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A B S T R A C T

Weeds are a major constraint for crop production and food security. Chemical management, the most utilized
method for weed control, has serious drawbacks. In this context, the development of more sustainable methods
like site-specific weed management (SSWM) is highly deemed. With this study, we assessed the possibility of
applying two convolutional neural networks (CNN) for the recognition of different classes of weeds in a winter
wheat (T. aestivum) cultivation based on RGB images. By using this methodology, we were able to recognize with
a high average precision (AP > 0.6) some species whose abundance and distribution in the field was correlated
with the final wheat yield. We demonstrated that where the presence of R. raphanistrum, A. arvensis and P. rhoeas
was high at the tillering stage and weed biodiversity indexes were low (Menhinich’s Index, Simpson’s Reciprocal
Index and Shannon’s Index), wheat yield was significantly reduced. In contrast, higher weed biodiversity miti-
gated yield losses. Therefore, CNN is a useful tool for early evaluation of the impact that weeds may have on
yield, and it can be used as SSWM classifier for an early mapping of weeds, which is critical to improve our
understanding of weed ecology dynamics in agricultural fields.

Introduction

Among agricultural pests, weeds represent the main cause of yield
loss worldwide [1]. The potential yield losses in wheat (Triticum aestivum
L.) have been estimated around 23 % and attributed mainly to weeds
among the most critical biotic stressors [2]. In wheat, as well as most
other crops, weeds are controlled through applications of synthetic
herbicides [3], which have been documented to be the most abundant
class of pesticides used in global crop production from 1990 to 2020 [4].
Herbicides have numerous advantages compared to other weed control
methods, including high efficacy and wide adaptability to different
cropping systems. However, excessive use of herbicides has led to the
contamination of surface and ground water, damages to non-target
species, and development of resistance by weeds populations [5,6].
Moreover, the chemical weeding as well as intensive agriculture caused
the over-simplification of the cropping systems, leading to the occur-
rence of few dominant, highly competitive weed species in the culti-
vated fields [7,8]. The negative impact of weed chemical control on the
biodiversity of the cropping systems has therefore exacerbated the yield

losses caused by this biotic constraint [8]. The ecological theories
behind these findings point out that where the biodiversity is high, the
competition for resources limits the prevalence of few dominant species
in terms of number and biomass, possibly delaying the critical period of
weed control (CPWC) and thus leading to lower weed-crop competition
[8]. Understanding how weed diversity can mitigate yield losses is of
critical importance in weed science [9]. Nevertheless, the implementa-
tion of biodiversity patterns/thresholds that may be functional to
develop sustainable strategies for weed management have been
restricted by technological limitations in weed identification, that
impaired a thorough understanding of the ecological basis of weed in-
festations and its relationship with the crop performance [10]. Different
methods for weed identification in the field have been proposed,
including use of sensors to discriminate crop rows from weeds [11], and
the use of multispectral images to identify differences between crops and
weeds [12]. In contrast, a few attempts have been carried out with the
aim to discriminate single weed species, an approach that is necessary to
support the study of weed biodiversity in agricultural fields and expand
our understanding on weed ecology [13]. Convolutional Neural
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Network (CNN) is a particular application of neural networks generally
used for object detection in computer vision [14,15]. Here we demon-
strate that the application of CNN to weed identification can contribute
to develop a flexible classifier for Multiple species of weeds in wheat
field, enabling the identification of weed species composition at an early
stage of infestation, giving important information on the weed biodi-
versity in the field.

Materials and methods

Plant material and experimental design

The experiment was conducted during the growing season of
2021–2022 at the experimental field of the Department of Agricultural
Science of the University of Naples Federico II (Portici, IT, 40◦48′52’’N,
14◦20′48’’E). The soil of the field presented a sandy-loam texture with
the following characteristics: sand 77.9 %, clay 6.5 %, silt 15.6 %, 71
ppm available P2O5, and 841 ppm exchangeable K2O. A mixture of
different varieties of wheat from APSOV Sementi S.p.a (Lombardy,
Italy), named “Don Carmine”, was used. The experimental plots were 4
m2 arranged in a completely randomized design with two treatments:
weed-free (eight replicates) and weedy plot (14 replicates). Sowing was
performed on December 15th, 2021, with a density of 450 seeds per m2

with an inter-row distance of 10 cm. Fertilization was made following
the guidelines of the Campania region, with the application of phos-
phorus at sowing, and two applications of nitrogen at tillering and stem
elongation for a total of 150 kg ha-1 of nitrogen. Weed control in the
weed-free plot was performed by the application of Timeline Trio®, a
selective herbicide with three different active molecules (pinoxaden,
clodinafop-propargyl and florasulam) for the control of dicotyledonous
and monocotyledonous weeds. The selectivity toward wheat was guar-
anteed by the presence of the safener molecule cloquintocet-mexyl. The
application was carried out at the tillering stage of wheat with a dose of
1 L ha-1. Wheat was harvested on June 22nd, 2022, 189 days after
sowing (DAS).

Agronomic measurement on wheat

At the heading stage (145 DAS) and at harvest (189 DAS), 1 m2 per
plot was used for the determination of different agronomic traits on
wheat. At the heading stage, wheat plants were collected and counted
for the determination of their density per m2. Plants were then separated
into their vegetative and reproductive portions and weighted for fresh
shoot biomass determination and spike fresh biomass determination. At
harvest (189 DAS), plants were counted for the determination of their
density per plot. Then, wheat plants were divided in spikes and vege-
tative portions for the determination of shoot and spikes dry weights.
Spikes were then subjected to threshing with a bench thresher to sepa-
rate the kernels from husks for yield determination.

Determination of weed density

Weed density was evaluated at the tillering stage (43 DAS), and at
the heading stage of wheat (145 DAS). At tillering stage, weed density
per single species was evaluated on pictures acquired with a commercial
RGB camera (Huawai Mate 20 Pro, 16-megapixel, resolution of 3968 ×

2976 px) between 10:00AM and 12:00PM. Three pictures per plot were
acquired at ~60 cm from the top of the canopy, for an area of ~0.5 m2

per plot. In this phase, the herbicide treatment was not yet performed.
Therefore, the pictures were acquired on all the plots of the field (n =

24). The acquisition height was measured with a roll meter from the soil
to the camera. In every picture, a scale was present to make comparable
the densities throughout the dataset. The weeds in the pictures were
manually annotated with an online free tool “Computer Vision Annotation
Tool” [16]. The total weed density was calculated as the sum of the
number of individuals per plot independently from their species. In
total, the dataset consisted of 72 images with a total of 39,006 elements
manually annotated (i.e., weed individual plants) as reported in Table 1.
Twelve different classes (i.e., weed species) were identified: Raphanus
raphanistrum, Anthemis arvensis, Papaver rhoeas, Chenopodium album,
Melilotus officinalis, Medicago polymorpha, Polygonum aviculare, Veronica
persica, Veronica hederifolia, Stellaria media, Fumaria officinalis, Ranun-
culus repens.

The classes “V. persica” and “V. hederifolia”were merged in one single
class “Veronica spp.” due to the morphological similarity that did not
allow their discrimination at early stages of growth, as well as their low
density found in the field. Similarly, “Melilotus officinalis” and “Medicago
polymorpha” were merged in one single class. At the heading stage,
weeds were cut at the collar, counted, and identified to calculate the
density per single species (145 DAS) in the 1 m2 sampling area used for
agronomic measurements on wheat.

Biodiversity index

At tillering stage (43 DAS) and heading stage (145 DAS) were
assessed also several biodiversity index such as the Menhinick’s Index,
Simpson’s Reciprocal Index and Shannon’s Diversity index according to
Kitikidou et al. [17].

Statistical analysis

Correlation matrices and all other statistical analyses were carried
out with the open-source RStudio, correlation matrices were performed
with the package “corrplot” [18]. Other graphics were obtained with
SigmaPlot (Palo Alto, CA, USA).

Training of the convolutional neural network and model goodness
evaluation

A convolutional neural network (CNN) was trained on the basis of
the annotations performed on weeds at wheat tillering stage. All pictures
were sliced in smaller images with a resolution of 640 × 640 pixels for a
total of 3456 images use to train the CNN. For this operation it was
utilized an open-source framework called “Slicing Hyper Aided Inference”
[19]. The final dataset was composed by the number of annotations
reported in Table 1.

The CNNs chosen for the identification of weed species have been
“You only look once version 5″ (YOLO v5) [20] and “You only look once
version 8″ (YOLO v8) [21]. For the training it was utilized a GPU-sharing
platform for data science Kaggle (Kaggle Inc, Delaware, USA). The im-
ages present in the final dataset were allocated for the 60 % to the
training dataset, 20 % to the validation dataset and 20 % to test dataset.
The main metrics utilized for the evaluation of the goodness model were
average precision (AP) and mean average precision (mAP) on the basis
of the intersection over union (IoU), that represent the ratio of the
shared area between the annotation from the model and the ground

Table 1
List of the weed species with their EPPO code and the number of individuals
manually annotated with CVAT after slicing.

Weed species EPPO Number of annotations

Raphanus raphanistrum RAPRA 11,721
Anthemis arvensis ANTAR 10,316
Papaver rhoeas PAPRH 6129

Chenopodium album CHEAL 4977
Medicago polymorpha MEDPO 1436
Polygonum aviculare POLAV 2378

Veronica spp. 1VERG 871
Stellaria media STEME 231

Fumaria officinalis FUMOF 461
Ranunculus repens RANRE 516

Total 39,006

C. Russo et al. Smart Agricultural Technology 9 (2024) 100594 

2 



truth annotation, and the total area from the union of the two annota-
tions [22]. The IoU defines the threshold for three key categories:

• True positive (TP). Correct detection of a ground-truth annotation
• False positive (FP). Incorrect detection of a non-existing annotation
or misplaced detection of an existing annotation

• False negative (FN). Undetected ground-truth annotation

Using these categories, it was possible to define the Precision (P) and
Recall (R) values:

P =
TP

TP+ FP
R =

TP
TP+ FN

The AP with an IoU of 0.5 was defined as the area under the Preci-
sion/Recall curve [23]. The mAP was defined by the following equation:

mAP =
1
n

×
∑n

i=1
APi

Where n is the number of classes. AP and mAP with an IoU of 0.5 are the
most frequently utilized metrics for the evaluation of model goodness
[22]. The results of metrics used here are referred to the test dataset.

Results

Training and metrics of convolutional neural network training

The CNNs were trained for an increasing number of epochs to
establish the correct number to avoid overfitting as we can see from the
validation loss (Fig. 4). The validation loss rapidly decreases in the early
epochs for YOLOv5 (Fig. 4-B), meanwhile for YOLOv8 the decrease was
more gradual (Fig. 4-C). The value of AP and mAP precision with an IOU
of 0.5 taken at the end of the CNN training are reported in Table 3. The
higher AP (> 0.6) have been obtained for R. raphanistrum, A. arvensis, P.
rhoeas, with YOLOv5, and for P. aviculare with YOLOv8. For the other
species the APs were smaller, ranging from 0.001 for S. media to 0.34 for
M. polymorpha (Table 3). These results show a positive correlation (r2 =
0.73) between the AP and the number of annotations per single species
(Fig. 3).

Weed density and species distribution

The density of weed species from tillering to the heading stage
showed significant variations (Table 2). At the heading stage, weed
species such as R. rapanistrum, A. arvensis, and C. album showed a
reduction of their density compared to the density at the tillering stage
(− 77 %, − 50 %, and − 99 %, respectively). P. aviculare and S. media
densities were not reduced at the heading stage compared to the tillering
stage, while the M. polymorpha class showed an increase of its density
(+87 %) compared to the tillering stage.

Table 2
Density for singular weed species present in weedy plot at tillering and heading
stage. Asterisks indicate statistical differences according to the test-t (ns = not
significant, * = p < 0.05; *** = p < 0.001).

Weed species Tillering Heading Percent variation Significance
Number of plants m-2

R. raphanistrum 286.4 64 − 77 % ***
A. arvensis 299.1 148 − 50 % ***
P. rhoeas 175.4 36.9 − 78 % ***
C. album 134.6 0.1 − 99 % *

M. polymorpha 28.5 53.4 87 % *
P. aviculare 54.9 44 − 19 % ns

Veronica spp. 18.4 5.2 − 71 % ***
S. media 6.18 6.2 1 % ns

F. officinalis 3.25 0.2 − 91 % ***
R. repens 13.1 2.7 − 79 % ***

Total 1101.5 425.6 ¡61 % ***

Table 3
Average precision value obtained on test dataset at the end of training.

Weed species Average Precision (0.5)

YOLOv5 YOLOv8

Raphanus raphanistrum 0.80 0.81
Anthemis arvensis 0.84 0.85
Papaver rhoeas 0.67 0.71

Chenopodium album 0.29 0.39
Medicago polymorpha 0.34 0.45
Polygonum aviculare 0.56 0.61

Veronica spp. 0.03 0.24
Stellaria media 0.002 0.01

Fumaria officinalis 0.32 0.44
Ranunculus repens 0.26 0.44

mAP 0.41 0.50

Fig. 1. Training and validation loss for YOLOv5 (A-B) and YOLOv8 (C-D).

Fig. 2. Correlation between the average precision (AP) and the number of
annotations per single species reported in Table 1.
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Correlation between initial weed density and final wheat biometric
parameters

Weed total density at tillering stage showed a high correlation with
wheat yield at final stage (r = − 0.82). This parameter was also positive
correlated with P. rhoeas (PAPRH), R. raphanistrum (RAPRA) and A.
arvensis (ANTAR) and negative correlated with three biodiversity in-
dexes: Menhinick’s Index (r = − 0.82), Simpson’s Reciprocal Index (r =
− 0.51) and Shannon Diversity Index (r = − 0.51). All agronomical pa-
rameters of wheat at different phenological stages are reported in sup-
plementary material (Figs. S7–S9). Moreover, correlation between
biodiversity index and final harvest are reported in Figs. S11, S12.

Correlation between yield and biodiversity index at heading stage

Total weed density at heading stage showed a good correlation with

wheat yield at final stage (r= − 0.65). This parameter was also positively
correlated with P. rhoeas (PAPRH), R. raphanistrum (RAPRA), A. arvensis
(ANTAR), P. aviculare (POLAV) and R. repens (RANRE). The total weed
density was negatively correlated only with Menhinick’s Index (r =

− 0.82).

Discussion

Convolutional neural networks to support site-specific weed management

Real time identification of weed species on large areas has severely
limited in-depth comprehension of weed ecology and relative implica-
tions of weed biodiversity on yield losses caused by weed-crop compe-
tition [24]. This limitation can be overcome by using convolutional
neural networks (CNN), an efficient technology for object detection in
different fields of application [25]. CNN have been applied for weed

Fig. 3. Weed distribution at the tillering and the heading stage of wheat. “Others” represent the species within the 2 % of the total density.

Fig. 4. Correlation matrix between weed species reported with EPPO code, biodiversity index and total density at tillering stage (T) and wheat productivity pa-
rameters at harvest stage (HA). In the boxes are reported the Pearson correlation value. Blank boxes are not statistically significant (p < 0.05).
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detection with good results for a generic discrimination of weeds from
wheat and from other vegetable crops [26,27] or to detect single weed
species in the field [28]. Other studies performed weeds species iden-
tification with the use of CNN, but in some cases the images were taken
in laboratory [29], or the CNN was used for a classification task and not
for an object detection [30,31]. In other cases, CNN have been used for
weeds detection at advanced developmental stage [32–35]. In our
experiment we compared the different performances of two CNN ar-
chitectures, namely YOLOv5 and YOLOv8, which showed different ca-
pacity to recognize weeds. YOLOv8 improved the identification of all the
weed classes compared to the previous version YOLOv5, with higher
average precision for A. arvensis (ANTAR), R. raphanistrum (RAPRA),
and P. rhoeas (PAPRH) (Table 3). It is worth to note that these weeds
represented the most dominant species found in the experimental field
(Table 2), and this is the main reason for the high average precision
obtained for these weed species, which allowed us to use a high number
of annotations for the CNN training (Fig. 2). The final dataset utilized for
the training of the two CNN architectures was the largest in terms of
number of objects among those used in the literature for similar analyses
on weeds in the open field (Table S4). In addition, to the best of our
knowledge, this is the first time that the most updated CNN architecture
YOLOv8 has been used for weed identification. (Table S4). Moreover,
this study provides a system for the identification of weeds at an early
stage of development, which is the crucial moment for the evaluation of
the intensity/magnitude of weed infestation. Several studies indicate
that the initial weed density can be detrimental to crop development.
Indeed, it has been reported that weed competition causes different
levels of yield loss depending on the phenological stages of the crop. On
corn, only weed competition occurring at the emergence stage causes
significant yield losses, while it did not affect the yield when they were
controlled until the fourth to sixth leaf stage [36]. Similarly, weed
competition in rice after 29 to 32 days after sowing had negligible effects
on crop yield [37]. On the basis of these evidence, the evaluation of

weed presence at an early stage of wheat cultivation is a pivotal indi-
cator of yield losses induced by weeds. We show that the early identi-
fication by CNNs allowed us to assess the levels of weed biodiversity and
its implication on wheat productivity. This may help us to improve the
sustainability of weed control and increase the ecological services pro-
vided by agriculture since, based on this knowledge, the
sustainability-productivity trade-off can be better tuned [38–41].

Low biodiversity causes dominant species over-growth and higher yield
losses

Early identification of weed species at the tillering stage allowed us
to correlate the density of these species and wheat biometric and pro-
ductive parameters (Fig. 4). Weed total density at the tillering stage was
correlated with the presence of the most dominant species
R. raphanistrum (RAPRA), A. arvensis (ANTAR) and P. rhoaes (PAPRH),
and inversely correlated with weed biodiversity (Fig. 4). Moreover,
biodiversity indices were positively correlated with yield (Fig. 4,
Figs. S11, S12). This is highly relevant since it underlines that diversi-
fied weed communities can reduce the weed competitiveness, and thus
crop yield losses [42]. Indeed, notwithstanding the impact that single
weed species can have on crop productivity, it is pivotal to understand in
which ecological dynamics these species become noxious, an aspect that
has been linked with the over-simplification of agricultural cropping
systems, and already highlighted in the literature [43]. Esposito et al.,
[44] found that the composition of weed communities can be an
important factor in crop-weeds interaction. With a cluster analysis
approach, they found two weed communities, one of which did not
reduce the wheat production. Ferrero et al. [45] in a long-term study of
15 years analyzed the impact of weed diversity on soybean. Also in this
case, an increase of weed diversity was positively associated with yield.
Similarly, Adeux et al. [9] found that more biodiverse weed commu-
nities were correlated with lower yield losses. Indeed, where dominant

Fig. 5. Correlation matrix between weed species reported with EPPO code, weed total density, biodiversity index at heading stage (HE) and wheat productivity
parameters at harvest stage (HA). In the boxes are reported the Pearson correlation value. Blank boxes are not statistically significant (p < 0.05).
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species are present, they can easily reach high densities and biomass,
exceeding the critical period for weed control [46]. Our results
confirmed that where the biodiversity was low, the total weed density
was high as well as the yield losses (Fig. 4). Likewise, dominant species
were favored, as confirmed by the inverse correlation between biodi-
versity and A. arvensis (ANTAR), R. raphanistrum (RAPRA), and P. rhoaes
(PAPRH) density (Table 2). It is therefore pivotal to find the best prac-
tices able to increase weed biodiversity in the agro-ecosystem that can
favor species co-existence thus reducing yield loss caused by weeds [8,
44,47,48]. Artificial intelligence and robotics can represent a key tool to
this aim. In order to guarantee both productivity and biodiversity,
Zingsheim and Döring [10] stated that a robot should be technically
capable to distinguish between crop plants vs weeds, and among weeds
the single weed species. As previously pointed out, a species specific
CNN can respond to this need since it can comprehensively track the
initial weed density in crops both in terms of quantity and composition.

Adaptive traits to understand weed dynamics and the implication on yield
loss

The competitive traits of weeds are the main reason of their impact
on crop productivity, depending on the factors for which crops and
weeds compete in the open field. Resource scarcity (water, nutrients), as
well as the competition for light, are the main drivers of weed induced
yield losses, with negative impacts on quantitative and qualitative yield.
In this experiment, weed dynamics could reason the effects of weed
competition on wheat yield. At the early stage of wheat growth

(tillering), three dominant weeds were present, namely R. raphanistrum
(RAPRA), A. arvensis (ANTAR), and P. rhoaes (PAPRH) (Fig. 1, Table 2).
R. raphanistrum is a well-established noxious weed for wheat [49–51]
with the capacity to reduce yield even with a density of 15 plants m-2

[50]. Also, A. arvensis can be a problematic weed, with high plasticity
and adaptability to different environmental constraints [52–54]. Simi-
larly, P. rhoaes is one of the most problematic weeds in wheat fields, due
to the competition for water and light, its high seed production, and its
ability to persist in the field. It has been estimated that this species in-
duces up to 32 % of yield loss in wheat [28]. Where the density of these
species was high, the weed biodiversity was significantly reduced, and
yield losses were higher. At the heading stage, the weed distribution
showed an increase of the presence of M. polymorpha (1LEGF) and
P. aviculare (POLAV) (Fig. 5). Also in this case, the different competitive
traits of the two weeds can be related with the results on weed biodi-
versity, total weed density, and wheat yield (Fig. 5). Indeed,
M. polymorpha was only present where the total weed density was low,
thus where the dominant species found at the tillering stage were absent.
This led to a low competition toward wheat, that can be explained by i)
the late presence of these species, that had a minor impact on wheat
yield loss, which further confirmed the higher detrimental impact of
weed competition at early stages of plant cultivation; ii) the absence of
competition for nitrogen, due to the ability to nitrogen fixation of this
leguminous species. In contrast, P. aviculare did not show correlations
with total weed density, with the dominant species density, and with
wheat yield at the tillering stage (Fig. 4). At the heading stage, its density
was negatively correlated with wheat yield (Fig. 5). This is probably due
to the ability to tolerate the shading induced by the other species,
allowing to maintain a similar density at the two time of assessment [55,
56]. Perthame et al. [57], found that nitrogen assimilation in P. aviculare
was not affected by light scarcity, leading to enhanced performances of
this weed underneath the canopy of competitor plants. The ability to
intercept the sunlight underneath the competitor canopies is functional
to the continuous production of propagules [58,59]. Differently from
M. polymorpha, the presence of P. aviculare (i.e., a non nitrogen-fixing
species) could have induced a high competition for nitrogen, thus
exacerbating the competitiveness toward wheat. These aspects under-
line that an appropriate knowledge of the weed dynamics in the field is
necessary to optimize weed management. It is also important to point
out that these results derive from one single growing season, which
could represent a limitation to the full understanding of weed dynamics.
Moreover, the RGB recognition could be expanded and improved by
using multispectral or hyperspectral images, which would allow us to
better discriminate among morphologically similar species [60,61].

Conclusions

Weeds are the most problematic biotic constraints for wheat pro-
duction. Herbicides have always been proven to be an effective solution
for weeds management, but the shortcomings from their widespread use
have been revealed overtime. Site-specific weed management is a
valuable tool that may limit problems associated to herbicides and
intensive use of chemicals in agriculture. Convolutional neural networks
can be implemented to enhance the efficacy of this strategy because they
can be used for early stage weed detection, improve our knowledge on
weed ecology and so helping us to understand the effects of weed den-
sity, weed biodiversity, and their community composition on crop yield
(Fig. 6).
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Fig. 6. Schematic representation of the possible output from the use of con-
volutional neural network. The weed classification can be useful to improve our
knowledge about ecology of weeds and their biodiversity, and at same time is
fundamental for the application of site-specific weed management.
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