of binary two-mode networks was proposed by Ran-
ciati et al., 2017. We build from that model to incorporate covariate informa-
tions pertaining to both types of nodes, thus: (i) extending manet (Ranciati
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et al., 2017) through the use of covariates; (ii) and providing comparative re-
sults on data from a simulated environment.

2 Mixture model for two-mode binary network data
Two-mode network data are organized in an n×d matrix Y of observations yi j,
recording attendances of i = 1, . . . ,n units - actors - to j = 1, . . . ,d events. For
binary data, each yi j codes individual i attending event j if equal to 1, and zero
otherwise. The idea is to cluster these n actors based on their attendances via a
mixture model, which is a prime tool in the framework of model-based cluster-
ing (Frühwirth-Schnatter, 2006). Traditionally, clusters are assumed to be mu-
tually exclusive, with prior sizes ααα = (α1, . . . ,αK); also, two conditions hold:
(i) αk ≥ 0, for each k; (ii) ∑K

k=1 αk = 1. We start from and build upon the model
proposed in Ranciati et al., 2017, where the authors detail a Bayesian multiple
allocation model for network data (manet): the model relaxes conditions on
the cluster sizes ααα, and allows {zi} to have multiple elements equal to 1. The
number of all possible group-allocating configurations is equal to K? = 2K , the
cardinality of the set containing sequences of 1 and 0 values for latent vector
{zi}. A new K?-dimensional allocation vector z?i is defined for each i, satis-
fying ∑K?

h=1 z?ih = 1, with a 1-to-1 correspondence between zzzi, allocating actors
into overlapping parent clusters, and zzz?i , allocating actors into non-overlapping
heir clusters. This re-parametrization corresponds to the following hierar-
chical model ααα? ∼ Dir(ααα?;a1, . . . ,aK?), z?i |ααα? ∼ Multinom(z?i ;α?

1, . . . ,α?
K?),

yi|z?i ,πππ ∼ ∏K?

h=1 ∏d
j=1

[
Ber
(
yi j;π?

hi j

)]z?ih
, with prior on the original parameters

πki j ∼ Beta(πki j;b1,b2), and (b1,b2) hyper-parameters. The quantities {π?
hi j}

are not additional parameters to be sampled, but probabilities of attendances
derived from πππ: for each actor i and event j, they are computed via a function
ψ
(
πππ·i j,zi

)
. We focus on introducing covariates into manet, retaining parsi-

mony from the original formulation. Covariates could be characteristic related
to an actor, such as, gender, age, etc, or features of an event, i.e. type of
event, date, duration, and so forth. We focus on the case with only actor-
specific covariates, as it is straightforward to include also event covariates.
We define xi· to be the L-dimensional vector of covariates for actor i. Co-
variates enter the model through a link function as in the generalized linear
models context (McCulloch & Neuhaus, 2001). To the hierarchical model, we
add µµµk ∼ N(µk;0,σ2

µ), βββk ∼ NL(βββk;000L,σ2
β IL), ηki = µk +∑L

l=1 βklxil, πki
(
xi·
)
=

Φ(ηki j), where: ηki is the linear predictor; Φ(·) is the gaussian cumulative
function; (σ2

µ,σ2
β) as hyper-parameters. We define π?

hi = Φ[ψ(µµµ,βββ,xi,zi)] =

396



Φ
[

ziµµµ
||zi||1 +

(
ziβββ
||zi||1

)
xi

]
, with ||zi||1 being the sum of the elements of zi. We

can sample the parameters of interest {µµµ,βββ} as in a single probit regression
model, and use them to compute {π?

hi} for evaluating the likelihood. We let
ỹ be an ñ× 1 column vector obtained by stacking columns of data matrix Y ,
with ñ = n · d; we stack together the cluster-specific vector of intercepts and
regression coefficients into β̃ββ = [µ1 βββ1 µ2 βββ2 . . . µK βββK ]

′. We define a pro-
bit regression formulation, where f

(
ỹi|β̃ββ,zi

)
= Ber

(
ỹi;Φ(η̃i)

)
, with η̃i being

an element of η̃ηη = X̃ β̃ββ. The new design matrix X̃ is built conditional on the
cluster allocations {zi}. For example, when K = 2, we have

X̃ =

[
X [1] X [2] 01+L

1
2 X [4]

X [1] 01+L X [3] 1
2 X [4]

]>

where X [h] = {xi,∀i : zi = uh}. We use the Bayesian probit regression frame-
work from Holmes & Held, 2006 to implement an MCMC scheme.

3 Simulation study
We investigate the performance of our proposal manet+cov by simulating
25 independent datasets, and we average the results across the replicates. Data
are simulated from manet with K = 2 overlapping clusters. We consider 5
scenarios with different type of covariates, sample size n and number of events
d. Performances are measured via: (i) the misclassification error rate (MER),
fraction of wrongly allocated units, and (ii) Adjusted Rand Index (ARI), mea-
sure of agreement between true and estimated labels - with 100 as best value.
Benchmarks values for MER and ARI are, respectively, 0.685 and 0. Results
are reported in Table 1. Except for the scenario with n = 50 and d = 5, we are
able to obtain satisfactory values for both MER and ARI, as we can see from
Table 1. This is indeed expected, given we are simulating from the very same
model we are trying to fit. It is worth mentioning that in these simulations
results, when actors were not correctly assigned to the heir cluster, they were
at least allocated to one of the two correct parent clusters.

4 Conclusions
In this manuscript we proposed an extension of a model for clustering binary
two-mode network data introduced by Ranciati et al., 2017: our contribution
allows the use of covariates information through a probit regression frame-
work, while still retaining parameter parsimony. We evaluated the performance
of our proposal in a simulated environment, and we provided insights on how
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Covariates # of actors/events Misclasf. Err. Rate Adj. Rand Index
actor n = 50, d = 5 42.08 19.52
actor n = 50, d = 15 14.72 68.51
event n = 50, d = 15 15.60 67.62
event n = 150, d = 15 13.73 70.61

actor, event n = 250, d = 21 18.00 66.00
Table 1. Misclassification error rate and Adjusted Rand index, averaged across the
25 replicated datasets (reported as percentages); data from manet+cov.

to interpret these results. To better understand the potential of using covari-
ates information to aid the clustering task, we aim to apply our model to a
real world dataset, in order to measure and understand the impact of actor and
event characteristics on the pattern of attendances. We started to analyze data
on Supreme Court votings (Doreian et al., 2004). Preliminary results seem
to show the existence of an overlapping pattern of decisions among the n = 9
members of the Supreme Court on d = 26 topics, categorized by an event co-
variate. Indeed, with K = 2, two of the justices are allocated into the heir
cluster zi = (1,1), while the rest are split into the two parent clusters 4 units in
zi = (1,0) and 3 units in zi = (0,1).
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ABSTRACT: We introduce a new stochastic blockmodel for the analysis of binary
network data evolving over time in a continuous fashion. Data of this type is partic-
ularly common in a variety of fields and may describe proximity interactions within
a community of individuals, or visual contact between the participants at an event.
The model does not rely on a discretization of the time dimension and focuses on
the analysis of interaction lengths in the network. The framework assumes a clus-
tering structure on the nodes, where two nodes belonging to the same cluster tend
to create interactions and non-interactions of similar lengths. An efficient variational
expectation-maximization algorithm is used to perform inference, while the Integrated
Completed Likelihood is adopted to select the number of clusters.

KEYWORDS: mixture model, model-based clustering, statistical network analysis, 
stochastic blockmodel, variational EM algorithm.

1 Introduction

In recent years, a number of network models have been introduced in the liter-
ature to study how binary interactions between entities evolve over time. One
common approach relies on the discretization of the time dimension: once an
appropriate time grid is specified, the continuous data are essentially trans-
formed into a collection of static network snapshots. This approach has facil-
itated the extension of many static network models to a dynamic framework.
The Stochastic Block Model (SBM) of Wang & Wong, 1987 has been recently
adapted to the dynamic case by Yang et al., 2011 and Matias & Miele, 2017.
However, the approach based on the discretization of the time dimension has
been recently criticized, due to the effects that the data transformation may
have on the results. In fact, the discretization process always involves a cer-
tain level of arbitrariness, either due to the data being collected at specific
given times, or because of a post-collection transformation. Indeed, in many
data analysis applications, the interactions evolve over time in a continuous
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Figure 1. Timeline representation of the interactions between two arbitrary nodes
(interactions are shown with a jagged line). In this case, since Mi j = 6, there are

4 embedded sub-segments which yield the exponential interaction lengths X (3)
i j and

X (5)
i j , and the non-interaction lengths X (2)

i j and X (4)
i j . The interaction length X (1)

i j and

non-interaction length X (6)
i j are truncated from the left and from the right, respectively.

fashion. For example, in data concerning phone call networks, visual contact
networks, speech networks, or proximity networks, the interactions among a
collection of entities may be protracted over time, and the object of analysis
can be to model for how long these entities interact (and conversely do not
interact) within an observed time period.

In this work we introduce a SBM for continuous time network interaction
data with the goal of directly modelling the lengths of the observed binary
interactions. The SBM structure postulates that the nodes are characterized
by a cluster membership variable, which determines both the lengths of the
interactions and the lengths of the non-interactions. This framework allows
the allocation of nodes into clusters characterized by different interaction and
non-interaction rates.

2 Interaction length network data

Consider a collection of nodes N = {1, . . . ,N}, which are interacting in a
time period of length T . Define the indicator Ei j(t) = 1 if nodes i and j are
interacting at time t, and Ei j(t) = 0 otherwise, for any pair of nodes i and j
and for any t ∈ [0,T ]. One can represent the observed interaction length data
as a collection of Mi j segment lengths Xi j and binary indicators Ai j, where
the m-th value X (m)

i j corresponds to the length of either an interaction or non-

interaction between nodes i and j, whereas A(m)
i j = 1 (resp. A(m)

i j = 0) indicates
that the segment corresponds to an interaction (resp. non-interaction). Figure 1
shows the timeline for the interactions between two given nodes: here, the
Xs indicate the lengths of each segment, whereas the As denote whether the
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segment corresponds to an interaction or non-interaction. In practice, the data
correspond to an alternating sequence of interactions and non-interactions in
the interval [0,T ] and is fully characterized by the collection X (m)

i j and the

initial values A(1)
i j .

3 Stochastic Blockmodel for interaction length data

We propose a Stochastic Blockmodel for such network interaction data and
to perform clustering of the nodes according to their interaction and non-
interaction time lengths. The model assumes a mixture distribution with K
components, with prior probabilities τk. A latent allocation variable Zik is as-
signed to each of the nodes, to indicate which one of the K groups node i
belongs to, such that Zik = 1 if node i arises from cluster k, 0 otherwise. In-
teraction and non interaction lengths X (m)

i j are modelled assuming a collection
of exponential distributions, with parameters µkh and λkh respectively. Hence,
the parameter µkh denotes the interaction length rate between a node in cluster
k and a node in cluster h; similarly, λkh denotes the rate for the non-interaction
lengths.

Conditionally on the allocation variables, we have the log-likelihood:

log p(X,A |Z,µµµ,λλλ) =
N

∑
i 6= j

K

∑
g=1

K

∑
h=1

ZigZ jh log p(Xi j,Ai j
∣∣µgh,λgh) ,

with the term p(Xi j,Ai j
∣∣µgh,λgh) given by

p(Xi j,Ai j
∣∣µgh,λgh) =

[
1−F

(
X (1)

i j ; µgh

)]A(1)
i j
[
1−F

(
X (1)

i j ; λgh

)]1−A(1)
i j

×
Mi j−1

∏
m=2

f
(

X (m)
i j ; µgh

)A(m)
i j

f
(

X (m)
i j ; λgh

)1−A(m)
i j

×
[
1−F

(
X (Mi j)

i j ; µgh

)]A
(Mi j)
i j
[
1−F

(
X (Mi j)

i j ; λgh

)]1−A
(Mi j)
i j

,

where f (· ;θ) and F(· ;θ) are the pdf and cdf of an exponential variable with
rate θ, respectively. The terms involving the cdf take into account the fact
that the observations at the extremities of the time interval are truncated and
interaction (or non-interaction) lengths X (1)

i j and X (Mi j)
i j only provide a lower

bound for the actual non-observed lengths.
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4 Inference

As is usual in model-based clustering, we perform inference for this model
by maximizing the marginal log-likelihood log p(X,A |µµµ,λλλ) with respect to
the model parameters using an EM algorithm. However, integrating out the
allocations Z is not computationally feasible and the posterior distribution
p(Z |X,A) does not factorize into a simple form. As a consequence, the E-
step cannot be performed exactly, due to the higher computational costs, and
this makes the standard EM algorithm not applicable. To overcome this limi-
tation and perform inference, we resort to a variational EM algorithm (Daudin
et al., 2008), where a variational approximation is used to replace the poste-
rior distribution on the allocations by a more tractable one, which allows an
efficient use of the EM algorithm.

In this framework, model selection corresponds to selection of the optimal
number of clusters K, which is often not known and needs be estimated from
the data. For this task, we adapt the Integrated Completed Likelihood (ICL)
criterion, which has been widely used to perform model choice for mixture
models (Biernacki et al., 2000; Côme & Latouche, 2015).
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ABSTRACT: Statistical inference for latent position network models generally require
a computational cost which grows with the square of the number of nodes in the graph.
This makes the analysis of large social networks impractical. In this paper, we pro-
pose a new method characterised by a linear computational complexity. Our approach
relies on an approximation of the likelihood function, where the amount of noise in-
troduced can be arbitrarily reduced at the expense of computational efficiency. We
establish several theoretical results that show how the likelihood error propagates to
the invariant distribution of the Markov chain Monte Carlo sampler. In particular,
we illustrate that one can achieve a substantial reduction in computing time and still
obtain a reasonably good estimation of the latent structure.

KEYWORDS: latent position models, noisy Markov chain Monte Carlo, social net-
works, bayesian inference.

1 Latent Position Models

A random graph is an object G =
{

V ,E
}

where V = {1, . . . ,N} is a fixed
set of labels for the nodes and E is a list of the randomly realised edges. The
observed data can be represented by an adjacency matrix Y , where the generic
entry yi j is 1 if an edge between i and j appears, or 0 otherwise, with j > i.

The nodes are characterised by a latent position, generically denoted z ∈
R2, which determines their social behaviour. The probability of an edge ap-
pearing is determined by the positions of the nodes at its extremes and by other
global parameters:

log
(

p(zi,z j;ψ)
1− p(zi,z j;ψ)

)
:= ψ−d (zi,z j) ; (1)
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where d (zi,z j) denotes the Euclidean distance between the two nodes, and ψ∈
R is simply an intercept parameter. The likelihood function reads as follows:

LY (Z,ψ) = ∏
{i∈V}

∏
{ j∈V \i}

{
[p(zi,z j;ψ)]yi j [1− p(zi,z j;ψ)]1−yi j

}
(2)

and inference is generally carried out through Markov chain Monte Carlo sam-
pling from the posterior distribution:

π(Z,ψ|Y ) ∝ LY (Z,ψ)π(Z)π(ψ) . (3)

Since the likelihood depends on all the pairwise distances between the nodes,
the number of operations required for inference grows with N2.

2 Grid approximation of the latent distances

Following an approach similar to that of Parsonage & Roughan, 2017, we
create a partitioning of the latent positions Z using a grid in R2. The grid is
made of adjacent squares (called boxes hereafter) of side length b > 0, each
having both sides aligned to the axes, as in Figure 1. If we use the centre of the
box c[g,h] as a proxy for the positions of the nodes contained in the same box,
the likelihood defined in (2) may be replaced by the following noisy likelihood:

L̃Y (Z,ψ) :=

{
∏
i,g,h

[p(zi,c[g,h];ψ)]ξi[g,h] [1− p(zi,c[g,h];ψ)]ζi[g,h]

}1/2

(4)

where ξi[g,h] (resp. ζi[g,h]) is the number of edges (resp. missing edges)
between node i and the nodes allocated in B[g,h]. The noisy likelihood has a
linear computational cost in N.

3 Noisy algorithm

We denote with NoisyLPM a Metropolis-within-Gibbs sampler where the
likelihood LY (Z,ψ) is replaced by its proxy L̃Y (Z,ψ), for some grid pa-
rameter b. The approximate Metropolis-within-Gibbs acceptance ratios im-
ply that the stationary distribution of NoisyLPM may not coincide anymore
with the posterior distribution in 3. In Rastelli et al. , 2018, we show that the
NoisyLPM generates a sequence of random variables whose distribution can
be made arbitrarily close to the true posterior π( · |Y ).
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Figure 1. Grid partitioning the latent space.

Figure 2. Astrophysics. Average latent positions of the nodes with circle size pro-
portional to node degree. The grid in dashed red line corresponds to the partitioning
imposed.
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4 Coauthorship in astrophysics

The coauthorship network studied in this section was first analysed by Leskovec
et al. , 2007. The nodes correspond to 18,872 authors, whereas the presence of
an edge between two nodes means that the two researchers appear as coauthors
on a paper submitted to arXiv, in the astrophysics category.

Figure 2 shows the average latent positions for all of the nodes in the net-
work. We point out that the nodes have a tendency to be distributed close to
the centre of each box. This is a natural consequence of our construction, since
the centre of the boxes is used as a proxy to calculate the latent distances. We
argue that, while the overall macro-structure of the network (i.e. the associa-
tion of nodes to boxes) is properly recovered, the micro-structure, given by the
positions of the nodes within each box, may not necessarily be accurate. The
computing time required to obtain the sample was about 46 hours (3.3 seconds
per iteration). The non-noisy sampler required an average of 453 seconds per
iteration, corresponding to a theoretical 262 days of computations for the full
sample.
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ABSTRACT: This paper presents a clustering approach adapted to big and dynamic
relational data. The main idea is to use a set of support points chosen among the
objects of the data set, independently from the clusters, and use these support points as
a basis for the definition of a representation space, using the Barycentric Coordinates
formalism. This dynamic approach is applied on a real data set to detect and follow
the dynamic of areas of interest over time in user’s web navigation.

KEYWORDS: data stream, clustering, relational data, barycentric coordinates.

1 Introduction

Unsupervised learning allows the computation of a model of the data structure
when no other information is known. The objects in the data set are grouped
in ”clusters”, based on their similarities. Several applications have been pro-
posed is many domains, such as marketing (Bigné et al., 2010) or climatology
(Ramadas et al., 2017). In many cases, the data sets are in perpetual evo-
lution, characterized by a variable structure over time, as new information is
constantly appearing. However, this is a difficult problem because of the cal-
culation and storage costs associated with the volumes involved. Indeed, the
stream of information represents usually an enormous mass of data to deal
with. In addition, the probability distribution associated with the data may
change over time (”concept drift”, Zhang et al., 2017).

In this paper, we propose a new approach based on the Barycentric Co-
ordinate formalism (Hille, 2005) adapted to complex data streams, allowing
creation and suppression of prototypes to follow the dynamic of the data struc-
ture. This approach is applied to real data in order to analyze and follow the
evolution of areas of interest over time in user’s web navigation. Our practical
motivation is to perform real-time profiling of connected users, i.e. recogniz-
ing the ”mindset” of users through their navigation on various websites or their
interaction with digital ”touch points” (Ahmad et al., 2017).
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2 Proposed approach

In this study, a new algorithm based on barycentric coordinates approach to
deal with complex data streams is presented.

In the barycentric Coordinate system, the representation space is defined
by a unique set of P support points chosen among the objects O. These support
points can be any objects chosen randomly from O and represent a virtual
space of dimension P−1. We aim at representing each cluster by a prototype
{µ1,µ2, ...,µK}with K is the number of prototypes. We define the set of support
points OS = oi, i ∈ S ⊂ O associated to an unknown representation in X by
XS = {si;si = xi, i ∈ S} ⊂ X . The prototype µk of cluster k is defined as a
convex combination of the support points:

µk =
P

∑
p=1

βk
p · sp, where βk = (βk

1, . . . ,β
k
p)

T ∈ Rp, with
P

∑
p=1

βk
p = 1. (1)

This is also the definition of the barycentric coordinate of an object in the
space defined by the support points. In other words, βk are the barycentric co-
ordinates of µk with respect to the system of support points XS. Any object o in
the database can also be defined using barycentric coordinates: oi = ∑P

p=1 βi
psp

with the coordinates βi satisfying ∑P
p=1 βi

p = 1.
The following metric is defined to evaluate the distance between an object

oi and a prototype µk:

d2(oi,µk) =−1
2
(βi−βk)T ·DS · (βi−βk), (2)

where DS = (d(oi,o j))i, j∈S is the dissimilarity matrix between the support
points.

In order to obtain the coordinates βi of an object oi, with respect to the
system of support points OS, we consider the following matrices:

A=




d(s1,s1)-d(s2,s1) ... d(s1,sP)-d(s2,sP)
. ... .
. ... .
. ... .

d(s1,s1)-d(sP,s1) ... d(s1,sP)-d(sP,sP)

1 ... 1



, Ji =




d(oi,s1)-d(oi,s2)
.
.
.

d(oi,s1)-d(oi,sP)
1



.

(3)
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By using the symmetry of DS, we obtain βi as solution of the following
linear system:

A ·βi = Ji⇒ βi = A−1 · Ji. (4)

The problem to optimize in order to find the coordinates of each prototype
is a minimization of inertia. The algorithm must update incrementally the
barycentric coordinates of each prototype µk with respect to the support points
XS for each object of the stream presented to the system if this object belongs
to cluster k. As we can compute the barycentric coordinates of oi in terms of
the support points OS (equation (4)), the update rule of βk can be written as:

βk
t+1 = βk

t − γ(βi−βk
t ). (5)

where γ is the weight (or learning rate) defining the importance of oi in the new
barycentric coordinates.

Finally, in order to take into account the variation over time in the distribu-
tion of data in the stream, for each object oi, after projection in the barycentric
space, if the distance between oi and the closest prototype µ is higher than a
maximum radius, a new prototype is created with coordinates βi. Otherwise,
the new object is assigned to the nearest prototype. An ”age” parameter is as-
sociated to each prototype and increased over time. Each time a prototype is
the closest to a new object, its ”age” is set to 0. If a prototype’s age reaches a
defined threshold, it is removed from the model.

3 Results

The proposed algorithm was applied to study the dynamic of web navigation
behavior, as recorded during two weeks in August 2017 among French Inter-
net users. The evolution of the stream structure has been analyzed in order to
highlight trends and variation in the users’ behaviors over time. Two measures
of similarity were used to compare URLs, using semantic and contextual in-
formation associated to each URL. Our objective was to produce a dynamic
clustering of this data, in order to monitor the general users’ behavior and in-
terest and follow their evolution over time. Figures 1 are examples of results
obtained with the proposed algorithm. Such results are very interesting for
online marketing companies which constantly need to adapt their advertising
strategy to user’s ”mindset”.
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a. maxifoot.fr b. jeunesecrivans.fr c. opodo.fr d. lacoccinelle.net

Figure 1. Time (days) in function of the number of visiting users in each cluster. The
closest domain name is given for each cluster.

4 Conclusion

In this paper, we proposed a new approach able to deal with complex data
stream. This algorithm was applied to a real stream of user’s web-pages navi-
gation, in order to analyze the structure and dynamics of user’s area of interest
over time. The results are convincing and encouraging, the clusters are homo-
geneous with clear associated topics and the evolution of user’s interest can be
recorded and visualized for each cluster.
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ABSTRACT: A new parsimonious model to cluster mixed-type of data is presented.
Continuous and ordinal data are modeled by a mixture of Gaussians partially observed.
To be parsimonious, it is used a reparameterization of the covariance matrices of the
multivariate Gaussians. This permits to control for the number of parameters and
simplifies the interpretation of the results.
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1 Introduction

To cluster mixed-type data, i.e. ordinal and continuous variables (Everitt, 1988
and Ranalli & Rocci, 2017a), ordinal variables are assumed to be a discretiza-
tion of some latent continuous variables jointly distributed with the continuous
ones as a Gaussian mixture model (Mclachlan & Peel, 2000). However, a large
number of parameters have to be estimated, especially when covariance ma-
trices change over components. Several authors have proposed parsimonious
reparametrizations, mainly for continuous data. For example, some constrain
the eigenvalues and/or the eigenvectors of the covariance matrices to be the
same across the groups (Banfield, 1993), while others reduce the number of pa-
rameters by using a factor analysis model for each covariance matrix (McLach-
lan et al. , 2003). In the same context, we find proposals where mixtures of
factor analyzers are used to obtain different parsimonious models (McNicholas
& Murphy, 2008). A different approach has been developed for continuous
and ordinal data (see by Kumar & Andreou, 1998 and Ranalli & Rocci, 2017b,
respectively). They assume that there exist two within uncorrelated sets of
factors that generate the variables as linear combinations, whose distributions
have group specific parameters only for the first set. In this way the reduction
is not only in the number of parameters but also in the dimensionality of the
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data. In fact, the component variables of the second set, without class specific
parameters, can be considered noise dimensions. In this framework, we pro-
pose a new parsimonious reparameterization based on the assumption that the
variables are linear combinations of within uncorrelated latent variables where
only some of them are characterized by class specific parameters. The material
is organized as follows. In section 2, we present the model specification. In
section 3, we outline the model parameter estimation. Finally some remarks
and considerations are discussed in section 4. The EM-like algorithm and an
example of application on real data showing the effectiveness of the proposal
will be presented elsewhere for lack of space.

2 Model specification

Let x = [x1, . . . ,xO]
′ and yŌ = [yO+1, . . . ,yP]

′ be O ordinal and Ō = P−O con-
tinuous variables. The associated categories for each ordinal variable are de-
noted by ci = 1,2, . . . ,Ci with i = 1,2, . . . ,O. Following the Underlying Re-
sponse Variable approach (Muthén, 1984), the ordinal variables x are con-
sidered as a categorization of a continuous multivariate latent variable yO =
[y1, . . . ,yO]

′. The latent relationship between x and yO is explained by the
threshold model, xi = ci ⇔ γ(i)ci−1 ≤ yi < γ(i)ci , where −∞ = γ(i)0 < γ(i)1 < .. . <

γ(i)Ci−1 < γ(i)Ci
=+∞ are the thresholds defining the Ci categories collected in a set

ΓΓΓ whose elements are given by the vectors γγγ(i). We assume that y = [yO′,yŌ′]′

follows a heteroscedastic Gaussian mixture, f (y) = ∑G
g=1 pgφp

(
y; µµµg,ΣΣΣg

)
,

where the pg’s are the mixing weights and φp
(
y; µµµg,ΣΣΣg

)
is the density of a

P-variate normal distribution with mean vector µµµg and covariance matrix ΣΣΣg.
All the parameters are contained in ψψψ .
For a random i.i.d. sample of size N, (x1,yŌ

1 ), . . . ,(xN ,yŌ
N), the log-likelihood is

`(ψψψ) =
N

∑
n=1

log

[
G

∑
g=1

pgφŌ(y
Ō
n ; µµµ Ō

g ,ΣΣΣ
Ō
g )πn

(
µµµO|Ō

n;g ,ΣΣΣO|Ō
g ,ΓΓΓ

)]
, (1)

where, with obvious notation πn

(
µµµO|Ō

n;g ,ΣΣΣO|Ō
g ,ΓΓΓ

)
=
∫ γ(1)c1

γ(1)c1−1

· · ·∫ γ(O)
cO

γ(O)
cO−1

φO(u; µµµO|Ō
n;g ,ΣΣΣO|Ō

g )du

where, πn

(
µµµO|Ō

n;g ,ΣΣΣO|Ō
g ,γγγ

)
is the conditional joint probability of response pat-

tern xn = (c(1)1 , . . . ,c(O)
O ) given the cluster g and the continuous variables yŌ

n .
Finally pg is the probability of belonging to group g subject to pg > 0 and
∑G

g=1 pg = 1. We assume that in each class the P variables are linear combina-
tions of the same P latent factors, which are uncorrelated and change, from one
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cluster to another, only in the means and variances. In formulas, if observation
n comes from the subpopulation g (g = 1, . . . ,G), then the following model
holds

yn = B(ηηηg +L1/2
g fn) (2)

where B is a full rank (P×P) matrix of component loadings, fn is a random
vector of P latent variables normally distributed with mean 0 and covariance
matrix IP and ηηηg and Lg are a column vector and a positive definite diagonal
matrix, respectively. This model implies that in component g-th the P observed
variables are linear combination of P latent factors having ηηηg and Lg as mean
vector and covariance matrix, respectively. The density of yn, given that ob-
servation n comes from the g-th subpopulation, is multivariate normal with
mean µµµg = Bηηηg and covariance matrix ΣΣΣg = BLgB′, obtaining a reparameter-
ization of the covariance matrices well-known in the multidimensional scaling
literature under the name INDSCAL (Carroll & Chang, 1970).

3 Model Estimation

To overcome the presence of multidimensional integrals, here, the full log-
likelihood is replaced by a composite likelihood (Lindsay, 1988) formed of
O(O−1)/2 marginal distributions each of them composed of two ordinal vari-
ables and the Ō continuous variables. This leads to the following surrogate
function

c`(ψψψ) =
N

∑
n=1

O−1

∑
i=1

O

∑
j=i+1

Ci

∑
ci=1

C j

∑
c j=1

δ (i j)
ncic j log

[
G

∑
g=1

pgπ(i j|Ō)
cic j (µµµ(i j|Ō)

g ,ΣΣΣ(i j|Ō)
g ,ΓΓΓ(i j))φŌ(y

Ō
n ; µµµŌ

g ,ΣΣΣ
ŌŌ
g )

]
,

where δ (i j)
ncic j is a dummy variable assuming 1 if the n-th observation presents

the combination of categories ci and c j for variables xi and x j respectively, 0

otherwise; π(i j|Ō)
cic j (µµµ(i j|Ō)

g ,ΣΣΣ(i j|Ō)
g ,ΓΓΓ(i j)) is the conditional probability of vari-

ables x j and xi of being in category ci and c j respectively, given all the contin-
uous variables yQ̄. The parameter estimates are carried out through an EM-like
algorithm, that works in the same manner as the standard EM on a composite
complete log-likelihood.

4 Discussion

In this work we propose a parsimonious version of mixture of Gaussian par-
tially observed based on a specific decomposition of the covariance matrices.
This is always true when G = 2 but does not necessarily hold for G ≥ 3. In
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this case, if needed, we can circumvent the lack of fit by relaxing some of the
constraints, for example by requiring a block diagonal form rather than sim-
ply diagonal for the matrices Lg, or by assuming that the number of factors
is greater than P, i.e. the number of manifest variables (assuming B to be
rectangular).
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ABSTRACT: This paper introduces a new topological machine learning model in or-
der to project high dimensional datasets without loosing the structure of the data. The
model is based on SNE (Stochastic Neighbor Embedding) dimensionality reduction
method and Self-Organizing Maps (SOM). The SNE method which performs good
results for visulaization allows a projection of the dataset in low dimensional spaces
that make it easy to use for very large datasets. Using SNE during the learning process
will allow to reduce the dimensionality and to preserve the topology of the dataset by
increasing the clustering accuracy.

KEYWORDS: Stochastic Neighbor Embedding; Self-Organizing Maps, Clustering, 
Visualization.

1 Introduction

Topological learning is a recent direction in Machine Learning which aims to
develop methods grounded on statistics to recover the topological invariants
from the observed data points. Most of the existed topological learning ap-
proaches are based on graph theory or graph-based clustering methods.

The main purpose of unsupervised learning methods is to extract generally
useful features from unlabelled data, to detect and remove input redundancies,
and to preserve only essential aspects of the data in robust and discrimina-
tive representations. Unsupervised methods have been routinely used in many
scientific and industrial applications.

Unsupervised feature learning algorithms aim to find good representations
for data, which can be used for different tasks i.e. classification, clustering,
reconstruction, visualization,... Recently, the SNE (Hinton & Roweis, 2003) a
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method has shown high feature learning performance used for dimensionality
reduction and visualization (Kitazono et al. , 2016).

Given a data matrix represented as vectors of variables (p observations and
n features), the goal of the unsupervised transformation of feature space is to
produce another data matrix of dimension (p,n′) (the transformed representa-
tion of n′ new latent variables) or a similarity matrix between the data of size
(p, p). Applying a meodel on the transformed matrix should provide better
results compared to the original dataset.

In this paper we have focused on models that are based on topological
unsupervised learning and the SNE (Stochastic Neighbor Embedding) in order
to reduce the data dimensionality of the data and to take advantage from the
topological preservation of information.

2 Proposed model

Tha main principle of the Stochastic Neighbor Embedding (SNE) is to convert
the high-dimensional Euclidean distances between datapoints into conditional
probabilities that represent similarities. The similarity of datapoint x j to data-
point xi is the conditional probability, p j|i defined as follows:

p j|i =
exp(−‖xi−x j‖2

2δ2
i

)

∑k 6=i exp(−‖xi−xk‖2

2δ2
i

)
(1)

where δi is the variance of the Gaussian that is centered on datapoint xi.
For the low-dimensional data yi and y j corresponding to high-dimensional

datapoints xi and x j, a conditional probability denote by q j|i is computed as
follows:

q j|i =
exp(−‖yi− y j‖2)

∑k 6=i exp(−‖yi− yk‖2)
(2)

The Kullback-Leibler divergence is used as a measure of the faithfulness
with which q j|i models p j|i. SNE minimizes the sum of Kullback-Leibler di-
vergences over all datapoints using a gradient descent method given by the cost
function:
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CSNE = ∑
i

KL(Pi||Qi) = ∑
i

∑
j

p j|i log
p j|i
q j|i

(3)

wher Pi represents the conditional probability distribution over all other
datapoints given datapoint xi, and Qi represents the conditional probability dis-
tribution over all other map points given map point yi.

Nexxt, the SOM model is used by minimizing the objective function:

R(χ,W ) =
N

∑
i=1

|W |
∑
j=1

K j,χ(xi)‖xi−w j‖2 (4)

where χ assigns each observation xi to a single cell in the map C . This cost
function can be minimized using both stochastic and batch techniques T., 2001.

Algorithm 1 Topological Stochastic Neighbor Embedding
Input: n data points x1,x2, ...,xn ∈ Rm; Cluster number k ;
Output: k clusters;

1. Compute pairwise affinities p j|i (using Equation 1)
2. for i=1 to Iter do

compute low-dimensional affinities qi j

compute the low dimensional data (Y ) using the gradient δC
δY

3. end for
4. Compute the prototypes matrix W using the SOM algorithm on the

low dimensions Y
5. Cluster each cell ( prototype ) from W into k clusters via Hierarchical

Clustering algorithm

In the Algorithm 1 we present the proposed model which allows to cluster
a dataset by preserving the topological structure of the data.

To evaluate the proposed method, we used several datasets of different size
and complexity presented in table 1 by comparing with k-means and spectral
clustering. We performed several experiments on diferent problems from the
UCI Repository of machine learning databases (Asuncion & Newman, 2007).

The obtained results shows what the proposed model outperforms the k-
means and spectral clustering in terms of the Accuracy and Rand index. For
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MNIS daaset the obtained Rand index is 0,95 for the proposed model compared
to 0,92 for spectral clustering.

For other datasets we can note that our method always outperforms the
classical k-means and the spectral clustering, but we have to note here that the
goal is also to preserve the topological structure of the data for visualization.

3 Conclusions

In this study we proposed a new topological unsupervised learning model
which allows to cluster a large dataset by preserving the local structure of
the data. The proposed method use the Self-Organizing Maps by reducing
the dimensionality using the SNE model. The obtained results show that the
proposed method improves the clustering results in term of external indexes.
For future work, the spectral topological clustering can be used to improve the
clustering results, and to adapt this method for multi-view datasets.
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ABSTRACT: Earthquakes can be seen as realization of a spatial, temporal, or spatiotemporal 

point process. Given a dataset of earthquakes in a mixed geographical region, a scientific 

question that naturally arises is whether can we separate the earthquakes in two fundamental 

disjoint sets: triggered (sequential) and background (complete random). Such a separation 

becomes quite important as background earthquakes are basically blurring main spots of 

triggered ones. We consider LISA functions as functional marks attached to the points in the 

spatial point pattern of the earthquakes. We then classify the points through Aitchison 

distance and subsequent multivariate classification techniques. The performance of our 

method is demonstrated by simulation. 
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ABSTRACT: Binary unsupervised classification of n units based on a set of r binary
items is considered. Classical results on likelihood ratio based procedures are revisited
and discussed, together with some recent results. Hard assignment is considered, as
opposed to the soft assignment preferred by the latent class (or mixture) authors.
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1 Introduction

This is a review of some recent and some ongoing works on a basic model-
based approach to ROC curves. Recently, whole books have been devoted to
the study of ROC curves (e.g. Pepe, 2003, Krzanowski & Hand, 2009, Zou
et al., 2011), but we would like to give further contribution to the study of their
properties in the presence of multivariate binary data.

Our multivariate binary data, such as those generated by polls, question-
naires and online automated interviews, are binary words representing the
profile of a statistical unit about which several binary questions have been
answered; each bit in the profile binary word then represents a binary an-
swer. The goal is to classify the sampled units into one of two populations,
say underachievers and overachievers (in Education), healthy and diseased (in
Medicine), or right-wing and left-wing (in Political Science) and so on. In
this work the two populations (or, equivalently, their probability measures) are
indicated as P+ and P−.

Traditionally, in the presence of such data, a substantive researcher (such as
a Pedagogist, a Physician or a Political Scientist in the above mentioned exam-
ples) would focus on certain clearly interpretable key profiles of interest, make
up a distance of the observed profile from the few key profiles, then proceed
with distance-based classification methods. We would like instead to evaluate
up to which point, with modern technology, we can use basic methods such as
maximum likelihood and hard assignment towards automated identification of
the two classes and of the class labels of the sampled subjects.

420



2 Likelihood Ratio based ROC curves and concentration

As it is well known since the early developments in classification, likelihood
ratio (LR from now on) based methods are optimal. A general treatment of this
topic is contained in Sacchetto & Gasparini, 2019, whence three very general
results can be stated:

1. LR is a scalar score which can be constructed as long as two compatible
probability measures are assigned to the two competing populations;

2. the ROC curve based on the LR is proper;
3. the ROC curve is in a one-to-one correspondence to a general measure of

concentration portrayed in Cifarelli & Regazzini, 1987 according to the
following formula: ROC(x) = 1−ϕ(1− x) ∀0≤ x≤ 1, where ROC(·)
is the ROC for the LR-based procedure for P+ vs. P− and ϕ(·) if the con-
centration function due to Cifarelli & Regazzini, 1987, a generalization
of the Lorenz curve to very general abstract measures on P+ and P−.

Based on Result 1 above, we now proceed to study some properties of the ROC
curve when the data are multivariate binary.

3 Hard assignment versus soft assignment

When performing binary classification with multivariate binary data, one is
confronted with a database, such as the one in the first two columns of Ta-
ble 1 in the example presented in Section 5. The statistical units, i.e. the
rows of the database, have to be assigned to P+ or P−; in other words, the
unknown unit labels γ1,γ2, . . . ,γn have to be inferred. Notice this is, again,
a basic way to do classification, which is sometimes called hard assignment
as opposed to soft assignment, such as the one used in the mixture modelling
literature. Nowadays, the latter is prevalent and it is implemented in popu-
lar softwares, as, for example, the poLCA R library (Linzer & Lewis, 2011).
With hard assignment, γ1,γ2, . . . ,γn are parameters themselves, together with
the unknown probabilities of success in the two populations π+ = (π+

1 , . . . ,π
+
r )

and π− = (π−1 , . . . ,π
−
r ), where r is the number of items, i.e. the length of the

binary profile. Maximum likelihood estimates are then the maximizer of the
likelihood.
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Figure 1. The usual definition of a ROC based on discrete data (left) and the ROC on
the same data completed via a randomization device (right).

4 Discrete data and ROC curves

A technical issue is that, when the LR takes on a discrete set of values, as it
happens with binary data, the ROC curve is only a discrete set of points, as in
Figure 1, left panel. A byproduct of Result 3 above, highlighted in Sacchetto &
Gasparini, 2019, is that if we give a general definition of ROC curve including
a randomization device (similar to randomized Neyman-Pearson tests), then
the discrete points can be joined to form a concave and proper ROC curve, as
in Figure 1, right panel.

5 An example from the literature

Bartholomew et al., 2008 described latent class models for binary data using
an educational assessment dataset, containing answers to r = 4 binary ques-
tions provided by n = 142 subjects. The information was collected to study
the learning process in children and, in particular, to classify students in two
groups: “masters” students were expected to answer correctly to most ques-
tions (majority of 1’s in the profile), while mostly 0’s were expected from “non-
masters”. However, students could also answer in the right way by chance, as
well as give the wrong answer due to oversight.We compared the results ob-
tained via poLCA with our hard assignment approach. Results are shown in
Table 1. 20 out of 142 subjects are classified differently by the two methods:
the reasons for the observed differences are a matter of discussion. In partic-
ular, one should further investigate profiles with high posterior probabilities
in the latent variable approach which are classified differently by hard assign-
ment. Future work will consist of simulations aimed at evaluating the quality
of the classification via appropriate indices such as sensitivity, specificity and
accuracy of the two partitions with respect to the true one.
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Table 1. Latent classes analysis (poLCA Ass) versus hard assignment (Hard Ass) on
Macready & Dayton, 1977 data. Posterior probabilities calculated using poLCA.

Profiles Frequency Prob. ∈ P− Prob. ∈ P+ poLCA Ass. Hard Ass.
1111 15 0.000 1.000 + +
1101 23 0.002 0.998 + +
1110 7 0.002 0.998 + +
0111 4 0.001 0.999 + +
1011 1 0.003 0.997 + -
1100 7 0.087 0.913 + +
1001 6 0.095 0.905 + -
0101 5 0.025 0.975 + +
1010 3 0.100 0.900 + -
0110 2 0.026 0.974 + +
0011 4 0.029 0.971 + -
1000 13 0.822 0.178 - -
0100 6 0.526 0.474 - +
0001 4 0.550 0.450 - -
0010 1 0.563 0.437 - -
0000 41 0.982 0.018 - -
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ABSTRACT: Many new methods have been proposed for improving protfolio selec-
tion process, applying clustering techniques to stock price time series. We apply a
recently proposed clustering method that employs stock price’s time series P-Spline
coefficients, instead of the original time series, in order to speed up and stabilize the
clustering process. Then we propose a cluster validation benchmark technique that
enable us to automatically build financial portfolio that complies with some strategic
constraints.

KEYWORDS: Silhouette, P-splines, PAM, portfolio selection.

1 Introduction

The problem of portfolio optimization is one of the most important issues in
asset management. Since the seminal works of Harry Markowitz in the fifties
(Markowitz, 1952; Markovitz, 1959), many other researches have been focu-
sed on several aspects of portfolio optimization both from an applied and from
a theoretical point of view.
In the last years the attention brought by the scientific community to the field
of statistical learning, pushed many clustering techniques in building optimi-
zed portfolio (Tola et al., 2008) or achieving some tracking results (Dose and
Cincotti, 2005). A review of financial application of data mining techniques is
provided in Hajizadeh et al. (2010).
Unsupervised learning techniques have yielded some good result in this direc-
tion, for example mining stock categories in stock exchanges (see, for exam-
ple, Liao et al., 2008; Nanda et al., 2010), building stable portfolios (Zhang
and Maringer, 2009) and showed good effects on portfolio formation and risk
analysis (Lemieux et al., 2014).
The purpose of many unsupervised learning techniques is to group data maxi-
mizing the similarity within the groups and minimizing the similarity between
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them, and this lead to a natural link with the object of portfolio management
and risk diversification.
We propose a cluster validation benchmark aiming to portfolio selection ba-
sed on cluster silhouette method. In section 2 we explain the main feature
of the method and how to achieve the portfolio through the silhouette stati-
stic. In section three we give some remarks about the proposal and point some
conclusions.

2 P-spline clustering and silhouette based portfolio building pro-
cedure

Recently, Iorio et al. (2016) exposed the benefits in terms of computational sa-
ving and data pre-processing of clustering time series through the coefficients
of P-spline smoothers. Iorio et al. (2018) provide an extensive application of
the method to a portfolio selection problem.
Our proposal is to cluster time series of stock prices by the Penrose shape
distance (Penrose, 1952) of P-spline coefficients, through a Partition Around
Medoids algorithm (Kaufman and Rousseeuw, 1987), attempting to cluster
them by their shape. Penrose shape distance is a distance in Rn, defined as

Dxy =
√

∑((xi− x̄)− (yi− ȳ))2. (1)

2.1 P-spline in a nutshell

A Spline is a function defined by many polynomial functions, linked in many
points, named knots, endowed with an high degree of uniformity. Its generali-
zed expression is:

Bik =
i+k−1

∑
j=i

b jkX j (2)

The goal of estimating the best fitting function for data without introducing
variability in the estimation, is achieved minimizing the objective function
expressed as:

Sλ = (y−Bc)T (y−Bc)+λaT Pa, (3)

where B is the basis matrix, P is the penalty matrix and c is the vector of coef-
ficients. The problem is solved through a least square procedure, producing
the following expression:
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(BT B+λP)â = BT y. (4)

This allows curve interpolation avoiding overfitting, so that when we have an
high number of knots we don’t have interpolated curves showing too much
variability.

2.2 Silhouette for portfolio selection

After the clustering of the data, validated through the use of the silhouette sta-
tistics (Rousseeuw, 1987), we compute the silhouettes of each series observed
and clustered, then we proceed to build the portfolio. First, we compute the
average silhouette of each group found by the clustering procedure and select
only those laying on the right tail of each cluster average. Each selected stock
enters the portfolio attending the following weighting scheme:

Wi j =
Si j−µC j

∑i∈C j(Si j−µC j)
, (5)

where Si j is the silhouette value of the i-th series in the j-th cluster and µC j is
the average silhouette value for the series in cluster j. In this way we impose
restrictions on the portfolio composition. Considering only those having si-
lhouette values higher than the cluster average silhouette we are not allowing
for any negative weighting scheme to be considered. Moreover, we ensure to
invest all our wealth in the portfolio.

3 Conclusions

We propose a new strategy for building portfolio with some pre-specified featu-
res, through the cluster analysis of time series’ P-splines coefficients, working
on their silhouettes, that automatically achieves the feasibility constraints and
some degrees of diversification or some benchmark level.
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ABSTRACT: Preference data represent a particular type of ranking data where a group
of people gives their preferences over a set of alternatives. The traditional metrics be-
tween rankings don’t take into account that the importance of elements can be not
uniform. In this paper the item weighted Kemeny distance is introduced and its prop-
erties demonstrated.
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1 Introduction

Ranking is one of the most simplified cognitive processes used by people to
handle many aspects of their lives. When some subjects are asked to indi-
cate their preferences over a set of alternatives (items), ranking data are called
preference data. Therefore, ranking data arise when a group of n individuals
(judges, experts, voters, raters, etc.) shows their preferences for a finite set of
items (m different alternatives of objects, like movies, activities and so on).
The two representations of a ranking are the rank vector and the order vector.
The rank vector lists the ranks given to the objects, the order vector lists the
true order of objects in order from best to worst. It is possible to switch from
orderings to rankings and vice-versa, and in this paper, we will refer to order-
ings. If the m items, labeled 1, . . .m, are ranked in m distinguishable ranks,
a complete (full) ranking or linear ordering is achieved (Cook, 2006): this
ranking a is a mapping function from the set of items {1, . . . ,m} to the set of
ranks {1, . . . ,m}, endowed with the natural ordering of integers, where a(i) is
the rank given by the judge to item i. Ranking a is, in this case, one of the
m! possible permutations of m elements. When some items receive the same
preference, then a tied ranking or a weak ordering is obtained. In real situa-
tions, sometimes not all items are ranked and we talk of partial rankings, when
judges are asked to rank only a subset of the whole set of items, and incomplete
rankings, when judges can freely choose to rank only some items. In order to
obtain homogeneous groups of subjects with similar preferences, it is natural
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to measure the spread between rankings through dissimilarity or distance mea-
sures d between two rankings, a non-negative value ranging in 0−Dmax. In
this sense, a consensus is defined as the ranking that is closest (i.e. with the
minimum distance) to the whole set of preferences. Another possible way for
measuring (dis)-agreement between rankings is in terms of a correlation co-
efficient: rankings in full agreement are assigned a correlation of +1, those
in full disagreement are assigned a correlation of −1, and all others lie in be-
tween. Kumar and Vassilvitskii (2010) introduced two essential aspects for
many applications involving distances between rankings: positional weights
and element weights. In brief, i) the importance given to swapping elements
near the head of a ranking could be higher than the importance attributed to el-
ements belonging to the tail of the list or ii) changing the ranking of important
items should be less penalized than changing the ranking of important ones
The first aspect has been widely addressed in literature. Recently Plaia et al
(2019a, 2019b) proposed a new position weighted correlation coefficient for
linear and weak orderings. Differently, the aspect of element weights is less
explored. As Kumar and Vassilvitskii (2010) say, item weights are important,
for example, when swapping similar elements should be less penalized than
swapping dissimilar elements. To illustrate the idea, when ranking politicians,
we should take into account if candidates belong to the same or to different
parties: if two rankings differ for the position of two candidates from the same
party, it should be reasonable to assume that the distance between these two
rankings must be lower than the one between two rankings that differ for the
position of candidates that belong to different parties.

In order to take this aspect into account, in this paper we introduce the item
weighted Kemeny distance.

2 Distances for ranking data: item weighting

In order to get homogeneous groups of subjects having similar preferences,
it is natural to measure the spread between rankings through dissimilarity or
distance measures among them. Among the metrics proposed in the literature
for computing distances between rankings, we choose to consider the Kemeny
distance (Kemeny and Snell, 1962) that, with reference to two rankings a and
b, is a city-block distance defined as:

K(a,b) =
1
2

m

∑
i=1

m

∑
j=1
|ai j−bi j|. (1)

ai j and bi j are the generic elements of the m×m score matrices associated
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to a and b, respectively, assuming a value equal of 1 if item i is preferred to
item j, -1 if item j is preferred to item i and 0 if the two items are tied or if
i = j.

The choice of the Kemeny’s axiomatic framework (Kemeny and Snell
1962) is justified beacuse we consider the possibility of ties, thus the geo-
metrical space of preference rankings is the generalized permutation polytope
(D’Ambrosio and Heiser, 2016), for which the natural distance measure is the
Kemeny distance.

In order to consider the possibility that the items are not equally important,
we introduce a vector of weights w = (w1,w2, . . . ,wm), with wi ≥ 0, whose
elements represent the weight (i.e. the importance) we give to each item. The
item weighted Kemeny distance is defined as:

diw
K (a,b) =

m

∑
i< j

wi +w j

2
|ai j−bi j| (2)

It is easily demonstrated that the maximum value of eq. (2) is dmax =
(m−1)∑m

i=1 wi.

3 Distance properties

We will prove that eq (2) meet the usual properties of a distance function; given
two rankings, a and b:

1. Non negativity: d(a,b)≥ 0 and equality hold if and only if a = b limited
to items corresponding to weights wi > 0,

2. Symmetry: d(a,b) = d(b,a),
3. Triangle inequality: d(a,b)≤ d(a,c)+d(c,b) if b is between a and c (in

case of a metric).

Moreover, a desirable property of any distance is its invariance toward a
renumbering of the elements (the so-called label invariance, right invariance
or equivariance).

Proof

1. Eq (2) is a sum of absolute values, hence it cannot be negative. If a 6= b
at least for the items with corresponding weights greater than 0, then the
distance is positive. At the same time, if a = b at least for the items with
corresponding weights greater than 0, then the distance is null.

2. Symmetry occurs since |ai j−bi j|= |bi j−ai j|.
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3. Given i and j, the triangular inequality reduces to:

wi +w j

2
|ai j−bi j| ≤

wi +w j

2
|ai j− ci j|+

wi +w j

2
|ci j−bi j|

and dividing by wi+w j
2 we return to the known Kemeny distance that, as

demonstrated by Kemeny and Snell, meets the inequality if c is between
a and b.

Finally, since a permutation of items simply rearranges the rows and columns
of the score matrix, if a′ results from a by a permutation, and b′ results from
b by the same permutation, then diw

K (a′,b′) is the sum of the same terms as
diw

K (a,b), with the terms occurring in a different order: hence the label invari-
ance holds.
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A FAST AND EFFICIENT MODAL EM ALGORITHM
FOR GAUSSIAN MIXTURES
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ABSTRACT: In modal clustering, clusters are defined in terms of local maxima of
the underlying probability density function. Therefore, clusters are closely related to
certain regions around the density modes. An estimate of the density function can be
obtained either nonparametrically or by using finite mixture models. A Modal EM
algorithm can be used to identify the local maxima of a density function, so that every
cluster corresponds to a bump of the density. In this contribution, we propose a fast
and efficient Modal EM algorithm when the density function is estimated through
Gaussian mixture models with parsimonious covariance structures.

KEYWORDS: Modal EM algorithm, model-based density estimation, finite mixture
of Gaussians, density modes.

1 Introduction

In model-based clustering each component of a mixture distribution is asso-
ciated to a cluster (McLachlan & Peel, 2000; Fraley & Raftery, 2002). Thus,
observations are allocated to the cluster with maximal density among the com-
ponents. Modal clustering is another density-based approach to clustering that
directly looks for “[...] regions of high density separated from other such re-
gions by regions of low density” (Hartigan, 1975, p. 205). Several mode-
seeking algorithms have been proposed in the literature, such as the mean-shift
algorithm (for a recent review see Menardi, 2016).

Let f (xxx) = ∑G
k=1 πk fk(xxx) be the mixture density for xxx ∈ Rd , where πk is

the mixing probability of component k with density function fk(xxx). Modal
EM (MEM) is an iterative algorithm that aims to identify the local maxima of
a density function (Li et al. , 2007). Given an initial starting point xxx(0), the
following steps are iteratively executed until a stopping criterion is met:

E-step: pk = πk fk(xxx(t))/ f (xxx) for k = 1, . . . ,G;

M-step: xxx(t+1) = argmax
xxx

G

∑
k=1

pk log fk(xxx)
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The objective function in the M-step has a unique maximum if the fk(xxx)
are Gaussian densities (Li et al. , 2007). Furthermore, a closed-form solution
is only available in case of GMMs with common covariance matrix, and nu-
merical procedures are required for the M-step if the covariance matrices are
different across components.

In this contribution we propose a fast and efficient MEM algorithm for
densities estimated by finite mixture of multivariate Gaussians having any of
the parsimonious covariance structures available in the mclust R package
(Scrucca et al. , 2016).

2 Modal EM algorithm for Gaussian mixtures

Assume that the components of the mixture are multivariate Gaussians with
mean µµµk and covariance ΣΣΣk, i.e. fk(xxx) ≡ φ(xxx | µµµk,ΣΣΣk). Furthermore, assume
that the mixing proportion πk, the mean vector µµµk, and the covariance matrix
ΣΣΣk are given (either estimated or known) for all k = 1, . . . ,G. Thus, the mixture
density for any data point xxxi can be written as

f (xxxi) =
G

∑
k=1

πkφ(xxxi | µµµk,ΣΣΣk).

The MEM algorithm starts with t = 0 and initial points xxx(0)i = xxxi, for i =
1, . . . ,n. At iteration t, MEM performs the following steps:

• Set t = t +1.
• E-step: update the posterior conditional probability of the current data

point xi to belong to the kth mixture component:

z(t)ik =
πkφ(xxx(t−1)

i | µµµk,ΣΣΣk)

∑G
g=1 πgφ(xxx(t−1)

i | µµµg,ΣΣΣg)
,

for all i = 1, . . . ,n, and k = 1, . . . ,G.
• M-step: update the current value of xxxi by solving the optimisation prob-

lem:

xxx(t)i = argmax
xxxi

G

∑
k=1

z(t)ik logφ(xxx(t−1)
i | µµµk,ΣΣΣk).

• Iterate the above steps until a stopping criterion is satisfied, for instance
max(|(xxx(t)i −xxx(t−1)

i )/xxx(t−1)
i |)< ε, or a pre-specified maximum number of

iterations is reached.
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By the ascending property of the MEM algorithm, at convergence the value of
xxx(t)i is the mode associated with data point xxxi (Li et al. , 2007, Appendix A).

To obtain a fast version of the above MEM algorithm, note that the objec-
tive function in the M-step can be written as

Q(xxxi) =
G

∑
k=1

zik logφ(xxxi | µµµk,ΣΣΣk).

The gradient and Hessian of this function with respect to the observed vector
xxxi (assuming the mixture parameters {πk,µµµk,ΣΣΣk}G

k=1 as fixed) are, respectively,

∇Q(xxxi) =−
G

∑
k=1

zikΣΣΣ−1
k (xxxi−µµµk),

and

∇2Q(xxxi) =−
G

∑
k=1

zikΣΣΣ−1
k .

Note that, because all covariance matrices ΣΣΣk are positive definite and zik > 0
for all k and i, the Hessian is negative definite. Thus, maximisation of the Q-
function can be pursued by equating the gradient to zero, and then solving for
xxxi we obtain

xxx∗i =

(
G

∑
k=1

zikΣΣΣ−1
k

)−1 G

∑
k=1

zikΣΣΣ−1
k µµµk.

Through an appropriate use of the Kronecker product, the solution of the op-
timisation problem in the M-step can be efficiently computed in a single step
for all data points. However, since at each step of the MEM algorithm the
conditional probabilities zik are updated, we would like to avoid large jumps
that may miss the closest mode in the neighbourhood of xxxi. For this reason, in
practice, we suggest to compute the update at iteration t as

xxx(t)i = (1−α)xxx(t−1)
i +αxxx∗i ,

where α = t/(t +1) is a parameter that controls the step size. At earlier itera-
tions the updated value xxx(t)i is obtained as convex linear combination between
the previous value and the proposed value, with the weight of the latter that
converges to one as the number of iterations increase.
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3 Example

The Old Faithful dataset provides the data on the duration (in minutes) and the
waiting time (in minutes) for 272 eruptions of the Old Faithful geyser in the
Yellowstone National Park. Figure 1 shows the MEM paths for some selected
data points to their associated modes (left panel), and the final estimated modes
(right panel).
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Figure 1. Old Faithful data: MEM paths for some selected data points (left panel);
mixture density contours with modes estimated by MEM algorithm (right panel).
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PROBABILISTIC ARCHETYPAL ANALYSIS 

Sohan Seth1 
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ABSTRACT: Archetypal analysis represents a set of observations as convex combinations of 
pure patterns, or archetypes. It approximates the convex hull of the observations and assumes 
them to be real–valued. Probabilistic archetypal analysis accommodates other observation 
types such as integers, binary, and probability vectors. An appropriate visualization tool will 
be presented to summarize the archetypal analysis solution. 

KEYWORDS: archetypes, prototype, matrix factorization, majorization-minimization. 

1 Introduction and motivation 
Given a set of observations, archetypal analysis finds 'extreme' examples, i.e., 

archetypes that represent the observations well. Following the geometric formulation 
proposed by Cutler and Breiman (1994) this is achieved by approximating the 
convex hull of the set of observations with the archetypes such that the observations 
can be explained as convex combinations of the archetypes; an analogy being the 
colors red, green and blue that can explain the color spectrum as convex 
combinations of these archetypal colors. Archetypal analysis can be seen as a matrix 
factorization problem, and is closely related to other 'prototype' finding approaches, 
e.g., k-means clustering and topic modelling.  

The standard approach of finding archetypes assumes that the observations are 
real valued, which, unfortunately, is not compatible with many practical situations. 
For example, one may ask to find archetypal responses for a set of binary questions, 
or archetypal document given a set of word count vectors of a set of documents. In 
this contribution, I will revisit archetypal analysis from the basic principles, and 
discuss a probabilistic framework that accommodates these scenarios, i.e., data types 
such as integers, categorical, and stochastic vector. This formulation is equivalent to 
performing archetypal analysis in the continuous parameter space of the probability 
distribution than in the discrete observation space, and for a range of exponential 
family distributions, such as Bernoulli, Poisson, and multinomial, the resulting 
optimization problem can be efficiently solved using majorization-minimization. For 
categorical variables, e.g., multiple-option questions, I will introduce an extension of 
this approach to a generative framework using Dirichlet prior over the mixing 
parameters for which the approximate posterior distribution can be efficiently 

436



inferred using variational Bayes', and associated hyperparameters help finding a 
suitable number of archetypes.   

I will show the application of these formulations for finding archetypal tourists 
based on binary survey data, archetypal disaster-affected countries based on disaster 
count data, archetypal customers using German credit data, archetypal images using 
SUN image attribute data, and archetypal behaviour from Big Five personality data. 
I will also present an appropriate visualization tool to summarize the archetypal 
analysis solution, and address some recent developments in this area and some open 
questions.  
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MULTILINEAR TESTS OF ASSOCIATION

BETWEEN NETWORKS
Daniel K. Sewell1
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ABSTRACT: It is often of interest to determine whether or not two networks measured
on the same set of actors are associated with each other. Existing tests of association
are all permutation tests. This paper proposes an alternative type of association test
between two networks. Our test relies on a multilinear representation of the two net-
works to be compared and is motivated in large part by latent space network models.
We demonstrate that the proposed test accurately controls the Type I error rate while
maintaining power comparable to that of permutation methods.

KEYWORDS: latent space models, linear mixed models, singular value decomposi-
tion, social network analysis.

1 Introduction

One of the first steps of any data analysis is often to test whether or not two
variables are associated. This problem becomes challenging when these vari-
ables correspond to relationships between a set of actors, i.e., we wish to com-
pare two networks measured over the same set of actors. Existing methods rely
on permutation tests, typically focusing on the quadratic assignment procedure
(QAP) (Krackardt, 1987). This paper proposes a multilinear test of association
(MLT) which provides a unique approach for testing the association between
two networks measured on the same set of actors. The proposed approach can
be seen as having been motivated from a geometrical point of view, or alterna-
tively from a latent space modeling framework.

2 Approach

A weighted digraph is defined by a set of actors and a set of weighted directed
edges, and may be represented as a square n× n adjacency matrix Y , where
the ith row jth column entry Yi j corresponds to the weight of the directed edge
from actor i to actor j, and n is the number of actors in the network. In our

438



context, we consider a second network over the same set of actors represented
by the adjacency matrix X . The goal is to determine if Y and X are associated.
The QAP is a nonparametric permutation test designed with this goal in mind.
In contrast, our proposed approach is likelihood-based.

The singular value decomposition (SVD) of X is UΣV ′, where U and V
are orthonormal matrices, and Σ is a diagonal matrix with the non-negative
singular values σ = (σ1, . . . ,σn) along the diagonal. This SVD of X can be
viewed as a matrix transformation consisting of an aligning rotation (V ), a
scaling along the axes (Σ), and another rotation (U). If X and Y are indeed
associated, then it should be reasonable to assume that their SVDs should be
similar. We assume that Y represents a similar matrix transformation with an
adjusted scaling step plus noise. That is,

Y =UDiag( f (σ1), f (σ2), . . . , f (σn))V ′+E (1)

for some function f : [0,∞) 7→ [0,∞) and n× n matrix of white noise E. In
practice, of course, the form of f is unknown and must be estimated. If we
assume that f ∈C d , the space of d-differentiable continuous functions, then we
may well approximate the function f using splines. Under this approximation
we may write

f (σ) =
(

f0(σ) f1(σ) · · · fK(σ)
)

γ, (2)

where γ = (γ0,γ1, . . . ,γK)
′ is a vector of unknown coefficients to be estimated.

This framework is motivated in large part not just by geometrical consid-
erations but also on a large body of literature on latent space models. Hoff
(2008, 2009) generalized these models with the “eigenmodel”. Motivated by
important theorems proved in Aldous (1981), his proposed approach estimates
latent factors that take on the same form as SVD, i.e., UΣV ′.

The intuition of the multilinear model is that U and V represent feature
vectors corresponding to the actors, and Σ determines how these features relate
to each other to form edges (e.g., similarity in some features may promote
edge formation, while similarity in others may discourage edge formation).
By using the singular vectors of X , we are assuming that the features of the
actors are constant regardless of what we are measuring, but how these factors
relate to each other to form edges depends on which network type, Y or X , we
are considering.

Importantly, combining (1) and (2) yields the linear model

Yi j =
K

∑
k=0

γkUiDiag(f0(σ))V ′j +Ei j (3)
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Figure 1a. Figure 1b.

Following Hoff (2009), we assume that (Ei j,E ji)
′ iid∼ N(0,Ω). Estimation can

then be made within a linear mixed model (LMM) framework. Specifically,
we can use a likelihood ratio test under H0 : γ = 0 to examine if X and Y are
related. If they are not, there is only a 100α% chance of rejecting this test.

3 Simulation Study

To evaluate the type I error and power of our approach we performed a simula-
tion study. For each simulation we drew X from a standard normal and drew Y
according to (3) when γ = 0 as well as when γ was equal to (0.4,−0.4,0.8,1.2)
corresponding to a spline basis with 4 degrees of freedom. We ran 500 sim-
ulations under both scenarios and tested for an association using both MLT
and QAP. Figure 1a shows the results for the context where γ = 0. The hor-
izontal axis corresponds to the level-α test, and the vertical axis corresponds
to the achieved Type I error. It is evident that the QAP has greatly inflated
Type I errors, while our proposed approach maintains this error at the correct
level. Figure 1b shows the results for the context where γ 6= 0. Again the hori-
zontal axis corresponds to the level-α test and the vertical axis corresponds to
the power. We see that although MLT controlled the Type I error much more
effectively than QAP, the MLT obtained comparable power.

440



4 Correlates of War data analysis

We analyzed data from the Correlates of War project (Barbieri et al., 2009) to
determine if the network of formal alliances between countries were associated
with the trade network between countries as measured by imports/exports. The
p-value associated with the MLT was < 0.001. We thus conclude that there is
in fact a relationship between economic ties and defense alliances.

5 Discussion

Our proposed multilinear test provides a novel alternative to permutation tests
and has strong motivation based on the latent space network literature. The
MLT, however, is limited to contexts in which the two networks under con-
sideration can be thought to be expressed as functions of latent features of the
network actors and hence would not be appropriate to test an association be-
tween, e.g., a friendship network and geospatial distances between the actors.
Additionally, a failure to reject H0 does not necessarily imply that there is no
relationship between the two networks, as there may be a different specifica-
tion between them; however, if the test is rejected one may feel confident that
there is in fact a relationship between the two networks.
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ABSTRACT: Large, tightly controlled, randomised controlled trials are the most reli-
able method of establishing a causal effect between interventions and outcomes. The
most common challenge for trials is the need to recruit patients from a number of
healthcare providers and within the busy environment of routine health service deliv-
ery. As a result trials often exceed the planned period of recruitment and patients do
not always remain in the trial for the full follow up period. This study aims to assess
whether more efficient trials, with smaller sample size/greater power, can be designed
based on multistate models that maximise the use of measurements taken during the
trial. The effect of design features (frequency of measurement, intervals between mea-
surements, duration of follow-up and misclassification) on sample size estimates are
explored and estimands that may be of interest in this context are clarified. The meth-
ods are applied to pressure ulcer prevention trials in patients admitted to hospital, but
the methods are general and can be applied to any conditions that are well represented
by multi-state models.

KEYWORDS: clinical trials, multi-state models, efficient design.

1 Background

Long stay in hospital and poor mobility put people at risk of pressure ulcers
(PU) at a number of areas of the body (buttocks, heels etc). Once developed
PUs result in prolonged hospital stay, poor quality of life and significant costs.

PUs are classified on a 4 point ordered scale from 1-4. In RCTs skin as-
sessment for onset or progression of PUs takes place at a number of fixed time
points, resulting in hierarchical and longitudinal measurements of PU cate-
gories at up to 14 skin sites. Thus, each patient has 50-100 PU assessments
during trial follow-up. The process is not observed continuously, resulting in
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panel data and interval censoring. Moreover, due to administrative and patient-
related events, scheduled measurements may be missed or only partially com-
pleted. This results in observation times that are different for different patients
and intervals between assessments may vary.

Often, the primary outcome for PU prevention trials is the time from ran-
domisation to the first category 2 PU at any skin site, so that the 50-100 assess-
ments per patient are reduced to a single outcome measurement. This outcome
is inefficient in that it ignores the information from longitudinal measurements
and multiple skin sites; it may also be biased due to interval censoring between
observations and missed assessments. Thus sample sizes for PU prevention tri-
als may be larger than necessary.

2 Aim

In this presentation we investigate the use of multi-state models in disease
prevention trials, in order to provide less biased and more efficient estimates
of treatment effects.

3 Methods and results

We show how to design a PU prevention trial and analyse resulting data. Multi-
state models that incorporate longitudinal data on disease categories are devel-
oped. Assumptions that are required for different models, their implications
and their validity in this context are presented, as are methods for estima-
tion within this framework. Re-analysis of data from 1846 patients from the
PRESSURE2 prevention trial compares differences between commonly used
estimands (odds ratios and hazard ratios) and multi-state model outputs and
demonstrates how fixed covariates (e.g. treatment group and stratification fac-
tors) can be incorporated into the analysis. For a range or realistic model pa-
rameters, efficiency of multi-state models compared to incidence of PU and
time to PU outcomes is explored using simulation studies. The extent of im-
provement in power for multi-state models depends on duration of follow up
and frequency of assessments, as well as sample size.

4 Conclusion

Given difficulties in recruiting to RCTs it is important to make best use of the
rich data that accrue during trials. Reductions in sample size for PU trials may
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be possible if all available observations are included in the analysis, but this
depends on the estimand of interest.
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ABSTRACT: Compositional data are quantitative descriptions of the parts of some
whole, conveying relative information. The relationship between two sets of compo-
sitional descriptors can be explored by use of Canonical Correlation analysis with a
procedure based on Partial Least Squares (PLS). This method offers a way to deal
with matrix singularity in an efficient fashion and presents the further advantage of
being easy to interpret. In order to fully explore the potential of PLS for analyzing
the relationships between two sets of compositions, the performances of the NIPALS,
SIMPLS and Kernel algorithms are compared on simulated data.

KEYWORDS: Compositional data, log-ratio transformation, simpls, nipals, kernel.

1 Introduction

Canonical correlation analysis (CCA) is a method proposed by Hotelling (1936)
for exploring the relationships between two groups of variables. Let us con-
sider a set of variables X (I× J) with dispersion matrix ΣX , a second set Y
(I×K) with dispersion matrix ΣY and the covariance matrix between X and
Y denoted by ΣXY . The main aim of CCA is to search for canonical variates
A = aX and B = bY that have maximal correlation:

arg max
var(A)=var(B)=1

cov(A,B)2

var(A)var(B)
= arg max

at ΣX a=bt ΣY b=1

atΣXY ΣY X b
(atΣX a)(btΣY b)

, (1)

where a and b are linear combination vectors. If the dispersion matrices can be
inverted, the solution of equation (1) is efficiently calculated by using singular
value decomposition. When one or both sets of variables are compositions,
however, ΣX and /or ΣY are singular and each row will sum to 0, forcing at
least one covariance term to be negative. Thus, classical CCA is not able to
determine canonical variates and its correlations. In order to be able to deal
with the purely multicollinear structure and the negative bias that characterize
compositional data, in this work an approach based on log-ratio preprocessing
and Partial Least Squares (PLS - Rayens, 2000) is proposed.
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2 Theory

A compositional matrix X (I× J) has all non-negative elements and its row
vectors present a biased covariance structure due to an implicit or explicit sum
constraint, i.e. xi1 + · · ·+xiJ = κ, where κ is a positive constant. This bounded
covariance imposes a purely multicollinear structure to the data since the ele-
ments of a compositional vector are not linearly independent and thus ΣX will
be singular.
Geometrically, X describes I points bounded in a subspace of ℜI×J

+ known as
simplex and defined as:

SI×J = {(xi1, . . . ,xiJ) : xi1 ≥ 0, . . . ,xiJ ≥ 0;xi1 + · · ·+ xiJ = κ; i = 1, . . . , I}.

The simplex is characterized by its own geometric rules, called Aitchison ge-
ometry, thus standard statistical methods designed to operate within a Eu-
clidean framework cannot be applied without distortions (Aitchison, 1986;
Pawlowsky-Glahn et al. , 2015).
Compositional vectors can, however, be converted into Euclidean space co-
ordinates by using log-ratio transformations: pairwise, centered, additive or
isometric. For the purpose of this contribution we will only be referring to
centered log-ratio (clr) coordinates which can be expressed as:

[log(xi1/g(xi)), . . . , log(xiJ/g(xi))],

where g(xi) is the geometric mean of the parts of the composition xi.
After performing this preprocessing step, standard statistical tools can be ap-
plied as long as results are interpreted in compositional terms. It is important
to note that clr-coordinates by providing an SI×J to ℜI×J projection, do not
remove the collinearity problem.
Hinkle (1995) and Wang et al. , 2010 examined the problems that occur when
one performs a PLS analysis on compositional data and suggested the use of
clr preprocessing. Gallo (2010) proposed the application of this approach to
discriminate compositions.
Given that f +1≤min(rank(X), rank(Y)), PLS can be defined as:

arg max
ut U=0t ;u1=0

{
cov(Xu,Yv)2)

(utu)(vtv)

}
= {u f+1,v f+1}, (2)

where u f+1 is the eigenvector of ΣXY ΣY X corresponding to the ( f + 1)-th
largest eigenvalue, and v f+1 = ΣY Xu f+1. The usual constraints of PLS U =
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[u1,u2, . . . ,u f ] and V = [v1,v2, . . . ,v f ] define the directions constrained to be
orthogonal in the X -space and in the Y-space respectively; while the additional
constraint u1=0 can be viewed as an orthogonality constraint with respect to a
redefined inner product.
This is not the only definition of PLS, however, it has the intuitive advantage
of being cosmetically very similar to the CCA. In fact, it is possible to note
that cov(Xa,Yb)2 = var(Xa)corr(Xa,Yb)2var(Yb).
From equation (1) the ( f +1)-th pair of canonical variates is given by A f+1 =
Xa f+1 = u̇ f+1ΣX X and B f+1 = Yb f+1 = v̇ f+1ΣY Y, where u̇ f+1 and v̇ f+1 are
the ( f +1)-th eigenvector of Σ−1/2

X ΣXY Σ−1
Y ΣY X Σ−1/2

X and Σ−1/2
Y ΣY X Σ−1

X ΣXY Σ−1/2
Y

respectively. While the eigenvalue of Σ−1/2
X ΣXY Σ−1

Y ΣY X Σ−1/2
X is the squared

correlation between the canonical variates A f+1, B f+1.
In other words, PLS can be interpreted as a penalized CCA, with basically a
PCA in the X space and a PCA in the Y space providing the penalties.
Now, if X and/or Y are clr it is clear that it is not possible to calculate the
canonical variates and the canonical correlation by equation (1), but it is pos-
sible to find them with an algorithmic solution of equation (2) just replace the
original compositional data with their corresponding centered log-ratio.

3 Conclusion

Two alternative methods have been proposed in the literature to use CCA for
studying the relationships between two sets of compositional variables. The
first one is based on the use of log-ratio transformations which do not inherit
pure collinearity, namely the isometric log-ratio (Filzmoser & Hron, 2009).
In a second approach, correlation matrices are inverted by use of the gener-
alized inverse in order to handle perfect multicollinearity so that the data can
be more intuitively transformed in centered or pairwise log-ratios (Graelman
et al. , 2017). This approach allows to deal with singularity while avoiding the
loss of simplicity and interpretability which using other transformation may
entail. However, it is very time consuming when the matrix is large.
Following Gallo (2010), we suggest a third strategy based on the use of PLS
for performing CCA. Thanks to its algorithmic nature, this procedure offers a
way to deal with matrix singularity without compromising interpretability or
computational efficiency. PLS can be estimated with different algorithms, i.e.
NIPALS, SIMPLS and Kernel, thus for a complete assessment of the proposed
methodology the performance of these different procedures is compared on ar-
tificial data. In this manner, based on the characteristics and dimensionality of
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compositional data sets, it will be possible to identify and select the algorithm
which is faster and easier to interpret.
In the simulation design, score and loading matrices for both X and Y are arti-
ficially created. In particular, matrices are randomly generated from a uniform
distribution then a given level of canonical correlation is imposed among the
score matrix of X and the one of Y. Loading matrices are adjusted to have
columns summing to 0 in order to ensure a compositional structure. After-
wards, X and Y are reconstructed and mild homoscedastic noise is added. Dif-
ferent parameters (correlation, noise, dimensionality) are considered through-
out the study. Performance is assessed on the basis of accurate estimation of
correlation and efficiency. All calculations are carried out using R language,
version 3.5.0, processor 2, 3 GHz Intel Core i7.
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ABSTRACT: Evaluation surveys are often repeated over time in order to check for
trends in subjects’ behaviors and opinions. The paper proposes a dynamic model for
the serial correlation of ratings’ intrinsic components, which is discussed on the basis
of time series of price expectations in Italy collected within a survey organized by
ISTAT.
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1 Motivation and methods

Assume that, for each time t = 1, . . . ,n, Nt subjects are asked to rate their
perception on a given topic on a scale with m > 3 ordered categories. For
each t and each subject i = 1, . . . ,Nt , the response process Rit can be described
in terms of a suitable family of probability distributions with parameters θθθt .
Then, modelling θθθt over time provides a parametric analysis of the dynamic
evolution of the rating process.

In case of the expectation of price levels, literature and data agree in the
existence of an “excess of frequencies” in some categories. Thus, if Rit is the
response of the i-th subject interviewed at time t, a stochastic process based on
CUB models with shelter effect can be introduced:

Pr (Rit = r | θθθt) = π(1)
t

(
m−1
r−1

)
ξm−r

t (1−ξt)
r−1 + π(2)

t
1
m
+(1−π(1)

t −π(2)
t )D(c)

r ,

(1)
r = 1, . . . ,m, where CUB stands for Combination of a discrete Uniform and

shifted Binomial (see Piccolo & Simone, 2019, for an updated discussion of
CUB models and Proietti, 2019, for the original proposal of dynamic CUB

modelling). Trajectories of θθθt = (π(2)
t ,ξt)

′, for varying t, will give dynamic
measures of the weight of uncertainty/heterogeneity of the responses and of
the degree of feeling towards the item, respectively. For short, we will set
πt = π(2)

t ; when the shelter effect is not significant, the baseline CUB model

449



is considered and πt is the weight of the Uniform distribution. In absence of
covariates, the sufficient statistics to infer on the parameter vector (πt ,ξt), for
each t, are just the (absolute) frequencies (n1, t , . . . ,nm−1, t)

′ , t = 1, . . . ,n, where
n j t is the number of interviewees who selected the j-th category at time t, and
nm,t = n−∑m−1

j=1 n j, t .
Since both πt and ξt are compelled to the unit range, a more suitable model

may be defined in terms of the logit transformations:

xt = log
(

πt

1−πt

)
; yt = log

(
ξt

1−ξt

)
, t = 1, . . . ,n . (2)

Then, after that data have been smoothed by replacing xt with the average of
xt−1,xt , and xt+1 (similarly for yt), a bivariate model is introduced. If time
dependence is limited to lag p ≥ 1, say, the specification of a dynamic model
can be based on seemingly unrelated regressions (SUR: see Greene, 2008):





xt = αx +
p
∑

l=1
βl xt−l + at ;

yt = αy +
p
∑

l=1
γl yt−l + bt ,

(3)

for t = p+1, . . . ,n. Here, UUU t = (at , bt)
′ is a bivariate white noise (WN) pro-

cess with zero mean vector and variance-covariance matrix VVV . Thus, unspeci-
fied interactions between xt and yt are accounted by the residuals’ correlation.

Summarizing, the proposed modelling foresees a two-step estimation pro-
cedure: first, ML estimates (π̂t , ξ̂t) are computed at each time point by means
of the devoted EM algorithm, then the model (3) is fitted on their logit values
(2).

2 Price expectation

As part of a EU project tailored to measure consumers’ opinions towards
aspects of economic conditions, here the focus will be on monthly expecta-
tions about price levels for the next 12 months in Italy, as collected by ISTAT
(www.istat.it). For each month, about 2000 sample observations are available
as time series of frequencies for each response category, ranging from R = 1
(‘will not at all increase’) up to R = 5 (‘it will definitely increase’). Starting
from January 1994, three different periods are considered determined by the
introduction of Euro (2002) and the beginning of the 2008 economic crisis.
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Since data confirm substantial correlation between WN components, SUR
models are more efficient than separate OLS methods for estimating the mod-
els in (3): the R package systemfit (Henningsen & Hamann, 2007) has
been considered. Results for lag p ≤ 2 are hereafter reported with residual
variance and correlation estimates, and McElroy R2 as a global fitting mea-
sure:

• January 1994-December 2001:




xt =−0.348
(0.090)

+ 1.170
(0.086)

xt−1 − 0.352
(0.086)

xt−2 + at ;

yt =−0.271
(0.073)

+ 0.973
(0.090)

yt−1 − 0.206
(0.090)

yt−2 + bt .
(4)

σ̂2
a = 0.068; σ̂2

b = 0.019; ρ̂ab = 0.582; R2 = 0.738 .

• January 2002-December 2007:




xt =−0.473
(0.183)

+ 1.380
(0.105)

xt−1 − 0.496
(0.107)

xt−2 + at ;

yt =−0.010
(0.019)

+ 0.910
(0.041)

yt−1 +bt .
(5)

σ̂2
a = 0.386; σ̂2

b = 0.021; ρ̂ab = 0.226; R2 = 0.879 .

• January 2008-January 2019:




xt =−0.207
(0.046)

+ 1.211
(0.066)

xt−1 − 0.374
(0.063)

xt−2 + at ;

yt =−0.045
(0.029)

+ 1.129
(0.075)

yt−1 − 0.274
(0.075)

yt−2 + bt .
(6)

σ̂2
a = 0.144; σ̂2

b = 0.096; ρ̂ab = 0.675; R2 = 0.857 .

In addition, Table 1 compares the variance-covariance matrices of the bivariate
processes (xt , yt) and (ât , b̂t) in terms of determinant and trace: a substantial
reduction in variability is implied by the estimated models.

We mention that the spectral features of each estimated model emphasize a
stochastic periodicity in the logits of πt series (about 3 years, as a consequence
of the complex roots of the characteristic equation for all the periods), whereas
the spectra of the logits of ξt series show a stochastic trend (confirmed by real
roots near the unit circle in all the periods).
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Table 1. Comparison of variability of stochastic processes

Periods Bivariate Process (xt , yt) Bivariate Process (ât , b̂t)
Determinant Trace Determinant Trace

Jan.1994-Dec.2001 0.00977 0.311 0.00085 0.087
Jan.2002-Dec.2007 0.55946 3.233 0.00804 0.407
Jan.2008-Dec.2001 0.39916 1.767 0.01324 0.240

3 Concluding remarks

Dynamic modelling the intrinsic components of the rating process, as postu-
lated by CUB , can support predictive analysis and understanding of subjects’
behaviours. Further, temporal interdependencies among parameters character-
izing the rating distributions can be analysed also by means of VAR models.
From the computational point of view, we acknowledge that the estimation pro-
cedure could be refined by pursuing a simultaneous estimation of the mixture
parameters (πt ,ξt) and regression parameters for the SUR model (3): future
developments will address this task.
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ABSTRACT: Clustering is an important area of machine learning. Yet there is no common 

precise notion of its general objectives. Establishing axioms for clustering hence is a first step 

towards a mathematical theory of clustering. Furthermore, clustering has to be understood not 

only for finite samples but also for entire probability distributions. We propose a novel 

approach to axiomatic clustering. As in any axiomatic system there is a user choice: On one 

hand the clusters for some elementary measures are stipulated by the user. On the other hand 

a topological separation relation has to be specified. Then two additivity and one continuity 

axiom are shown to yield a unique notion of clustering for a large set of distributions. Note 

that this is done without the need of any notion of metric, similarity or dissimilarity and it is 

completely parameter-free. 

KEYWORDS: clustering axioms, hierarchical clustering, separation. 
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ABSTRACT: This paper focuses on determining the influence of outliers on a joint
dimension reduction and clustering method for categorical data, namely Cluster Cor-
respondence Analysis (CCA). Joint methods, such as CCA, solutions consist of both
a cluster membership vector and a set of low dimensional scores for observations and
attributes. We evaluate the impact of outliers on the identification of the cluster struc-
ture. As a benchmark, we use the tandem approach, which is a sequential application
of multiple correspondence analysis followed by K-means clustering. The appraisal
is based on synthetic data and outliers generated using an evolutionary algorithm that
provides data with a user-defined cluster structure.

KEYWORDS: clustering, dimension reduction, outliers.

1 Introduction

Clustering is an unsupervised learning method to allocate observations to groups
(clusters) that are internally homogeneous with respect to the observed set of
attributes. A set of popular clustering methods are distance-based, meaning
that, upon defining an appropriate distance measure, observations closer to
each other are assigned to a same cluster. The choice of the distance measure
is crucial and it depends on the nature of the attributes (continuous, categori-
cal or mixed). When the observations are described by several attributes, the
identification of the underlying cluster structure becomes increasingly diffi-
cult. This is due to both the possible presence of noise (attributes that do
not discriminate among clusters) and to the so-called course of dimensional-
ity: pairwise-distances between observations tend to converge as the consid-
ered number of attributes increases. Furthermore, the computational burden
increases with the dimensionality of the data. To overcome these issues, prac-
titioners often perform a dimension reduction prior to the clustering. In partic-
ular, principal components methods are used to define a reduced set of linear
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combinations (components) of the starting attributes, then the observations are
clustered using components-based distances. Such sequential approach is re-
ferred to as tandem approach. While tandem approach may provide viable
solutions, it may also fail, as the dimension reduction can miss or even hide
the cluster structure. This cluster-masking problem has been pointed out in the
literature (see, e.g., Vichi & Kiers, 2001), and it depends on the fact that the
target function of dimension reduction is optimised irrespective to the follow-
ing clustering step. A class of methods have been proposed in the literature that
seek for an optimal solution for both the dimension reduction and clustering
steps. Joint dimension reduction and clustering methods have been proposed
for continuous (Vichi & Kiers, 2001; De Soete & Carroll, 1994), categorical
(van de Velden et al. , 2017; Hwang et al. , 2006) and mixed data sets (Vichi
et al. , 2019; van de Velden et al. , 2019).
Outliers, also known as anomalies, are often present in observed data. They
may disrupt the underlying structure of data and can have adverse effects on
the quality of analysis if ignored (Aggarwal, 2015). In this paper we study the
influence of outliers on cluster correspondence analysis (CCA, van de Velden
et al. , 2017) solutions in comparison with tandem analysis. In Section 2 we
briefly define CCA whereas in Section 3 we describe the simulation setup and
report the main results.

2 Cluster Correspondence Analysis

Consider a set of n observations described by p categorical variables, each
with q j categories, j = 1, . . . , p. The corresponding indicator matrix Z is n×
Q, with Q = ∑p

j=1 q j. The cluster membership can also be represented by a
n×K indicator matrix Zk, where K is the user defined number of clusters.
Furthermore, let Dz = ZTZ and Dk = ZT

k Zk be diagonal matrices with Z and
Zk column margins, respectively, and let B the Q× d matrix containing the
d considered components (weights of the linear combinations). The objective
function of CCA is, therefore,

max
Zk,B∗

φ(Zk,B∗) = 1
p trace

(
B∗TD−1/2

z ZTMZkD−1
k ZT

k MZD−1/2
z B∗

)

s.t.B∗TB∗ = Id ,

where M is a cantering operator and B∗ = 1√
np D1/2B.

The solution is found by iterating two steps. In the first step B∗ is obtained,
for fixed Zk (initialised via random allocation), using the following eigenvalue
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Table 1 Averages over 50 trials of ARI of the solutions with and with-
out outliers. The entries denoted in bold are significantly smaller than the
ARI of the cluster formation with 0 outliers at 5 % confidence level. The
standard deviations are provided in the parentheses below the averages. .

decomposition

1
p

D−1/2
z ZTMZkD−1

k ZT
k MZD−1/2

z = B∗TΛB∗.

In the second step, Zk is obtained, for fixed B∗, by applying a K-means clus-
tering procedure on the observations low dimensional scores

Y =

√
n
p

MZD−1
z B∗.

Both B∗ and Zk are updated at each iteration until the value of the objective
function stops increasing.

3 Results

To appraise the effect of the presence of outliers on CCA and tandem analysis,
we generated structured categorical data sets using the evolutionary algorithm
(EA) described in Van de Velden et al. (2017). The data-generating strategy
is: generate a cluster membership attribute, that is, the true cluster allocation;
use the EA to generate a set of further attributes being associated with some
defined strength to the cluster membership; finally, generate a set of noise
variables with low-to-none association with the cluster membership.
An observation can be considered an outlier if it is characterised by the less-
occurring categories of each attribute in the considered data set (He et al. ,
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2005). Then outliers have been generated according to such characteristics.
In the experiments, 1000 observations of 12 active and 12 noise categorical
attributes have been considered. Also, we referred to two strength levels of
clustering structure, measured by the association of the active variables to the
true allocation in the K = 4 considered clusters (each of different size).
The performance of the tandem approach is more sensitive to outliers than
CCA (see results in Table 1). In particular, we observe that in the case of a low
association strength and no noise, there is a significant drop in the performance
of the tandem approach.
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ABSTRACT: Earthquake clustering is a relevant feature of seismic catalogs, both in
time and space. Several methodologies for earthquake cluster identification have been
proposed in the literature in order to characterize geophysical clustering properties
and to analyze background seismicity. We consider two recent data-driven declus-
tering techniques, one is based on nearest-neighbor distance and the other on a point
process model. Since the different assumptions underlying each method may lead
to different classifications of earthquakes into main events and secondary events, we
investigate the classification similarities by exploiting graph representations of earth-
quake clusters and tools from Network analysis.

KEYWORDS: earthquake clustering, rooted trees, centrality measures.

1 Two declustering algorithms

Declustering algorithms perform the partition of an earthquake catalog in two
subsets of events, respectively named background events and secondary events.
Background seismicity is intended to include spontaneous and independent
events, whose occurrence rate is approximately constant. Secondary events are
triggered by other events, e.g. foreshocks, aftershocks, seismic swarms; when
secondary events appear, the occurrence rate is greater than usual. In order
to indentify these events, we consider two data-driven declustering algorithms
which also provide the topological structure of clusters.

Let’s assume a catalog that includes n earthquakes, each of which is de-
noted by its occurrence time ti, magnitude mi, and epicentral location (xi,yi)
(i = 1, ...,n).
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Nearest-neighbor (NN) algorithm (Zaliapin & Ben-Zion, 2016). This
approach is based on the nearest-neighbor distance between two earthquakes
in the space-time-energy domain:

ηi j = (t j− ti)rd
i j10−bmi (1)

where ti < t j and ri j is the spatial distance between events i and j; this distance
combines the inter-occurrence time, the fractal dimension of the hypocentres
distribution, and the Gutenberg–Richter law. There are only two unknown
parameters, namely fractal dimension d and b-value, which are jointly and ro-
bustly identified by the Unified Scaling Law for Earthquakes (USLE) method;
a separation distance η0 is also estimated in order to identify background and
secondary events (details in Peresan & Gentili, 2018). Each event i is con-
nected to its nearest-neighbor j = argminkηik. Then, by removing all connec-
tions ηi j such that ηi j > η0, earthquake clusters and background events are
unambiguously identified.

Stochastic declustering (SD) algorithm (Zhuang, 2006 and references
therein). The approach is based on the space-time ETAS (epidemic-type af-
tershock sequence) model, a branching point process defined by its intensity
function conditional on the observation history Ht :

λ(t,x,y |Ht) = µ(x,y)+ ∑
k:tk<t

ν(t− tk,x− xk,y− yk | mk) (2)

where µ(x,y) is the background rate of a time-homogeneous Poisson process
and, at time t, ν(t− tk,x− xk,y− yk,mk) is the contribution to seismic hazard
due to triggered events. According to point process theory, the probability that
event j is generated by the background process is ϕ j = µ(x j,y j)/λ(t j,x j,y j |
Ht j), and the probability that it is triggered from previous event i is ρi j = ν(t j−
ti,x j−xi,y j−yi,mi)/λ(t j,x j,y j |Ht j). Thinning the process according to these
probabilities allows splitting the catalog into background events and triggered
events, and also setting connections between triggering and triggered events.
Unlike NN method, SD algorithm can provide many declustered catalogs by
simulation.

2 Cluster analysis of seismicity in North-Eastern Italy

We consider the earthquake bulletins for North-Eastern Italy and Western Slove-
nia compiled at the National Institute of Oceanography and Experimental Geo-
physics since 1977. This catalog is statistically complete from 1994 to 2018
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for events having magnitude at least 2.0. We apply both NN and SD algorithms
to this dataset. Hereafter, we show the results obtained from SD method by re-
taining the most probable connections between any pair of events according to
the estimated probabilities ϕ̂ j and ρ̂i j (i, j = 1, ...,n).

The declustered catalogs turn out to be organized in rooted time-oriented
trees, where tree roots and nodes are background events and triggered events,
respectively. We aim at characterizing common features among clusters as
well as comparing the results obtained from the two declustering algorithms.
We address the question whether some measures of the network topology may
characterize the spatio-temporal properties of earthquake clustering in the re-
gion under study. To this end, we exploit tools from the R package igraph
(Csardi & Nepusz, 2006) for data visualization and analysis.

Fig.1 shows the rooted trees of the cluster which includes the strongest
earthquake in the catalog, the 1998/04/12 M5.6 earthquake. NN-cluster con-
tains 720 events (left panel), SD-cluster has 697 events (right panel), and even
677 events are associated with the 1998 cluster by both methods. Despite the
large number of events identified by both methods, Fig.1 clearly shows that
the hierarchical structure of the SD-cluster is more complex than that obtained
from NN method.

NN SD

1998/04/12 10:55:32.90, M5.6

04/12

05/06 05/28

M2+

M3+

M4+

M5+

1998/04/12 10:55:32.90, M5.6

04/12

05/06

M2+

M3+

M4+

M5+

Figure 1. Tree representations of the cluster related to the 1998/04/12 M5.6 earth-
quake obtained from NN algorithm (left) and SD algorithm (right). Earthquake mag-
nitude is denoted by different colors and size.

We focus on centrality measures which should express the way earthquakes
(nodes) get organized in clusters (trees). In this paper, for simplicity, we only
mention closeness centrality, a measure of the distance of each node from every

460



other nodes. Closeness centrality of node xi is defined by

close(xi) =
n−1

∑x j d(xi,x j)
(3)

where d(xi,x j) is the geodesic (shortest path) distance from xi to x j; if node
x j is not reachable from xi, geodesic distance d(xi,x j) is set equal to n. It
is noted that the numerator n− 1 is the minimum value the denominator can
have, so that closeness centrality ranges in [0,1]. High closeness values are
associated with the most central nodes, those closest to other nodes on av-
erage. Centralization is a global index for the entire cluster based on close-
ness centrality values of its nodes; it is defined as the average discrepancy
between the centrality of most central node x∗ and that of all other nodes:
C = ∑x [close(x∗)− close(x)]/(n− 1). It also ranges in [0,1]. High C values
indicate simple structures inside the cluster, in which few nodes dominate oth-
ers. On the contrary, small C values denote more complex hierarchical struc-
tures. As for the 1998 cluster in Fig.1, closeness centralization is 0.63 for the
NN-cluster (simple tree) and 0.19 for the SD-cluster (complex tree).
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ABSTRACT: This paper proposes a co-clustering method for data streams summa-
rized by histogram series. We assume that a set of sensors record huge amounts of
data over time so that we are interested in discovering a partitioning of the sensors and
to understand how different time periods impact on such partition. To reach our aim,
we summarize the incoming data split into non overlapping windows, by histograms.
The latter, become the input of an online procedure which finds, both, a partition of
the streams and a partition of time intervals according to sensed data.

KEYWORDS: data stream mining, histogram data, co-clustering.

1 Introduction

Massive datasets, having the form of continuous streams with no fixed length,
are becoming very common due to the technological developments in recent
years. Typical data sources include: sensor networks performing, at a very high
frequency, repeated measurements of environmental variables as temperature,
sound, pollution, humidity; real-time data recorded by surveillance systems;
data recorded by vehicle traffic monitoring systems; electricity consumption
recording; network traffic monitoring.

The statistical analysis in these applicative fields is a very challenging task
since online collected data quickly become too large to fit in main memory so
that random access, which is commonly used in traditional data mining, is pro-
hibitively expensive. Moreover, since online monitoring can concern highly
evolving scenarios, appropriate methods able to incorporate the new available
information but also eliminate the effects of outdated data, are needed.

The data stream mining framework offers a wide range of specific tools for
dealing with these potentially infinite and online arriving data.

A common practice in the Data stream mining literature is to cope with
the high velocity and huge volume of data through appropriate synopsis. In
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this paper we use histograms as synopsis of non overlapping batches of each
data stream, that is, similarly to Arroyo & Maté, 2009, we represent each data
stream as a series of histograms. A histogram keeps a detailed view of data,
reducing memory occupation and supporting fast computation. It records in-
formation about the moments of data as well as the quantiles thus, it is a more
informative tool than simpler aggregates such as the average of data subse-
quences.

On this kind of data representation we introduce a co-clustering algorithm.
It is a two-step strategy based on the classic Double k-means proposed in Vichi,
2001 however, it is adapted to process online arriving data summarized by his-
tograms. Our aim is to obtain a partition of the streams and a partition of
the time windows. By means of the partition of the streams we can under-
stand which sensors record similar observations over time. The partition of the
window allows to understand how different time windows contribute the the
similarity among sensors.

2 Online co-clustering on data streams

Let Y = {Y1, . . . ,Yi, . . . ,Yn} be a set of n data streams Yi =(y1
i , t1), . . . ,(y

j
i , t j), . . .

made by real valued observations y j
i on a discrete time grid T =

{
t1, ..., t j, ...

}
,

with t j ⊆ℜ and t j > t j−1.
We propose to split the flowing data into non overlapping windows, iden-

tified by w = 1, . . . ,∞.
A window is an ordered subset of T , having size b, which frames a data

batch Y w = {Y w
1 , . . . ,Y w

i , . . . ,Y w
n }, where Y w

i =
{
(y j

i , t j), . . . ,(y
j+b
i , t j+b)

}
is a

subsequence of Yi.
The objective is to get a partition P of the Yi (with i = 1, . . . ,n) in K ho-

mogeneous clusters Ck, and a partition G of the data batches Y w (with w =
1, . . . ,∞) into H clusters.

As shown in the previous section, we represent the input data by his-
tograms. That is, every time a new batch of data is available, the observa-
tions of each subsequence Y w

i are represented by a histogram Hw
i , formalized

as follows:

Hw
i = {(I1,π1), . . . ,(Il,πl), . . . ,(IL,πL)}

.
where Il for (l = 1, . . . ,L) are L consecutive intervals (bins) associated to

the πl weights (relative frequencies), summing to 1 on the all bins.
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In order to reach our aim we introduce an algorithm based on two steps.
The first step performs the analysis of data of a set of time windows in order to
provide the partition P of the streams. The second step, starts from the partition
P and performs the partitioning of data batches to discover the partition G.

The whole strategy is based on the L2 Wasserstein distance to compare
histograms.

Focusing on the first step, the procedure analyzes the set of time windows
w = j, . . . , j′ (with j′ > j) in order to get the partition P of the sensors mini-
mizing the following criterion function:

∆(P) =
K

∑
k=1

∑
i,m∈CK

d(Yi,Ym) (1)

where d is computed through the L2-Wasserstein distance between the his-
tograms associated to Yi and Ym.

The algorithm proposed to address the previous optimization problem is
detailed in Balzanella & Verde, 2019; Balzanella & Verde, 2013.

Once we have the partition P for a time period, we propose to analyze
the time windows w > j′ in order to get the partition G. To cluster each data
batch Y w, we consider that its subsequences Y w

i have been allocated to clusters
Ck of P by the step 1 of the proposed procedure. This allows to compute a
centroid for each cluster Ck, which is the minimizer of the distances inside the
cluster. The idea is to summarize each data batch Y w by means of a set of K
centroids Bw

k . The clustering step we perform for getting the partition G of the
data batches is based on minimizing the following criterion:

∆(G) =
H

∑
h=1

∑
w

K

∑
k=1

d(Bw
k ,B

h
k) (2)

where Bh
k , is a set of centroids for the cluster Gh.

To minimize this optimization function, we use the algorithm proposed in
Balzanella & Irpino, 2019.

With the flowing of data, the first step and second step are alternated in
order to keep a detailed summary of the partitioning structure of data as well
as, to deal with data evolution.

3 Conclusions

In this paper we have introduced a co-clustering algorithm able to analyze data
streams recorded by sensors. It is able to cope with the high dimensionality
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of data and their online arriving nature. Preliminary results on environmental
data confirm the effectiveness of our proposal.
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ABSTRACT: Fairness is essential to the validity of educational tests. Test scores are
no longer a fair indicator of examinees’ true ability if some test questions favour some
test takers over others. For this reason, it is important to ensure the fairness of ed-
ucational tests. This paper concerns the issue of item pre-knowledge in educational
tests. That is, test takers cheat by gaining prior access to leaked items. As a result,
they have inflated performance on the set of leaked items. We develop methods for
simultaneous detecting test takers who cheat and compromised items based on item
response data from a single test administration, without knowing any specific subsets
of cheaters and compromised items.

Latent variable models are proposed for the modelling of (1) data consisting only
of item-level binary scores and (2) data consisting of both item-level binary scores
and response time, where the former is commonly available in paper-and-pencil tests
and the latter is widely encountered in computer-based tests. The proposed model
adds a latent class model component upon a latent factor model (also known as item
response theory model) component, where the latent factor model component cap-
tures normal item response behaviour and the latent class model component captures
response patterns due to item pre-knowledge. We further formulate the detections of
cheaters and compromised items under a statistical decision framework, and propose
Bayesian decision rules and compound decision rules that control local false discov-
ery rate or local false non-discovery rate. Statistical inference is carried out under the
Bayesian framework. The proposed method is applied to data from a computer-based
nonadaptive licensure assessment.

KEYWORDS: Item response theory, latent factor model, bayesian hierarchical mod-
elling, false discovery rate, test security.
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ABSTRACT: A web portal is one of the main tools used by companies, institutions and 

individual citizens to make information available to anyone. Designing a portal that has good 

usability means allowing an average user to find the information he needs as soon as possible. 

The objective of this work is to evaluate the web usability of the portal of the University of 

Cagliari, using the eye tracking technology. High school and university students were asked 

to perform specific tasks within the portal. The results were evaluated through a quantitative 

analysis of the time and number of fixations required to complete each task, as well as a 

qualitative analysis of heat maps and gaze plots representing participants' fixations. The 

analysis has allowed to (i) detect a high efficiency for most of the web pages, (ii) highlight the 

most critical elements of the portal and (iii) suggest the most appropriate changes to be made. 

KEYWORDS: eye tracking, web usability, heat map, gaze plot. 

1 Introduction 

Nowadays a web portal is one of the main tools used by companies, institutions and 
individual citizens to make useful information available to anyone. Designing a 
portal that has good or excellent usability means allowing an average user to find the 
information he/she needs as soon as possible. In order to assess whether the interface 
of a web portal is intuitive and easy to use, most studies use a measure defined as 
web usability, which is often evaluated exclusively through the administration of 
questionnaires to users. The use of the eye tracking technology allows to define web 
usability in a more objective way through the analysis of ocular movements during 
visualization of images, texts or other visual stimuli (Jacob & Karnet, 2003; 
Goldberg & Kotval, 1999). The eye tracking technology has been increasingly 
applied to the study of web usability in different fields such as tourism (Scott et al., 
2017) and e-commerce (Bach, 2018; Hwang & Lee, 2017).  

The main objective of this study is to evaluate the web usability of the web portal 
of the University of Cagliari (www.unica.it) using eye tracking technology, in order 
to improve the user experience, including the experience of future students using the 
site for the first time. The new portal of the University of Cagliari was launched in 
2017 and has been the first portal of an Italian university to meet the requirements of 
the Agenzia Italiana digitale del Consiglio dei ministri (Agid).  
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2 Materials and methods 

We carried out a study to assess the efficiency of the web portal of the University of 
Cagliari through the execution of ten different tasks (e.g. find the library section, 
WiFi instructions, deadline for enrolment, university fee regulations and so on). The 
tasks were executed by two groups of participants: high school students and 
university students. Objective of the analysis was to collect information about the 
behavior of a group of experienced users (students already enrolled in the 
University) as well as of non-experienced users (high school students). In light of 
the exploratory nature of the study, for the first group we randomly selected a group 
of students present in group study rooms of different departments (choosing 
different days of the week and different times). For the second group we randomly 
selected students from Sardinian high schools who attended the Unica University 
Fair. For each participant, we collected information on age, gender, high school 
institute and university course. These characteristics were compared between the 
two groups using chi-squared test or Student’s t test. 

Throughout the execution of the tasks, the exact position of the eyes has been 
detected through a Tobii X2-60 Compact eye tracker. Different eye movement 
classification algorithms can be used to identify various types of eye movements 
(Komogortsev et al., 2010). The fixation is the most commonly studied type of eye 
movement in human research since fixations are usually connected to the moment in 
which information are registered by the brain (van der Lans et al., 2011). Among 
available fixation classification algorithms, the Velocity-Threshold Identification (I-
VT) algorithm classifies eye movements based on the velocity of the directional 
shifts of the eye (Salvucci and Goldberg, 2000). We applied this filter to extract 
fixations using the Tobii studio software version 3.3.1. Data for different metrics, 
including time to completion of the task and number of fixations for the whole page, 
as well as for specific areas of interest (AOI), were collected. These data were also 
used to produce two main typologies of graphical outputs: heat map (a graphical 
representation of the data where the individual values contained in a matrix are 
represented as colors) and gaze plot (a map showing gaze fixations on a webpage in 
the order in which they occur) (Dong et al., 2014). The tasks have been defined as 
efficient or not efficient. Specifically, relative efficiency in terms of different 
metrics (e.g. time to completion, number of fixations) has been assessed comparing 
each task to a threshold value established through evaluation of all the other tasks 
executed by the two groups of participants. The tasks defined as not efficient in both 
groups were further evaluated through a quantitative analysis of the main efficiency 
indicators as well as a qualitative analysis of heat maps and gaze plots representing 
participants’ fixations. Analyses have been conducted using R v. 3.5.0 (R Core 
Team, 2018). 

3 Results 

Data for 100 participants (Group 1: 46 high school students and Group 2: 54 
university students) were analyzed. The two groups did not differ in terms of gender 
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(chi-squared: p = 0.45) or high school institute (chi-squared: p = 0.46), while mean 
age was higher in the group of university students (t-test: p < 0.001).   

The analysis allowed to detect a high efficiency for most of the evaluated pages. 
In particular, the tasks classified as efficient for both high school and university 
students allowed to highlight how the site is easily accessible even by those who 
have used it a few times. However, the tasks classified as less efficient in both 
groups allowed to highlight some aspects that might be improved.  
For instance, the quantitative analysis of the number of fixations in the different 
AOIs as well as the qualitative analysis of heat maps and gaze plots showed that the 
large majority of observations was focused on the upper part of a web page (Figure 
1). Therefore, information that needs to be noticed by a large number of users should 
not be placed at the bottom of a page.   

Moreover, we observed that in some cases the participants were not able to 
understand the meaning of specific links at first sight or failed to retrieve the 
information required to complete the task even after reaching the correct page.  

 
 

   
Figure 1. Heat map (on the left) and gaze plot (on the right) of the Home Page of the web 

portal of the University of Cagliari 
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4 Conclusions 

The objective of this work is to evaluate the web usability of the portal of the 
University of Cagliari, using the eye tracking technology. The analysis has allowed 
to (i) detect a high efficiency for most of the web pages examined, (ii) highlight the 
most critical elements of the portal and (iii) suggest the most appropriate changes to 
be made. The identified critical aspects would have been difficult to detect without 
the eye tracking, which allowed to highlight the areas of the pages that received the 
greatest number of fixations. These results could help to further improve the web 
usability of the University of Cagliari’s website. 
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ABSTRACT: The data set of critical illness insurance policies from the commercial insurance 

company is studied by survival analysis. Specifically, the Cox proportional hazard model is 

used to investigate the influence of the gender, age and the place of residence of the 

policyholder on the time to occurrence of the insured event. Beside the investigation of 

gender influence, the approximately homogeneous age groups and the groups of the regions 

due to the risk of occurrence of the insured event are created.   

KEYWORDS: Critical illness, insurance, survival analysis, Cox proportional hazard model. 

1 Introduction 

There are many professional books and research articles dealing with the modelling 
survival data especially in medical research. Presented paper focuses on application 
of the Cox proportional hazard model on data arising from critical illness insurance. 
The proportional hazard model with the unspecified baseline hazard function was 
proposed by Cox (1972). This paper introduced the notion of partial likelihood, which 
was subsequently considered in great detail by Cox (1975). A detailed review of the 
model and its extension is contained in Therneau and Grambsch (2000).  

Scientific articles on the application of survival models to insurance data are far 
from as much as in the case of medical research. Car insurance data was analysed by 
various statistical methods, including survival analysis, by Beirlant et al. (1992). The 
Cox proportional hazard model to estimate transition intensities in long-term care 
insurance in Germany was used by Czado and Rudolph (2002). A study which 
incorporates the survival analysis of unemployment duration into pricing of Taiwan’s 
unemployment insurance program was done by Chuang and Yu (2010).  

Probably the most common use of survival analysis in insurance is a problem of 
the cancellation of insurance contracts. The analysis of customer survival time in the 
insurance company after a policy cancellation was introduced by Guillen et al. (2003). 
The Cox proportional hazard model was used by Ho and Su (2006) to investigate 
China’s residential mortgage life insurance prepayment risk behavior. The data set of 
Danish households possessing multiple insurance policies was studied by Brockett et 
al. (2008). Haugen and Moger (2016) investigated corporate customers holding 
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multiple car contracts with the same insurance company. The shared gamma frailty 
model was presented by them in order to study time to lapse of single car policies.  

2 Data and Model 

We obtained data on critical illness insurance from one of the commercial insurance 
company operating in the Czech Republic. The set contains data for 231,046 persons 
for the period from July 1, 1997 to April 30, 2017. The number of insured events in 
the monitored period was 1,045. For each person we have information about an age 
at the commencement of the policy, age at eventual occurrence of the insured event, 
respectively the termination of the policy, the information about a region where the 
insured person lives, and about a gender of the insured person.  

The influence of the gender of the insured person, the age at which the person 
entered into insurance contract, and the region where the insured person lives on time 
to occurrence of the insured event is investigated. To do this, the Cox proportional 
hazard model is fitted. The model includes following explanatory variables: gender of 
insured person, age at which the person entered into the insurance contract, and region 
where the insured person lives. Beside the investigation of gender influence, the 
approximately homogeneous age groups and the groups of the regions due to the risk 
of occurrence of the insured event are created.  

The Cox model of the hazard at time t for the i-th individual is given by the 
equation  

ℎ𝑖(𝑡) = exp(𝛽1𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝛽2𝐴𝑔𝑒𝑖 + 𝛽3𝑅𝑒𝑔𝑖𝑜𝑛𝑖) ℎ0(𝑡), 
 
where ℎ0(𝑡) is the baseline hazard function of unspecified form. For great details see 
Cox (1972) or, for example, Thernau and Grambsch (2000).  

A crucial assumption made when using the Cox model is that of proportional 
hazards. Hazards are said to be proportional if the ratios of hazards are independent 
of the time. The hazard proportionality assumption of the Cox model has been tested 
by so called zph test based on Schoenfeld residuals which was developed by 
Grambsch and Thernau (1994). The assumption of hazards proportionality has not 
been rejected in case of variables Gender and Region but this crucial assumption has 
been rejected for the Age variable. That is why the stratification in two parts of the 
data set was done at age 18. Due to limited space only the results for individuals over 
or equal 18 years of age are presented here. This subset contain 139,963 persons of 
whom 931 occurred an insured event.  

Because of categorical explanatory variables each parameter 𝛽𝑖 for i = 1, 2, 3 is 
represented by q-1 estimated parameters, where q means the number of categories of 
corresponding explanatory variable. The variable Gender, of course, includes two 
categories (q = 2), for the variables Age and Region their categories were designed to 
create groups with a different rate of risk of occurrence of the insured event, i.e. 
significantly different hazard ratio. Therefore variable Age is made up of four 
categories (q = 4): 18-30; 31-40; 41-50 and over 50 years. Regarding the variable 
Region, first it should be noted that Czech Republic is divided into fourteen territorial 
administration units, called regions. According to the rate of hazard, these regions 

473



were divided into following three groups (q = 3): 1st group - containing the regions 
Liberec, Pardubice, Prague and Zlin where the hazard is the lowest; 2nd group 
containing nine regions (Central Bohemia, Hradec Kralove, Moravia-Silesia, 
Olomouc, Plzen, South Bohemia, South Moravia, Vysocina and Usti nad Labem) and 
3rd group contains only one region Karlovy Vary with the highest hazard of occurrence 
of the insured event.  

The categories of corresponding explanatory variables with the lowest hazard were 
determined as reference categories, i.e. male for variable Gender, 18-30 years for 
variable Age and the 1st group for variable Region. 

3 Results and Discussion  

Estimations of coefficients of the Cox proportional hazard model simultaneously with 
their statistical significance (p-values), hazard ratios and corresponding confidence 
intervals are shown in Tab. 1. 

  
Tab. 1: Estimations of Cox proportional hazard model 

Variable 
Level of 

Effect 

Parameter 

Estimate 

p-

value 

Hazard 

Ratio 

95% 

Lower CI 

95% 

Upper CI 

Gender female 0.027    0.678    1.028    0.903    1.170    

Age 31-40 0.822    0.000    2.274    1.806    2.864    

Age 41-50 1.680    0.000    5.367    4.307    6.687    

Age over 50 2.305    0.000    10.023    7.933    12.664    

Region 2nd group 0.240    0.008    1.271    1.064    1.519    

Region 3rd group 0.521    0.000    1.684    1.286    2.207    

 
We can see from Tab. 1 that for the time to occurrence of the insured event is not 

statistically significant (p-value 0.678 is greater than the significance level 0.05) if the 
insured person is male or female. It means that the risk of critical illness is comparable 
for men and women, hazard ratio equals 1.028 and confidence interval contains one.  

As expected, the situation is different for explanatory variables Age and Region. 
In particular, age plays very significant role in the risk of critical illness. Based on the 
hazard ratios, we can say that the age category 31–40 years has more than twice as 
larger risk of occurrence of the insured event (i.e. occurrence of the critical illness) in 
comparison with the reference age category 18–30 years. For persons entering into an 
insurance contract in age from 41 to 50 years, the risk is more than five times greater 
and for the people over fifty, it is more than ten times higher. 

In the case of the regions, the differences are not so great. The best situation is in 
the regions: Liberec, Pardubice, Prague and Zlin, which form the reference category 
marked as 1st group. Interestingly, these are not neighboring regions. On the other 
hand, the worst situation is in Karlovy Vary region (3th group) where the risk of 
occurrence of critical illness is almost twice as large in comparison with the lowest 
hazard regions. The other nine regions (2nd group) have a comparable risk of 
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occurrence of the insured event. But this risk is significantly higher in comparison the 
lowest hazard regions, approximately 1.3 times.  

4 Conclusions 

The Cox proportional hazard model containing three explanatory variables (gender, 
age and region) based on data of critical illness insurance was fitted. The age 
categories and the groups of regions with significantly different hazard ratios of 
occurrence of the insured event were constructed. On the other hand, the statistical 
significance of gender has not been demonstrated.    
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