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A B S T R A C T   

Predicting energy consumption has become a critical issue for energy-intensive industrial contexts. A significant 
contribution to their overall energy load is due to the Heating Ventilation and Air Conditioning (HVAC) systems. 
This work, therefore, aims to validate the applicability of a probabilistic graphical approach, the Bayesian 
Network, in predicting the HVAC systems’ energy consumption. As a data-driven approach, it is compared with 
more common AI-based models like Support Vector Machine, Artificial Neural Networks and Random Forest. The 
graphical approach ensures a better interpretation of the main factors determining the energy consumption and 
the relationships underlying these dependences. After an initial contextualisation and an analysis of the state of 
the art, the design methodology of a Bayesian network is investigated in detail, deepening in the various solu
tions for each step and evaluating their performance through the application on two industrial case studies. The 
results show that Bayesian networks, despite not always providing the best results, are a valid solution, trading 
off between simplicity, flexibility, and performance. Moreover, the possibility to provide a physical interpreta
tion of the results is one of its main strengths. The critical aspect encountered, instead, is the need for dis
cretisation, which strongly influences the quality of the results.   

1. Introduction 

The growing interest in the efficient management of energy re
sources in industry can be associated to several aspects, such as new 
trends in environmental policies, a strong fluctuation in prices or the 
increasing importance of energy in the overall production costs. What
ever the real causes, there is no doubt that a correct forecast of con
sumption is required to better plan the supply and usage of energy [1]. 
This study, therefore, aims to focus, within the industrial context, on the 
Heating, Ventilation and Air Condition (HVAC) systems that are, in 
many cases, among the most energy-intensive and hardest-to-optimise 
systems. Industrial HVAC systems, in fact, must ensure that two main 
requirements are met: the comfort of the personnel working in the fa
cility and the environmental conditions required in specific processes. 
Although there are some differences between the two use cases, mainly 
due to the tolerance ranges, in both, the HVAC system must guarantee 
that temperature, humidity and air quality are maintained around spe
cific setpoints [2]. Currently, this is mostly done through non-optimised 

control, often based on expert knowledge. The consumption prediction 
could then represent a relevant aspect to achieve optimization and 
savings. In the industrial context, it has to be considered that HVAC 
systems have a different energy consumption behaviour compared to 
traditional machines or processes. In fact, the use of HVAC systems is 
highly dependent on external factors such as seasonality and climatic 
conditions. This leads to greater difficulty in forecasting. 

Looking into the models available for this goal, a first distinction 
should be made between prediction and forecasting. In the first one, the 
output is estimated by knowing the inputs in the same time step, 
whereas in the second case, inputs in previous time steps are used [3]. In 
this case, prediction has been chosen because it offers the most accurate 
estimate of energy consumption. Indeed, energy consumption at a given 
time depends largely on the values of certain input parameters (weather, 
occupancy of buildings, occupant needs, etc.) at that time. The HVAC 
system’s consumption will therefore vary according to these parameters. 
To obtain the best estimate of consumption at a given time, it is therefore 
better to predict it on the basis of the input values at that time. Some of 
these inputs, such as outdoor conditions, may be forecasts. Among 
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prediction models, therefore, 3 main types can be considered: physical, 
data-driven and hybrid models [4], corresponding, respectively, to the 
white box [5], black box, and grey box designations [6]. Black box 
models allow predictions to be made only based on historical data, 
without deepening the physics of the system and this enables solutions 
to be easily generalised. However, it is hard to investigate the reasons of 
the prediction results [6]. A partial solution may be the use of graphical 
probabilistic models, such as Bayesian networks, which, compared with 
classical black box models, are easier to interpret, due to their graphical 
structure [7]. 

This paper, therefore, presents the application of Bayesian Networks 
in the prediction of HVAC energy consumption to analyse the method
ology and to validate the model applicability as a general data-driven 
solution and, on the other hand, make some observations on the phys
ical interpretation of the prediction model. 

This paper is organised as follows: Section 2 presents a summary of 
the state of the art in the field of interest. Section 3 describes Bayesian 
Networks and their design process. Section 4 introduces the case studies, 
then the results obtained in the applications are presented in section 5. 
Finally, section 6 shows the conclusions and lays the foundations for 
future works. 

2. Background and related work 

Research in the field of energy consumption prediction models is 
very prolific and providing a clear but brief overview implies the need to 
select a limited number of sources. Specifically, several reviews have 
been analysed, some more general [6,8–10] and others specific on data- 
driven models [11–14]. Based on them, a simple classification is pro
posed, considering 3 categories: conventional, AI-based and hybrid 
models. 

2.1. Conventional models 

Two main types, among all, are labelled as conventional: Time Series 
(TS) and Regression Models (RM). Among TS models, Auto-Regressive 
(AR), Moving Average (MA), Auto-Regressive Moving Average 
(ARMA) and Auto-Regressive Integrated Moving Average (ARIMA) 
worth to be mentioned [13]. The work of Penya et Al. (2011) [15] 
compares AR and ARIMA with AI-based models in non-residential 
building energy load prediction, experiencing good results and veri
fying the already established viability of TS approaches. For RM, Linear 
Regression (LR), Multiple Linear Regression (MLR) and Non-Linear 
Regression (NLR) can be included [13]. Lei et Al. (2009) [16] 

evaluates these approaches in office building energy consumption 
forecasting, comparing single and multiple variable models. Bracale et 
Al. (2019) [17] applies MLR to industrial reactive power forecasting and 
verifies that the choice of the most suitable model and the obtained 
performance varies depending on the case study. 

2.2. AI-based models 

This category is extremely wide and exhaustive reviews can be found 
in literature [8,18]. In this paper, among others, only 3 sub-categories 
are presented: Neural Networks, Support Vector Machine and 
Bayesian Models [8]. The reason of this tight selection is that the most 
used approaches fall into the first two groups, while the third includes 
the model of interest: the Bayesian Networks. 

Neural networks, developed as emulation of the human neural sys
tem, are the most common solution for non-linear problems. They 
consist of at least three layers: input, hidden and output layers. With a 
single hidden layer, the models are simply called Artificial Neural Net
works (ANN), otherwise they are considered Deep Learning (DL) 
models. Among ANNs, the simplest approach is Multiple Layer Percep
tron (MLP) whereas, within DL models, can be mentioned Recurrent 
Neural Networks (RNN), Convolutional Neural Networks (CNN) and 
Long Short Term Memory (LSTM) as increasingly popular approaches 
[11]. Ding et Al. (2018) [19] summarizes the results obtained by MLP in 
commercial building heating load prediction, finding good perfor
mances in the ANN approach. Somu et Al. (2021) [20] presents the 
application of Neural Networks models in building energy consumption 
forecasting, also considering combinations of multiple DL approaches 
with excellent results, despite the complexity. 

Support Vector Machine (SVM) is a kernel-based model suitable for 
non-linear problems in the absence of large amounts of data [14]. 
Applied to regression problems, it becomes Support Vector Regression 
(SVR). Li et Al. (2009) [21] proposed SVM for cooling load prediction, 
achieving greater accuracy than the Neural Network models used for 
comparison. 

The Bayesian Models use Bayes’ conditional probability theory to 
solve classification or regression problems. These approaches include 
Naïve Bayes, Gaussian Naïve Bayes, Bayesian Networks (BNs), Bayesian 
Belief Networks [8]. Although commonly used in other fields of pre
dictive analysis, they are less common in energy consumption prediction 
[7]. Some applications of BNs are the works of: 

Huang et Al. (2018) [22] that applies BN on cooling load prediction, 
experiencing similar performance and lower computational times than 
SVM or ANN. 

Abbreviations 

ANN Artificial Neural Network 
AR Autoregressive model 
ARIMA Autoregressive Integrated Moving Average 
ARMA Autoregressive Moving Average 
BDeu Bayesian-Dirichlet equivalent uniform 
BIC Bayesian Information Criterion 
BN Bayesian Network 
CNN Convolutional Neural Network 
CPD Conditional Probability Distribution 
CPT Conditional Probability Table 
CV-RMSE Coefficient of Variation of the Root Mean Square Error 
DAG Directed Acyclic Graph 
DL Deep Learning 
EFD Equal Frequency Discretization 
EWD Equal Width Discretization 
HVAC Heating, Ventilation and Air Conditioning 

KPI Key Performance Indicator 
LR Linear Regression 
LSTM Long Short-Term Memory 
MA Moving Average 
MAPE Mean Absolute Percentage Error 
MLP Multiple Layer Perceptron 
MLR Multiple Linear Regression 
MMHC Max-Min Hill Climb 
NLR Non-Linear Regression 
NP Non-deterministic Polynomial-time (hardness) 
PC Peter-Clark (algorithm) 
PSO Particle Swarm Optimization 
ReLU Rectified Linear Unit (activation function) 
RF Random Forest 
RM Regression Model 
RNN Recurrent Neural Networks 
SVM Support Vector Machine  
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Soares Geraldi et Al. (2019) [23] that studies energy consumption 
prediction in schools and deepens the design process. 

O’Neill et Al. (2016) [24] that predicts building energy performance, 
analysing critical aspects, such as the discretization and the uncertainty 
assessment. 

2.3. Hybrid models 

Hybrid models group ensemble and improved approaches. The 
former involves the application of a single prediction technique multiple 
times (homogeneous ensemble) or the use of several prediction models 
in combination (heterogeneous ensemble). An example of homogeneous 
ensemble is Random Forest (RF). The work of Ahmad et Al. (2017) [25] 

proposes RF as an alternative solution to ANN for building energy 
consumption prediction. The improved prediction models, instead, are 
the combination of a single prediction model and an optimization 
technique, such as Particle Swarm Optimization (PSO) algorithm [14]. 
The work of Zhang et Al. (2016) [26] compares different optimization 
algorithms on SVR for building energy consumption forecast, empha
sizing the importance of parameter optimization. The work of Tran et Al. 
(2020) [27] presents, instead, a metaheuristic ensemble heterogeneous 
model to forecast energy consumption in residential buildings. 

2.4. Remarks on the state of the art 

The three categories analysed allow some preliminary considerations 

Fig. 1. Example of Bayesian Network DAG and CPTs.  

Fig. 2. Design process outline.  
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to be made. Conventional models, although simple to apply, may 
perform poorly in the presence of strong non-linearities. AI-based 
models, on the other hand, overcome this limitation but at the expense 
of greater complexity and more data required. Similarly, the use of 
hybrid models can result in even better performance but requiring more 
sophisticated solutions [12]. A result to highlight is, therefore, that the 
suitability and the performance of the model depends on the application. 
For this reason, MLP, RF and SVR have been selected as benchmarking 
models. The choice has been based mainly on the work of [28]. 

2.5. Innovative contributions 

This work sets three main goals in terms of innovation: (i) applica
tion in energy consumption prediction, (ii) systematic definition of a 
design methodology, and (iii) physical interpretation of the predictions. 
Regarding the application, it aims to evaluate the performance of 
Bayesian networks in predicting energy consumption, specifically for 
industrial applications, whose literature is still sparse. In terms of 
methodology, there is a lack of works that examine the design phases of 
Bayesian networks and evaluate strengths or weaknesses of the available 
solutions. Therefore, this work aims at filling the gap. Finally, the 
physical interpretation of the results is examined, demonstrating that 
this represents an advantage of using probabilistic graphical models. 

3. Methods and tools 

This section presents the Bayesian networks and the design meth
odology that, as mentioned in Section 2.5, is analysed with a systematic 
approach, describing all the required steps and the existing techniques 
for each one. In a final point, the benchmarking models and the software 
tools for the implementation are mentioned. 

3.1. BN definition 

A Bayesian network (BN) is a graphical model that builds relation
ships among variables that are identified as nodes [29]. These re
lationships are quantified by the conditional probability P(Y|X) where Y 
is the effect and X the cause, determined through the Bayes theorem [23] 
with Eq. (1): 

P(Y|X) =
P(X|Y)*P(Y)

P(X)
=

P(X ∩ Y)
P(X)

with P(X) ∕= 0 (1) 

The BN can be defined formally as B (S, θ) and consists of two 
components: 

A structure S in the form of a Directed Acyclic Graph (DAG), which 
contains the nodes and links. 

A set of parameters θ representing the Conditional Probability Dis
tributions (CPDs), based on the structure. These parameters are placed 
into Conditional Probability Tables (CPTs) [30]. 

An example is shown in Fig. 1. 
The Bayesian Networks are, in their simplest form, classification 

models. Therefore, to be applied to regression problems, they require 
that continuous variables are discretised into classes, to reduce the 
amount of probability functions to be assigned [23]. 

3.2. Design process 

The design process is summarised in Fig. 2. The proposed method is 
divided into four steps: pre-processing, network building, inference, and 
performance analysis. It has been outlined from the work of [23] and 
subsequently expanded. It should also be noted that, from a general 
point of view, the approach is common in the design of prediction 
models, such as in [31]. 

3.2.1. Pre-processing 
The pre-processing phase gathers all the operations that allow the 

raw data to be processed into a dataset suitable for the subsequent 
phases. Assuming that the raw data are already cleansed of outliers and 
missing values, the study of the pre-processing phase focuses on 3 as
pects: feature selection, training-test data split and discretization. 

The common methods for feature selection are distinguished in: 
Domain knowledge: literature information, engineering experience 

and physics knowledge are some potential references that can be used in 
feature selection. 

Filter methods: they evaluate the redundancy of features by assign
ing a score, then eliminate the ones that have the lowest scores. Pearson 
correlation represent an example. 

Wrapper methods: they search, in the field of all the possible dataset, 
the one that can provide the best accuracy and generalization, then 
assign a score on goodness-of-fit and number of variables [18,32]. Since, 
in general, any modelling algorithm combined with a search strategy 
can be used as wrapper [33], in this case Random Forest is proposed for 
the feature importance assessment. 

Regarding the dataset split for the training and testing phase, two 
approaches are considered: one based on a random selection [34] and 
another based on a temporal partition. For performance evaluations, 
random selection was used, which is less dependent on the time 
coverage provided by historical data. Temporal partition is only used for 
the purpose of simulating a prediction process. 

For the data discretization, the two proposed approaches are: 
Equal Width Discretization (EWD): this method divides the number 

of observations into k intervals of equal width, where k corresponds to 
the number of classes. 

Equal Frequency Discretization (EFD): this method divides the 
dataset into k intervals where each one contains approximately the same 
number of training cases [23]. 

In accordance with [35] the discretisation process is a key factor for a 
good prediction and needs to be thoroughly investigated. The reason 
why other approaches such as those described in [36] have not been 
proposed is mainly due to requirements of simplicity and generality 
which led to the selection of the simplest techniques. 

3.2.2. Network building 
The building of a Bayesian network is done in 2 steps: the structure 

learning and the parameters learning. 
The structure learning consists in finding the best graph that explains 

all the cause-effect relationships among the variables. The available 
approaches are based on expert knowledge or data. The first ones, 
however, are restricted to cases in which the cause-effect relationships 
are known or easily detectable and the number of variables is limited. 
Regarding the data-based structure learning, instead, the techniques are 
usually classified into 3 categories [30,37,38]: 

Constraint-based methods: they take a set of conditional indepen
dence relations between the variables and build a BN that takes the 
structure that best approximates these relationships (e.g., PC algorithm). 

Score-based methods: they use a search algorithm to browse smartly 
in the space of possible BN networks (e.g., Hill Climb) and a scoring 
function that provides a score for every candidate BN to choose the best 
(e.g., BDeu, BIC, K2). 

Hybrid structure learning: it aggregates constrained-based and score- 
based structure learning algorithms to obtain the advantages of both (e. 
g., MMHC). 

Once the structure of the Bayesian network is specified, the Condi
tional Probability Tables (CPTs) need to be derived through the 
parameter learning. The algorithms available for this task have been 
analysed and presented in the work of [39]. Examples are the Maximum 
Likelihood Estimator, the Bayesian Estimator, and the Expectation- 
Maximization Algorithm. 

3.2.3. Inference 
After the network building, the model can be used to compute the 

probability distribution for a query variable, given a set of evidence 
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variables. Depending on the method used to make the inference, two 
cases can be distinguished: 

Exact inference: it finds the exact solution to the inference problem. 
As an NP-hard problem, some efficient algorithms exist to solve the exact 
inference by trying to reduce the time of execution (e.g., Variable 
elimination and Belief propagation). 

Approximate inference: all exact Bayesian network inference algo
rithms have an exponential computational time related to the di
mensions of the graph, such as number of nodes, number of classes etc. 
For this reason, many approximate inference algorithms have been 
developed. They include stochastic simulation algorithms (e.g., sam
pling algorithms), model simplification methods, search-based methods 
and loopy belief propagation [40]. 

The results provided by the inference are in the form of a CPT and, 
for the purposes of this study, must subsequently be processed to obtain, 
from a classification result, a predicted numerical value. In this case, it 
has been done calculating the weighted average of the mean values of 
each discretization interval based on the probability distribution. 

3.2.4. Performance analysis 
The performance analysis measures the capacity of each network to 

predict reliable results. It is possible to consider different types of 
analysis such as: sensitivity analysis, influence analysis, model 
complexity and performance analysis [41]. In this research work, the 
focus is on the performance analysis. In order to facilitate a comparative 
assessment with literature results, the most common KPIs, used in 

regression problems, are proposed [11,13,42]. The selected KPIs (Eqs. 
(2), (3) and (4)) are dimensionless for a better comparison among 
different case studies: 

Coefficient of Determination R2 = 1 −
∑N

i=1(y*
i − yi)

2

∑N
i=1(yi − yi)2 (2)  

Mean Absolute Percentage Error MAPE =
1
N

∑N

i=1

⃒
⃒y*

i − yi
⃒
⃒

yi
*100% (3)  

Coefficient of Variation of the Root Mean Square Error CV − RMSE

=
1
y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(y*

i − yi)
2

√
√
√
√ *100% (4) 

More specifically, the R square represents the goodness of fit. The 
higher the accuracy of the model, the more its value will tend to one. The 
MAPE, on the other hand, provides a dimensionless measure that is easy 
to interpret due to its linear formulation. However, it is not applicable if 
there are zero values and becomes less reliable for values near to zero. 
Finally, CV-RMSE provides a dimensionless measure not subject to 
compensation, being derived from the RMSE [11]. 

3.3. Benchmarking models and software tools 

As mentioned in Section 2, three models are applied for bench
marking: MLP, SVR and RF. In the first two, hyperparameter optimisa
tion is performed respectively with Grid Search and Particle Swarm 
Optimization (PSO) algorithm. For these two cases, to have an unbiased 
evaluation both during hyperparameters’ tuning and at the final stage, 
the samples are divided into three datasets: training, validation, and 
testing. In Table 1, some details related to the parameters of these 
models are presented. 

Python 3.0 pre-existing libraries have been employed for the 
implementation of all the models, specifically Pgmpy library [43] for BN 
and Scikit-learn library [44] for MLP, RF and SVR. The simulations have 
been carried out using a laptop with Intel i7 8750H, Nvidia GeForce GTX 

Table 1 
Details of the parameters used in the prediction models.  

Model Parameter Value/Range of search 

RF Max depth 100 
MLP Hidden layer sizes [50/50/50, 50/100/50, 100/1] 

Activation function [ReLU, Tanh, Logistic] 
Solver Adam 

SVR C [1e-3, 1e3] 
Epsilon [1e-8,1e-1] 
Gamma [1e-3, 1e3]  

Fig. 3. General schema of the Body-shop Department case study.  
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1050 Ti 4 Gb and Ram 16 Gb DDR4. 

4. Case studies 

In this section, two industrial case studies are presented to evaluate 
the proposed model in real contexts [45]. The first case study focuses on 
the gas consumption of an HVAC system located in a body-shop 
department, referred as Body-shop Department, while the other 
regards the thermal power consumption of an AHU deployed in a 
topcoat process in a paint-shop department, referred as Paint-shop 
Department. The analysed case studies are representative of the two 
mentioned requirements: the regulation of thermal conditions for 
personnel comfort and the control of the environmental conditions of an 
industrial process. However, despite the diversity of their implementa
tion and use, industrial HVAC systems share the same main parameters 
that influence their consumption, including outdoor conditions and 

production environmental conditions. Such an approach, tested and 
validated on the presented use cases, can therefore be generally adapted 
to other HVAC systems. 

4.1. Case study 1: Body-shop Department 

The Body-shop department is a large building where there are AHUs 
and unit heaters of diverse types. Fig. 3 shows an illustrative schema of 
the Body-shop heating system. The AHUs can operate with partial or full 
air recirculation by adjusting the percentage of fresh air they use. The 
position of the machines is associated with the nearest pillar, which can 
be identified through a grid location system where a distinct position 
within the building layout is defined by a pair of values, namely the row 
and column coordinates. The objective is to predict the gas consumption 
of the HVAC system. Data are obtained from the AHUs’ probes, the 
production management system, and the nearby weather station. The 
available data are listed in Table 2. As a starting dataset, 1541 samples 
without missing values have been used with an hourly frequency. 

4.2. Case study 2: Paint-shop Department 

The second case study concerns an AHU of a topcoat process. The 
AHU ensures that temperature and humidity conditions remain in the 
optimal ranges during the process, which is schematised in Fig. 4. 
Table 3 resumes the variables considered in the model design. In this 
case, the data present a 15-minute sampling for a total of 3000 values 
covering approximately two months. 

5. Results and discussion 

This section presents the results obtained in the applications of the 
proposed method to the case studies, deepening the design steps with a 
comparison of alternative solutions. Specifically, the aspects analysed 
are: feature selection, discretization, network building and inference. In 

Table 2 
Body-shop Department variables.  

Variable Unit 

Outside dry-bulb temperature ◦C 
Outside dew-point temperature ◦C 
Wind speed m/s 
Wind direction ◦

Direct normal irradiance W/m^2 
Diffuse horizontal irradiance W/m^2 
Atmospheric pressure Pa 
Solar altitude ◦

Solar azimuth ◦

Indoor average temperature ◦C 
Production scheduling – 
Mechanical ventilation, natural ventilation, and infiltrations Ac/h 
Occupancy kW 
Air temperature ◦C 
Gas consumption kWh  

Fig. 4. Process diagram of the Paint-shop Department case study.  
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the end, Bayesian networks are compared with the benchmarking 
models, investigating the results both with test-train random split and 
with a time horizon division, as mentioned in Section 3.2.1. Specifically, 
the datasets have been divided into 90 % training and 10 % testing for 
both case studies. Moreover, for the hyperparameters tuning and data 
preprocessing, the training dataset has been further divided with the 
same criteria to obtain a validation dataset. 

5.1. Feature selection 

The first aspect analysed concerns the choice of variables to be 
considered within the model. Four alternatives are evaluated: no se
lection, filter method only, wrapper method only, filter and wrapper. An 
opposite situation arises between the two case studies, as shown in 
Table 4. In Body-shop Department, in fact, it occurs that the removal of 
correlated variables significantly improves performance, while, instead, 
is a negative factor in the Paint-shop Department, where features that 
have a non-negligible weight on the prediction result are removed. On 
the other hand, the use of a wrapper method based on feature impor
tance is useful, in both cases, to simplify the model and reduce the 
computational burden, without affecting the result. That said, in gen
eral, it might be worth to conduct the feature selection process even at 
the cost of a reduction in performance to prevent the invalidation of the 
model due to overly correlated variables. Based on this principle, the 
subsequent analysis has been performed considering full feature selec
tion for both case studies. Only in the comparison with other prediction 
models it has been chosen the process with the best performance. The 
variables considered after the feature selection process are summarised 

in Table 5. 

5.2. Discretization 

For the discretization process, EFD and EWD techniques are evalu
ated with different numbers of bins. Table 6 shows how EFD is better for 
both case studies. Another reason that penalises the EWD method is the 
risk of having empty bins leading to an error in the training phase, which 
is why in the Paint-shop Department there is no valid solution for K >
10. Analysing the number of bins, instead, it shows how a low K de
creases performance due to overly large ranges in which the approxi
mation in considering the class mean value is significant, as shown in 
Fig. 5. High numbers, on the other hand, increase the size of the CPTs 
and consequently the computational burden and may complicate the 
pattern detection due to the lack of data [36]. An acceptable number in 
relation to the amount of data used is 25. With more data, it is expected 
that this number will increase. 

5.3. Network building 

The construction of the network is carried out in the two phases of 
structure learning and parameter estimation. In the first phase, Hill 
Climb search with BDEU score, Chow-Liu algorithm, PC algorithm, Max- 
Min Hill Climb algorithm and Exhaustive search are analysed. For the 

Table 3 
Paint-shop Department variables.  

Variable Unit Description 

T_RA ◦C return air temperature from the heat wheels 
UR_RA % return air relative humidity from the heat wheels 
T_OUT ◦C external air temperature 
UR_OUT % external air relative humidity 
Qv_H2O_HOT_PRE m^3/ 

h 
superheated water flow rate - return from pre- 
heating exchanger 

T_in_HOT_PRE ◦C delivery superheated water temperature towards 
the pre-heating exchanger 

T_out_HOT_PRE ◦C return water temperature from the pre-heating 
exchanger 

Qv_H2O_HOT_POST m^3/ 
h 

superheated water flow rate - return from the post- 
heating exchanger 

T_in_HOT_POST ◦C delivery superheated water temperature towards 
the post-heating exchanger 

T_out_HOT_POST ◦C return superheated water temperature from the 
post-heating exchanger 

T_in_COOL ◦C delivery chilled water temperature towards the 
cooling exchanger 

T_out_COOL ◦C return chilled water temperature from the cooling 
exchanger 

UR_SAcheck % treated air RH for variable control 
T_SA_REAL ◦C air temperature from the heat wheels 
UR_SA_REAL % RH of the air from the heat wheels 
UR_booth % booth internal RH 
P_AHU_REAL_HOT kW real thermal heating power of the AHU (pre- 

heating + post-heating) 
P_AHU_REAL_COOL kW real thermal cooling power of the AHU 
P_AHU_REAL kW real thermal power of the AHU (heating + cooling)  

Table 4 
Comparison of feature selection approaches.  

Model Body-shop Department Paint-shop Department  

CV-RMSE (%) R2(-) MAPE(%) Time of ex. (s) CV-RMSE (%) R2(-) MAPE (%) Time of ex. (s) 

No features’ selection  61.9  − 0.330  23.1  5.97  17.4  0.987  5.42  4.53 
Pearson Correlation filter  19.0  0.975  1.03  4.88  25.2  0.974  2.73  2.78 
Random Forest wrapper  61.9  − 0.330  22.9  1.83  20.9  0.981  1.93  3.00 
Filter þ wrapper  19.0  0.975  1.03  2.58  25.2  0.974  2.73  2.34  

Table 5 
Variables considered after the feature selection process.  

Bodyshop Paintshop 

Feature Unit Feature Unit 

Outside dry-bulb temperature ◦C T_RA ◦C 
Solar altitude ◦ T_OUT ◦C 
Solar azimuth ◦ Qv_H2O_HOT_PRE m^3/h 
Indoor average temperature ◦C T_in_HOT_PRE ◦C 
Occupancy kW T_in_HOT_POST ◦C 
Air temperature ◦C T_in_COOL ◦C 
Gas consumption kWh UR_SA_REAL %   

UR_booth %   
P_AHU_REAL kW  

Table 6 
Comparison of discretization techniques.  

Model Body-shop Department Paint-shop Department  

CV-RMSE 
(%) 

R2 (-) MAPE 
(%) 

CV-RMSE 
(%) 

R2 (-) MAPE 
(%) 

EFD with K 
¼ 10  

24.1  0.959  1.03 27.7 0.938 5.78 

EFD with K 
¼ 20  

23.3  0.963  0.856 26.0 0.970 1.59 

EFD with K 
¼ 25  

19.0  0.975  1.03 25.2 0.974 2.73 

EWD with 
K ¼ 10  

34.1  0.914  5.76 75.4 0.511 71.9 

EWD with 
K ¼ 20  

35.8  0.909  3.44 – – – 

EWD with 
K ¼ 25  

34.6  0.931  2.28 – – –  
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last three, the number of variables has been reduced because simulation 
times resulted several orders of magnitude greater compared with the 
other techniques. The results are shown in Table 7. 

It is therefore verified that the score-based technique (Hill Climb) 
certainly represents the best compromise between speed of learning and 
performance. Indeed, it must be considered that the Chow-Liu algo
rithm, although performant, limits the search to tree structures, while 

the other algorithms are constrained by a higher computational burden. 
The choice, hence, falls on Hill Climb both for its applicability and 
performances. 

Assessing the physical interpretation instead, we refer to the Paint- 
shop case study. Looking at the structure obtained through Hill Climb 
search in Fig. 6, it can be observed that the relationships between the 
variables are justifiable from a physical point of view. Temperature and 
humidity depend on the power as it is plausible to assume considering 
that the AHU is designed to keep these parameters in a certain range, 
while the power depends on the flow rate of superheated water as amply 
demonstrated by thermodynamics. As regards the two unconnected 
variables, they are irrelevant, plausible for the outside temperature, less 
so for the booth humidity. 

As for the parameter estimation, Maximum Likelihood Estimator, 
Bayesian Estimator and Expectation-Maximization Algorithm have been 
considered. The results are not reported as, except for Bayesian Esti
mator, the others led in some cases to errors due to the existence of 
divisions by zero. For this reason, the choice has fallen on the only 
generally valid approach. 

5.4. Inference 

Causal inference, variable elimination, and belief propagation are 
considered among the existing inference approaches. Table 8 shows that 
the first two algorithms have the same performance except for execution 
time. It was expected to find this result because they are exact inference 
algorithms. As for Belief propagation, on the other hand, the model did 
not provide a solution because the algorithm, to be applied, needs all 

Fig. 5. Prediction results distributions of EWD cases with K = 10 and K = 25 in Body-shop Department.  

Table 7 
Comparison of structure learning algorithms.  

Model Body-shop Department Paint-shop Department  

CV-RMSE(%) R2 (-) MAPE (%) Time of ex.(s) CV-RMSE (%) R2 (-) MAPE (%) Time of ex. (s) 

Hill Climb  19.0  0.975  1.03  2.58  25.2  0.974  2.73  2.34 
Chow-Liu  20.9  0.971  0.731  2.36  30.2  0.958  3.94  1.96 
PC  30.3  0.938  1.46  4.37  62.4  0.774  83.6  16.3 
MMHC  19.0  0.975  1.03  5.89  37.9  0.939  4.38  11.3 
Exhaustive search  20.7  0.970  1.10  1.63  36.2  0.945  3.73  32.5  

Fig. 6. Paint-shop structure obtained by Hill Climb algorithm.  

Table 8 
Comparison of inference algorithms.  

Model Body-shop Department Paint-shop Department  

CV-RMSE (%) R2 (-) MAPE (%) Time of ex.(s) CV-RMSE (%) R2 (-) MAPE (%) Time of ex. (s) 

Causal inference 19.0 0.975 1.03 2.58 25.2 0.974 2.73 2.34 
Variable Elimination 19.0 0.975 1.03 12.6 25.2 0.974 2.73 7.67 
Belief propagation – – – – – – – –  
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Fig. 7. Best solutions for each step of the prediction model designing process.  

Table 9 
Comparison of prediction models on a randomly train-test split.  

Prediction Models Body-shop Department Paint-shop Department  

CV-RMSE (%) R2 (-) MAPE (%) Time of ex.(s) CV-RMSE (%) R2 (-) MAPE (%) Time of ex. (s) 

Bayesian Network  19.0  0.975  1.03  2.58  17.4  0.987  5.42  4.53 
Random Forest  21.5  0.970  0.904  0.696  16.5  0.989  4.43  2.42 
Multiple Layer Perceptron  19.0  0.975  1.03  35.0  4.50  0.999  0.479  46.3 
SVR þ PSO  24.4  0.961  1.62  7.06  20.2  0.981  8.06  8.15  

Table 10 
Comparison of prediction models on a specific time-horizon.  

Prediction Models Body-shop Department Paint-shop Department  

CV-RMSE (%) R2 (-) MAPE (%) Time of ex.(s) CV-RMSE (%) R2 (-) MAPE (%) Time of ex. (s) 

Bayesian Network  39.9  0.944  2.39  2.32  19.5  0.883  0.705  4.14 
Random Forest  50.3  0.906  3.50  0.856  16.4  0.927  0.315  2.55 
Multiple Layer Perceptron  32.8  0.970  0.837  42.0  5.11  0.993  0.259  52.9 
SVR þ PSO  59.0  0.905  1.58  6.73  21.1  0.883  29.6  6.93  

Fig. 8. Graphical results from Body-shop Department.  
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nodes to be connected in a single structure, a condition that is difficult to 
control in an automated learning process. Therefore, Causal inference 
has been selected as inference algorithm. Approximate inference is not 
considered as the computational burden of the proposed algorithms is 
already adequate and therefore there is no need. 

5.5. Performance analysis 

Fig. 7 resumes all the techniques analysed for each step and high
lights the ones that provided the best results. The best-performing BN 
model has therefore been compared with the benchmarking models. 

In the first case, the test dataset contains randomly selected data. 
Table 9 shows that the performances of BN are comparable with all the 
other models for Body-shop, whereas for Paint-shop there is a clear 
prevalence of MLP, despite longer run times. The obtained results refer 
to the best hyperparameter configuration for MLP and SVR. In the case 
of MLP, it presents an hidden layer size of 50/50/50 for the Body-shop 
department and 50/100/50 for the Paint-shop department, ReLU acti
vation function and Adam solver for both cases. For SVR, instead, three 
hyperparameters are defined as C, Epsilon and Gamma which, for the 
Body-shop department, are respectively 1000/0.003/32.7 and for the 
Paint-shop department are 332/0.02/44.9. RF has not been subject to 
optimisation as the only hyper-parameter considered was the maximum 
depth set at 100. 

The second case, shown in Table 10, considers instead a test dataset 
containing the last provided data, simulating a specific time horizon 
prediction. In this case, considering the Body-shop Department, the high 
RMSEs can be justified by the preponderance of close-to-zero values that 
strongly conditions the validity of a relative error. In general, instead, 
what was seen for the previous case is equally valid, also with reference 
to the Paint-shop Department. 

To conclude this overview, Fig. 8 and Fig. 9 present the same results 
of Table 10 in a graphical way. From a qualitative analysis, it can be 
highlighted that, for the Body-shop Department, the graphs reflect the 
KPIs without showing specific trends. For the Paint-shop Department, 
instead, it can be noticed how SVR seems to be accurate but only when it 
identifies the correct trend while BN and RF, although recognising the 
trend, still show considerable noise. 

6. Conclusions and future works 

This work focused on the implementation of a probabilistic graphical 
model, the Bayesian Network, for predicting the energy consumption of 
industrial HVAC systems. The objectives were the validation of BN for 
this type of applications, the systematic definition of the design meth
odology, and the evaluation of the physical interpretability of the model. 
With reference to the methodology, this work included an in-depth 
study of the prediction model building, achieved by analysing the 
design process and detailing the available solutions for each step. These 
solutions have been evaluated by implementing the models on two case 
studies and selecting the techniques that provided the best results (see 
Fig. 7). To assess the model validation in predicting energy consump
tion, instead, BN has been compared with benchmarking models, spe
cifically MLP, RF and SVR. The obtained results, although not showing 
the best prediction results among the implemented models, highlight the 
potential of this methodology in terms of physical interpretation of the 
network (see Fig. 6), simplicity of implementation through pre-existing 
python libraries and the flexibility of application, typical of data-driven 
models. However, some weaknesses have also been analysed, the main 
one is the need to discretise the data which strongly influences the 
quality of the results. The discretization process is, indeed, difficult to 
optimise, since parameters such as the optimal number of classes depend 
on the quantity of data. This aspect projects towards some possible 
continuations of this work, such as the implementation of Bayesian 
Network’s typologies that support continuous data or time series, or the 
use of supervised discretization algorithms to optimize the process. 
Other aspects for further studies concern the behaviour of the model 
when varying the amount of provided data or the investigation of cor
relation between the various design phases. 
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