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TRIPLE PLANES WITH pg = q = 0

DANIELE FAENZI, FRANCESCO POLIZZI, AND JEAN VALLÈS

Abstract. We show that general triple planes with genus and irregularity
zero belong to at most 12 families, that we call surfaces of type I to XII, and
we prove that the corresponding Tschirnhausen bundle is a direct sum of two
line bundles in cases I, II, III, whereas it is a rank 2 Steiner bundle in the
remaining cases.

We also provide existence results and explicit descriptions for surfaces of
type I to VII, recovering all classical examples and discovering several new
ones. In particular, triple planes of type VII provide counterexamples to a
wrong claim made in 1942 by Bronowski.

Finally, in the last part of the paper we discuss some moduli problems
related to our constructions.
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Introduction

A triple plane is a finite ramified cover f : X → P2 of degree 3. Let B ⊂ P2 be
the branch locus of f ; then we say that f is a general triple plane if the following
conditions are satisfied:

i) f is unramified over P2\B;

ii) f∗B = 2R+R0, where R is irreducible and non-singular and R0 is reduced;

iii) f|R : R → B coincides with the normalization map of B.
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2 DANIELE FAENZI, FRANCESCO POLIZZI, AND JEAN VALLÈS

The aim of this paper is to address the problem of classifying those smooth,
projective surfaces X with pg(X) = q(X) = 0 that arise as general triple planes.
We incidentally remark that the corresponding classification problem for double
planes is instead easy because, by the results of [BHPV04, §22], a smooth double
cover f : X → P2 with pg(X) = q(X) = 0 has either a smooth branch locus of
degree 2 (in which case X is isomorphic to a quadric surface S2 ⊂ P3 and f is the
projection from a point p /∈ S2), or a smooth branch locus of degree 4 (in which
case X is the blow-up of a cubic surface S3 ⊂ P3 at one point p ∈ S3 and f is the
resolution of the projection from p).

Some results toward the classification in the triple cover case were obtained by
Du Val in [DV33, DV35], where he described those general triple planes whose
branch curve has degree at most 14. Du Val’s papers are written in the “classical”,
a bit old-fashioned (and sometimes difficult to read) language and make use of
ad-hoc constructions based on synthetic projective geometry (see Remark 3.11 and
Remark 3.16 for an outline on Du Val’s work). The methods that we propose here
are completely different; in fact, they are a mixture of adjunction theory and vector
bundle techniques that allow us to treat the problem in a unified way.

The first cornerstone in our work is the general structure theorem for triple
covers given in [Mir85, CE96]. More precisely, we relate the existence of a triple
cover f : X → P2 to the existence of a “sufficiently general” element η ∈
H0(P2, S3E ∨ ⊗ ∧2E ), where E is a rank 2 vector bundle on P2 such that f∗OX =
OP2 ⊕ E . Such a bundle is called the Tschirnhausen bundle of the cover, and it
turns out that the pair (E , η) completely encodes the geometry of f . Some of the
invariants depend directly on E , for instance, setting b := −c1(E ) and h := c2(E ),
the branch curve B has degree 2b and contains 3h ordinary cusps as only singular-
ities; see Proposition 2.4. However the X and f themselves also depend on η; we
call η the building section of the cover.

So we can try to study general triple planes with pg = q = 0 by analyzing their
Tschirnhausen bundles together with the building sections. In fact, we show that
these triple planes can be classified in (at most) 12 families, that we call surfaces
of type I, II, . . . , XII. We are also able to show that surfaces of type I, II, . . . , VII
actually exist. In the cases I, II, . . . , VI we rediscover (in the modern language) the
examples described by Du Val. On the other hand, not only are the triple planes
of type VII (which have sectional genus equal to 6 and branch locus of degree 16)
completely new, but they also provide explicit counterexamples to a wrong claim
made by Bronowski in [Bro42]; see Remark 2.8.

A key point in our analysis is the fact that in cases I, II, III the bundle E splits
as the sum of two line bundles, whereas in the remaining cases IV to XII it is
indecomposable and it has a resolution of the form

0 → OP2(1− b)b−4 → OP2(2− b)b−2 → E → 0.

This shows that E (b− 2) is a so-called Steiner bundle (see §1.4 for more details on
this topic), so we can use all the known results about Steiner bundles in order to
get information on X. For instance, in cases VI and VII the geometry of the triple
plane is tightly related to the existence of unstable lines for E ; see §§3.6, 3.7.

The second main ingredient in our classification procedure is adjunction theory;
see [SV87, Fuj90]. For example, if we write H = f∗L, where L ⊂ P2 is a general
line, we prove that the divisor D = KX + 2H is very ample (Proposition 2.9), so
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TRIPLE PLANES WITH pg = q = 0 3

we consider the corresponding adjunction mapping

ϕ|KX+D| : X → P(H0(X, OX(KX +D))).

Iterating the adjunction process if necessary, we can achieve further information
about the geometry of X. Furthermore, when b ≥ 7 a more refined analysis of the
adjunction map allows us to start the process with D = H; see Remark 2.18.

As a by-product of our classification, it turns out that general triple planes
f : X → P2 with sectional genus 0 ≤ g(H) ≤ 5 (i.e., those of type I, . . . ,VI) can be
realized via an embedding of X into G(1, P3) as a surface of bidegree (3, n), such
that the triple covering f is induced by the projection from a general element of
the family of planes of G(1, P3) that are n-secant to X. In this way, we relate our
work to the work of Gross [Gro93]; see Remarks 3.2, 3.4, 3.6, 3.8, 3.10, 3.15. On the
other hand, this is not true for surfaces of type VII: here the only case where the
triple cover is induced by an embedding in the Grassmannian is VII.7, where X is
a Reye congruence, namely an Enriques surface having bidegree (3, 7) in G(1, P3);
see Remark 3.19.

We have not been able so far to use our method beyond case VII; thus the
existence of surfaces of type VIII to XII is still an open problem. Furthermore,
there are some interesting unsettled questions also in case VII, especially regarding
the number of what we call the unstable conics for the Tschirnhausen bundle; see
§3.7.2 for more details.

Let us explain now how this work is organized. In §1 we set up notation and
terminology and we collect the background material which is needed in the sequel
of the paper. In particular, we recall the theory of triple covers based on the study
of the Tschirnhausen bundle (Theorems 1.2 and 1.3) and we state the main results
on adjunction theory for surfaces (Theorem 1.4).

In §2 we start the analysis of general triple planes f : X → P2 with pg(X) =
q(X) = 0. We compute the numerical invariants (degree of the branch locus,
number of its cusps, K2

X , sectional genus) for the surfaces in the 12 families I to
XII (Proposition 2.11) and we describe their Tschirnhausen bundle (Theorem 2.12).

Next, §3 is devoted to the detailed description of surfaces of type I to VII. This
description leads to a complete classification in cases I to VI (Propositions 3.1, 3.3,
3.5, 3.7, 3.9, 3.12) whereas in case VII we provide many examples, leaving only a
few cases unsolved (Proposition 3.17).

Finally, in §4 we study some moduli problems related to our constructions.
Part of the computations in this paper were carried out by using the Computer

Algebra System Macaulay2; see [GS]. The scripts are included in the Appendix.

1. Basic material

1.1. Notation and conventions. We work over the field C of complex numbers.
Given a complex vector space V , we write P(V ) for the projective space of 1-
dimensional quotient spaces of V , and Pn = P(Cn+1). Similarly, if E is a locally
free sheaf over a scheme, we use P(E ) for the projective bundle of its quotients of
rank 1. We write P̌(V ) for P(V ∨), so that P̌n is the projective space of hyperplanes
of Pn. We put G(k,P(V )) for the Grassmannian of (k + 1)-dimensional vector
subspaces of V .

By “surface” we mean a projective, non-singular surface S, and for such a surface
ωS = OS(KS) denotes the canonical class, pg(S) = h0(S, KS) is the geometric
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4 DANIELE FAENZI, FRANCESCO POLIZZI, AND JEAN VALLÈS

genus, q(S) = h1(S, KS) is the irregularity and χ(OS) = 1 − q(S) + pg(S) is the
holomorphic Euler-Poincaré characteristic. We write Pm(S) = h0(S, mKS) for the
mth plurigenus of S.

If k ≤ n are non-negative integers we denote by S(k, n) the rational normal
scroll of type (k, n) in Pk+n+1, i.e., the image of P(OP1(k)⊕ OP1(n)) by the linear
system given by the tautological relatively ample line bundle (see [Har92, Lecture
8] for more details). A cone over a rational normal curve C ⊂ Pn of degree n may
be thought of as the scroll S(0, n) ⊂ Pn+1.

For n ≥ 1, we write Fn for the Hirzebruch surface P(OP1 ⊕OP1(n)); every divisor
in Pic(Fn) can be written as ac0 + bf, where f is the fiber of the P1-bundle map
Fn → P1 and c0 is the unique section with negative self-intersection, namely c20 =
−n. Note that the morphism Fn → Pn+1 associated with the tautological linear
system |c0 + nf| contracts c0 to a point and is an isomorphism outside c0, so its
image is the cone S(0, n).

For n = 0, the surface F0 is isomorphic to P1 × P1; every divisor in Pic(P1 × P1)
is written as a1L1 + a2L2, where the Li are the two rulings.

The blow-up of P2 at the points p1, . . . , pk is denoted by P2(p1, . . . , pk). If

σ : X̃ → X is the blow-up of a surface X at k points, with exceptional divisors
E1, . . . , Ek, and L is a line bundle on X, we will write L +

∑
aiEi instead of

σ∗L+
∑

aiEi.
The Chern classes of coherent sheaves on P2 will usually be written as integers,

namely for a sheaf E we write ci(E ) = di, where di ∈ Z is such that ci(E ) =
di(c1(OP2(1)))i. If E is a vector bundle, its dual vector bundle is indicated by E ∨

and its kth symmetric power by SkE .
We will use basic material and terminology on vector bundles, more specifically

on stable vector bundles on P2; we refer the reader to [OSS80].

1.2. Triple covers and sections of vector bundles. A triple cover is a finite flat
morphism f : X → Y of degree 3. Our varietiesX and Y will be smooth, irreducible
projective manifolds. With a triple cover is associated an exact sequence

(1) 0 → OY → f∗OX → E → 0,

where E is a vector bundle of rank 2 on Y , called the Tschirnhausen bundle of f .

Proposition 1.1. The following hold:

i) f∗OX = OY ⊕ E .

ii) f∗ωX = ωY ⊕ (E ∨ ⊗ ωY ).

iii) f∗ω
2
X = S2E ∨ ⊗ ω2

Y .

Proof. The trace map yields a splitting of sequence (1), hence i) follows. Duality
for finite flat morphisms implies f∗ωX = (f∗OX)∨ ⊗ ωY , hence we obtain ii). For
iii) see [Par89, Lemma 8.2]. �

In order to reconstruct f from E we need an extra datum, namely the building
section, which is a global section of S3E ∨ ⊗ ∧2E . Moreover, we can naturally see
X as sitting into the P1-bundle P(E ∨) over Y . This is the content of the next two
results; see [CE96, Theorem 1.5], [FS01, Proposition 4], [Mir85, Theorem 1.1].

Theorem 1.2. Any triple cover f : X → Y is determined by a rank 2 vector bundle
E on Y and a global section η ∈ H0(Y, S3E ∨ ⊗∧2E ), and conversely. Moreover, if
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TRIPLE PLANES WITH pg = q = 0 5

S3E ∨ ⊗ ∧2E is globally generated, a general global section η defines a triple cover
f : X → Y .

Theorem 1.3. Let f : X → Y be a triple cover. Then there exists a unique em-
bedding i : X → P(E ∨) such that the following diagram commutes:

X
f ��

i ����
���

� Y

P(E ∨)
π

��������

According to Theorem 1.2, this embedding induces an isomorphism of X with the
zero-scheme D0(η) ⊂ P(E ∨) of a global section η of the line bundle OP(E∨)(3) ⊗
π∗(∧2E ).

1.3. Adjunction theory. We refer to [BS95, Chapter 10], [DES93, Theorem 1.10],
[LP84, Theorem 2.5], [Som79, Proposition 1.5], [SV87, §0] for basic material on
adjunction theory.

Theorem 1.4. Let X ⊂ Pn be a smooth surface and D its hyperplane class. Then
|KX+D| is non-special and has dimension N = g(D)+pg(X)−q(X)−1. Moreover:

A) |KX +D| = ∅ if and only if
1) X ⊂ Pn is a scroll over a curve of genus g(D) = q(X) or

2) X = P2, D = OP2(1) or D = OP2(2).

B) If |KX+D| �= ∅, then |KX+D| is base-point free. In this case (KX+D)2 =
0 if and only if
3) X is a Del Pezzo surface and D = −KX (in particular X is rational )

or

4) X ⊂ Pn is a conic bundle.
If (KX +D)2 > 0, then the adjunction map

ϕ|KX+D| : X → X1 ⊂ PN

defined by the complete linear system |KX +D| is birational onto a smooth
surface X1 of degree (KX +D)2 and blows down precisely the (−1)-curves
E on X with DE = 1, unless
5) X = P2(p1, . . . , p7), D = 6L−

∑7
i=1 2Ei,

6) X = P2(p1, . . . , p8), D = 6L−
∑7

i=1 2Ei − E8,

7) X = P2(p1, . . . , p8), D = 9L−
∑8

i=1 3Ei,

8) X = P(E ), where E is an indecomposable rank 2 vector bundle over
an elliptic curve and D = 3B, where B is an effective divisor on X
with B2 = 1.

We can apply Theorem 1.4 repeatedly, obtaining a sequence of surfaces and
adjunction maps

X =: X0
ϕ1−→ X1

ϕ2−→ X2 −→ · · · −→ Xn−1
ϕn−→ Xn → · · · .

At each step we must control the numerical data arising from the adjunction process.
We have

(Di+1)
2 = (KXi

+Di)
2, KXi+1

Di+1 = (KXi
+Di)KXi

.

For the computation of
(KXi+1

)2 = (KXi
)2 + αi
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6 DANIELE FAENZI, FRANCESCO POLIZZI, AND JEAN VALLÈS

we also need to know the number αi of exceptional lines on Xi, i.e., the number of
smooth curves E ⊂ Xi such that KXi

E = E2 = −1, EDi = 1. Notice that by the
Hodge Index Theorem (see [Har77, Exercise 1.9, p. 368]) we have

det

(
(Di)

2 KXi
Di

KXi
Di (KXi

)2

)
≤ 0

and the equality holds if and only if KXi
and Di are numerically dependent.

Proposition 1.5. Let E ⊂ Xn−1 be a curve contracted by the nth adjunction map
ϕn : Xn−1 → Xn. Then, setting ψ := ϕn−1 ◦ ϕn−2 ◦ · · · ◦ ϕ1 and E∗ := ψ∗E, we
have

(E∗)2 = −1, KXE∗ = −1, DE∗ = n.

Proof. Since E is contracted by ϕn, we have E
2 = −1, KXn−1

E = −1, Dn−1E = 1.
The map ψ is birational, so (E∗)2 = E2 = −1. Moreover

ψ∗KX = KXn−1
, ψ∗D = Dn−1 − (n− 1)KXn−1

.

Applying the projection formula we obtain

KXE∗ = (ψ∗KX)E = KXn−1
E = −1,

DE∗ = (ψ∗D)E = (Dn−1 − (n− 1)KXn−1
)E = n.

This completes the proof. �

1.4. Steiner bundles. We collect here some material about coherent sheaves pre-
sented by matrices of linear forms, usually called Steiner sheaves, and more specif-
ically about those that are locally free (Steiner bundles). We refer to [AO01] for
basic results on this topic.

1.4.1. Steiner sheaves and their projectivization. Let U , V and W be finite-
dimensional C-vector spaces. Consider the projective spaces P(V ) and P(U), and
identify V and U with H0(P(V ), OP(V )(1)) and H0(P(U), OP(U)(1)), respectively.
Any element φ ∈ U ⊗ V ⊗W gives rise to two maps

(2) W∨ ⊗ OP(V )(−1)
Mφ−−→ U ⊗ OP(V ), W∨ ⊗ OP(U)(−1)

Nφ−−→ V ⊗ OP(U).

Set F := cokerMφ. We say that F is a Steiner sheaf, and we denote its projec-
tivization by P(F ); this is a projective bundle precisely when F is locally free (and
in this case dim(U) ≥ dim(V ) + dim(W )− 1). Let p : P(F ) → P(V ) be the bundle
map and let OP(F)(ξ) be the tautological, relatively ample line bundle on P(F ), so
that

H0(P(F ),OP(F)(ξ))  H0(P(V ),F )  U.

Since F is a quotient of U ⊗ OP(V ), we get a natural embedding

P(F ) ⊂ P(U ⊗ OP(V ))  P(V )× P(U).

The map q associated with the linear system |OP(F)(ξ)| is just the restriction
to P(F ) of the second projection from P(V ) × P(U). On the other hand, setting
� := p∗(OP(V )(1)), the linear system |OP(F)(�)| is naturally associated with the map
p. In this procedure the roles of U and V can be reversed. In other words, setting
G = cokerNφ, we get a second Steiner sheaf, this time on P(U), and a second
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TRIPLE PLANES WITH pg = q = 0 7

projective bundle P(G ) with maps p′ and q′ to P(U) and P(V ), respectively. So we
have two incidence diagrams

P(F )
q

����
���p

����
��

P(V ) P(U),

P(G )
q
′

���
��

�p
′

����
��

P(U) P(V ).

The link between P(F ) and P(G ) is provided by the following result.

Proposition 1.6. Let φ ∈ U ⊗ V ⊗W and set m = dimW . Then:

i) The schemes P(F ) and P(G ) are both identified with the same m-fold linear
section of P(V ) × P(U). Moreover, under this identification, q = p′ and
p = q′.

ii) For any non-negative integer k, there are natural isomorphisms

p∗q
∗(OP(U)(k))  SkF , q∗p

∗(OP(V )(k))  SkG .

Proof. Set M := Mφ. By construction, the scheme P(F ) is defined as the set

P(F ) = {([v], [u]) ∈ P(V )× P(U) | u ∈ cokerM(v)},

where v : V → C (resp., u : U → C) is a 1-dimensional quotient of V (resp., of U)
and M(v) : W∨ → U is the evaluation of M at the point [v]. Now, we get that
u is defined on cokerM(v) if and only if u ◦ M(v) = 0. This clearly amounts to
requiring (u ◦ M(v))(w) = 0 for all w ∈ W∨, that is, u ⊗ v ⊗ w(φ) = 0 for all
w ∈ W∨. Summing up, we have

(3) P(F ) = {([v], [u]) | u⊗ v ⊗ w(φ) = 0 for all w ∈ W∨}.

The same argument works for P(G ) by interchanging the roles of v and u, hence
P(F ) and P(G ) are both identified with the same subset of P(V )×P(U). Since each
element wi of a basis of W∨ gives a linear equation of the form u⊗ v ⊗ wi(φ) = 0,
we have that P(F ) is an m-fold linear section (of codimension m or smaller) of
P(V )× P(U).

Note that, in view of the identification above, the map p is just the projection
from P(V )×P(U) onto P(V ), restricted to the set given by (3). The same holds for
q′, hence we are allowed to identify p and q′. Analogously, both q and p′ are given
as projections onto the factor P(V ). We have thus proved i). Now let us check ii).
For any non-negative integer k we have

q
∗(OP(U)(k))  OP(F)(kξ),

p∗(OP(V )(k))  (q′)∗(OP(V )(k))  OP(G )(kξ
′),

where ξ′ is the tautological relatively ample line bundle on P(G ). Therefore the
claim follows from the canonical isomorphisms

p∗(OP(F)(kξ))  SkF , p
′
∗(OP(G )(kξ

′))  SkG .

�

Remark 1.7. We can rephrase the content of Proposition 1.6 by using coordinates
as follows. Take bases

{zi}, {xj}, {yk}
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8 DANIELE FAENZI, FRANCESCO POLIZZI, AND JEAN VALLÈS

for U , V , W , respectively. With respect to these bases, the tensor φ ∈ U ⊗ V ⊗W
will correspond to a trilinear form

φ =
∑

aijkzixjyk,

for a certain table of coefficients aijk ∈ C. Write V and U for the symmetric algebras
on V and U . Then φ induces two linear maps of graded vector spaces:

W∨ ⊗ V(−1) → U ⊗ V, W∨ ⊗ U(−1) → V ⊗ U,

both defined as

w ⊗Ψ →
(∑

aijkzixjyk(w)

)
Ψ,

where Ψ lies in V or in U. The sheafification of these maps gives precisely the two
maps of vector bundles Mφ and Nφ written in (2), whose defining matrices of linear
forms are, respectively:(∑

j
aijkxj

)
ik

and

(∑
i
aijkzi

)
jk

.

An important observation is that P(F ) and P(G ) are both identified with the
zero locus of the same set of m bilinear equations in P(V )× P(U), namely

P(F ) = P(G ) =
{
(x, z)

∣∣∣ ∑
i, j

aij1zixj = · · · =
∑

i, j
aijmzixj = 0

}
.

This shows that P(F ) = P(G ) is the intersection of m divisors of bidegree (1, 1) in
P(V )× P(U). We can thus write a presentation of the form:

(4) · · · → W∨ ⊗ OP(V )×P(U)(−1,−1) → OP(V )×P(U) → OP(F) → 0.

We will mostly use this setup when P(V ) = P2, in order to study the geometry
of a Steiner bundle F of rank 2 admitting the resolution

(5) 0 → W∨ ⊗ OP2(−1)
M−→ U ⊗ OP2 → F → 0,

and to compare it with the geometry of the sheaf G obtained by “flipping” the
tensor φ as explained above and whose presentation is

(6) W∨ ⊗ OP(U)(−1)
N−→ O3

P(U) → G → 0.

1.4.2. Unstable lines. Let us assume now dimV = 3 and consider a Steiner bundle
F of rank 2 on P2 = P(V ). To be consistent with the notation that will appear
later, we set dimU = b− 2 and dimW = b− 4, for b ≥ 4, and we write Fb instead
of F . The sheafified minimal graded free resolution of Fb is then

(7) 0 → OP2(−1)b−4 M−→ Ob−2
P2 → Fb → 0,

where M is a (b− 2)× (b− 4) matrix of linear forms.
Given a line L ⊂ P2, there is an integer a such that

Fb|L = OL(a)⊕ OL(b− 4− a).

Since Fb is globally generated, the same is true for Fb|L and so

0 ≤ a ≤ b− 4.

Definition 1.8. A line L ⊂ P2 is said to be unstable for Fb if a = 0, i.e.,

Fb|L  OL ⊕ OL(b− 4).

Here are some useful characterizations of unstable lines.
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TRIPLE PLANES WITH pg = q = 0 9

Lemma 1.9. The following are equivalent:

i) The line L ⊂ P2 is an unstable line for Fb.

ii) The cohomology group H0(L, F∨
b |L) is non-zero.

iii) There is a non-zero global section of Fb whose vanishing locus contains
b− 4 points of L (counted with multiplicity).

Proof. We first prove i) ⇔ ii). The restriction Fb|L splits, so there is an integer
a such that Fb|L = OL(a)⊕ OL(b− 4− a), and since Fb is globally generated we
have 0 ≤ a ≤ b− 4. Condition i) corresponds to a = 0 or a = b− 4, and this clearly
implies ii). Conversely, if ii) holds, then a ≤ 0 or a ≥ b − 4; this implies either
a = 0 or a = b− 4, hence i) holds.

In order to check ii)⇔ iii), we first claim that, given a line L ⊂ P2, the restriction
map induces an isomorphism

(8) H0(P2,Fb)
�−→ H0(L,Fb|L).

Indeed, looking at (7), we see that we have

H0(P2,Fb(−1)) = H1(P2,Fb(−1)) = 0,

so our claim follows by taking cohomology in

0 → Fb(−1) → Fb → Fb|L → 0.

Now let us prove ii) ⇒ iii). Assuming ii), we get a short exact sequence

0 → OL → F∨
b |L → OL(4− b) → 0,

so by dualizing we have

0 → OL(b− 4)
ι→ Fb|L → OL → 0.

Composing ι with a non-zero map OL → OL(b − 4), we obtain a global section of
Fb|L vanishing at b − 4 points counted with multiplicity. Using the isomorphism
(8) we can lift this section to a global section of Fb and we get iii).

Conversely, assume that iii) holds. Then there is a global section s of Fb whose
vanishing locus Z contains a subscheme of L of length b − 4. Put Z ′ = Z ∩ L, so
that Z ′ has length c ≥ b− 4. Since H0(P2,Fb(−1)) = 0 it follows that Z contains
no divisors, i.e., it has pure dimension 0, so we have an exact sequence

0 → OP2 → Fb → IZ/P2(b− 4) → 0.

Applying −⊗O
P2

OL to the exact sequence

0 → IZ/P2(b− 4) → OP2(b− 4) → OZ → 0

and using T or
O

P2

1 (OZ , OL)  OZ′ , we get

0 → OZ′ → IZ/P2(b− 4)|L → OL(b− 4) → OZ′ → 0.

The image of the middle map is IZ′/L(b − 4)  OL(b − c − 4), so from the above
sequence we obtain

(9) 0 → OZ′ → IZ/P2(b− 4)|L → OL(b− c− 4) → 0.

The scheme Z ′ is 0-dimensional, so we infer

Ext1(OL(b− 4− c),OZ′)  H1(L,OZ′ ⊗ OL(c− b+ 4)) = 0

and this means that (9) splits, i.e.,

(10) IZ/P2(b− 4)|L  OL(b− c− 4)⊕ OZ′ .
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10 DANIELE FAENZI, FRANCESCO POLIZZI, AND JEAN VALLÈS

Therefore, we have a surjection Fb|L → OL(b− c− 4). Since b− c− 4 ≤ 0, the dual
of this surjection gives a non-zero global section of F∨

b |L and the proof is finished.
Note that, since we have now proved Fb|L  OL ⊕ OL(b − 4), the existence of a
surjection Fb|L → OL(b− c−4) actually gives c = b−4, i.e., Z ′ = Z ∩L has length
precisely b− 4. �

The set of unstable lines of Fb has a natural structure of subscheme of P̌2, given
as follows. First define the point-line incidence I in P2 × P̌2 by the condition that
the point lies in the line. One has I  P(TP2(−1)) and TP2(−1) is a Steiner bundle.
By Lemma 1.9, a line L is unstable for F if and only if H0(L, F∨

b |L) �= 0, i.e., by
Serre duality, if and only if H1(L, Fb(−2)|L) �= 0, which happens if and only if L
lies in the support of R1q∗(p

∗Fb(−2) ⊗ OI). We denote the set of unstable lines,
endowed with this scheme structure, by W (Fb).

Let us now give a summary of the behavior of the unstable lines of Fb for small
values of b.

b = 4. We have F4  O2
P2 , so W (F4) is empty.

b = 5. There is an isomorphism F5  TP2(−1). Therefore W (F5) = P̌2, because
TP2 is a uniform bundle of splitting type (1, 2); see [OSS80, §2].

b = 6. The scheme W (F6) is a smooth conic in P̌2, and the unstable lines of F6

are the tangent lines to the dual conic; see [DK93, Proposition 6.8] and
[Val00, Proposition 2.2].

b = 7. The scheme W (F7) is either a set of six points in general linear position
and contained in no conic or consists of a smooth conic in P̌2; see [Val00,
Théorème 3.1]. The former case is the general one, and when it occurs F7

is a so-called logarithmic bundle. Instead, the latter case occurs if and only
if F7 is a so-called Schwarzenberger bundle, whose matrix M , up to a linear
change of coordinates, has the form

(11) M =

t⎛
⎝ x0 x1 x2 0 0

0 x0 x1 x2 0
0 0 x0 x1 x2

⎞
⎠ ;

see [FMV13, Theorem 3], [Val00, Théorème 3.1].
b ≥ 8. Unstable lines do not always exist in this range. The scheme W (Fb) is

either finite of length ≤ b − 1 or consists of a smooth conic in P̌2. In
the latter case, Fb is a Schwarzenberger bundle, whose matrix M , up to
a linear change of coordinates, is a (b − 2) × (b − 4) matrix having the
same form as (11). We can actually state a more precise result; see again
[AO01, Proposition 3.11 and proof of Theorem 5.3].

Proposition 1.10. If Fb contains a finite number α1 of unstable lines,
then 0 ≤ α1 ≤ b− 1. More precisely, the following hold:
i) If 0 ≤ α1 ≤ b−2 then, up to a linear change of coordinates, the matrix

M is of type

M =

t⎛
⎜⎝

a1,1H1 · · · a1,αHα

...
...

... M ′

ab−4,1H1 · · · ab−4,αHα

⎞
⎟⎠ ,
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TRIPLE PLANES WITH pg = q = 0 11

for some (b− 2− α)× (b− 4) matrix M ′ of linear forms. In this case
the unstable lines are given by

H1 = 0, H2 = 0, . . . , Hα1
= 0.

ii) If α1 = b−1, then Fb is a logarithmic bundle. In this case, the matrix
M is of type

M =

t⎛
⎜⎝

a1,1H1 a1,2H2 · · · a1,b−2Hb−2

...
...

...
...

ab−4,1H1 ab−4,2H2 · · · ab−4,b−2Hb−2

⎞
⎟⎠ ,

where H1, . . . , Hb−2 are such that the linear form

Hb−1 :=
b−2∑
j=1

ai,jHj

does not depend on i ∈ {1, . . . , b− 4}. The unstable lines are given by

H1 = 0, H2 = 0, . . . , Hb−1 = 0.

Remark 1.11. Using Proposition 1.10, we can give another proof of the implication
i) ⇒ iii) in Lemma 1.9. Indeed, we can take a basis s1, . . . , sb−2 of H0(P2, Fb)
such that the homogeneous ideal Ik of the vanishing locus of sk is defined by the
maximal minors of the matrix obtained by deleting the kth row of M , namely by
b− 3 forms of degree b− 4. Assume now that the unstable line L is defined by the
equation Hi = 0. Then, if k �= i, all the minors defining Ik are divisible by Hi,
except the one obtained by deleting the kth and ith rows of M ; so sk vanishes at
b− 4 points on L.

Remark 1.12. In Proposition 1.10 we denoted the number of unstable lines of Fb

by α1. Further on, the notation α1 will be reserved to the number of exceptional
lines contracted by the first adjunction map ϕ|KX+D| : X → X1; see §1.3. The

reason is that when we consider a general triple plane f : X → P2 whose (twisted)
Tschirnhausen bundle is isomorphic to Fb, with b ≥ 7, these two numbers are in
fact the same (see §2.3.2, in particular Proposition 2.17).

1.5. Criteria for a rank 2 vector bundle to be Steiner. Here we present two
simple criteria to check whether a vector bundle of rank 2 on P2 is a Steiner one.
Both of them consist in fixing the numerical data and adding a single cohomology
vanishing. In the second one, the condition is on a 0-dimensional subscheme from
which the bundle is constructed via the Serre correspondence, provided that the
Cayley-Bacharach property is satisfied.

To state the first result, fix an integer b ≥ 4 and note that, if F is a Steiner
bundle of type Fb, then

c1(F ) = b− 4, c2(F ) =

(
b− 3

2

)
(12)

and Hi(P2,F (−1)) = 0 for all i. Likewise, for b ≤ 2 assume that F fits into

(13) 0 → F → OP2(−1)4−b → O2−b
P2 → 0.

Then, using the standard convention on binomial coefficients with negative argu-
ments, we see that (12) still holds; furthermore, we have Hi(P2, F (−1)) = 0 for
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12 DANIELE FAENZI, FRANCESCO POLIZZI, AND JEAN VALLÈS

all i. Note that F fits into (13) if and only if F∨(−1) is of type Fb. One may
extend the notation Fb to all b in Z as a bundle fitting into the long exact sequence

0 → OP2(−1)max(b−4,0) →O
max(b−2,0)
P2 → Fb

→OP2(−1)max(4−b,0) → O
max(2−b,0)
P2 → 0,

where the value b = 3 corresponds to F3 = OP2(−1)⊕ OP2 .

Proposition 1.13. Fix an integer b ∈ Z and let F be a vector bundle of rank 2
on P2 satisfying (12). Then the following hold:

i) For b ≥ 4, the bundle F is of type Fb if and only if H0(P2,F (−1)) = 0.
If this happens, then F is stable for b ≥ 5.

ii) For b ≤ 2, the bundle F∨(−1) is of type Fb if and only if H2(P2,F (−1)) =
0. If this happens, then F is stable for b ≤ 1.

iii) For b = 3, we have F  OP2(−1)⊕ OP2 if and only if H0(P2, F (−1)) = 0
or, equivalently, H2(P2, F (−1)) = 0.

Proof. In each case, only one direction needs to be proved.
i) Let us assume b ≥ 4 and H0(P2,F (−1)) = 0 and let us show that F is of the

form Fb. First, since F is locally free of rank 2 and c1(F ) = b − 4, there is the
canonical isomorphism

F∨  F (4− b).

Then, for any integer t ≤ 2, by Serre duality we have

(14) h2(P2, F (−t)) = h0(P2, F∨(t− 3)) = h0(P2, F (t− b+ 1)) = 0,

because by our assumptions t− b+ 1 ≤ −1 and already h0(P2, F (−1)) = 0.
Now, using (12) and the Riemann-Roch theorem we deduce χ(P2, F (−1)) = 0,

so h1(P2, F (−1)) = 0 because we know that h0(P2, F (−1)) = h2(P2, F (−1)) = 0.
Again by Riemann-Roch, using (14) with t = 2 we obtain h1(P2, F (−2)) = b− 4.

Let us look at hi(P2, F ). First, by using (14) with t = 0, we see that this
vanishes for i = 2. Now take a line L in P2, tensor with F (t) the short exact
sequence

(15) 0 → OP2(−1) → OP2 → OL → 0

and pass to cohomology. Since we proved that h1(P2, F (−1)) = h2(P2, F (−2)) =
0, we deduce h1(L, F (−1)|L) = 0. Then, considering the short exact sequence

0 → F (t− 1)|L → F (t)|L → Ox ⊕ Ox → 0

and using induction on t, we obtain h1(L, F (t)|L) = 0 for any t ≥ 0. Therefore we
get h1(P2, F ) = 0, that in turn yields, again by Riemann-Roch, h0(P2, F ) = b−2.

We can now use Beilinson’s theorem; see for instance [OSS80, Chapter 2, §3.1.3].
The Beilinson table of F , displaying the values of hj(P2,F (−i)), is

Table 1. The Beilinson table of F

F (−2) F (−1) F
h2 0 0 0
h1 b− 4 0 0
h0 0 0 b− 2
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TRIPLE PLANES WITH pg = q = 0 13

This gives in turn the resolution of F ,

(16) 0 → H1(P2, F (−2))⊗ OP2(−1) → H0(P2, F )⊗ OP2 → F → 0,

which has the desired form. In fact, (16) becomes (5) if we set

(17) W := H1(P2, F (−2))∨, U := H0(P2, F ), P2 = P(V ).

Stability of F for b ≥ 5 follows from Hoppe’s criterion; see [Hop84, Lemma 2.6].
ii) Assume now b ≤ 2. Set F ′ = F∨(−1) and b′ = 6 − b, so that b′ ≥ 4. The

Chern classes of F ′ are

c1(F
′) = −c1(F )− 2 = b′ − 4, c2(F

′) = c2(F ) + c1(F ) + 1 =

(
b′ − 3

2

)
.

Using the assumption H2(P2,F (−1)) = 0 and Serre duality, we get

H0(P2,F ′(−1)) = H0(P2,F∨(−2))  H2(P2,F (−1))∨ = 0,

so by part i) it follows that F ′ is a Steiner bundle of the form Fb′ .
iii) Finally, assume b = 3. From H0(P2, F (−1)) = 0 we deduce H2(P2, F (−1))

= 0 and conversely, because (14) still holds when (t, b) = (1, 3). We can now
conclude by applying [FV14, Lemma 3.3] to F . �

Proposition 1.14. Fix integers b ≥ 5 and t ≥ 0, and let Z ⊂ P2 be a 0-
dimensional, local complete intersection subscheme of length l. Then the following
hold:

i) A locally free sheaf F fitting into

(18) 0 → OP2
s−→ F (t) → IZ/P2(2t+ b− 4) → 0

exists if and only if Z satisfies the Cayley-Bacharach property with respect
to OP2(2t+ b− 7), i.e., for any subscheme Z ′ ⊂ Z of length l − 1 we have

h0(P2, IZ/P2(2t+ b− 7)) = h0(P2, IZ′/P2(2t+ b− 7)).

ii) A locally free sheaf F as in i) is a Steiner bundle of the form Fb if and
only if

(19) l =

(
b− 3

2

)
+ t(t+ b− 4), H0(P2, IZ/P2(t+ b− 5)) = 0.

iii) If i) and ii) are satisfied and in addition h1(P2,IZ/P2(t+ b−7)) = 1, then
the extension (18) and the proportionality class of the global section s of
F (t) vanishing at Z are uniquely determined by Z.

Proof. The statement i) follows from [HL97, Part II, Theorem 5.1.1].
For ii), let F be a Steiner bundle of the form Fb. So c1(F (t)) = 2t+ b− 4 and

l = c2(F (t)) = c2(F ) + c1(F ) + t2 =

(
b− 3

2

)
+ t(t+ b− 4).

Also, we have H0(P2, F (−1)) = 0, which yields H0(P2, IZ/P2(t + b − 5)) = 0.
Conversely, if Z satisfies (19), by Proposition 1.13 we see that F is of the form Fb.

For iii), by Serre duality we have

Ext1(IZ/P2(2t+ b− 4), OP2)∨ Ext1(OP2 , IZ/P2(2t+ b− 7))(20)

H1(P2, IZ/P2(2t+ b− 7))  C.
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14 DANIELE FAENZI, FRANCESCO POLIZZI, AND JEAN VALLÈS

Since we are assuming that F is locally free, the extension (18) has to be non-trivial,
and by (20) all such non-trivial extensions are equivalent up to a multiplicative
scalar. �

2. General triple planes with pg = q = 0

2.1. General triple planes. Given a triple plane f : X → P2, we denote by H
the pullback H := f∗L, where L ⊂ P2 is a line. The divisor H is ample, as L is
ample and f is finite.

Recall that the Tschirnhausen bundle E of f is a rank 2 vector bundle on P2

such that f∗OX  OP2 ⊕ E . Proposition 1.1 allows us to relate the invariants of X
and E as follows.

Proposition 2.1. Let f : X → P2 be a triple plane with Tschirnhausen bundle E .
Then we have:

pg(X) = h0(P2, E ∨(−3)),

q(X) = h1(P2, E ∨(−3)),

P2(X) = h0(X, 2KX) = h0(P2, S2E ∨(−6)).

Definition 2.2. Let f : X → P2 be a triple plane and B ⊂ P2 its branch locus.
We say that f is a general triple plane if the following conditions are satisfied:

i) f is unramified over P2\B;

ii) f∗B = 2R+R0, where R is irreducible and non-singular and R0 is reduced;

iii) f|R : R → B coincides with the normalization map of B.

A useful criterion to check that a triple plane is a general one is provided by the
following.

Proposition 2.3. Let f : X → P2 be a triple plane with X smooth. Then either
f is general or f is a Galois cover. In the last case, f is totally ramified over a
smooth branch locus.

Proof. See [Tan02, Theorems 2.1 and 3.2]. �

Hence Theorem 1.2 shows that, if S3E ∨ ⊗ ∧2E is globally generated, the cover
associated with a general section η ∈ H0(P2, S3E ∨ ⊗∧2E ) is a general triple plane
as soon as it is not totally ramified.

Since the curve R is the ramification divisor of f and the ramification is simple,
we have

(21) KX = f∗KP2 +R = −3H +R.

Moreover, by [Mir85, Proposition 4.7 and Lemma 4.1], we obtain the following
proposition.

Proposition 2.4. Let f : X → P2 be a general triple plane with Tschirnhausen
bundle E and define

b := −c1(E ), h := c2(E ).

Then the branch curve B has degree 2b and contains 3h ordinary cusps and no
further singularities. Moreover the cusps are exactly the points where f is totally
ramified.
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TRIPLE PLANES WITH pg = q = 0 15

Moreover, in view of [Mir85, Lemma 5.9] and [CE96, Corollary 2.2], we have the
following information on R and R0.

Proposition 2.5. The curves R and R0 are both smooth and isomorphic to the
normalization of B. Furthermore, they are tangent at the preimages of the cusps
of B and they do not meet elsewhere. Finally, the ramification divisor R is very
ample on X.

This allows us to compute the intersection numbers of R and R0 as follows.

Proposition 2.6. We have

(22) R2 = 2b2 − 3h, RR0 = 6h, R2
0 = 4b2 − 12h.

Proof. The projection formula yields

R(2R+R0) = R(f∗B) = (f∗R)B = B2 = 4b2.

By Proposition 2.5 it follows that RR0 = 6h. So 2R2 = 4b2−RR0 = 4b2−6h, which
gives the first equality. From f∗B = 2R+R0 we deduce (2R+R0)

2 = 3B2 = 12b2,
so R2

0 = 12b2 − 4R2 − 4RR0 = 4b2 − 12h. �

Corollary 2.7. We have 3h ≥ 2
3b

2.

Proof. Since the divisor R is very ample, the Hodge Index Theorem implies R2R2
0 ≤

(RR0)
2 and the claim follows. �

Remark 2.8. Proposition 2.6 and Corollary 2.7 were already established by Bronow-
ski in [Bro42]. Note that the (very) ampleness of R implies R2 > 0, that is, 3h < 2b2.
In [Bro42], it is also stated that the stronger inequality 3h ≤ b2, or equivalently
R2

0 ≥ 0, holds. This is actually false, and counterexamples will be provided by our
surfaces of type VII; see §3.7. Bronowski’s mistake is at page 28 of his paper, where
he assumes that one can find a curve algebraically equivalent to R0 and distinct
from it; of course, when R2

0 < 0 such a curve cannot exist.

Proposition 2.9. Let f : X → P2 be a general triple plane with q(X) = 0. If
K2

X �= 8, then D := KX + 2H is very ample.

Proof. Since (2H)2 = 12, by [Fuj90, Theorem 18.5] D is very ample, unless there
exists an effective divisor Z such thatHZ=1 and Z2 = 0. By the projection formula
we have

1 = HZ = (f∗L)Z = L(f∗Z),

hence f∗Z ⊂ P2 is a line. On the other hand, HZ = 1 implies that the restriction
of f to Z is an isomorphism, so Z is a smooth and irreducible rational curve. Since
Z2 = 0, the surface X is birationally ruled and Z belongs to the ruling. Moreover,
all the curves in the ruling are irreducible: in fact, if Z were algebraically equivalent
to Z1 + Z2, then we would obtain

1 = HZ = HZ1 +HZ2,

contradicting the ampleness of H. Summing up, X is a minimal, geometrically
ruled surface over a smooth curve; since q(X) = 0, this curve is isomorphic to P1,
that is, X is isomorphic to Fn for some n and, in particular, K2

X = 8. �

When D = KX + 2H is very ample on X we can study the adjunction maps
associated with D. Using Proposition 1.5, we obtain the following proposition.
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Proposition 2.10. Assume q(X) = 0 and K2
X �= 8 and let ϕn : Xn−1 → Xn be the

nth adjunction map with respect to the very ample divisor D = KX + 2H. Then
ϕn is an isomorphism when n is even, whereas when n is odd ϕn contracts exactly
the (−1)-curves E ⊂ X such that HE = (n+ 1)/2.

2.2. The Tschirnhausen bundle in case pg = q = 0. Let f : X → P2 be a
general triple plane with Tschirnhausen bundle E and let B be the branch locus
of f . Recall that, by Proposition 2.4, the curve B has degree 2b and contains 3h
ordinary cusps as only singularities.

Proposition 2.11. If χ(OX) = 1, that is, pg(X) = q(X), then we have at most
the following possibilities for the numerical invariants b, h, K2

X , g(H) :

Table 2. Possible numerical invariants for a general triple plane
with χ(OX) = 1

Case b h K2
X g(H)

I 2 1 8 0
II 3 2 3 1
III 4 4 −1 2
IV 5 7 −4 3
V 6 11 −6 4
VI 7 16 −7 5
VII 8 22 −7 6
VIII 9 29 −6 7
IX 10 37 −4 8
X 11 46 −1 9
XI 12 56 3 10
XII 13 67 8 11

Proof. Using the projection formula we obtain

(23) HR = (f∗L)R = L(f∗R) = LB = 2b.

SinceKX = −3H+R andH2 = 3 it follows thatKXH = 2b−9, hence g(H) = b−2.
Using the formule di corrispondenza (cf. [Ive70, §V]) we infer{

9h+ 3 = 4b2 − 6b+K2
X ,

2h− 4 = b2 − 3b.

Therefore h = 1
2 (b

2 − 3b + 4) and b2 − 15b + 42 − 2K2
X = 0. Imposing that the

discriminant of this quadratic equation is non-negative, we get K2
X ≥ −7; on the

other hand, the Enriques-Kodaira classification and the Miyaoka-Yau inequality
imply that any surface with pg = q satisfies K2

X ≤ 9 (see [BHPV04, Chapter VII]),
so −7 ≤ K2

X ≤ 9. Now a case-by-case analysis concludes the proof. �
Note that the previous proof shows that

(24) c1(E ) = −b, c2(E ) =
1

2
(b2 − 3b+ 4).

Moreover, using (21), (23) and the first equality in (22), we obtain

(25) KXR = −3HR+R2 = 2b2 − 6b− 3h.
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TRIPLE PLANES WITH pg = q = 0 17

From now on, we will restrict ourselves to the case pg(X) = q(X) = 0, that is, in
terms of the Tschirnhausen bundle E , we suppose h1(P2, E ) = 0 and h2(P2, E ) = 0.
Furthermore, we will use without further mention the natural isomorphism

E ∨  E (b).

Theorem 2.12. Let f : X → P2 be a general triple plane with pg = q = 0 and
let E be the corresponding Tschirnhausen bundle. With the notation of Proposition
2.11, the following hold:

i) In case I, E  OP2(−1)⊕ OP2(−1).

ii) In case II, E  OP2(−1)⊕ OP2(−2).

iii) In case III, E  OP2(−2)⊕ OP2(−2).

iv) In cases IV to XII, the vector bundle E is stable and has a sheafified min-
imal graded free resolution of the form

0 → OP2(1− b)b−4 → OP2(2− b)b−2 → E → 0.

In particular, E (b− 2) is a rank 2 Steiner bundle on P2; see §1.4.

Proof. Setting F := E (b− 2), by using (24) we obtain

(26) c1(F ) = b− 4, c2(F ) =

(
b− 3

2

)
.

Now Proposition 2.1 allows us to calculate the cohomology groups of F (−i), for
i = 0, 1, 2. We have

h0(P2, F (−1)) = h0(P2, E (b− 3)) = h0(P2, E ∨(−3)) = pg(X) = 0,(27)

h1(P2,F (−1)) = h0(P2, E (b− 3)) = h1(P2, E ∨(−3)) = q(X) = 0.

Let us now check cases I to III. By (27), we can apply [FV14, Lemma 3.3] to
E (1) in cases I and II, and to E (2) in case III. The result then follows.

In the cases IV to XII, the conditions (26) and (27) say that Proposition 1.13
applies, so F is a Steiner bundle of the form Fb. This gives the desired resolution
of E . �

Corollary 2.13. In cases I to III, general triple planes f : X → P2 do exist and
X is a rational surface.

Proof. Let us consider case I. By Theorem 2.12 we have S3E ∨ ⊗ ∧2E  OP2(1)4

which is globally generated, so the triple cover exists by Theorem 1.2. Using Propo-
sition 2.1 we obtain

P2(X) = h0(P2, S2E ∨(−6)) = h0(P2, OP2(−4)3) = 0,

hence Castelnuovo’s Theorem (cf. [BHPV04, Chapter VI, §3]) implies that X is a
rational surface. The argument in cases II and III is the same. �
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18 DANIELE FAENZI, FRANCESCO POLIZZI, AND JEAN VALLÈS

2.3. The projective bundle associated with a triple plane.

2.3.1. Triple planes and direct images. Let f : X → P2 be a general triple plane
with pg = q = 0 and Tschirnhausen bundle E . We assume b ≥ 5 and we write F as
before in order to denote the bundle E (b− 2). Sometimes, if we want to emphasize
the role of b, we will use the notation Fb instead of F . The rest of the notation in
this subsection is borrowed from §1.4.

As shown in Theorem 2.12, F is a Steiner bundle of rank 2. Theorem 1.3 implies
that X can be realized as a Cartier divisor in P(F ), such that the restriction of
p : P(F ) → P2 to X is our covering map f . More precisely, recall that we denote
by ξ the tautological relatively ample line bundle on P(F ) and by � the pull-back
to P(F ) of a line in P2. Then the identification

(28) S3E ∨ ⊗ ∧2E  S3F ⊗ OP2(6− b)

shows that X lies in the complete linear system |L |, with

(29) L = OP(F)(3ξ + (6− b)�).

Recall also the notation U = H0(P2,F ), and consider the morphism q : P(F ) →
P(U)  Pb−3 associated with |OP(F)(ξ)|  P(U). Setting

R := q∗(OP(F)((6− b)�)),

the projection formula yields natural identifications

H0(P2, S3E ∨ ⊗ ∧2E )  H0(P2, S3F (6− b))

 H0(P(F ), L )  H0(Pb−3, R(3)).
(30)

In order to get information on the sheaf R, it is useful to consider the Koszul
resolution of P(F ) in P(V ) × P(U)  P2 × Pb−3, which is given taking exterior
powers of (4). This reads

(31) ∧•(W∨ ⊗ OP2×Pb−3(−1, −1)) → OP(F) → 0

with W∨ = H1(P2, F (−2)); see Proposition 1.6 and (17). We will write Ki for the
image of the ith differential

di : (∧iW∨)⊗ OP2×Pb−3(−i, −i) → (∧i−1W∨)⊗ OP2×Pb−3(−i+ 1, −i+ 1)

of the complex (31). Moreover, we will often use the relation

(32) Ri
q∗(OP2×Pb−3(n1, n2)) = Hi(P2, OP2(n1))⊗OPb−3(n2), i ∈ N, n1, n2 ∈ Z.

We finally define Y ⊂ Pb−3 as the image of q; then the support of R is contained
in Y . In §2.3.2 we shall see that, if b ≥ 6, the morphism q : P(F ) → Pb−3 is
generically injective, so Y ⊂ Pb−3 is a (possibly singular) irreducible threefold which
is generated by the 3-secant lines to the canonical curves of genus g(H) representing
in Pb−3 the net |H| inducing the triple cover. The threefold Y is defined by the
3× 3 minors of the matrix N appearing in the resolution of q∗(OP(F)(�)), namely

OPb−3(−1)b−4 N−→ O3
Pb−3 → q∗(OP(F)(�)) → 0.
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2.3.2. Adjunction maps and projective bundles. We use the notation of §1.4.1. Re-
call that the canonical line bundle of P(F ) is

(33) ωP(F)  OP(F)(−2ξ + (b− 7)�);

see for instance [Har77, Ex. 8.4, p. 253]. The following result provides a link
between the adjunction theory and the vector bundle techniques used in this paper.

Lemma 2.14. Let f : X → P2 be a general triple plane with pg(X) = q(X) = 0.
Then q|X coincides with the first adjoint map ϕ|KX+H| : X → Pb−3 associated with
the ample divisor H.

Proof. Since H is ample, by the Kodaira vanishing theorem we have h1(X, KX +
H) = h2(X, KX +H) = 0, so the Riemann-Roch theorem gives h0(X, KX +H) =
g(H) = b− 2. Therefore it suffices to show that

ωX ⊗ OX(H)  OP(F)(ξ)|X .

The adjunction formula, together with (29)and (33), yields

ωX = (ωP(F) ⊗ L )|X  OP(F)(ξ − �)|X .

Since �|X = OX(H), the claim follows. �

Lemma 2.15. The morphism q : P(F ) → Pb−3 contracts precisely the negative
sections of the Hirzebruch surfaces of the form P(F |L), where L is an unstable line
of F . Moreover, if b ≥ 6, then q is birational onto its image Y ⊆ Pb−3, which is a
birationally ruled threefold of degree

(
b−4
2

)
.

Proof. We first show that q contracts the negative sections. If L is an unstable
line of F , then F |L  OL ⊕OL(b− 4), so P(F |L) is isomorphic to the Hirzebruch
surface Fb−4. The divisor OP(F)(ξ) cuts on P(F |L) the complete linear system
|c0 +(b− 4)f|; therefore OP(F)(ξ) · c0 = 0, that is, q contracts c0. In particular, this

means that the image of P(F |L) via q is a cone S(0, b− 4) ⊂ Pb−3.
Conversely, we now show that q is injective on the complement of the set of

negative sections over unstable lines. More precisely, assuming that x1 and x2 are
points of P(F ) not separated by q, we will prove that x1 and x2 lie in one of
such sections. In fact, since OP(F)(ξ) is very ample when restricted to the fibers of

p : P(F ) → P2, the points p(x1) and p(x2) are distinct. Let L be the unique line
through p(x1) and p(x2) and let us restrict q to P(F |L). If L were not unstable for
F , then F |L  OL(a)⊕OL(b− 4− a) with a > 0 and b− 4− a > 0 (cf. the proof
of Lemma 1.9), and in this situation the restriction of OP(F)(ξ) to P(F |L) would
be very ample, hence q would separate x1 and x2, a contradiction. This shows that
L is necessarily an unstable line for F and that moreover x1 and x2 must both lie
on the unique negative section of P(F |L)  Fb−4. The same argument also works
if x1 and x2 are infinitely near, and this ends the proof of the first statement.

Regarding the second statement, the subscheme W (Fb) of unstable lines has
positive codimension in P̌2 for b ≥ 6; see §1.4.2. Then q is birational onto its image
Y ⊂ Pb−3, and this in particular says that Y is a birationally ruled threefold in
Pb−3 (of course for b = 6 the image is the whole P3).

We can now use (26) and the Chern equation for P(Fb) in order to compute the
degree of Y , obtaining

deg Y = ξ3 = p
∗(c1(Fb)

2 − c2(Fb))ξ = (b− 4)2 −
(
b− 3

2

)
=

(
b− 4

2

)
. �
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20 DANIELE FAENZI, FRANCESCO POLIZZI, AND JEAN VALLÈS

Lemma 2.16. Let L = OP(F)(3ξ + (6− b)�) and let c0 be the negative section of
the Hirzebruch surface P(F |L), where L is an unstable line for F . If b ≥ 7, then
c0 is contained in the base locus of |L |.

Proof. By restricting any element of |L | to P(F |L) we obtain a divisor L ′ linearly
equivalent to

3(c0 + (b− 4)f) + (6− b)f = 3c0 + (2b− 6)f.

We have L ′c0 = 3(4 − b) + (2b − 6) = 6 − b, so if b ≥ 7 we have L ′c0 < 0 and
this in turn implies that c0 is a component of L ′. Hence c0 is contained in every
element of the linear system |L |. �

Let us come back now to our general triple planes f : X → P2.

Proposition 2.17. If b ≥ 7, then the first adjoint map ϕ|KX+H| : X → Pb−3 is

a birational morphism onto its image X1 ⊂ Pb−3. Furthermore, X1 is a smooth
surface and ϕ|KX+H| contracts precisely the (−1)-curves E in X such that HE = 1.
There is one, and only one, curve with this property for each unstable line of F .

Proof. By Lemma 2.15 the map q : P(F ) → Pb−3 is birational onto its image and
contracts precisely the negative sections of P(F |L), where L is an unstable line of
F ; let E be one of these sections. In view of Lemma 2.14 we have ϕ|KX+H| = q|X ,
and moreover by Lemma 2.16 the curve E is contained in X, because X ∈ |L | by
construction (see §2.3). We have f = p|X , hence f |E = p|E and, since p|E : E → L
is an isomorphism, by the projection formula we obtain

HE = f∗L · E = L · f∗E = L2 = 1.

Finally, each Hirzebruch surface P(F |L) contains precisely one negative section, so
we are done. �

Remark 2.18. When b ≥ 7, Proposition 2.17 will allow us to apply the iterated
adjunction process described in §1.3 starting from D = H, even if H is ample but
not very ample.

Remark 2.19. Proposition 3.9 will show that ϕ|KX+H| is birational also for b = 6:

more precisely, in this caseX is the blow-up at nine points of a cubic surface S ⊂ P3,
and ϕ|KX+H| is the blow-down morphism. In fact, W (F6) is a smooth conic in P̌2;
cf. §1.4.2. If L is an unstable line of F6, namely a line tangent to this conic, we
have P(F6|L)  F2 and q : P(F ) → P3 contracts the unique negative section of this
Hirzebruch surface to a point. The locus of points in P3 constructed in this way is
a twisted cubic C, the map q is the blow-up of P3 at C and the nine points that
we blow-up in S consist of the subset S ∩ C.

3. The classification in cases I to VII

Since all the triple planes considered in the sequel are general, for the sake of
brevity the word general will be from now on omitted.

3.1. Triple planes of type I. In this case the invariants are

K2
X = 8, b = 2, h = 1, g(H) = 0

and the Tschirnhausen bundle splits as E = OP2(−1) ⊕ OP2(−1). The existence
of these triple planes follows from Corollary 2.13, whereas Proposition 3.1 below
provides their complete classification.
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Proposition 3.1. Let f : X → P2 be a triple plane of type I. Then X is isomorphic
to the cubic scroll S(1, 2) ⊂ P4 and f is the projection of this scroll from a general
line of P4.

Proof. By Proposition 2.5 we know that R is very ample, and by (25) we have
KXR = −7. Therefore no multiple of KX can be effective and X is a rational
surface, as predicted by Corollary 2.13. The curve R is the normalization of B
(Proposition 2.5), which is a tricuspidal quartic curve (Proposition 2.4), hence
g(R) = 0. Then by the first statement in Theorem 1.4 we get

dim |KX +R| = g(R) + pg(X)− q(X)− 1 = −1,

that is, |KX +R| = ∅. The condition K2
X = 8 implies that the X is not isomorphic

to P2 so, again by Theorem 1.4, part A), it must be a rational normal scroll, with
the scroll structure arising from the embedding given by |R|. By the first equality
in (22) we have R2 = 5, and there are two different kinds of smooth rational normal
scrolls of dimension 2 and degree 5, namely

• S(1, 4), that is, F3 embedded in P6 via |c0 + 4f|;
• S(2, 3), that is, F1 embedded in P6 via |c0 + 3f|.

In the former case, using (21) we obtain H = c0 + 3f, which is not ample on F3; so
this case cannot occur. In the latter case we have H = c0 + 2f, that is very ample
and embeds F1 in P4 as a cubic scroll S(1, 2). The triple plane is now obtained
by taking the morphism to P2 associated with a general net of curves inside |H|,
which corresponds to the projection of S(1, 2) from a general line of P4. �

Remark 3.2. Another description of triple planes of type I is the following. Let X ′

be the Veronese surface, embedded in the Grassmannian G(1, P3) as a surface of
bidegree (3, 1); see [Gro93, Theorem 4.1 (a)]. There is a family of 1-secant planes
to X ′; projecting from one of these planes, we obtain a birational model of a triple
plane f : X → P2 of type I (in fact, X is the blow-up of X ′ at one point).

3.2. Triple planes of type II. In this case the invariants are

K2
X = 3, b = 3, h = 2, g(H) = 1

and the Tschirnhausen bundle splits as E = OP2(−1) ⊕ OP2(−2). The existence
of these triple planes follows from Corollary 2.13, whereas Proposition 3.3 below
provides their complete classification.

Proposition 3.3. Let f : X → P2 be a triple plane of type II. Then X is isomor-
phic to a smooth cubic surface S ⊂ P3 and f is the projection of S from a general
point of P3. The branch locus B is a sextic plane curve with six cusps lying on a
conic.

Proof. By Proposition 2.9, the divisor D := KX+2H is very ample. Using KXH =
2b− 9 = −3 (see the proof of Proposition 2.11), we obtain

D2 = (KX + 2H)2 = K2
X + 4KXH + 4H2 = 3− 12 + 12 = 3,

hence the map ϕ|D| : X → P3 is an isomorphism onto a smooth cubic surface S.
The statement about the position of the cusps in the branch locus is a well-known
classical result; see [Zar29, p. 320]. �
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Remark 3.4. Other descriptions of triple planes of type II are the following.

• Let X ′ be a smooth Del Pezzo surface of degree 5, embedded in G(1, P3) as
a surface of bidegree (3, 2); see [Gro93, Theorem 4.1 (b)]. There is a family
of 2-secant planes to X ′; projecting from one of these planes, we obtain a
birational model of a triple plane f : X → P2 of type II (in fact, X is the
blow-up of X ′ at two points).

• Let X ′ be a smooth Del Pezzo surface of degree 6, embedded in G(1, P3) as
a surface of bidegree (3, 3); see [Gro93, Theorem 4.1 (d)]. There is a family
of 3-secant planes to X ′; projecting from one of these planes, we obtain a
birational model of a triple plane f : X → P2 of type II (in fact, X is the
blow-up of X ′ at three points).

3.3. Triple planes of type III. In this case the invariants are

K2
X = −1, b = 4, h = 4, g(H) = 2

and the Tschirnhausen bundle splits as E = OP2(−2) ⊕ OP2(−2). The existence
of these triple planes follows from Corollary 2.13, whereas Proposition 3.5 below
provides their complete classification.

Proposition 3.5. Let f : X → P2 be a triple plane of type III. Then X is a blow-
up at nine points σ : X → Fn of a Hirzebruch surface Fn, with n ∈ {0, 1, 2, 3},
and

(34) H = 2c0 + (n+ 3)f−
9∑

i=1

Ei.

Proof. By Proposition 2.9, the divisor D := KX + 2H is very ample. We have(
D2 KXD

KXD K2
X

)
=

(
7 −3

−3 −1

)
,

in particular KXD < 0 shows that X is a rational surface. By Serre duality and the
Kodaira vanishing theorem we have h1(X, D) = h1(X, −2H) = 0, and analogously
h2(X, D) = h0(X, −2H) = 0, so by the Riemann-Roch theorem we obtain

h0(X, D) = χ(X, D) =
D(D −KX)

2
+ χ(OX) = 6.

The morphism ϕ|D| : X → X1 ⊂ P5 is an isomorphism of X onto its image X1,

which is a surface of degree 7 with K2
X1

= −1. Embedded projective varieties of
degree at most 7 are classified in [Ion84]; in particular, the table on page 148 of that
paper shows that X1 is a blow-up at nine points σ : X1 → Fn, with n ∈ {0, 1, 2, 3},
and that

D = 2c0 + (n+ 4)f−
9∑

i=1

Ei.

Using 2H = D −KX , we obtain (34). �

Remark 3.6. When n = 0, the surface X is the blow-up of P1 × P1 at nine points
and a birational model of the triple plane f : X → P2 is obtained by using the
curves of bidegree (2, 3) passing through these points, since (34) becomes H =

2L1 + 3L2 −
∑9

i=1 Ei.
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When n = 1, since F1 is the blow-up of the plane at one point, we see from
(34) that X can be also seen as the blow-up of P2 at 10 points and that H =

4L− 2E10 −
∑9

i=1 Ei.
Another description of triple planes of type III is the following. Let X ′ be a

Castelnuovo surface with K2
X′ = 2, embedded in G(1, P3) as a surface of bidegree

(3, 3); see [Gro93, Theorem 4.1 (e)]. There is a family of 3-secant planes to X ′;
projecting from one of these planes, we obtain a birational model of a triple plane
f : X → P2 of type III (in fact, X is the blow-up of X ′ at three points).

3.4. Triple planes of type IV. In this case the invariants are

K2
X = −4, b = 5, h = 7, g(H) = 3.

By Theorem 2.12, the resolution of F = E (3) is

0 → OP2(−1) → O3
P2 → F → 0,

hence F  TP2(−1) and (28) implies that S3E ∨⊗∧2E is isomorphic to S3(TP2(−1))
⊗ OP2(1), which is globally generated. By Theorem 1.2 this ensures the existence
of triple planes of type IV, whereas Proposition 3.7 below provides their complete
classification.

Proposition 3.7. Let f : X → P2 be a triple plane of type IV. Then:

i) The surface X is isomorphic to the blow-up of the plane at a subset Z of
13 points imposing only 12 conditions on quartic curves, and |H| is the
complete linear system of quartics passing through Z.

ii) Z can be naturally identified with a 0-dimensional subscheme of P̌2, that
we call again Z, arising as the zero locus of a global section of T

P̌2(2)
canonically associated with the building section η ∈ H0(P2, S3E ∨⊗∧2E ) of
the triple plane. Furthermore, the subscheme Z ⊂ P̌2 determines η up to a
multiplicative constant.

Proof. Let us show i). By Proposition 2.9 the divisor D := KX+2H is very ample.
Therefore, the first adjunction map

ϕ1 := ϕ|KX+D| : X → X1 ⊂ P5

is a birational morphism onto a smooth surface X1. Moreover, the intersection
matrix of X1 is (

(D1)
2 KX1

D1

KX1
D1 (KX1

)2

)
=

(
4 −6

−6 −4 + α1

)
,

where D1 and α1 are defined in §1.3. In particular KX1
D1 < 0 shows that X1 (and

so X) is a rational surface. We have g(D1) = 0, thus by Theorem 1.4 the adjoint
linear system |KX1

+D1| has dimension −1, i.e., it is empty. By the same result,
it follows that the surface X1 is either a rational normal scroll (and in this case
α1 = 12) or P2 (and in this case α1 = 13). Let us exclude the former case. There
are two types of smooth quartic rational normal scroll surfaces: S(2, 2), namely
P1 × P1 embedded in P5 by |L1 + 2L2|, and S(1, 3), namely F2 embedded in P5 by
|c0 + 3f|. The equality D1 = 2KX + 2H implies that if X1 = P1 × P1 we have

2H = 5L1 + 6L2 −
12∑
i=1

2Ei,
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whereas if X1 = F2 we have

2H = 5c0 + 11f−
12∑
i=1

2Ei.

In both cases we obtain a contradiction, since H must be a divisor with integer
coefficients.

It follows that (X1, D1) = (P2, OP2(2)), hence α1 = 13 and ϕ1 contracts ex-
actly 13 exceptional lines, i.e., X is isomorphic to the blow-up of P2 at 13 points.
Therefore we get

X = P2(p1, . . . , p13), D = 5L−
13∑
i=1

Ei,

which implies H = 4L −
∑13

i=1 Ei. Since h0(X, OX(H)) = 3, the points in the set
Z := {p1, . . . , p13} impose only 12 conditions on plane quartic curves.

We now prove ii). We use the notation of §1.4.1, so that the vector bundle
F  TP2(−1) has a resolution of the form (5), with the 3-dimensional vector space
U = H0(P2, F ) being naturally identified with V ∨. By the results in §2.3, in this
case P(F ) is the point-line incidence correspondence in P2 × P̌2, namely a smooth
hyperplane section of P2 × P̌2, so we have

(35) 0 → O
P2×P̌2(−1, −1) → O

P2×P̌2 → OP(F) → 0.

Twisting (35) by p∗(OP2(1)) = O
P2×P̌2(1, 0), applying the functor q∗ and using (32)

we obtain

0 → OP2(−1) → H0(P2, OP2(1))⊗ O
P̌2 → q∗

(
p∗(OP2(1))⊗ OP(F)

)
→ 0,

so the Euler sequence yields

R = q∗(OP(F)(�)) = q∗
(
p
∗(OP2(1))⊗ OP(F)

)
 T

P̌2(−1)

and equality (30) implies

H0(P2, S3E ∨ ⊗ ∧2E ) = H0(P̌2, R(3)) = H0(P̌2, T
P̌2(2)).

This shows that the building section η of our triple plane is naturally associated
with a global section of T

P̌2(2) that we call η, too, and whose vanishing locus will

be denoted by Z = D0(η). Note that Z is a 0-dimensional subscheme of P̌2 such
that length(Z) = c2(TP̌2(2)) = 13.

Furthermore we have R(3) = q∗L , where L = OP(F)(3ξ + �), and our triple
plane X is a smooth divisor in the complete linear system |L |; see (29). Since a
global section of L corresponds to a non-zero morphism OP(F) → L , we obtain a
short exact sequence

(36) 0 → OP(F)(−3ξ) → L (−3ξ) → OX(H) → 0,

and so, taking the direct image via q, we get

(37) 0 → O
P̌2(−3) → T

P̌2(−1) → IZ/P̌2(4) → 0.

The inclusion X  P(OX(H)) ↪→ P(F ) corresponds to the surjection L (−3ξ) →
OX(H) in (36); then (37) shows that X can be identified with P(IZ/P̌2(4)), em-

bedded in P(T
P̌2(−1)) via the surjection T

P̌2(−1) → IZ/P̌2(4). Hence a model of

the triple cover map f : X → P2 is the rational map P̌2 ��� P2 given by the linear
system of (dual) quartics through Z. This identifies X with the blow-up of P̌2 at Z.
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Finally, let us show that the subscheme Z determines η ∈ H0(P̌2, T
P̌2(2)) up

to a multiplicative constant. To this purpose, we use Proposition 1.14 with t =
0, so we only have to check that h1(P2,IZ/P2(4)) = 1. But this is clear since

χ(P2,IZ/P2(4)) = −2 and h0(P2,IZ/P2(4)) = 3. �

Remark 3.8. A Bordiga surface is a smooth surface of degree 6 in P4, given by the
blow-up of P2 at 10 points embedded by the linear system of plane quartics through
them; see [Ott95, Capitolo 5]. Then Proposition 3.7 shows that a birational model
of a triple plane f : X → P2 of type IV can be realized as the projection of a Bordiga
surface from a 3-secant line.

Furthermore, contracting one of the exceptional divisors in the Bordiga surface,
we obtain a rational surface X ′ with K2

X′ = 0 that can be embedded in G(1, P3)
as a surface of bidegree (3, 4); see [Gro93, Theorem 4.1 (f)]. There is a family
of 4-secant planes to X ′; projecting from one of these planes, we obtain another
birational model of a triple plane f : X → P2 of type IV (in fact, X is the blow-up
of X ′ at four points).

3.5. Triple planes of type V. In this case the invariants are

K2
X = −6, b = 6, h = 11, g(H) = 4

and by Theorem 2.12 the twisted Tschirnhausen bundle F has a resolution of the
form

(38) 0 −→ OP2(−1)2
M−→ O4

P2 −→ F −→ 0.

Since F is globally generated, it follows that S3E ∨ ⊗ ∧2E = S3F is globally
generated, too. Hence triple planes f : X → P2 of type V do exist by Theorem 1.2.
The next result provides their classification.

Proposition 3.9. Let f : X → P2 be a triple plane of type V. Then:

i) The surface X is isomorphic to the blow-up P2(p1, . . . , p15) of P2 at 15
points and the triple plane map is induced by the linear system of plane
sextics singular at p1, . . . , p6 and passing through p7, . . . , p15.

ii) The nine points p7, . . . , p15 consist of the intersection S ∩ C, where S =
P2(p1, . . . , p6) is a cubic surface in P3, naturally associated with the building
section η ∈ H0(P2, S3E ∨ ⊗ ∧2E ), whereas C is a twisted cubic such that
P(F ) is the blow-up of P3 at C.

Proof. Let us show i). By Proposition 2.9 the divisor D := KX + 2H is very
ample. We have KXH = 2b − 9 = 3, and the genus formula yields g(D) = 10, so
by Theorem 1.4 we deduce that the first adjoint system |KX + D| has dimension
9. Therefore the first adjunction map

ϕ1 = ϕ|KX+D| : X → X1 ⊂ P9

is birational onto its image X1, whose intersection matrix is(
(D1)

2 KX1
D1

KX1
D1 (KX1

)2

)
=

(
12 −6
−6 −6 + α1

)
.

In particular KX1
D1 < 0 shows that X1 (and so X) is a rational surface. Now we

consider the second adjunction map ϕ2 : X1 → X2 ⊂ P3, which is an isomorphism
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onto its image X2 (Proposition 2.10), whose intersection matrix is(
(D2)

2 KX2
D2

KX2
D2 (KX2

)2

)
=

(
−6 + α1 −12 + α1

−12 + α1 −6 + α1

)
.

This shows that X2 is a non-degenerate, smooth rational surface in P3, hence it is
either a quadric surface or a cubic surface. If X2 were a quadric, then (D2)

2 = 2,
hence α1 = 8 and the intersection matrix would give (KX2

)2 = 2, which is a
contradiction. Therefore X2 is a cubic surface S, hence α1 = 9. Moreover X1 is
isomorphic to X2, so X is the blow-up of S at nine points. It follows that

X = P2(p1, . . . , p15), D = 9L−
6∑

i=1

3Ei −
15∑
i=7

Ej ,

which implies H = 6L−
∑6

i=1 2Ei −
∑15

i=7 Ej .
We turn to ii). Here we use the approach developed in §1.4.1, in particular

we consider again the resolution (5), where in this case U = H0(P2,F ) is a 4-
dimensional vector space. Set P3 = P(U). By Proposition 1.6, the projective bundle
P(F ) is the complete intersection of two divisors of bidegree (1, 1) in P2 × P3, so
the corresponding Koszul resolution is

(39) 0 → OP2×P3(−2, −2) → OP2×P3(−1, −1)2
d1→ OP2×P3 → OP(F) → 0.

Twisting (39) by p∗(OP2(1)) = OP2×P3(1, 0) and splitting it into short exact se-
quences, we get

0 −→ OP2×P3(−1, −2) −→ OP2×P3(0, −1)2 −→ K̃1 −→ 0,

0 → K̃1 → OP2×P3(1, 0) → OP(F)(�) → 0,

where K̃1 := K1 ⊗ OP2×P3(1, 0) and K1 is the image of the first differential d1 of
the Koszul complex; see §2.3.1. Applying the functor q∗ and using (32), we infer

q∗K̃1 = OP3(−1)2, R1
q∗K̃1 = 0,

obtaining

(40) 0 −→ OP3(−1)2
N−→ O3

P3 −→ q∗(OP(F)(�)) −→ 0.

Hence we can identify q∗(OP(F)(�)) with IC/P3(2), the ideal sheaf of quadrics in

P3 containing a twisted cubic C, which is precisely the image in P3 of the conic
parametrizing the unstable lines of F (Remark 2.19). Note that C is given by the
vanishing of the three 2 × 2 minors of the matrix of linear forms N appearing in
(40); this matrix coincides with the one obtained by “flipping” the matrix M in
(38) as explained in §1.4.1; see in particular Remark 1.7. Then G = q∗(OP(F)(�)),
and by Proposition 1.6 we infer

P(F )  P(G )  P(IC/P3(2)),

that is, P(F ) is isomorphic to the blow-up of P3 along the twisted cubic C and the
morphism p : P(F ) → P2 is induced by the net |IC/P3(2)|.

We also get R  q∗OP(F)  OP3 , so (30) yields

H0(P2, S3E ∨ ⊗ ∧2E ) = H0(P3, R(3)) = H0(P3, OP3(3)).
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This means that the choice of the (proportionality class of the) building section η
in Theorem 1.2 is given by the choice of a cubic surface S ⊂ P3. Moreover, from
the exact sequence

0 → OP(F)(−3ξ + �) → OP(F)(�) → OX(H) → 0

it follows that X  P(OX(H)) is the strict transform of S in P(F ). Also, the triple
cover map f : X → P2 is associated with |OX(H)|, so that it is induced on S by
the linear system of quadrics that contain the intersection S ∩C. This intersection
consists of nine points p7, . . . , p15. Identifying S with P2(p1, . . . , p6) with excep-
tional divisors E1, . . . , E6, we get thus nine exceptional divisors E7, . . . , E15 on X
corresponding to this intersection, and

H = 2HS −
15∑
j=7

Ej = 6L−
6∑

i=1

2Ei −
15∑
j=7

Ej .

This identifies the sets {p1, . . . , p6} and {p7, . . . , p15} with those in part i). �

Remark 3.10. A birational model of the triple plane f : X → P2 is the projection
of a hyperplane section T of a Palatini scroll from a 4-secant line. In fact, T is
a surface of degree 7 in P4 and with K2

T = −2 (see [Ott95, Capitolo 5]), which is
isomorphic to P2 blown-up at 11 points and embedded in P4 by the complete linear
system |6L −

∑6
i=1 2Ei −

∑11
j=7 Ej |. Actually, this is the unique non-degenerate,

rational surface of degree 7 in P4; see [Oko84, Theorems 4 and 6].
Contracting one of the exceptional divisors Ej in T , we obtain a rational surface

X ′ with K2
X′ = −1 that can be embedded in G(1, P3) as a surface of bidegree

(3, 5); see [Gro93, Theorem 4.1 (g)]. So there is a family of 5-secant planes to X ′;
projecting from one of these planes, we obtain a birational model of a triple plane
f : X → P2 of type V (in fact, X is the blow-up of X ′ at five points).

Remark 3.11. Triple planes of type I to V were previously considered via “classical”
methods by Du Val in [DV33]. For the reader’s convenience, let us shortly describe
in modern language and using our notation Du Val’s nice geometric constructions.
They use part of the mass of results on particular rational surfaces proven by
nineteenth century algebraic geometers; the classical, a bit old-fashioned monograph
on the subject (in Italian) is [Con45], for a modern exposition see [Dol12].

I) We have g(H) = 0, and from this one sees that the net |H| is the pull-back
of the net of lines |L| in P2 via the projection of the cubic scroll S(1, 2) ⊂ P4

from a general line. The generators of the scroll become an ∞1 family of
lines of index 3 in P2, i.e., such that for a general point of the plane pass
three lines of the family. The envelop of this family is a tricuspidal quartic
curve, namely the branch locus B of the triple plane.

II) This time g(H) = 1, so that the surface X is either rational or ruled. When
pg(X) = q(X) = 0 we are in the first case, and the only possibility for the
triple plane is the projection of a smooth cubic surface S3 ⊂ P3 from an
external point p. Then the ramification locus R is given by the intersection
of S3 with the polar hypersurface Pp(S3), which is a quadric Q. Hence
R is a smooth curve of degree 6 and genus 4 in P3, and the six cusps of
the branch locus B arise from the intersection of R with the second polar
of p, which is a plane Π. In particular, the cusps of B are contained in
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the projections of both the curves Q ∩ Π and S3 ∩ Π, namely they are the
complete intersection of a conic and a plane cubic.

III) In this case g(H) = 2, and a surface X with a net of genus 2 curves is
either a double plane with a branch curve of order 6 (i.e., a K3 surface)
or a rational surface. In the last case, a detailed analysis of the possible
linear systems representing X on P2 shows that the only possibility in order
to have a net |H| inducing a triple plane is that X is the blow-up of P2

at 10 points, so that the curves of |H| correspond to quartics with one
double and nine simple base points. We recovered by modern methods
this result; see Remark 3.6 (since Du Val only works with representative
linear systems on P2, he does not consider the birational models of these
triple planes arising from linear systems on Fn). It can be observed that
this construction corresponds to the projection to P2 of a quartic surface
S4 ⊂ P3, having a double line, from a general point p ∈ S4. In fact, S4 is
represented on the plane by quartic curves with one double and eight simple
base points. On the surface S4 there is a pencil of conics, corresponding
to the pencil of lines on P2 through the double base point; in the triple
plane representation, this becomes a family ∞1 of conics of index 3, whose
envelop is a curve B of degree 8 with 12 cusps, which is precisely the branch
locus of our triple plane.

IV) In this case we have g(H) = 3, and a detailed analysis of the linear systems
|H| and |KX +H| shows that a birational model of the triple plane is given
from the projection of a quintic surface S5 ⊂ P2 having a double twisted
cubic from a point of the double curve. From this fact one recovers the
plane representation of the linear system |H| as a net of quartics with 13
simple base points, and the representation of the branch curve B as the
Jacobian curve of this net. According to Proposition 3.7, the base points
are not in general position. In fact, 11 of them, say p1, . . . , p11, can be
taken at random, whereas the remaining two must belong to the g12 of the
unique hyperelliptic curve of degree 7 having nodes at p1, . . . , p11.

V) In this case g(H) = 4, and the assumption pg(X) = q(X) = 0 shows that
the adjoint linear system |KX +H| cuts on the general curve of the net |H|
the complete canonical system |KX |. Then the image of |H| via the first
adjoint map ϕ|KX+H| : X → P3 is a net of canonical curves of genus 4 and
degree 6. So there is precisely one quadric surface containing each of these
curves, and one system of generators of each of these quadrics traces a sys-
tem of ∞2 trisecant lines to the image of X, that together define a degree
3 “involution” (Du Val, like his contemporaries, use this term also when
dealing with finite covers of degree > 2) which gives a birational model
of our triple plane. Pushing this analysis further, it is possible to show
that such a system of trisecant lines is actually the system of chords of a
twisted cubic C, and this implies that the net |H| can be represented on
a cubic surface S ⊂ P3 by means of sections by quadrics passing through
C. Correspondingly, X is a rational surface that can be represented on the
plane by sextic curves with six double and nine simple base points, the lat-
ter corresponding to the intersections of S with C. Part ii) of Proposition
3.9 is a modern rephrasing of this argument that uses completely different

Licensed to Universita degli Studi della Calabria. Prepared on Mon Oct 22 04:20:48 EDT 2018 for download from IP 160.97.62.63.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TRIPLE PLANES WITH pg = q = 0 29

techniques based on vector bundles. Finally, by using envelops one com-
putes that the branch locus B of the triple plane has degree 12; its cusps
arise from the chords of C that are also inflectional tangents of S, and a
Schubert calculus computation shows that their number equals 33.

3.6. Triple planes of type VI. In this case the invariants are

K2 = −7, b = 7, h = 16, g(H) = 5

and by Theorem 2.12 the twisted Tschirnhausen bundle F has a resolution of the
form

(41) 0 −→ OP2(−1)3
M−→ O5

P2 −→ F −→ 0.

The existence and classification of triple planes of type VI are established in Propo-
sition 3.12 below.

Proposition 3.12. Let f : X → P2 be a triple plane of type VI. Then the following
hold:

i) The vector bundle F is a logarithmic bundle associated with six lines in
general position in P2.

ii) The morphism q : P(F ) → P4 is birational onto its image, which is a
determinantal cubic threefold Y ⊂ P4, which has exactly six nodes as singu-
larities.

iii) The surface X is the blow-up of a Bordiga surface X1 ⊂ Y at the six nodes
of Y that belong to X1. So X is the blow-up P2 at 16 points and the net
|H| defining the triple cover f is given by

(42) H = 7L−
10∑
i=1

2Ei −
16∑

j=11

Ej .

Proof of ii). We use again the approach and notation of §1.4. We look at the exact
sequence (5) and we consider the projective space P4 = P(U) that coincides with
the space of global sections of the Steiner bundle F . By (6), the 5×3 matrix M of
linear forms presenting F is naturally associated with a 3×3 matrix N , generically
of maximal rank, defining a Steiner sheaf G over P4, namely

(43) 0 −→ OP4(−1)3
N−→ O3

P4 −→ G −→ 0.

Now recall that the morphism q is birational onto its image by Lemma 2.15, and
that P(G )  P(F ) by Proposition 1.6, so that q maps P(F ) to the support of G ,
which is the determinantal hypersurface Y ⊂ P4 defined by det(N) = 0. Note that
the Porteous formula says that the threefold Y is singular, expectedly at six points;
see [ACGH85, Chapter II]. �

Claim 3.13. The surface X1 ⊂ P4, the image of the first adjunction map ϕ|KX+H| :

X → P4, is a Bordiga surface of degree 6. It is defined by the vanishing of the
maximal minors of a 3×4 matrix obtained by stacking a row to the transpose of N .

Proof. By the results of §2.3.1, the surface X corresponds to a global section

η ∈ H0(P(F ), OP(F)(3ξ − �))  H0(P4, R(3)),

where R = q∗(OP(F)(−�)). The idea is to directly relate R to the sheaf G appearing
in (43) or, equivalently, to the matrix N .
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By Proposition 1.6 the projective bundle P(F ) is a 3-fold linear section of P2 ×
P4, i.e., the complete intersection of three divisors of bidegree (1, 1) in P2 × P4.
Tensoring the Koszul resolution (31) of OP(F) inside OP2×P4 with p∗(OP2(−1)) =
OP2×P4(−1, 0) and splitting it into short exact sequences, we obtain

0 → OP2×P4(−4, −3) → OP2×P4(−3, −2)3 → K̃2 → 0,(44)

0 → K̃2 → OP2×P4(−2, −1)3 → K̃1 → 0,(45)

0 → K̃1 → OP2×P4(−1, 0) → OP(F)(−�) → 0,(46)

where K̃i := Ki ⊗ OP2×P4(−1, 0) and Ki denotes the image of the ith differential
of the Koszul complex; see §2.3. Applying the functor q∗ to (44) and using (32),

we deduce q∗K̃2 = 0 and we get

(47) 0 → R1q∗K̃2 → OP4(−3)3 → OP4(−2)3 → R2q∗K̃2 → 0.

By (46) the sheaf K̃1 injects into OP2×P4(−1, 0), so we have q∗K̃1 = 0. Therefore,
applying q∗ to (45), we get

(48) R1q∗K̃2 = 0, R1q∗K̃1  R2q∗K̃2.

Finally, applying the functor q∗ to (46) we infer

(49) R = q∗(OP(F)(−�))  R1q∗K̃1.

Using (48) and (49), the exact sequence (47) becomes

0 → OP4(−3)3 → OP4(−2)3 → R → 0,

that can be rewritten as

(50) 0 → O3
P4

tN−−→ OP4(1)3 → R(3) → 0.

Indeed, the self-duality of the Koszul complex implies

R  G ∨  E xt1O
P4
(G (3), OP4),

where the second isomorphism is Grothendieck duality; see [Har66, Chapter III,
Proposition 7.2].

Let us consider now a non-zero global section η : OP4 → R(3) of R(3), whose
cokernel we denote by H . The section η lifts to a map OP4 → OP4(1)3, so by (50)
we get an exact sequence

(51) 0 −→ OP4(−3) −→ O4
P4

t(N,η)−→ OP4(1)3 → H −→ 0.

The sheaf H is supported on the surface X1 ⊂ P4. More precisely, this surface is
defined by the vanishing of the 3×3 minors of the 3×4 matrix t(N, η) of linear forms
appearing in (51), hence it is a Bordiga surface of degree 6; see [Ott95, Capitolo 5].

�

By the results of §1.4.2 it follows that the bundle F has either six or infinitely
many unstable lines. Let us give the proof of iii) in the former case.

Proof of iii). We assume that F has six unstable lines. Using Claim 3.13 and
Remark 3.8, we can see X1 as the blow-up of P2 at 10 points, with exceptional
divisors E1, . . . , E10, embedded in P4 by the linear system |4L−

∑10
i=1 Ei|. On the

other hand, by Proposition 2.17 the first adjoint map ϕ := ϕ|KX+H| : X → X1 is a
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birational morphism, contracting precisely the six exceptional divisors E11, . . . , E16

on X coming from the blow-up of X1 at the six nodes of Y . Hence we obtain

KX = ϕ∗KX1
+

16∑
j=11

Ej = ϕ∗
(
− 3L+

10∑
i=1

Ei

)
+

16∑
j=11

Ej and

KX +H = ϕ∗OX1
(1) = ϕ∗

(
4L−

10∑
i=1

Ei

)
,

so (42) follows. �

If, instead, F has infinitely many unstable lines, then it is of Schwarzenberger
type. The next result shows that this case cannot occur, proving i) and so com-
pleting the proof of Proposition 3.12.

Claim 3.14. If F is a Schwarzenberger bundle, then the vanishing locus of any
non-zero global section η ∈ H0(P(F ), OP(F)(3ξ − �)) is a reducible surface. As

a consequence, if f : X → P2 is a triple plane of type VI, then its Tschirnhausen
bundle is a logarithmic one.

Proof. If F is a Schwarzenberger bundle, then, up to a change of coordinates, the
matrix M defining it is given by (11) and so, using Remark 1.7, one easily finds
that the matrix N is

N =

⎛
⎝ z0 z1 z2

z1 z2 z3
z2 z3 z4

⎞
⎠ .

The singular locus of Y is the determinantal variety given by the vanishing of the
2×2 minors of N , and this is a rational normal curve of degree four, C4 ⊂ P4. This
curve is also the base locus of the net |TL| generated by the three determinantal
surfaces Ti defined by the 2 × 2 minors of the matrix Ni obtained from N by
removing the ith line. By [Val00, Proposition 1.2] we have

(52) h0(P2, S2F (−2)) = 1.

This global section gives a relative quadric Q in |OP(F)(2ξ − 2�)| over P(F ). The
morphism q : P(F ) → Y is the blow-up along C4, and Q is its exceptional divisor.

The divisor Q ∈ |OP(F)(2ξ−2�)| gives a sheaf map OP(F)(ξ+�) → OP(F)(3ξ−�),

which is injective on global sections. Since h0(P2, S2F (−2)) = 1, this gives an
inclusion

(53) H0(P2, S2F (−2))⊗H0(P2, F (1)) ⊆ H0(P2, S3F (−1)).

On the other hand, we can compute

(54) h0(P2, F (1)) = 12, h0(P2, S3F (−1)) = 12.

Indeed, the first equality in (54) is just obtained by twisting (41) by OP2(1) and
taking global sections. For the second equality, we tensor the third symmetric
power of the exact sequence (41) with OP2(−1), obtaining

0 → OP2(−4) → OP2(−3)15 → OP2(−2)45
r1−→ OP2(−1)35

r0−→ S3F (−1) → 0.

Taking cohomology, we get

Hi(P2, S3F (−1))  Hi+1(P2, ker r0)  Hi+2(P2, ker r1)
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for all i, which implies Hi(P2, S3F (−1)) = 0 for i > 0. Then

h0(P2, S3F (−1)) = χ(P2, S3F (−1)) = 12.

By (52) and (54) it follows that the inclusion in (53) is actually an equality. Geo-
metrically, this means that any non-zero global section of S3F (−1) vanishes along
the relative quadric Q, that is, its vanishing locus is the union of this relative
quadric and a relative plane. This proves Claim 3.14. �

Remark 3.15. Another way to describe triple planes of type VI is the following. Let
X ′ be the blow-up of P2 at 10 points, embedded in G(1, P3) as a surface of bidegree

(3, 6) via the complete linear system |7L−
∑10

i=1 2Ei|; see [Gro93, Theorem 4.2 (i)].
There is a family of 6-secant planes to X ′; projecting from one of these planes, we
obtain a birational model of a triple plane f : X → P2 of type VI (in fact, X is the
blow-up of X ′ at six points).

Remark 3.16. Triple planes of type VI were previously considered (using methods
of synthetic projective geometry) by Du Val in [DV35, p. 72]. Let us give a short
description of his construction.

We have g(H) = 5, and the assumption pg(X) = q(X) = 0 shows that the
adjoint linear system |KX +H| cuts on the general curve of the net |H| the com-
plete canonical system |KX |. Then the image of |H| via the first adjoint map
ϕ|KX+H| : X → P4 is a net of canonical curves of genus 5 and degree 10. There

is an ∞2 system of trisecant lines to these curves that together give a degree 3
“involution” on the image of X. Such trisecant lines generate a threefold Y ⊂ P3

that Du Val recognizes as a determinantal cubic threefold. At this point, the triple
cover is constructed by blowing up a Bordiga surface X1 ⊂ Y at the six nodes
of Y that belong to X1. Part iii) of Proposition 3.12 is a modern rephrasing of
this argument that uses completely different techniques based on vector bundles.
By using his remarkable knowledge of “classical” algebraic geometry, at the end of
his analysis Du Val is also able to identify X as a congruence of type (3, 6) inside
G(1, P3); see Remark 3.15.

3.7. Triple planes of type VII. In this case we have

K2
X = −7, b = 8, h = 22, g(H) = 6

and by Theorem 2.12 the twisted Tschirnhausen bundle F has a resolution of the
form

(55) 0 −→ OP2(−1)4
M−→ O6

P2 −→ F −→ 0.

By Remark 2.18, we can start the adjunction process on X by using the first adjoint
divisor KX + H. According to §1.3, we denote by αn the number of exceptional
curves contracted by the nth adjunction map ϕn : Xn−1 → Xn. Recall that α1, the
number of lines contracted by the first adjunction map, is precisely the number of
unstable lines of the twisted Tschirnhausen bundle F ; see Proposition 2.17.

3.7.1. The occurrences for triple planes of type VII.

Proposition 3.17. If f : X → P2 is a triple plane of type VII, then X belongs to
the following list. The cases marked with (∗) do actually exist.
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(VII.1a) α1 = 1, α2 = 14 : X is the blow-up at 15 points of a Hirzebruch surface
Fn, with n ∈ {0, 2}, and

H = 5c0 +

(
5

2
n+ 6

)
f−

14∑
i=1

2Ei − E15;

(VII.1b)(∗) α1 = 1, α2 = 15 : X is the blow-up of P2 at 16 points and

H = 8L−
15∑
i=1

2Ei − E16;

(VII.2)(∗) α1 = 2 : X is the blow-up of P2 at 16 points and

H = 9L−
4∑

i=1

3Ei −
14∑
j=5

2Ej −
16∑

k=15

Ek;

(VII.3)(∗) α1 = 3 : X is the blow-up of P2 at 16 points and

H = 10L− 4E1 −
7∑

i=2

3Ei −
13∑
j=8

2Ej −
16∑

k=14

Ek;

(VII.4a) α1 = 4, α2 = 2 : X is the blow-up of Fn (with n ∈ {0, 1, 2, 3}) at 15
points and

H = 6c0 + (3n+ 8)f−
9∑

i=1

3Ei −
11∑

j=10

2Ej −
15∑

k=12

Ek;

(VII.4b)(∗) α1 = 4, α2 = 3 : X is the blow-up of P2 at 16 points and

H = 10L−
9∑

i=1

3Ei −
12∑

j=10

2Ej −
16∑

k=13

Ek;

(VII.4c) α1 = 4, α2 = 4 : X is the blow-up of P2 at 16 points and

H = 12L−
7∑

i=1

4Ei − 3E8 −
12∑
j=9

2Ej −
16∑

k=13

Ek;

(VII.5a) α1 = 5, α2 = 0 : X is the blow-up of P1 × P1 at 15 points, and

H = 7L1 + 7L2 −
10∑
i=1

3Ei −
15∑

j=11

Ej ;

(VII.5b)(∗) α1 = 5, α2 = 1 : X is the blow-up of P2 at 16 points and

H = 12L−
6∑

i=1

4Ei −
10∑
j=7

3Ej − 2E11 −
16∑

k=12

Ek;

(VII.6)(∗) α1 = 6 : X is the blow-up of P2 at 16 points and

H = 13L−
10∑
i=1

4Ei −
16∑

j=11

Ej ;

(VII.7)(∗) α1 = 7 : X is the blow-up of an Enriques surface at seven points.
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Proof. We have a birational morphism

ϕ|KX+H| : X → X1 ⊂ P5

and an intersection matrix(
(D1)

2 KX1
D1

KX1
D1 (KX1

)2

)
=

(
10 0
0 −7 + α1

)
.

By the Hodge Index Theorem we infer 0 ≤ α1 ≤ 7. Let us consider separately the
different cases.

•α1 = 0. The second adjunction map gives a pair (X2, D2), such that the inter-
section matrix on the surface X2 ⊂ P5 is(

(D2)
2 KX2

D2

KX2
D2 (KX2

)2

)
=

(
3 −7

−7 −7 + α2

)
.

This gives a contradiction, since a smooth surface of degree 3 in P5 is necessarily
contained in a hyperplane. Hence the case α1 = 0 cannot occur.

•α1 = 1. The second adjunction map gives a pair (X2, D2), such that the inter-
section matrix on the surface X2 ⊂ P5 is(

(D2)
2 KX2

D2

KX2
D2 (KX2

)2

)
=

(
4 −6

−6 −6 + α2

)
.

A smooth, linearly normal surface of degree 4 in P5 is either a rational scroll or
the Veronese surface. In the former case we have (KX2

)2 = 8, hence α2 = 14 and,
using the classification of rational scrolls in P5 (see the proof of Proposition 3.7),
we get (VII.1a). In the latter case we have (KX2

)2 = 9, hence α2 = 15. This gives
(VII.1b).

•α1 = 2. The second adjunction map gives a pair (X2, D2), such that the inter-
section matrix on the surface X2 ⊂ P5 is(

(D2)
2 KX2

D2

KX2
D2 (KX2

)2

)
=

(
5 −5

−5 −5 + α2

)
.

In particular X2 has degree 5, hence it must be a Del Pezzo surface. So (KX2
)2 = 5,

that is, α2 = 10. This gives (VII.2).
•α1 = 3. The second adjunction map gives a pair (X2, D2), such that the inter-

section matrix on the surface X2 ⊂ P5 is(
(D2)

2 KX2
D2

KX2
D2 (KX2

)2

)
=

(
6 −4

−4 −4 + α2

)
.

The Hodge Index Theorem implies α2 ≤ 6. On the other hand, Theorem 1.4 implies
(KX2

+D2)
2 ≥ 0, hence α2 ≥ 6. It follows that α2 = 6, hence (KX2

+D2)
2 = 0. So

X2 is a conic bundle of degree 6 and sectional genus 2 in P5, containing precisely
six reducible fibers because (KX2

)2 = 2. It turns out that X2 is the blow-up of P2

at seven points, embedded in P5 via the linear system

D2 = 4L− 2E1 −
7∑

i=2

Ei;

see [Ion81]. This is case (VII.3).
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•α1 = 4. The second adjunction map gives a pair (X2, D2), such that the inter-
section matrix on the surface X2 ⊂ P5 is(

(D2)
2 KX2

D2

KX2
D2 (KX2

)2

)
=

(
7 −3

−3 −3 + α2

)
.

The Hodge Index Theorem implies α2 ≤ 4, whereas the condition (KX2
+D2)

2 ≥ 0
gives α2 ≥ 2; then 2 ≤ α2 ≤ 4.

� If α2 = 2, then by [Ion84, p. 148] it follows that X2 is the blow-up at nine
points of Fn, with n ∈ {0, 1, 2, 3}, and that

D2 = 2c0 + (n+ 4)f−
9∑

i=1

Ei.

This is case (VII.4a).
� If α2 = 3, then the third adjunction map gives a pair (X3, D3) whose inter-

section matrix is (
(D3)

2 KX3
D3

KX3
D3 (KX3

)2

)
=

(
1 −3

−3 α3

)
.

This implies (X3, D3) = (P2, OP2(1)), so α3 = 9. This is case (VII.4b).
� If α2 = 4, then (X2, D2) is as in case 6) of Theorem 1.4. This is (VII.4c).
•α1 = 5. The second adjunction map gives a pair (X2, D2), such that the inter-

section matrix on the surface X2 ⊂ P5 is(
(D2)

2 KX2
D2

KX2
D2 (KX2

)2

)
=

(
8 −2

−2 −2 + α2

)
.

Then the Hodge Index Theorem implies 0 ≤ α2 ≤ 2.
� If α2 = 0, then the third adjunction map gives a pair (X3, D3), where X3 ⊂ P3

and whose intersection matrix is(
(D3)

2 KX3
D3

KX3
D3 (KX3

)2

)
=

(
2 −4

−4 −2 + α3

)
.

Hence (X3, D3) = (P1 × P1, OP1×P1(1, 1)), so in particular α3 = 10. This is case
(VII.5a).

� If α2 = 1, then the third adjunction map gives a pair (X3, D3), with X3 ⊂ P3

and whose intersection matrix is(
(D3)

2 KX3
D3

KX3
D3 (KX3

)2

)
=

(
3 −3

−3 −1 + α3

)
.

Therefore X3 = P2(p1, . . . , p6) is a smooth cubic surface, in particular α3 = 4 and

D3 = 3L−
∑6

i=1 Ei. This is case (VII.5b).
� If α2 = 2, then the third adjunction map gives a pair (X3, D3), with X3 ⊂ P3

and whose intersection matrix is(
(D3)

2 KX3
D3

KX3
D3 (KX3

)2

)
=

(
4 −2

−2 α3

)
.

Therefore X3 is a smooth quartic surface, a contradiction because we are assuming
pg(X) = 0. This case cannot occur.
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•α1 = 6. The second adjunction map gives a pair (X2, D2), such that the inter-
section matrix on the surface X2 ⊂ P5 is(

(D2)
2 KX2

D2

KX2
D2 (KX2

)2

)
=

(
9 −1

−1 −1 + α2

)
.

Then the Hodge Index Theorem implies 0 ≤ α2 ≤ 1.
� If α2 = 0, then the third adjunction map gives a pair (X3, D3), with X3 ⊂ P4

and whose intersection matrix is(
(D3)

2 KX3
D3

KX3
D3 (KX3

)2

)
=

(
6 −2

−2 −1 + α3

)
.

Then X3 is a smooth surface of degree 6 and sectional genus 3 in P4. Looking at the
classification given in [Ion81] we see that X3 is a Bordiga surface (see Remark 3.8),
so α3 = 0 and

D3 = 4L−
10∑
i=1

Ei.

This gives case (VII.6).
� If α2 = 1, then the third adjunction map gives a pair (X3, D3), with X3 ⊂ P4

and whose intersection matrix is(
(D3)

2 KX3
D3

KX3
D3 (KX3

)2

)
=

(
7 −1

−1 α3

)
.

By the Hodge Index Theorem we obtain α3 = 0, hence (KX3
)2 = 0. This is

a contradiction, because the unique non-degenerate, smooth rational surface of
degree 7 in P4 has K2 = −2; see Remark 3.10. So this case does not occur.

•α1 = 7. In this case the intersection matrix on the surface X1 ⊂ P5 is(
(D1)

2 KX1
D1

KX1
D1 (KX1

)2

)
=

(
10 0
0 0

)
.

The Hodge Index Theorem implies that KX1
is numerically trivial. So X1 is a

minimal Enriques surface, and X is the blow-up of X1 at seven points. This yields
(VII.7).

The proof of the existence for the cases marked with (∗) goes as follows. We first
choose α1 ∈ {1, . . . , 7}. According to Proposition 2.17, we need a rank 2 Steiner
bundle F on P2 with a resolution like (55) and having precisely α1 distinct unstable
lines. Bundles with these properties are described in Proposition 1.10.

Then, we take P(F ) and we choose a sufficiently general global section η of L =
OP(F)(3ξ − 2�). We do this by looking directly at the image Y of q : P(F ) → P5,
namely we consider η as a global section of R(3) via the natural identification given
by (30). In this setting, Y is a scroll of degree 6 in P5 defined by the minors of
order 3 of the 3× 4 matrix of linear forms N over P5 obtained via the construction
of §2.3, i.e.,

OP5(−1)4
N−→ O3

P5 ,

and the zero locus of η is a cubic hypersurface of P5 containing the union of two
surfaces S1 and S2 in Y , both obtained as the image via q of a divisor belonging to
|OP(F)(�)|.

Concretely, S1 and S2 lie in the net generated by the rows of N , i.e., they can
be defined by the 2× 2 minors of 4× 2 matrices obtained by taking random linear
combinations of these rows.
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Now we compute the resolution of the homogeneous ideal defining S1∪S2 in P5;
we take a general cubic in this ideal and we consider the residual surface X1 in Y .
The image of the first adjunction map

ϕ|KX+H| : X → P5

is precisely X1, so that X is the blow-up of X1 at α1 points.
It remains to compute α2, or equivalently (KX2

)2. To do this, we observe that
the second adjunction map of X is defined by the restriction to X1 of the linear
system |OY (2ξ − �)|, and this in turn coincides with the restriction to X1 of the
linear system generated by the six quadrics in the ideal defining S1.

The image of X1 via this linear system is the surface X2, hence we compute
(KX2

)2 by taking the dual of the resolution of the homogeneous ideal of X2 in the
target P5. All this, together with the verification that X1 (and hence X) is smooth,
is done with the help of Macaulay2. In the Appendix at the end of the paper we
explain in detail how this computer-aided construction is performed. �

Remark 3.18. In [Ale88], Alexander showed the existence of a non-special, linearly
normal surface of degree 9 in P4, obtained by embedding the blow-up of P2 at 10
general points via the very ample complete linear system∣∣∣∣13L−

10∑
i=1

4Ei

∣∣∣∣.
By using the LeBarz formula (see [LB90, Théorème 5]), we can see that Alexander’s
surface has precisely one 6-secant line. Projecting from this line to P2, one obtains a
birational model of a general triple cover; it is immediate to see that this corresponds
to case (VII.6) in Proposition 3.17.

Remark 3.19. Let us say something more about case (VII.7). Since α1 = 7, we
deduce that F has seven unstable lines, hence it is a logarithmic bundle (see Propo-
sition 1.10). In this situation, the surface X1 is a smooth Enriques surface of degree
10 and sectional genus 6 in P5, that is, a so-called Fano model. Actually, one can
check that X1 is contained into the Grassmannian G(1, P3) as a Reye congruence,
i.e., a 2-dimensional cycle of bidegree (3, 7); see [Gro93, Theorem 4.3]. In partic-
ular, X1 admits a family of 7-secant planes, and the projection from one of these
planes provides a birational model of the triple cover f : X → P2 (in fact, X is the
blow-up of X1 at seven points).

For more details about Fano and Reye models, see [Cos83,CV93].

3.7.2. Some further considerations on triple planes of type VII. We mentioned in
the previous subsection that we are able to construct many, but not all, cases of
triple planes of type VII (see Proposition 3.17). We conjecture that the remaining
cases do not exist. More precisely, our expectation is that the values of α1 and α2

should necessarily satisfy the rule

α2 =

(
7− α1

2

)
.

Let us explain now what the geometric evidence is beyond our conjecture. The
second adjunction map ϕ2 : X1 → X2 ⊂ P5 can be lifted to the map ζ : P(F ) → P5

associated with the linear system |OP(F)(2ξ − �)|. Note that

H0(P(F ),OP(F)(2ξ − �))  H0(P2, S2F (−1))  ∧2W∨,
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where the last isomorphism is obtained by taking global sections in the second
symmetric power of the short exact sequence

0 → W∨ ⊗ OP(V )(−1) → U ⊗ OP(V ) → F → 0

defining F (see (2)), namely

0 → ∧2W∨ ⊗OP2(−3) → W∨ ⊗U ⊗OP2(−2) → S2U ⊗OP2(−1) → S2F (−1) → 0.

One can show that the projective closure Y ′ of the image of the map ζ : P(F ) ���
P(∧2W∨) is contained in the Plücker quadric G = G(1, P(W∨)) and that Y ′ is the
degeneracy locus of a map on G defined by the tensor φ ∈ U ⊗ V ⊗W considered
in §1.4.1. More precisely, denoting by U the tautological rank 2 subbundle on G,
once noted that H0(G, U ∨) = W we see that φ gives a morphism

V ∨ ⊗ U → U ⊗ OG.

The variety Y ′ is the vanishing locus of the determinant of this morphism, so
that Y ′ can be expressed as a complete intersection of the Plücker quadric and a
cubic hypersurface in P5.

The locus where this morphism has rank ≤ 4 is contained in the singular locus
of Y ′ and coincides with it for a general choice of F . By Porteous’ formula, for
such a general choice we expect that Y ′ has 21 singular points. One can see that
these points are precisely the images of the sections of negative self-intersection
of the Hirzebruch surfaces in P(F ) lying above the smooth conics in P2 where F
splits as OP1(1) ⊕ OP1(7), once chosen an isomorphism to P1 (it would be natural
to call these conics unstable conics, and the argument above shows that there are
in general 21 of them).

Also, the indeterminacy locus of ζ is exactly the union of the sections of negative
self-intersection on the Hirzebruch surfaces lying above the unstable lines of F . So,
α1 and α2 should depend only on F and not on X, and moreover α1 should deter-
mine α2. However, it is not clear yet how the number of unstable lines determines
the precise number of unstable conics.

4. Moduli spaces

In this section we describe some moduli problems related to our triple planes.
For b ∈ {2, 3, 4} we set

Eb :=

⎧⎪⎨
⎪⎩

OP2(−1)⊕ OP2(−1) if b = 2,

OP2(−1)⊕ OP2(−2) if b = 3,

OP2(−2)⊕ OP2(−2) if b = 4,

whereas for b ∈ {5, 6, 7, 8} we denote by Fb = Eb(b − 2) a rank 2 Steiner bundle
on P2 having sheafified minimal graded free resolution of the form

0 → OP2(1− b)b−4 → OP2(2− b)b−2 → Eb → 0.

Then, for any b ∈ {2, . . . , 8}, we define two spaces Nb and Mb as follows:

Nb =

⎧⎨
⎩(Eb, η)

∣∣∣∣∣
η ∈ P(H0(P2, S3E ∨

b ⊗ ∧2Eb)) is the building section
of a general triple plane with pg = q = 0
and Tschirnhausen bundle Eb

⎫⎬
⎭ / ,
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Mb =

⎧⎨
⎩(Eb, η)

∣∣∣∣∣
η ∈ PH0(P2, S3E ∨

b ⊗ ∧2Eb) is the building section
of a general triple plane with pg = q = 0
and Tschirnhausen bundle Eb

⎫⎬
⎭ / ∼,

where we set (Eb, η)  (E ′
b , η

′) if and only if there is an isomorphism Ψ: E → E ′

such that Ψ∗η′ = η and the diagram

Eb
Ψ−−−−→ E ′

b⏐⏐� ⏐⏐�
P2 id−−−−→ P2

commutes, whereas (Eb, η) ∼ (E ′
b , η

′) if and only if there is an isomorphism Ψ: E →
E ′ and an automorphism λ : P2 → P2 such that Ψ∗η′ = η and the diagram

Eb
Ψ−−−−→ E ′

b⏐⏐� ⏐⏐�
P2 λ−−−−→ P2

commutes. We have Mb = Nb/PGL3(C), because the equivalence (Eb, η)  (E ′
b , η

′)
is obtained from (Eb, η) ∼ (E ′

b , η
′) via the natural PGL3(C)-action on the base.

Note that, with the terminology of [HL97, Chapter 4], the pair (Eb, η) consisting
of the Tschirnhausen bundle and of the building section is a framed sheaf.

Given a general triple plane f : X → P2 branched over a curve of degree 2b,
by Theorems 1.2 and 2.12 we can functorially associate with (X, f) a framed sheaf
(Eb, η), and conversely. In other words, considering the set of framed sheaves (Eb, η)
up to the equivalence relation  or ∼ defined above actually amounts to considering
the set of pairs (X, f) up to the corresponding equivalence relation.

Thus, from this point of view, Mb can be identified with the moduli space of the
pairs (X, f) up to isomorphisms, and Nb with the moduli space of the pairs (X, f)
up to cover isomorphisms.

In the sequel, we will use interchangeably the above notation Nb and Mb, with
b ∈ {2, . . . , 8}, and Ni and Mi, with i ∈ {I, . . . ,VII}. In each case, the moduli
space Nb can be constructed as follows:

• take the versal deformation space Def(Eb) of Eb;
• stratify Def(Eb) in such a way that H0(P2, S3E ∨

b ⊗∧2Eb) has constant rank
and consider the locally trivial projective bundle over each stratum whose
fibers are given by PH0(P2, S3E ∨

b ⊗ ∧2Eb);
• consider the quotient of this projective bundle by the natural action of the
group Aut(Eb).

In order to obtain Mb, we must further take the quotient of the above moduli space
by the natural action of PGL3(C). In particular, the expected dimensions of Nb

and Mb will be given by

exp-dimNb = dimDef(Eb) + h0(P2, S3E ∨
b ⊗ ∧2Eb)− dimAut(Eb),

exp-dimMb = dimDef(Eb) + h0(P2, S3E ∨
b ⊗ ∧2Eb)− dimAut(Eb)− 8.

(56)

From now on, we will simply write E instead of Eb if no confusion can arise.
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4.1. Moduli of triple planes with decomposable Tschirnhausen bundle.
Let us first consider cases I, II, III. Here E splits as a sum of two line bundles and
it is rigid.

Theorem 4.1. The following hold:

i) The moduli space MI consists of a single point.

ii) The moduli space MII is unirational of dimension 7.

iii) The moduli space MIII is unirational of dimension 12.

Proof. As a preliminary step, note that in all these cases the bundle S3E ∨ ⊗ ∧2E
is globally generated. Therefore, Theorem 1.2 applies and shows that the moduli
spaces MI, MII and MIII are obtained as a quotient of a Zariski dense open subset
of H0(P2, S3E ∨ ⊗∧2E ) by the action of some linear group, so that all of them are
irreducible, unirational varieties.

Let us check i). In this case, the branch curve B ⊂ P2 is a tricuspidal plane
quartic curve, which is unique up to projective transformations. By a topological
monodromy argument (see [ST80, §58]) and the Grauert-Remmert extension the-
orem (see [Gro63, XII.5.4]) this implies that the number of triple planes of type I
up to isomorphisms equals the number of group epimorphisms

� : π1(P
2 −B) → S3

up to conjugation in S3. Now, it is well known that

π1(P
2 −B) = B3(P

1) = 〈α, β | α3 = β2 = (βα)2〉
(see [Dim92, Chapter 4, Proposition 4.8]), and this group has a unique epimorphism
� to S3 up to conjugation. In fact, �(α) must be a 3-cycle whereas �(β) must be a
transposition, so we may assume

�(α) = (1 2 3), �(β) = (1 2).

This proves that MI consists of a single point.
Let us now analyze ii). Recall that in this case the branch locus B ⊂ P2 is a

plane sextic curve with six cusps lying on the same conic. Each of these curves can
be written as

(57) (f2)
3 + (f3)

2 = 0,

where fk denotes a homogeneous form of degree k, and the construction depends
on

6 + 10− 1− dim PGL3(C) = 7

parameters. The same monodromy argument used in part i) shows that this also
computes the effective dimension dim MII. More precisely, we can see that every
fixed curve B of equation (57) is the branch locus of a unique triple cover up to
isomorphisms, namely the one whose birational model is provided by the hypersur-
face

z3 + bz + c = 0,

where b = −f2/
3
√
4 and c = f3/

√
−27. In fact, we have

π1(P
2 −B) = (Z/2Z) ∗ (Z/3Z) = 〈α, β | α3 = β2 = 1〉

(see [Dim92, Chapter 4, Proposition 4.16]), and this group has a unique epimor-
phism to S3 up to conjugation.
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We finally look at iii), where E = OP2(−2)⊕OP2(−2). The automorphism group
of E is isomorphic to GL2(C). Moreover

h0(P2, S3E ∨ ⊗ ∧2E ) = h0
(
P2, OP2(2)4

)
= 24,

hence (56) implies
exp-dimMIII = 24− 4− 8 = 12.

This number coincides with the effective dimension dim MIII. In fact, in this caseX
is the blow-up at nine points of Fn, with n ∈ {0, 1, 2, 3}. The stratum of maximal
dimension corresponds to the value of n such that Aut(Fn) = H0(Fn, TFn

) has
minimal dimension, namely to n = 0 for which we have

dim MIII = 2 · 9− dim Aut(Fn) = 18− 6 = 12. �

4.2. Moduli of triple planes with stable Tschirnhausen bundle. We now
start the analysis of the cases IV, . . . , VII, where E is indecomposable. Using the
notation introduced in §2, we will write F = E (b−2), so that F fits into the short
exact sequence

0 → OP2(−1)b−4 → Ob−2
P2 → F → 0.

Thus Def(E ) = Def(F ) and

H0(P2, S3E ∨ ⊗ ∧2E ) = H0(P2, S3F (6− b)).

The vector bundle F is stable (Theorem 2.12), so Aut(F ) = C∗; its deformation
space Def(F ) is described for instance in [Cas02, Introduction], and we have

dim Def(F ) = 3(b− 4)(b− 2)− 1 = (b− 1)(b− 5).

Then (56) yields

dim Nb = exp-dimNb = (b− 1)(b− 5) + h0(P2, S3F (6− b))− 1,

exp-dimMb = (b− 1)(b− 5) + h0(P2, S3F (6− b))− 9.
(58)

Furthermore, the equality exp-dimMb = dim Mb holds if and only if PGL3(C) acts
on Nb with generically finite stabilizer.

Theorem 4.2. For i ∈ {IV,V,VI} the moduli space Ni is rational and irreducible,
while Mi is unirational of dimension dim Ni − 8, where

i) dim NIV = 23;

ii) dim NV = 24;

iii) dim NVI = 23.

Moreover the moduli space NVII has at least seven irreducible components, all uni-
rational of dimension 20, that are distinguished by the number α1 ∈ {1, . . . , 7} of
unstable lines for F .

First of all we note that, as in the proof of Theorem 4.1, in cases IV and V the
bundle S3E ∨ ⊗ ∧2E  S3F (6 − b) is globally generated. Indeed, in these cases
b ≤ 6 and F is globally generated, so the same is true for S3F and for S3F (6−b).
Therefore, the spaces Mi and Ni are irreducible as soon as the parameter space of
the bundle E , or equivalently of F , is irreducible. Moreover, since Ni is an open
subset of a projective bundle over such parameter space, rationality of the latter
will imply rationality of the former, and also unirationality of Mi.

The proof of Theorem 4.2 is based on a case-by-case analysis that will be done
in §§4.2.1, 4.2.2, 4.2.3, 4.2.4 below. Our strategy is to compute dimNi and to show
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that PGL3(C) acts on Ni with generically finite stabilizers for all i ∈ {IV, V, VI,
VII}, to prove that Ni is rational and irreducible for i ∈ {IV, V, VI}, and finally
to find at least seven irreducible unirational components of NVII.

4.2.1. Moduli of triple planes of type IV.

Proposition 4.3. The moduli space NIV is an open dense subset of P23, in par-
ticular it is irreducible and rational. The space MIV has dimension 15.

Proof. Case IV, i.e., b = 5, was analyzed in Proposition 3.7. We have F = TP2(−1)
and a natural identification

H0(P2, S3F (1)) = H0(P̌2, T
P̌2(2)) = C24.

Set P23 = PH0(P̌2, T
P̌2(2)) and observe that the bundle F is rigid, stable and

unobstructed, so the moduli space consists of a single, reduced point. Consequently,
the triple cover f : X → P2 only depends on the section η ∈ H0(P̌2, T

P̌2(2)) or,
better, on its proportionality class [η], that lies in a Zariski dense open subset
of P23.

By (58) we have exp-dimMIV = 15. It remains to show that exp-dimMIV =
dim MIV or, equivalently, that PGL3(C) acts on P23 = PH0(P̌2, T

P̌2(2)) with gener-

ically finite stabilizer. Take a generic element η ∈ P23 and let Z = D0(η) ⊂ P̌2

be its vanishing locus and G = Gη ⊂ PGL3(C) its stabilizer. So Z consists of 13
reduced points and we want to show that G is finite. Every homography in G must
preserve Z and hence permute its 13 points, so we obtain a group homomorphism

ψ : G → S13.

If L ⊂ P2 is a line, we have

(59) T
P̌2(2)|L = OL(3)⊕ OL(4).

Now set Z ′ := Z ∩ L and c := length(Z ′). Arguing as in part iii) of Lemma 1.9,
we deduce the existence of a surjection T

P̌2(2)|L → OL(7− c), and using (59) this
yields c ≤ 4. So there are no more than four points of Z on a single line, hence the
support of Z contains at least four points in general linear position.

Now, a homography in kerψ must fix the subscheme Z pointwise. Since a ho-
mography of the plane fixing at least four points in general position is the identity,
we have that ψ is injective. So G is a subgroup of S13, hence a finite group. �

4.2.2. Moduli of triple planes of type V.

Proposition 4.4. The moduli space NV is a Zariski open dense subset of a P19-
bundle over P5, in particular it is rational and irreducible of dimension 24. The
space MV has dimension 16.

Proof. Case V, i.e., b = 6, was analyzed in Proposition 3.9. The bundle F = F6

is determined by its set of unstable lines, which form a smooth conic W (F ) ⊂ P̌2,
so we can identify the moduli space of F with the open subset U ⊂ P5 consisting
of smooth conics via the Veronese embedding. This is the base of our P19-bundle.

Proposition 3.9 (cf. also §1.4.1) shows that, once the Tschirnhausen bundle F
is chosen, we have a 4-dimensional space U = H0(P2,F ) and a corresponding
projective space P3 = P(U), together with a fixed twisted cubic C ⊂ P3 such that
P(F ) is the blow-up of P3 at C. Moreover, the building sections η of the triple
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plane are in bijection with an open dense subset of the space of cubic surfaces, in
view of the identification

(60) H0(P2, S3F (6− b)) = H0(P3, OP3(3)) = C20,

so their proportionality classes belong to an open dense subset of P19 =
PH0(P2, S3F (6− b)), and our claim about NV is proven.

Now (58) yields exp-dimMV = 16, so it only remains to show that PGL3(C)
acts on the set of pairs (F , η) with generically finite stabilizer. Let G = G(F , η) ⊂
PGL3(C) be the stabilizer of the pair (F , η). Then every element g ∈ Gmust fix F ,
and hence the conic W (F ). By [FH91, p. 154], the subgroup of automorphisms
of Pn that preserve a rational normal curve Cn is precisely PGL2(C), so G is
a subgroup of a copy of PGL2(C) inside PGL3(C). On the other hand, g fixes
η ∈ H0(P3, OP3(3)), hence it fixes the cubic surface S ⊂ P3.

Next, we have seen in Lemma 2.15 (cf. also Remark 2.19) that the image in
P3 of the negative sections lying above the lines of W (F ) is precisely the twisted
cubic C. The whole construction is therefore g-invariant, so g must preserve the
intersection S ∩ C.

Furthermore, the construction giving rise to the 2 × 3 matrix N whose 2 × 2
minors define C (cf. (40)) can be reversed in order to give back the matrix M
presenting F (cf. (38)). Since M is generic, this implies that N and C are generic.
In addition, by (60) we also know that the cubic S corresponding to the building
section η can be chosen generically. In particular, the intersection S ∩C is reduced
for a general choice of our data, i.e., it consists of nine distinct points.

Summing up, we get a group homomorphism

ψ : G → S9

that must be injective since an element of PGL2(C) fixing at least three distinct
points is necessarily the identity. So G is a subgroup of S9, hence a finite group. �

4.2.3. Moduli of triple planes of type VI. We denote by Hilbd(P̌
2) the Hilbert

scheme of 0-dimensional subschemes of length d of P̌2.

Proposition 4.5. The moduli space NVI is a Zariski open dense subset of a P11-
bundle over Hilb6(P̌

2), in particular it is a rational variety of dimension 23. The
moduli space MVI has dimension 15.

Proof. Case VI was analyzed in Proposition 3.12. We mentioned in §1.4.2 (cf. case
b = 7 before Proposition 1.10) that F = F7 is a logarithmic bundle, i.e., it has six
unstable lines which are in general linear position, and that these six lines in turn
uniquely determine F . This identifies the moduli space of Steiner bundles of type
F7 as an open dense subset U of the Hilbert scheme of six points of P̌2.

We have a direct image sheaf R(3), fitting into (50), and a natural identification

H0(P2, S3F (6− b)) = H0(P4, R(3)) = C12;

see the proof of Claim 3.13. The sheaf R(3) is supported on a determinantal cubic
threefold Y ⊂ P4. In addition, the vanishing locus of a general global section of
R(3) is a Bordiga surface X1 ⊂ P4 and, moreover, the divisor X = D0(η) ⊂ P(F ) is
the blow-up of X1 at the six nodes of Y . Summing up, the proportionality classes
[η] of building sections of triple covers of type VI lie in a dense open subset of
P11 = PH0(P2, S3F (6− b)), and this proves our claim about NVI.
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We now consider the moduli space MVI. First, (58) implies dimMVI = 15.
In order to conclude the proof, we must show that PGL3(C) acts on the set of
pairs (F , η) with generically finite stabilizer. Let G = G(F , η) ⊂ PGL3(C) be the
stabilizer of the pair (F , η). Then every element g ∈ G must fix F , and hence the
set of its six unstable lines. Consequently, g permutes the corresponding six points
in P̌2, which are in general position. This in turn defines a group homomorphism

ψ : G → S6,

which must be injective since a homography of the plane that fixes at least four
points in general position is the identity. So G is a subgroup of S6, hence a finite
group. �

4.2.4. Moduli of triple planes of type VII. Let us finally consider case VII, i.e.,
b = 8. We need the following preliminary result.

Proposition 4.6. Assume b = 8 and let F := F8 be a Steiner bundle with α1

unstable lines. Then

(61) h0(P2, S3F (−2)) ≥ α1.

Proof. Let L1, . . . , Lα1
be the unstable lines of F . We can perform the reduction

of F along such unstable lines, i.e., a sequence of elementary transformations of
F along the Li; see [DK93, §§2.7–2.8] and [Val00, Proposition 2.1]. This gives an
exact sequence

(62) 0 → K → F →
α1⊕
i=1

OLi
→ 0,

where K is a vector bundle of rank 2. From (62) we get Hi(P2,K (−1)) = 0 for
all i. Computing Chern classes and applying Proposition 1.13 to K , we see that
K behaves according to the following table:

(63)
α1 1, 2, 3 4 5 6 7

K F8−α1
O2

P2 OP2(−1)⊕ OP2 OP2(−1)2 Ω1
P2

Indeed, K is a Steiner bundle for α1 = 1, 2, 3, 4 (corresponding to the cases
b = 7, 6, 5, 4 in Proposition 1.13). For α1 = 5 (the case b = 3 in Proposition
1.13) we have K  OP2(−1) ⊕ OP2 . Finally, for α1 = 6, 7 (the cases b = 2, 1 in
Proposition 1.13) we have that K ∨(−1) is a Steiner bundle respectively of the form
O2

P2 for α1 = 6 or TP2(−1) for α1 = 7, and hence K  OP2(−1)2 or K  Ω1
P2 .

From Pieri’s formulas (cf. [Wey03, Corollary 2.3.5, p. 62]) we obtain

(64) F ⊗ S2F (−2)  S3F (−2)⊕ ∧2F ⊗ F (−2)  S3F (−2)⊕ F (2).

Also, the fact that Li is unstable implies

(65) S2F (−2)|Li
 OLi

(−2)⊕ OLi
(2)⊕ OLi

(6).

So, tensoring (62) with S2F (−2) we get

(66) 0 → K ⊗ S2F (−2) →
S3F (−2)

⊕
F (2)

→
α1⊕
i=1

OLi
(−2)
⊕

OLi
(2)

⊕
OLi

(6)

→ 0.
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Twisting (62) by OP2(2) and taking cohomology we get H1(P2, F (2)) = 0.
Now, since we are in characteristic 0, the stability of F implies that S2F∨(−1) is
semistable, of slope −5. On the other hand, by table (63), each summand of K ∨

is semistable (and K is even stable for α1 �= 3, 4, 5) of slope between −3/2 (for
α1 = 1) and 3/2 (for α1 = 7). In any case, all summands of K ∨ ⊗ S2F∨(−1) are
semistable of strictly negative slope, so using Serre duality we get

H2(P2,K ⊗ S2F (−2))  H0(P2,K ∨ ⊗ S2F∨(−1))∨ = 0.

Therefore, taking cohomology in (66) we obtain H2(P2, S3F (−2)) = 0 and a
surjection

H1(P2, S3F (−2)) →
α1⊕
i=1

H1(Li, OLi
(−2)) → 0,

which in turn implies h1(P2, S3F (−2)) ≥ α1. By the Riemann-Roch theorem we
have χ(P2, S3F (−2)) = 0, hence h0(P2, S3F (−2)) ≥ α1, which is (61). �

Let us now state the result concluding the proof of Theorem 4.2.

Proposition 4.7. The moduli space NVII has at least seven connected, irreducible,
unirational components, all of dimension 20, that are distinguished by the number
α1 ∈ {1, . . . , 7} of unstable lines for F .

Proof. Proposition 3.17 shows the existence of seven families

N1
VII, . . . ,N

7
VII

of triple planes, one for each value of the number α1 ∈ {1, . . . , 7} of unstable lines
of F . Such families are pairwise disjoint subsets of NVII, because α1 coincides
with the number of lines contracted by the first adjunction map of X, and this
number is an invariant of the triple cover. Moreover, all the cases missing the star
in Proposition 3.17 have different values of α2 than the covers belonging to the
N

α1

VII. Since also α2 is an invariant of the triple cover, the connected components
of NVII possibly containing the missing cases are necessarily disjoint from all the
N

α1

VII. This shows that our seven families actually are seven connected components
of NVII.

Let us show now that such connected components are also irreducible and unira-
tional. Consider the 21-dimensional (rational) moduli space MP2(2, 4, 10) of rank
2 stable bundles on P2 with Chern classes (4, 10) and having a Steiner-type resolu-
tion, and let U α1 ⊂ MP2(2, 4, 10) be the stratum corresponding to vector bundles
having α1 unstable lines. These strata are irreducible and unirational and their
codimension is precisely α1; see [AO01, Theorem 5.6].

Our computations with Macaulay2 (cf. Appendix) show that there exist exam-
ples of bundles F with α1 unstable lines and satisfying

(67) h0(P2, S3F (−2)) = α1.

So, by Proposition 4.6 and semicontinuity, equality (67) holds for the general mem-
ber of the stratum U α1 . Each N

α1

VII has an open dense subset which is an open
dense piece of a Pα1−1-bundle over U α1 , and as such it is an irreducible, unirational
variety. For every α1 ∈ {1, . . . , 7}, using (67) we obtain

dim N
α1

VII = dimU α1 + h0(P2, S3F (−2))− 1 = (21− α1) + α1 − 1 = 20.

Summing up, every N
α1

VII is a connected, irreducible, unirational 20-dimensional
component of NVII. �
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Remark 4.8. We could also give a geometric interpretation of the equality dim N
α1

VII

= 20 by using in each case the explicit description of the surface X provided by
Proposition 3.17. We will not develop this point here, and we will limit ourselves
to discussing as an example the case α1 = 6. In this situation, we know that X
is isomorphic to the blow-up at six points of an Alexander surface of degree 9 in
P4; see Remark 3.18. Such points are the intersection of the Alexander surface
with its unique 6-secant line, and they completely determine the triple cover map
f : X → P2. So the dimension of the component N6

VII equals the dimension of an
open, dense subset of S10(P2), which is 20.

Appendix: The computer-aided construction of triple planes

Here we explain how we can use the Computer Algebra System Macaulay2 in
order to show the existence of general triple planes in the cases marked with (∗) in
Proposition 3.17. The computation can be performed either over Q or over a prime
field (the latter being considerably faster).

The setup for adjunction. Define the coordinate ring of P2 and of Pb−3 = P5

needed for the first adjunction map, together with a second P5 (the projectivization
of the 6-dimensional polynomial ring V) that will be the target space for the second
adjunction.

b = 8;

k = QQ;

T = k[x_0..x_2];

S = k[y_0..y_(b-3)];

R = T**S;

V = k[t_0..t_5];

The command fliptensor takes as input the matrix M and gives as output the
matrix N ; cf. §2.3.1.
fliptensor := M->(Q = substitute(vars S,R) * (substitute(M,R));

sub((coefficients(Q,(Variables=>{x_0,x_1,x_2})))_1,S));

The 3-fold scroll Y ⊂ P5 is defined by the 3 × 3 minors of N . The command
twosections gives back the ideal of the union of two surface sections S1 and S2 of
the scroll Y , with Si ∈ |OY (�)| and OY (�) = p∗OP2(1); cf. §1.4.1 and §2.3.1. Each
of them is defined by the 2 × 2 minors of a random submatrix of N , obtained by
composing N with a random matrix of scalars.

twosections := N->(A = random(S^{3:0},S^{3:0});

Nrandom = (transpose(N)*A);

N1 = submatrix(Nrandom, {0,1});

N2 = submatrix(Nrandom, {0,2});

IS1 = minors(2, N1);

IS2 = minors(2, N2);

I12 = intersect(IS1,IS2));

The command cubicgenerator takes a random cubic in the ideal of cubics of Y
through S1 ∪ S2, and we call X1 the residual surface. This surface is precisely the
image of the first adjunction map ϕ1 : X → X1 ⊂ P5; see the last part of the proof
of Proposition 3.17.
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cubicgenerator := I12 -> (SU = super basis(3,I12);

cubic = SU*random(S^{rank(source(SU)):0},S^{1:0});

ideal(cubic));

The cases according to the number of unstable lines. Here we define the
Steiner bundle F by giving its presentation matrix M . More precisely, for any
α1 ∈ {1, . . . , 7} we define a random Steiner bundle with α1 unstable lines.

The cases 1 ≤ α1 ≤ 6. For 1 ≤ α1 ≤ 6, we put random coefficients in the layout
of Proposition 1.10 in order to define F . The command GenM takes an integer a,
picks a random linear forms, multiplies each of them by a column matrix of size 4
of random scalars, and stacks them together with a random matrix of linear forms
in order to obtain a matrix M of size 4× 6, given as output.

use T

GenM:=(a)->(

for j from 0 to a-1 do

M_j=((random(T^{1},T^{0}))_(0,0))*random (T^{4:0},T^{1:0});

Mcu = transpose M_0;

for j from 1 to a-1 do Mcu=(Mcu||transpose(M_j));

Mco = (random(T^{6-a:0},T^{4:-1}));

((transpose Mcu) | (transpose Mco)))

We choose α1, define the Steiner sheaf as cokernel of M and check that it is
locally free of rank 2.

for a from 1 to 6 do F_a = coker (

transpose map(T^{b-4:1},T^{b-2:0},GenM(a)))

for a from 1 to 6 do print dim (minors(4,presentation F_a))

The output of this is 0 in all seven cases, so the sheaves are locally free.

The case α1 = 7. In this case F is a logarithmic bundle, so its dual appears as the
first syzygy of the Jacobian map ∇f of partial derivatives of the product f of the
seven linear forms that define the seven unstable lines. In other words, we have an
exact sequence

0 → F∨ → OP2(1)3
∇f−−→ OP2(7);

cf. for instance [FMV13, (1.10)]. We choose these seven lines randomly and define
F as the dual of ker(∇f).

f = 1_T; for j from 1 to 7 do f=f*(random(T^{1},T^{0}))_(0,0)

M=transpose ((res ker diff(vars T,f))).dd_1

MM = map(T^{b-4:1},T^{b-2:0},M);

dim minors(4,MM) == 0

F_7 = coker transpose MM;

We check incidentally that the vanishing H0(P2, S2F (−2)) = 0 and the equality
h0(P2, S3F (−2)) = α1 hold true for all values of α1 (this fact was needed in the
proof of Proposition 4.7.

for a from 1 to 7 do print(

HH^0((sheaf (symmetricPower(2,F_a)))(-2)),

rank HH^0((sheaf (symmetricPower(3,F_a)))(-2)))

The output is (0, a) with a = α1 ∈ {1, . . . , 7}.
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Construction of the triple plane. We take F and extract the two matrices of
linear forms M and N .

for a from 1 to 7 do NN_a = fliptensor(presentation (F_a));

for a from 1 to 7 do IY_a = minors(rank target NN_a,NN_a);

for a from 1 to 7 do singY_a = ideal singularLocus variety IY_a;

Singularity test: the only singular points of Y are α1 points of multiplicity 6. They
all come from the locus where the matrix N defining Y has rank at most 1.

for a from 1 to 7 do I2Y_a = minors(rank (target NN_a)-1,NN_a);

for a from 1 to 7 do print (dim singY_a, degree singY_a)

for a from 1 to 7 do print (dim(singY_a:I2Y_a),degree(singY_a:I2Y_a))

The output of the last command is (1, a), where a = α1 goes from 1 to 7 in the
seven cases, and means that Y is singular precisely at the a double points coming
from the a unstable lines. Define now X1 as a random cubic in the ideal of the union
of two surface sections of Y from |OY (�)|. Perform a degree, genus and singularity
test.

for a from 1 to 7 do II12_a = twosections(NN_a);

for a from 1 to 7 do IC3_a = cubicgenerator(II12_a);

for a from 1 to 7 do IX1_a = ((IC3_a + IY_a):II12_a);

for a from 1 to 7 do X1_a = variety(IX1_a);

for a from 1 to 7 do print(dim X1_a, degree X1_a,genera X1_a)

for a from 1 to 7 do (dim singularLocus X1_a)

In all seven cases, the output of the penultimate command is (2, 10, {0, 6,

9}), which means that X is a surface of degree 10 with sectional genera (0, 6, 9).
The output of the last command is −∞, i.e., X is smooth. This takes about 15
minutes on a laptop if performed on a prime field.

The second adjunction map of ϕ2 : X1 → X2 ⊂ P5 is defined by the restriction to
X1 of the linear system |OY (2ξ− �)|, and this in turn coincides with the restriction
to X1 of the linear system generated by the six quadrics in the ideal defining S1;
see again the proof of Proposition 3.17.

Having this in mind, we can finally compute the ideal of X2 and its canonical
sheaf ωX2

= OX2
(KX2

) in order to find K2
X2

.

for a from 1 to 7 do X2_a = (ker map(S/(IX1_a),V,

gens minors(2,random(S^{2:0},S^{3:0})*NN_a)))

for a from 1 to 7 do omegaX2_a = (Ext^2(X2_a,V^{1:-6}))**(V/(X2_a));

for a from 1 to 7 do print(euler(dual omegaX2_a)-1)

Here is the output of the last command, providing the value of K2
X2

for all
α1 = a ∈ {1, . . . , 7}:
9, 5, 2, 0, -1, -1, 0
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Institut de Mathématiques de Bourgogne, UMR 5584 CNRS, Université de Bourgogne
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CNRS 5584 UFR Sciences et Techniques, Bâtiment Mirande, 9 Avenue Alain Savary BP 47870,
21078 Dijon Cedex, France

Email address: daniele.faenzi@u-bourgogne.fr
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