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A B S T R A C T

We study the welfare effects of overreaction to information in markets with asymmetric information as well
as the impact of a simple intervention in the form of a tax or a subsidy on trade volume. A large enough
level of overreaction is always welfare decreasing: in these situations, introducing a tax can improve welfare.
However, a small degree of overreaction can increase welfare. This is because of the interplay of two competing
externalities: an information externality, due to the informational role of prices, and a pecuniary externality,
due to the allocative role of prices. Depending on the balance of these externalities, a trade volume subsidy
may be optimal.
ntroduction

Information aggregation is understood to be one of the fundamental
oles of markets—particularly financial markets. Consequently, a large
ody of literature addresses the welfare properties and social value
f information in markets, from Hayek (1945) to, e.g. Angeletos and
avan (2007). Therefore, it is crucial to understand how agents make
nferences from the information they receive: for example, traders in
inancial markets constantly update their beliefs about the valuations
f financial assets as a consequence of changes in market prices, fun-
amentals, and the choices of other traders. There is growing evidence
hat agents’ updating rules depart from Bayesian rationality in the form
f over- or underreaction to information. In this paper, we ask: how do
ver or underreaction impact welfare and informational efficiency in
inancial markets? Can a simple intervention, such as a tax or a subsidy,
itigate inefficiencies?

To formalize departures from Bayesian rationality in a parsimonious
ay, we rely on the memory-based model of diagnostic expectations,

ntroduced in Bordalo et al. (2018). When computing their posterior
istribution after observing an informative signal, diagnostic agents
djust their prior in the correct direction. However, overreacting agents
djust it by an excessive amount with respect to the Bayesian posterior;
nderreacting agents adjust it by an insufficient amount. The model is
 one-parameter deviation from Bayesian updating and is one of the
implest ways to reconcile anomalies in forecast data (Bordalo et al.,
020b) and experiments (Afrouzi et al., 2023).

✩ This paper was initially part of a different project titled ‘‘Learning, overreaction, and the wisdom of the crowds’’. We wish to thank for useful comments Nicola
ennaioli, Philip Matejka, Filippo Massari, Fabrizio Panebianco, Antonio Rosato, Alex Teytelboym, Fernando Vega-Redondo, Giovannni Immordino, Giacomo
attiston, Riccardo Franceschin and participants to the 2019 SMYE, the 2021 ASSET, the 2021 GRASS, and seminar participants in Bocconi and Napoli.
∗ Corresponding author.
E-mail address: matteo.bizzarri@unina.it (M. Bizzarri).

We embed overreacting agents in a market game in which there
is an asset of unknown valuation to be traded, and in which traders
submit conditional bids, or schedules, that depend on the market price
and a private signal. The price depends on private information via
market clearing, and so, in equilibrium, the price is an endogenous
signal of the value. Since the liquidity supply is stochastic, agents
are not able to learn the value perfectly from the price. We adopt
the tractable linear-quadratic Gaussian setting from (Vives, 2017). In
this context, we compute the welfare effect of the diagnostic bias,
showing that a moderate degree of over- or underreaction can be
welfare improving (our first contribution), and we show that if the
degree of overreaction is large enough, the introduction of a small tax
is welfare-improving (our second contribution).

Diagnostic expectations have been used to rationalize several facts
about macro-financial variables, such as credit cycles (Bordalo et al.,
2018), stock return puzzles (Bouchaud et al., 2019 and Bordalo et al.,
2018), interest rates (d’Arienzo, 2020), and the likelihood of a financial
crisis (Maxted, 2024). This literature is reviewed in Gennaioli and
Shleifer (2018). The majority of the papers above find that data are
consistent with overreaction to information. However, some papers
find that, in short time horizons, data display underreaction (Bouchaud
et al., 2019), and more generally the level of overreaction may depend
ttps://doi.org/10.1016/j.jmateco.2024.103067
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on the time horizon (d’Arienzo, 2020). Given that ours is an abstract
etting, we allow for different parameter values representing both over
nd underreaction.1

In our market game, there are two sources of information: the
private signal and the (public) market price. Formally, we adopt the
diagnostic expectations equilibrium of Bordalo et al. (2020a), in which
prices are formed in equilibrium given agents’ trade choices, and
gents correctly understand this mechanism, but their posterior ex-

pectation about the fundamental value is distorted due to over/under
reaction to both private information (the private signal) and public
information (the market price). In particular, in our context, the bias
does not come from (possibly partially) failing to realize that other
traders also understand the information contained in prices, as in the
‘‘cursed equilibrium’’ of Eyster et al. (2019) or the ‘‘partial equilibrium
hinking’’ of Bastianello and Fontanier (2023). The main difference
etween (Bordalo et al., 2020a) and our work is that their focus is on
ubbles rather than welfare and taxes.2

In a version of this model with standard Bayesian agents, Vives
(2017) highlights two competing externalities: a learning externality
and a pecuniary externality. The learning externality is present because
agents do not internalize that their actions change the informativeness
of the price as a signal of the underlying value, and thus reveal
information. The pecuniary externality is present because agents submit
schedules conditioning on the price, and so they also change how the
equilibrium price reacts to the underlying value. As a consequence, the
loading on private information can be either too high with respect to
the efficient benchmark (if the pecuniary externality prevails) or too
low (if the learning externality prevails). Both cases are possible for
different values of the parameters.

We characterize the equilibrium in Proposition 1. In equilibrium,
hen agents display overreaction, agents trade higher volumes for

he same private signal because they overweight the information it
ontains. As a consequence, they increase the informativeness of the

price as a public signal of the value. However, this increase is not
sufficient to offset the first-order effect on the private signal, and so
the loading on the private signal in agents’ actions is larger than it
would be for Bayesian agents. As a consequence, the price reveals more
information than in an economy with Bayesian agents, and the price
volatility is higher (Corollary 2.1). Therefore, overreaction changes
he relative importance of the learning and the pecuniary externalities
ith respect to the benchmark model: in particular, there are levels of

overreaction such that the loading on private or on public information
is at the efficient level, but never simultaneously (Proposition 2).

Having characterized the equilibrium, we study the effect of over-
reaction on welfare in Proposition 3. A small level of overreaction
can either increase or decrease welfare. A small level of overreaction
improves welfare when, in the Bayesian benchmark, the loading on
private information is inefficiently low (the learning externality is
stronger). Analogously, a small level of underreaction improves welfare
when, in the Bayesian benchmark, the loading on private information
is inefficiently high (the pecuniary externality is stronger). However,
for a large enough level of over/underreaction, a further increase in
the diagnostic bias in either direction always decreases welfare.

Finally, we explore whether introducing a small quadratic tax or
ubsidy can mitigate inefficiencies and improve welfare. Proposition 4

shows that a quadratic tax modifies the loadings on public and private
nformation, offering an (imperfect) instrument to affect the equilib-

rium allocation. In Proposition 5 we show that, when the overreaction
parameter is large enough, the introduction of a small tax is always

1 See also (Ba et al., 2022) for a discussion of over and underreaction and
a unifying modeling approach.

2 Moreover, they use a model with CARA utility and inelastic supply,
hereas, for tractability, we follow (Vives, 2017) by using a model with elastic

supply and quadratic utility.
2 
welfare-improving. This result can offer a rationalization of a Tobin-
type tax (Tobin, 1978) on financial transactions for reasons related to
the interaction of a behavioral bias (diagnostic expectations) and infor-
mational efficiency. These reasons are complementary to but distinct
both from arguments related to curbing speculation (as in Stiglitz, 1989
and Summers and Summers, 1989) and those arising from disagreement
in agents’ evaluations such as in Dávila (2023).3 When instead agents
underreact strongly enough, a small subsidy is optimal.4 When overre-
action is close to zero, the welfare effect of a tax depends on the balance
between the learning and pecuniary externalities. Consequently, the
model implications for the optimality of a tax depend on the degree
of agents’ overreaction to information.

Our work is related to three strands of literature: the literature on
verreaction and related biases in information processing; the liter-
ture studying taxes in the presence of behavioral biases, especially

on financial transactions; and the literature on the social value of
information. Our contribution is to show how overreaction can be
welfare-improving because it mitigates the learning externality: that, is,
overreaction can have a ‘‘social value’’. However, when overreaction is
large enough, it can rationalize a tax on financial transactions, even in
the presence of the learning externality. The literature on overreaction
in finance and macroeconomics has mostly focused on identifying and
measuring overreaction and its explanatory power for rationalizing
various macroeconomic phenomena (Bordalo et al., 2022). Some papers
ave explored macroeconomic policy under overreaction or exuber-
nce, such as (Maxted, 2024), which also finds a positive welfare effect,

albeit one that works through a balance sheet mechanism rather than
hrough the learning externality. Dávila and Walther (2023) explore

macro-prudential policy implications with extrapolative beliefs. The
act that overreaction mitigates the learning externality is similar to the
ffect of overconfidence in the social learning model of Bernardo and

Welch (2001): they study a simple sequential learning model instead
of a financial market, and therefore, only the learning externality is
resent in their setting, not the pecuniary externality.

The literature on behavioral finance has studied models that incor-
porate related biases in information processing. In the cursed equilib-
rium of Eyster et al. (2019) and Bayona and Manzano (2022), agents
neglect the informational content of the price. This can be seen as
an extreme form of underreaction to the price signal. Instead, in the
diagnostic expectation model we use, agents overreact or underreact
to all information in the same way. Eyster et al. (2019) did not study
welfare; while (Bayona and Manzano, 2022) showed that cursedness
can improve welfare. Mondria et al. (2022) studied costly information
processing, which has similar implications to underreaction to public
information in that agents do not consider adequately the information
n the price signal; however, while they show that this can give rise

to excess volatility, we imply the opposite because in our case, when
agents underreact, they do so with respect to both public and private
information. None of these papers focus on the effect of tax/subsidy
schemes.

Another related bias is overconfidence. The main difference be-
tween overreaction and overconfidence is that overconfident agents
overestimate the precision of their information, but their updating
is still Bayesian, as in: Kyle and Wang (1997), Bernardo and Welch
(2001), Sandroni and Squintani (2007), Daniel et al. (2001,?). There-
fore, overconfidence cannot explain the predictability of forecast errors
observed in the data (Bordalo et al., 2020b; Afrouzi et al., 2023).

3 The tax on financial transactions has been the subject of a long debate
nd is still an important issue in economic policy: first advocated by Keynes,
t is currently in place in multiple countries (such as the UK and Sweden), and
t has been the object of a European Commission official proposal since 2011.

4 These considerations stem purely from efficiency reasons: if there are
ther rationales for a tax, such as redistribution, then the case in which a

subsidy is optimal could be interpreted as a case in which a smaller tax is
optimal.
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Moreover, even if the posterior is biased in the same direction in both
models, the posterior expectation is still a convex combination of the
prior and the signals, whereas the expectation of overreacting agents
can overshoot and lie outside of the convex combination. Bordalo et al.
(2022) use this observation to argue that overreaction can rationalize
facts about the behavior of bubbles that overconfidence cannot. Again,
none of these papers focus on the effect of tax/subsidy schemes.

While the taxation literature has studied various behavioral biases,
for example, related to attention and salience as in Goldin (2015),
Moore and Slemrod (2021), Farhi and Gabaix (2020), the literature
specifically on taxation of financial transactions has mostly focused
on rational models: Auerbach and Bradford (2004), Rochet and Biais
(2023), Adam et al. (2017), Buss et al. (2016), and at most with hetero-
geneous priors as in Dávila (2023). The literature on the social value of
nformation has also mainly focused on Bayesian agents, e.g. Angeletos

and Pavan (2007, 2009), Bayona (2018), Colombo et al. (2014). An
xception is (Ostrizek and Sartori, 2021), who study a strategic setting

in which agents follow the cursed equilibrium model of Eyster and Ra-
in (2005), Eyster et al. (2019), showing that cursedness can improve

welfare: their mechanism works through information acquisition and
ot through the pecuniary externality like ours.

The next section introduces the model, Section 2 describes the equi-
librium characterization, Section 3 describes our results, and Section 4
concludes. All proofs are in Appendix.

1. The model

Our model closely follows (Vives, 2017) in its financial market
interpretation, except for the behavioral bias due to diagnostic expec-
ations.5 We consider a financial market to be populated by informed

speculators and liquidity suppliers. There is only one asset traded.

Informed agents. There is a continuum of informed speculators indexed
y 𝑖 ∈ [0, 1], distributed uniformly. Informed speculators face quadratic
ransaction costs. Each of them can decide their position 𝐷𝑖 with respect
o the only asset exchanged, where short sales are allowed (𝐷𝑖 can be
egative).

The profit of an informed agent 𝑖 holding 𝐷𝑖 units of the asset when
the market price is 𝑝 is:

𝑢𝑖(𝐷𝑖, 𝑝, 𝑉 ) = (𝑉 − 𝑝)𝐷𝑖 −
1
2
𝛾 𝐷2

𝑖 ,

where 𝑉 is the (unobservable) fundamental value of the asset, and the
quadratic term represents transaction costs. Equivalently, it can be con-
sidered a form of (non-constant) risk aversion.6 Informed speculators
ave a prior over the fundamental value 𝑉 , which is Gaussian: 𝑉 ∼

 (0, 𝜏−10 ). They also have access to a private signal 𝑠𝑖 that, conditional
on 𝑉 , follows a Gaussian distribution: 𝑠𝑖 ∣ 𝑉 ∼ 

(

𝑉 , 𝜏−1𝜀
)

. Moreover,
𝑠𝑖 is independent of 𝑠𝑗 for 𝑖 ≠ 𝑗, conditionally on 𝑉 : 𝑠𝑖 ⟂ 𝑠𝑗 ∣ 𝑉 .

In the following, various steps involve the integration of a contin-
um of random variables over [0, 1]. We follow the literature defin-
ng the integral over a continuum of independent random variables
𝑋𝑖)𝑖∈[0,1] as ∫ 𝑋𝑖d𝑖 ∶= ∫ E(𝑋𝑖)d𝑖 whenever the map E(𝑋𝑖) is integrable

(which is always the case in our setting).7 So, a form of the Law of Large
umbers holds, so that, conditionally on 𝑉 , we have ∫ 𝑠𝑖d𝑖 = 𝑉 . The
aw of Large Numbers is going to be the only property of this integral

5 Vives (2017) studies different interpretations of the same abstract model,
one being agents in a financial market, and another firms competing in
chedules. For our purposes, we stick to the interpretation of agents trading
n a financial market.

6 The quadratic functional form makes the model very tractable. A similar
pproach is followed in Vives (2014).

7 See Vives (2010).
3 
we need.8 We denote the total demand from all informed agents as
𝐷 = ∫ 𝐷𝑖d𝑖.

Liquidity suppliers. As in Vives (2017), liquidity suppliers have an elas-
tic supply function. In particular, they trade according to the aggregate
(inverse) supply function 𝑝 = −𝜇𝑆 − 𝑆 + 𝛽𝐷. 𝑆 is a random variable
distributed as 𝑆 ∼  (0, 𝜏−1𝑆 ), representing the noise in the demand.
The parameter 𝜇𝑆 is a constant that we can think of as a shifter of
the random variable 𝑆, which we include for generality but which has
little effect on the efficiency properties. Instead, the slope of the supply
𝛽 > 0 is going to be important because it regulates how prices react
to quantities and the strength of both the learning and the pecuniary
externalities. Classic noise traders, as in Grossman and Stiglitz (1980),
re a special case of this specification in which 𝛽 → ∞, 𝜏𝑆 → ∞, and
𝑆𝛽2 = 𝜏′𝑆 > 0. In this case, the aggregate supply is independent of
rices and is simply a random variable with precision 𝜏′𝑆 .

Diagnostic expectations. To trade, agents form posteriors on the asset
alue 𝑉 by updating their prior, using the private signal 𝑠𝑖 and also

the information contained in the price 𝑝. Crucially, their posteriors
are not Bayesian but instead follow the diagnostic expectations model
of Bordalo et al. (2018). The model is a parsimonious characterization
f Kahneman and Tversky (1972) ‘‘representativeness heuristic’’. When
orming posterior beliefs, agents overweight representative ‘‘traits’’ of

the signals observed, which are traits that are objectively more likely
for the signal observed with respect to a benchmark. This idea can be
pplied to any context in which agents form beliefs after observing in-
ormation. Indeed, the representativeness bias is consistent with biased
eliefs in a variety of domains, from stereotypes (Bordalo et al., 2016),
o race (Arnold et al., 2018). In our context, as explained in detail

below, agents update their beliefs over the fundamental value of an
asset when observing some signal of its value. They have as a bench-
mark the ex-ante expected value of the signal, and when they observe
a signal higher than the benchmark, they find this representative of
a high fundamental value. Therefore, following the representativeness
bias, they overestimate the posterior probability of a high fundamental
with respect to a pure Bayesian agent.

The model can be microfounded based on friction in memory re-
rievals (Bordalo et al.,2023a), costly information processing (Afrouzi
t al., 2023), or rational inattention (Gabaix, 2019). The details depend

on the specific case, but a general idea is that failure to properly take
into consideration all the past information can generate overreaction to
the most recent information.

We follow the formalization of Bordalo et al. (2016), and espe-
ially (Bordalo et al., 2018), which applies it to financial markets and

introduces the so-called diagnostic expectations model. In the setting
just introduced, the representativeness heuristic consists in the fact
that, when estimating the posterior distribution of the asset value 𝑉 ,
after observing the information 𝐺 = (𝑠𝑖, 𝑝), the posterior density 𝑓 (𝑉 |𝐺)
is inflated/deflated by (an increasing function of) the likelihood ratio
𝑓 (𝑉 |𝐺)
𝑓 (𝑉 |𝐺0)

, measuring how much the realization 𝐺 is representative of high
values of 𝑉 with respect to a benchmark value 𝐺0. In particular, the
distorted posterior density 𝑓 𝜃(𝑉 ∣ 𝐺) is, up to a normalization constant,
equal to:

𝑓 𝜃(𝑉 ∣ 𝐺) ∝ 𝑓 (𝑉 ∣ 𝐺)
(

𝑓 (𝑉 |𝐺)
𝑓 (𝑉 |𝐺0)

)𝜃
. (1)

The parameter 𝜃 ∈ (−1,∞) modulates the strength of the effect. The
case of Bayesian agents corresponds to 𝜃 = 0. For 𝜃 > 0 when 𝑓 (𝑉 |𝐺) >
𝑓 (𝑉 |𝐺0), agents overestimate 𝑓 (𝑉 |𝐺): this is the case of overreaction.
For 𝜃 → ∞, agents completely neglect the prior. For 𝜃 < 0, we instead

8 The most commonly used approach to formalize the integral over a
ontinuum of random variables is the one of Uhlig (1996). Since the only

property we are going to need is the Law of Large Numbers, we avoid these
technical issues and directly assume it.
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obtain under -reaction: agents revise their priors less than a Bayesian
would; for 𝜃 → −1, agents do not revise their prior at all. Accordingly,
it is common to consider the meaningful range of 𝜃 as (−1,∞). We allow
for both overreaction and underreaction, since both have been found to
be consistent with the data (even if underreaction occurs only within a
very short time horizon, Bouchaud et al., 2019).

In the financial market application, the diagnostic expectations
model uses as the benchmark 𝐺0 a pair of signals that exactly confirms
the prior expectation: (E𝑠𝑖,E𝑝). The idea is that an above-average signal
is more representative of a good underlying fundamental 𝑉 than a
ignal equal to the ex-ante expectation.

Bordalo et al. (2020a) show that when the prior and the signal
istribution follow a Gaussian distribution (as in our setting), the di-
gnostic expectation bias yields posterior beliefs that follow a Gaussian

with the same variance as the Bayesian posterior, but expectation equal
to:

E𝜃(𝑉 ∣ 𝐺) ∶= E(𝑉 ∣ 𝐺) + 𝜃(E(𝑉 ∣ 𝐺) − E(𝑉 )). (2)

If agents overreact (𝜃 > 0) when the information leads them to revise
their prior expectation upwards (E(𝑉 ∣ 𝑠𝑖, 𝑝) > E(𝑉 )), they revise it
upwards more than a Bayesian would: E𝜃(𝑉 ∣ 𝑠𝑖, 𝑝) > E(𝑉 ∣ 𝑠𝑖, 𝑝).
However, if the information leads to a downward revision (E(𝑉 ∣ 𝑠𝑖, 𝑝) <
E(𝑉 )), they revise it downwards more than a Bayesian would: E𝜃(𝑉 ∣
𝑠𝑖, 𝑝) < E(𝑉 ∣ 𝑠𝑖, 𝑝). If agents underreact (𝜃 < 0), agents instead revise
their priors less than a Bayesian would.

Equilibrium. Agents compete choosing demand schedules—that is,
functions 𝐷𝑖, which map values of the private signal 𝑠𝑖 and the price 𝑝
into real numbers 𝐷𝑖(𝑠𝑖, 𝑝), represent the net demand of agent 𝑖.

We follow (Bordalo et al., 2020a) in looking for a diagnostic expec-
ations equilibrium that is analogous to the Bayesian Nash equilibrium
f the game in schedules of Vives (2017), except that agents are not

Bayesians but have diagnostic expectations. Namely, we look for a set
of demand schedules 𝐷𝑖 and a pricing function 𝑃 that satisfy:

1. Individual optimization: the demand function 𝐷𝑖 maximizes the
(diagnostic) expected utility of the trader 𝑖 given the observation
of the private signal 𝑠𝑖 and the price 𝑝, formally: 𝐷𝑖(𝑠𝑖, 𝑝) ∈
ar g max𝑥𝑖{E

𝜃 ,𝑖[𝑢𝑖(𝑥𝑖, 𝑝, 𝑉 ) ∣ 𝑠𝑖, 𝑃 (𝑆 , 𝑉 ) = 𝑝]};
2. Market clearing: the pricing function clears the market; that is,

the relation 𝑃 (𝑆 , 𝑉 ) = −𝜇𝑆 − 𝑆 + 𝛽 ∫ 𝐷𝑖(𝑃 (𝑆 , 𝑉 ), 𝑠𝑖)d𝑖 holds for
any realization of 𝑆, 𝑉 , and each 𝑠𝑖.

Similar to Vives (2017), we restrict attention to linear equilibria,
amely equilibria where the function 𝑃 is linear (or, more exactly,
ffine).

The welfare measure. We follow (Vives, 2017) in expressing our welfare
easure as the expected total surplus and, moreover, in expressing
elfare evaluations in terms of welfare loss relative to the first-best
llocation. The surplus is the informed trader surplus plus the surplus
f the liquidity suppliers (defined as is standard as the area below the

supply curve).9

𝑊 = E
(

(

𝜇𝑆 + 𝑆 − 𝛽 1
2
𝐷
)

𝐷 + ∫

(

𝑉 𝐷𝑖 −
𝛾
2
𝐷2

𝑖

)

d𝑖
)

. (3)

In this context, if agents could pool their information, they would
learn 𝑉 perfectly, since by the law of large numbers ∫ 𝑠𝑖d𝑖 = 𝑉 . There-
ore, if agents are allowed to pool information, the first-best allocation
s the complete information allocation. The first-best allocation solves:
ax𝐷𝑖

𝑊 . Since the agents are ex-ante identical the first-best allocation

9 If we were to exclude the liquidity traders from welfare calculations, there
would still be a scope for intervention, since (Vives, 2017) shows that the
earning and pecuniary externality would still be present, even if the precise
xpression would change.
 a

4 
is the same across all agents, and we denote it 𝐷𝑜. We denote 𝑊 𝑜 as the
ggregate welfare in this allocation; and we denote the welfare loss of
ome allocation (𝐷𝑖)𝑖∈[0,1] from the first best as 𝑊 𝐿 = 𝑊 𝑜 −𝑊 , where

is the welfare in allocation (𝐷𝑖)𝑖∈[0,1].
The following lemma from Vives (2017) characterizes the welfare

loss relative to the first best:

Lemma 1.1. At the allocation (𝐷𝑖)𝑖∈[0,1] the welfare loss relative to the
irst best allocation 𝐷𝑜 is

𝑊 𝐿 = E(𝑊 𝑜 −𝑊 ) = (𝛽 + 𝛾) 1
2
E(𝐷 −𝐷𝑜)2 +

𝛾
2
E∫ (𝐷𝑖 −𝐷)2d𝑖. (4)

Note that the expectations that appear in the expression are all taken
from the perspective of Bayesian agents. In doing this, we interpret the
agents’ deviation from the Bayesian benchmark as a proper ‘‘mistake’’,
not as a taste or preference feature, following a standard approach
in the behavioral economics literature (e.g. O’Donoghue and Rabin
(2006), Spinnewijn (2015)) and in the survey by Mullainathan et al.
(2012).10

The interpretation of the above expression is that the welfare loss re-
sults from two parts that Angeletos and Pavan (2007) call, respectively,
‘‘variance’’ and ‘‘dispersion’’. The first part represents the departure of
the aggregate demand from its first-best level; the second part repre-
sents the cross-sectional dispersion of trades across agents. The effect
of information (and thus overreaction to information) results from this
trade-off: precise information means a small aggregate deviation from
the first best, but a large dispersion, because precise information means
traders trade more aggressively. The welfare impact of overreaction
will result from this fundamental trade-off.

2. Equilibrium characterization

In this section, we illustrate the equilibrium and the welfare bench-
mark.

The optimal trade of agent 𝑖 is:

𝐷𝑖(𝑠𝑖, 𝑝) = 1
𝛾
(

E𝜃 (𝑉 ∣ 𝑠𝑖, 𝑝
)

− 𝑝
)

. (5)

We focus on the unique equilibrium with a linear pricing function. In
this equilibrium, the equilibrium strategy 𝐷𝑖 is an affine function of
𝑖 and 𝑝. To highlight the different roles that private information and
ublic information play, a convenient representation of the net trade
5) is:

𝐷𝑖(𝑠𝑖, 𝑝) = 𝛼 𝑠𝑖 + 𝜂E(𝑉 ∣ 𝑝) − 𝜂𝑝𝑝, (6)

where E(𝑉 ∣ 𝑝) is the Bayesian posterior after observing only the price
, 𝛼 is the loading on private information, 𝜂 is the loading on public
information, and 𝜂𝑝 is the loading on the price. Here and in the following,
it will be useful to define the precision of public information as 𝜏(𝛼) =
𝜏0 + 𝛼2𝛽2𝜏𝑆 . The Proposition below shows the equilibrium value of the
loadings in the diagnostic expectations equilibrium.

Proposition 1. There is a unique diagnostic expectation equilibrium with
linear pricing function 𝑃 (𝑆 , 𝑉 ) = 𝐴 +𝐵 𝑉 − 𝐶 𝑆. In this equilibrium, trades
hosen by each agent have the form of Eq. (6), where:
𝛼 = 𝑎(𝜃 + 1) 𝜂 = (𝜃 + 1) 1 − 𝛾 𝑎

𝛾
𝜂𝑝 =

1
𝛾

(7)

and 𝑎 is the unique real solution of the equation:
𝛾 𝑎 =

𝜏𝜀
𝜏𝜀 + 𝜏(𝑎(𝜃 + 1)) . (8)

10 There is another, more conceptual reason. To compute the ex-ante welfare
rom the perspective of a diagnostic decision-maker would require specifying

how the decision-maker predicts her future behavior once she receives the
information: is she aware of her bias or not? This would require considerably
more assumptions than simply computing the welfare from the perspective of

 Bayesian agent, so we follow the latter approach.
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The expressions for the coefficients 𝐴, 𝐵, 𝐶 and for E(𝑉 ∣ 𝑝) are given
y Eqs. (14) and (15) in the Proof in Appendix.

2.1. Properties of the equilibrium with diagnostic expectations

We collect some of the positive properties of the equilibrium in the
next Corollary.
Corollary 2.1. In equilibrium, the following properties hold:

1. The sensitivity to private information 𝛼 is increasing in 𝜃;
2. The precision of the price as a signal of the value 𝐵2∕𝐶2𝜏𝑆 is
increasing in 𝜃;

3. The volatility of the price 𝑉 𝑎𝑟(𝑝) is increasing in 𝜃.

Point 1 yields the fundamental mechanism of what follows: over-
reaction increases the sensitivity to private information. This is imme-
diate by construction when fixing the precision of the public signal,
but, in equilibrium, overreaction also affects its precision because more
information is revealed. This indirect effect on the precision of the
price, however, is not strong enough to counteract the main effect, and
o the loading 𝛼 increases in 𝜃.

Point 2 shows that the price reacts more to the true value than
t would in the Bayesian case. This is because with overreaction the
ensitivity to private information is higher, and therefore, the precision
f the price as a signal of the value is higher: this is analogous to what
appens in the model of Bordalo et al. (2020a).

Point 3 shows that the price displays excess volatility under overre-
ction. This is because overreaction induces agents to trade more ag-

gressively, thereby generating larger price movements. Excess volatility
of financial markets is a well-known empirical regularity. This result
shows that, in our setting, excess volatility can be rationalized by
overreaction to information, as in Bordalo et al. (2023b, 2022).

3. The effect of overreaction on welfare

In this section, we study the effect of overreaction. First, as a
enchmark, we illustrate the welfare analysis of the Bayesian model
ith 𝜃 = 0.

3.1. The Bayesian benchmark

Define 𝑎∗ as the loading on the private signal at the market solution
n the Bayesian benchmark: that is the solution of Eq. (8) for 𝜃 = 0.
efine 𝑎𝑇 as the solution of:

𝑎𝑇 =
𝜏𝜀

𝛾(𝜏(𝑎𝑇 ) + 𝜏𝜀) + 𝛽 𝜏(𝑎𝑇 ) − 𝛥(𝑎𝑇 )
,

where 𝛥(𝑎𝑇 ) = (1−𝛾 𝑎𝑇 )2𝛽2𝜏𝑆 𝜏𝜀
𝛾 𝜏(𝑎𝑇 ) . Vives (2017) shows that the market

olution is second-best efficient if and only if 𝑎∗ = 𝑎𝑇 , where second-
est efficient means the optimal decentralized linear strategy, assuming

that agents cannot pool their private information. We also call it team
solution. In particular, using the fact that in the market solution when
the loading on private info is 𝑎 and the loading on public information
is 𝜂 = (1 − 𝛾 𝑎)∕𝛾, we can think of the welfare loss as a function of 𝑎:
d𝑊 𝐿
d𝑎 > 0 ⟺ 𝑎∗ > 𝑎𝑇 . In particular, the loading on private information

at the market equilibrium 𝑎∗ can either be too high or too low from a
elfare perspective. This is because of the interplay between a learning
xternality and a pecuniary externality. The learning externality derives
rom the informational role of the price and is well understood: agents’
ecisions to trade reveal information to other agents through the price,

but agents do not internalize this effect in the market equilibrium. This
force pushes the sensitivity 𝑎∗ to be too low with respect to the second
best. The pecuniary externality derives from the allocative role of the
price, and it derives from the fact that agents’ decisions affect how the
price correlates to the true value 𝑉 , but they do not internalize this in
the market equilibrium. This externality pushes the sensitivity 𝑎∗ to be
too large. In summation:
 l
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1. if 𝑎𝑇 > 𝑎∗, the learning externality is stronger and the market
equilibrium is inefficient;

2. if 𝑎𝑇 < 𝑎∗, the pecuniary externality is stronger and the market
equilibrium is inefficient;

3. if 𝑎∗ = 𝑎𝑇 the two externalities exactly balance each other and
the market equilibrium maximizes welfare.

3.2. Overreaction and the information loadings

The reason why it is sufficient to look at the loading on private
information in the Bayesian case is that in the second-best (team)
solution, the loading on public information has the same relation with
the loading on private information, as in the market equilibrium: 𝜂 =
1
𝛾
− 𝑎𝑇 . As a consequence, the loading on public information is at the

second-best level if and only if the loading on private information is at
the second-best level; and when the loading on private information is
higher than the efficient level, the loading on public information is too
low and vice versa. This breaks down with diagnostic expectations: it is
ossible that both loadings are too high or too low with respect to the
fficient benchmark. The next Proposition characterizes this behavior.

Proposition 2.
1. There is a unique value 𝜃′ such that the loading on private informa-
tion is at the efficient level: 𝛼(𝜃′) = 𝑎𝑇 . Moreover, 𝜃′ > 0 if and only
if in the Bayesian benchmark 𝑎∗ < 𝑎𝑇 .

2. There is a unique value 𝜃′′ such that the loading on public informa-
tion is at the efficient level: 𝜂(𝜃′′) = 1

𝛾
−𝑎𝑇 . Moreover, 𝜃′′ > 0 if and

only if in the Bayesian benchmark 𝑎∗ > 𝑎𝑇 ;
3. The two values are the same, 𝜃′ = 𝜃′′, if and only if agents are
Bayesians: 𝜃′ = 𝜃′′ = 0, and the Bayesian benchmark is efficient:
𝑎∗ = 𝑎𝑇 .

The Proposition clarifies the key trade-off of an increase in overre-
action: the welfare effect depends on the balance of the effect on the
loading on private and public information. If the learning externality is
stronger in the Bayesian benchmark, so that 𝑎∗ < 𝑎𝑇 , then a sufficiently
strong level of overreaction is always sufficient to reproduce the effi-
cient loading on private information. When the pecuniary externality
is stronger (𝑎∗ > 𝑎𝑇 ), a sufficiently high level of underreaction can
reproduce the efficient loading on private information. An analogous
fact is true for the loading on public information, but crucially, part
(3) clarifies that no distortion 𝜃 can reproduce the efficient level for
both.

3.3. Welfare decomposition

The endogenous loadings on private and public information 𝛼 and
𝜂 are critical to understanding the efficiency properties of the equi-
librium. In the following Lemma, we provide a decomposition of the
welfare loss that is going to be useful in the following.

Lemma 3.1. In equilibrium, we can decompose the welfare loss (3) as
𝑊 𝐿 = 𝑊 𝐿𝐵 +𝑊 𝐿𝐷:

𝑊 𝐿𝐵 = 1
2
(1 − 𝛾 𝛼)2
(𝛽 + 𝛾)

1
𝜏
+

𝛾 𝛼2
2𝜏𝜀

(9)

𝑊 𝐿𝐷 =
(1 − 𝛾 𝛼 − 𝛾 𝜂)2

2(𝛽 + 𝛾)

(

1
𝜏0

− 1
𝜏

)

, (10)

where 1 − 𝛾 𝛼 − 𝛾 𝜂 = 𝜃.

The first term, 𝑊 𝐿𝐵 , is the welfare loss that would occur for
Bayesian agents having loading on private information equal to 𝛼.
The second term, 𝑊 𝐿𝐷, represents the additional bias that diagnostic
expectations add beyond the change in 𝛼. It represents the welfare
oss due to the inefficient relation between the loading on private



M. Bizzarri and D. d’Arienzo

v

w
B

t

c
i
w

a

s
t
p
t
i
B
a
i
e

i

l
s
o
w
r
T
w

I
c

t
d

d

i
d

s
e
w
t
p
d
s

t
i
i

h
u
t

k

c

Journal of Mathematical Economics 115 (2024) 103067 
information and the loading on public information. In the Bayesian
benchmark and team solution, 𝜂 = 1

𝛾
− 𝛼, so the term 𝑊 𝐿𝐷 vanishes.

Instead, with diagnostic expectations, we have 1 − 𝛾 𝛼 − 𝛾 𝜂 = 𝜃. In
particular, this term comes from the fact that the weight of public
information will overshoot or undershoot with respect to the optimal
alue, depending on whether 𝜃 > 0 or 𝜃 < 0. This is useful to separate

the direct effect of overreaction from the effect on the loading 𝛼.

3.4. Welfare effect

The following proposition characterizes the effect of overreaction
on welfare.

Proposition 3.
1. A small overreaction improves welfare if and only if the loading
on private information is too small in the Bayesian benchmark.
Formally: in 𝜃 = 0 we have:
d𝑊 𝐿
d𝜃

∣𝜃=0> 0 ⟺ 𝑎∗ > 𝑎𝑇 .

2. If overreaction is large enough, a further increase hurts welfare;
and the analogous is true for underreaction. Formally: there are
thresholds 𝜃∗, 𝜃∗ such that for 𝜃 > 𝜃∗ we have d𝑊 𝐿

d𝜃 > 0, and for
𝜃 < 𝜃∗ we have d𝑊 𝐿

d𝜃 < 0.

The proposition shows that, when overreaction is close to zero, its
elfare impact depends solely on the balance of externalities in the
ayesian case: in particular, if 𝑎∗ < 𝑎𝑇 , so that the learning externality

prevails, overreaction is welfare improving. The key mechanism driv-
ing the result is that overreaction increases the sensitivity to private
information 𝛼 = 𝑎(𝜃 + 1), and it also increases the sensitivity to public
information 𝜂 (as Proposition 2 describes):
d𝑊 𝐿
d𝜃

= 𝜕 𝑊 𝐿
𝜕 𝛼

d𝛼
d𝜃

+ 𝜕 𝑊 𝐿𝐷

𝜕 𝜂
d𝜂
d𝜃

.

The increase of 𝛼 has the effect of making the price more sensitive
o the true value, which has two implications. First, this makes the

price a better signal of the value, mitigating the information exter-
nality. Second, it exacerbates the pecuniary externality. The increase
in 𝜂, instead, has only the effect of increasing the term related to the
over/undershooting of expectations 𝑊 𝐿𝐷. From Lemma 3.1, we can
onclude that the loading on public information affects only 𝑊 𝐿𝐷, and
ndeed the term 𝑊 𝐿𝐷 is minimized for 𝜂 = 1 − 𝛾 𝛼, which is true only
hen 𝜃 = 0.11 This is because the precision of public information is

only affected by the loading 𝛼, not 𝜂. As a consequence, 𝜕 𝑊 𝐿𝐷

𝜕 𝜂 ∣𝜃=0= 0
nd also 𝜕 𝑊 𝐿𝐷

𝜕 𝛼 ∣𝜃=0= 0; additionally, since d𝛼
d𝜃 > 0 by Corollary 2.1, we

have:

𝑠𝑔 𝑛
( d𝑊 𝐿

d𝜃

)

= 𝑠𝑔 𝑛
(

𝜕 𝑊 𝐿
𝜕 𝛼

d𝛼
d𝜃

+ 𝜕 𝑊 𝐿𝐷

𝜕 𝜂
d𝛼
d𝜃

)

= 𝑠𝑔 𝑛
(

𝜕 𝑊 𝐿𝐵

𝜕 𝛼
)

.

The sign of the welfare impact is given by the sign of 𝜕 𝑊 𝐿
𝜕 𝛼 , which

is positive if and only if the pecuniary externality is stronger at the
Bayesian benchmark from Proposition 2.

When the overreaction parameter is far from 0, the term 𝑊 𝐿𝐷 in-
tead becomes important. This term incorporates the expected mistake
hat agents make in overestimating (underestimating) 𝑉 when they get
ositive (negative) information. The second part of the Proposition says
hat if the overreaction parameter 𝜃 and the consequent expected error
s large enough, positive or negative, then moving further from the
ayesian benchmark can only reduce welfare. To sum up: a limited
mount of overreaction can have a positive effect, depending on the
nterplay of prediction error, information externality, and pecuniary
xternality.

11 This can also be seen from the fact that the term 𝑊 𝐿𝐷 is second order
n 𝜃.
 w
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In Fig. 1, we can see a graphical representation of the welfare
oss as a function of 𝜃 for different values of the parameters. In both
ubfigures, the blue line represents the total welfare loss 𝑊 𝐿, the
range line represents 𝑊 𝐿𝐵 , the horizontal green line represents the
elfare loss at the decentralized market equilibrium for 𝜃 = 0, and the

ed line represents the welfare loss at the second-best (team) solution.
he optimal value of 𝜃 is denoted 𝜃∗. In both the above figures, the
elfare loss is convex, so we find that the two thresholds identified in

Proposition 3 are the same: 𝜃∗ = 𝜃∗. The minimum of the welfare loss
𝑊 𝐿𝐵 is reached for the value 𝜃′ of Proposition 2, such that 𝑎∗(𝜃′) = 𝑎𝑇 .
n the left panel (Fig. 1(a)), the parameters are such that 𝑎∗ < 𝑎𝑇 :
onsistent with Proposition 3, the graph shows that around 𝜃 = 0, a

small increase in overreaction decreases the welfare loss. Actually, the
graph shows more: there is an optimal overreaction level 𝜃∗ > 0. As
explained above, the mechanism works through overreaction increasing
the loading on private information. However, since also the loading on
public information increases, we have that the value of 𝜃′, where the
loading on private information is at the efficient level, is too large: at
that level, the welfare loss is increasing again. Indeed, the optimal value
of overreaction is reached for a value 𝜃∗ smaller than 𝜃′. Analogously,
in the right panel (Fig. 1(b)), the parameters are such that 𝑎∗ > 𝑎𝑇 , so
he pecuniary externality prevails, and indeed around 𝜃 = 0, a small
ecrease in 𝜃 improves welfare.

3.5. Policy

We have seen that, in this economy, there are multiple inefficiencies
ue to the fact that agents might trade too much or too little relative

to what would be the optimum, given their private signals. These
nefficiencies are already present in the Bayesian case: moreover, the
iagnostic bias can exacerbate (or not) these inefficiencies. Since the

inefficiencies stem from the departures of the amounts traded from the
econd best, we now explore whether a tax (or subsidy) on quantities
xchanged can be used to correct the inefficiencies and provide higher
elfare. Vives (2017) shows that, in the Bayesian case, a quadratic

ax/subsidy can implement the second-best level of the loading on
rivate information 𝑎𝑇 . In this section, we ask a related question: when
oes the introduction of a small tax improve welfare, and when does a
mall subsidy do so instead?12

A linear tax/subsidy here cannot improve welfare. Indeed, a linear
tax would simply shift uniformly all the demands, but would leave
he loading on private and public information unaffected. Therefore,
t would simply add an additional term 𝑡2 to the welfare loss, thereby
ncreasing the volatility term: as a consequence, the introduction of a

linear tax/subsidy would never be optimal. The natural next step is to
explore a quadratic tax/subsidy 𝛿.

Formally, we assume that when agents trade a volume |𝐷𝑖|, they
ave to pay an additional amount 1

2 𝛿 𝐷2
𝑖 , where if 𝛿 < 0, this is

nderstood to be a subsidy. Both buyers and sellers have to pay the
ax. So, the payoff of the informed speculators becomes:

𝑢𝑖 = (𝑉 − 𝑝)𝐷𝑖 −
1
2
(𝛾 + 𝛿)𝐷2

𝑖 .

We assume 𝛿 > −𝛾 so that the problem of the agents remains concave.
Since the tax is levied also on the liquidity suppliers, the inverse
demand becomes: 𝑝 = −𝜇𝑆 − 𝑆 + (𝛽 + 𝛿)𝐷. In the next subsection, we
show that the results are qualitatively the same if the tax is levied on
informed speculators only.

12 As discussed in the introduction, a tax on financial transactions is a well-
nown idea. An example of a policy that can be compared to a subsidy is the

tax incentive for investment in retirement plans and pension funds, present in
many countries: for example, the tax-deductibility of 401(k) plan contributions
in the USA (Engen and Gale, 2000); similar policies are present in many
ountries, such as Italy and the UK (Whitehouse, 2005). These are not exactly

subsidies on trading volume, but on investment: however, our setting is one
here we cannot distinguish investment from financial speculation.
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Fig. 1. A graphical representation of the welfare loss as a function of 𝜃 for different values of the parameters.
We follow the assumption in Vives (2017) that the revenues/
payments from this tax/subsidy are rebated in a lump-sum amount 𝑇
to satisfy the budget balance. As such, the rebate 𝑇 does not affect the
optimal choice of the agents. In the model with a tax/subsidy, to obtain
the demand of agent 𝑖 we simply have to substitute 𝛾+𝛿 to 𝛾 and 𝛽+𝛿 to
𝛽 in Eq. (7): the expressions can be found in Eq. (16) in the Appendix.

The total amount paid by informed speculators is 𝛿
2 ∫ 𝐷2

𝑖 d𝑖, the one
paid by the liquidity suppliers is 𝛿

2𝐷
2
, and the total revenues collected

must equal the rebate, so: 𝑇 = 𝛿
2 ∫ 𝐷2

𝑖 d𝑖 +
𝛿
2𝐷

2
. The welfare loss with

respect to the first best is:
𝑊 𝑜 −

(

𝑊 − 𝛿
2
𝐷

2
− 𝛿

2 ∫ 𝐷2
𝑖 d𝑖 + 𝑇

)

= 𝑊 𝑜 −𝑊

because the additional terms cancel out thanks to the budget balance
condition. Therefore, the welfare loss satisfies the same expression
as Eq. (4): this is because the welfare loss is computed from the
perspective of a Bayesian agent.13

The effect of the tax is to reduce the incentive to trade: this means
that a higher tax affects both the loading on private information and the
loading on public information. In the following, the loadings are always
functions of 𝛿, so we suppress the functional dependence to lighten the
notation. The next Proposition characterizes the effect of the tax on the
loadings.

Proposition 4. In the diagnostic expectation equilibrium of the model with
the tax/subsidy 𝛿, we have:

1. The loading on private information 𝛼 is decreasing in the tax: d𝛼
d𝛿

<
0. Moreover, there always exist a unique 𝛿∗ such that 𝛼(𝛿∗) = 𝑎𝑇 .

2. The loading on public information 𝜂 can be both increasing or
decreasing in 𝛿.

3. The loading on the price 𝜂𝑝 is decreasing in 𝛿:
d𝜂𝑝
d𝛿

< 0.

4. The equilibrium is second-best efficient if and only if 𝜃 = 0, 𝑎∗ = 𝑎𝑇

and 𝛿 = 0.

The tax tends to decrease the loadings because it tends to decrease
trade. Indeed, the loading on private information 𝛼 is decreasing in the
tax. However, the tax has an ambiguous effect on the informativeness
of the price, 𝐵2∕𝐶2 = 𝛼2(𝛽 + 𝛿)2, because it increases the slope of
the demand 𝛽 + 𝛿. Therefore, since it can increase the precision of

13 Notice that this is a key difference with respect to the equilibrium trades,
in which the loadings are obtained substituting 𝛾 + 𝛿 to 𝛾 and 𝛽 + 𝛿 to 𝛽.
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public information, it has an ambiguous effect on the loading on public
information 𝜂.

Point (1) shows that it is always possible to find a tax level 𝛿∗ that
implements the second-best level of the loading on private information,
meaning that 𝛼(𝛿∗) = 𝑎𝑇 . However, since the tax distorts all the
loadings, including the price loading, there is no tax level that can
achieve second-best efficiency. This is easiest to see when noting that
the second-best efficient loading on the price is equal to 1∕𝛾, so the only
tax that can achieve it is 𝛿∗ = 0, even in the Bayesian case 𝜃 = 0, since
the price loading does not depend on 𝜃. Then point 4 follows from the
case without tax studied in Proposition 2.

If we cannot achieve the second best, can we at least improve
welfare with a tax/subsidy? The next Proposition affirms that we can.
It shows the expression of the welfare loss in the equilibrium with the
tax, shows that there is always a finite optimal level of tax/subsidy, and
studies the welfare effect of the introduction of a small tax, formally
characterized as the derivative of the welfare loss, computed at 𝛿 = 0,
d𝑊 𝐿
d𝛿 ∣𝛿=0. When d𝑊 𝐿

d𝛿 ∣𝛿=0< 0, a small positive tax decreases the
welfare loss, and so we say that a small tax is welfare improving. When
the opposite is true, we say that a small subsidy is welfare improving.
The formal expression of the welfare loss in this case is Eq. (17)
in Appendix.

Proposition 5. In the diagnostic expectation equilibrium with a tax/subsidy
𝛿:

1. If 𝜃 is large enough (overreaction strong enough), the introduction of
a small tax is welfare improving: d𝑊 𝐿𝛿

d𝛿 ∣𝛿=0< 0;
2. If 𝜃 is small enough (underreaction strong enough), the introduction
of a small subsidy is welfare improving: d𝑊 𝐿𝛿

d𝛿 ∣𝛿=0> 0;
3. If 𝜃 = 0, a tax could be either welfare improving or decreasing
depending on the parameters. For 𝑎∗ = 𝑎𝑇 , a small tax is welfare
decreasing if and only if 𝛼 𝛽 𝜏𝑆 (𝛼(𝛽 + 𝛾) − 1) + 𝜏0 > 0.

A tax 𝛿 decreases the total amount traded, and in so doing it also
changes the loadings: an increase in 𝛿 decreases 𝛼, 𝜂, and 𝜂𝑝. The
expression of the welfare loss above sums up these direct and indirect
effects. When 𝜃 is large enough, we obtain d𝑊 𝐿𝛿

d𝛿 ∣𝛿=0< 0. This is
because when 𝜃 goes to infinity, 𝛼 and 𝜂 do so as well. Therefore, the
amount traded is larger than at the efficient level, and a tax partially
corrects this distortion, and thus it is welfare improving. When 𝜃 is
small enough, the reasoning is analogous, resulting in a subsidy instead
of a tax.

When 𝜃 = 0 and 𝛿 = 0, the indirect effect 𝜕 𝑊 𝐿𝛿

𝜕 𝛼 is the same as
without the tax: so it is positive or negative according to whether
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𝑎∗ > 𝑎𝑇 or vice versa. However, here this is not the only first-order
effect. The effect of the tax here works not only through the demand of
the informed traders (and their loadings), but also through the slope of
supply of the liquidity suppliers 𝛽+𝛿. Moving 𝛿 away from zero here has
two effects: first, it distorts (downward) the amount traded, creating an
average discrepancy between the first best and the equilibrium; second,
it affects both the strength of the learning externality via the precision
of public information (𝜏 = 𝜏0 + 𝛼2(𝛽 + 𝛿)2𝜏𝑆 ), and the strength of the
pecuniary externality because it directly changes how the price reacts
to quantity. Accordingly, even when 𝑎∗ = 𝑎𝑇 , the tax/subsidy can be
welfare improving depending on the interplay of these effects. Indeed,
in the next paragraph, where we explore the case of a tax that affects
only the informed traders, these additional effects are absent, and for
𝛿 = 0, the welfare effect of the tax is solely determined by whether
𝑎∗ > 𝑎𝑇 or vice versa.

Proposition 5 addresses the problem of the introduction of a small
tax. In Appendix A, we show numerical solutions for the optimal tax
level for the two sets of parameters of Figs. 1, showing that they follow
the intuition of Proposition 5: with overreaction, the optimal tax is
positive, while for low values (large enough underreaction), the optimal
tax may be negative, i.e. a subsidy.

3.5.1. Tax affecting only informed traders
Here, we explore a variation in which it is possible to levy the tax

only on informed speculators, and we show that the qualitative results
are very similar.

If the tax affects only the informed speculators, the liquidity suppli-
ers inverse demand remains 𝑝 = −𝜇𝑆 −𝑆+𝛽𝐷, as in the baseline model.
Instead, the loadings in the informed traders’ strategies are given by
expressions (16), and the coefficient 𝑎(𝛿) solves the equation:

(𝛾 + 𝛿)𝑎(𝛿) = 𝜏𝜀
𝜏𝜀 + 𝜏(𝑎(𝛿))

,

with the difference that now the precision of public information does
not depend directly on 𝛿: 𝜏(𝑎(𝛿)) = 𝑎(𝛿)2(𝜃+ 1)2𝛽2𝜏𝑆 . As a consequence,
𝛿 decreases the loading on both private and public information.

The results are collected in the following Proposition. The expres-
sion of the welfare loss in this case is Eq. (19) in Appendix.

Proposition 6. In the diagnostic expectation equilibrium with a tax only
on informed speculators:

1. If 𝜃 is large enough, the introduction of a small tax is welfare
improving.

2. If 𝜃 is small enough, the introduction of a small subsidy is welfare
improving.

3. if 𝜃 = 0, the introduction of a small tax is welfare-improving if and
only if 𝑎∗ > 𝑎𝑇 .

The only qualitative difference from Proposition 5 is point 3, saying
that the first order effect of the tax when 𝜃 = 0 is determined by
whether the learning or the pecuniary externality dominates in the
Bayesian benchmark. This is true in this case because the effect of
the tax acts only through the loadings of the demand of the informed
traders, and the loadings are all at the optimal level exactly when
𝑎∗ = 𝑎𝑇 .

4. Conclusion

We show that overreaction to information in the form of diagnostic
expectations can improve welfare in markets where there is a strong
enough information externality. When the information externality is
not strong enough, overreaction can rationalize a tax on financial
transactions on efficiency grounds. These results highlight that un-
derstanding the degree of overreaction is crucial for understanding its
welfare effect and the sign of the optimal intervention. The interactions
of these effects with other rationales for trading, such as hedging
or heterogeneity, and other biases such as cursedness, are interesting
avenues for further research.
8 
Fig. 2. The optimal tax for different levels of overreaction 𝜃 and the two sets of
parameters of Figs. 1: case 1 corresponds to Fig. 1(a), case 2 corresponds to Fig. 1(b).
In particular, the range of 𝜃 for case 1 is shorter because for 𝜃 smaller than −0.1 the
optimal tax would have been smaller than −𝛽, and so not feasible.
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Appendix A. Some numerical representation of the optimal tax/
subsidy

Fig. 2 represents the numerical calculation of the optimal tax level
(not infinitesimal) for different values of 𝜃, and for the two sets of
parameters of Figs. 1 (labeled here case 1 and case 2). We can see that,
consistently with the intuition, the tax is increasing with 𝜃 and, in case
2, for low values of 𝜃 (large enough underreaction), the optimal tax is
negative, i.e. a subsidy.

Appendix B. Alternative interpretation for the liquidity suppliers

In this section we illustrate an alternative interpretation for the
origin of the elastic inverse demand, originating from a simple reduced
form model of an entrepreneur issuing equity. There is an entrepreneur
that has a project with dividend value 𝑉 , that is not ex-ante known.
The entrepreneur has preferences for remaining in control of the firm,
measured by the random variable 𝜇𝑆 +𝑆, that represents the disutility
per share sold for the entrepreneur. If she sells an amount 𝐷 of equity,
she can raise 𝑝𝐷, at the utility cost −(𝜇𝑆 +𝑆)𝐷, paying the transaction
costs 𝛽

2𝐷
2
. So, in total, the profit of the entrepreneur is:

𝑢𝑒𝑖 = (𝑝 + 𝜇𝑆 + 𝑆)𝐷 −
𝛽
2
𝐷

2

that gives rise exactly to the inverse demand in the main text.
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Appendix C. Proofs

C.1. Proof of Proposition 1

We follow the standard proof method to show the existence of a
linear equilibrium (e.g. Vives (2017), Online Appendix), namely, we
show that if the pricing function has the form 𝑝 = 𝐴 + 𝐵 𝑉 − 𝐶 𝑆,
then the equilibrium conditions of individual updating, optimization,
and market clearing, give conditions on the coefficients 𝐴, 𝐵, 𝐶 under

hich 𝑝 = 𝐴 + 𝐵 𝑉 − 𝐶 𝑆 is indeed an equilibrium.
If the price depends on the fundamental 𝑉 and the noise 𝑆 accord-

ing to 𝑝 = 𝐴 +𝐵 𝑉 − 𝐶 𝑆, then (𝑝 −𝐴)∕𝐵 is a Gaussian random variable
of mean 𝑉 and precision 𝜏𝑝∣𝑉 = 𝐵2∕𝐶2𝜏𝑆 : the agents understand this
dependence and use it for their updating. So, after observing private
signal 𝑠𝑖 and the price 𝑝, the Bayesian posterior distribution of the belief
on the fundamental 𝑉 is a Normal with parameters:

E(𝑉 ∣ 𝑠𝑖, 𝑝) =
𝜏𝜀

𝜏𝜀 + 𝜏0 + 𝐵2∕𝐶2𝜏𝑆
𝑠𝑖 +

𝐵2∕𝐶2𝜏𝑆
𝜏𝜀 + 𝜏0 + 𝐵2∕𝐶2𝜏𝑆

𝑝 − 𝐴
𝐵

𝑉 𝑎𝑟(𝑉 ∣ 𝑠𝑖, 𝑝) =
(

𝜏0 + 𝜏𝜀 + 𝐵2∕𝐶2𝜏𝑆
)−1

Then, Eq. (2) pins down the distorted posterior expectation of diagnos-
tic agents E𝜃(𝑉 ∣ 𝑠𝑖, 𝑝), while the variance is the same as the Bayesian
one.

The posterior after public information alone is:

E(𝑉 ∣ 𝑝) = 𝐵2∕𝐶2𝜏𝑆
𝜏0 + 𝐵2∕𝐶2𝜏𝑆

𝑝 − 𝐴
𝐵

Solving the optimization, the optimal choice for agents is:

𝐷𝑖 =
1
𝛾

(

(𝜃 + 1)𝜏𝜀
𝜏𝜀 + 𝜏0 + 𝐵2∕𝐶2𝜏𝑆

𝑠𝑖 +
(𝜃 + 1)𝐵2∕𝐶2𝜏𝑆

𝜏𝜀 + 𝜏0 + 𝐵2∕𝐶2𝜏𝑆
(𝑝 − 𝐴)∕𝐵 − 𝑝

)

So, the loadings are:

𝛼 = 1
𝛾

(𝜃 + 1)𝜏𝜀
𝜏𝜀 + 𝜏0 + 𝐵2∕𝐶2𝜏𝑆

(11)

𝜂 = 1
𝛾

(𝜃+1)𝐵2∕𝐶2𝜏𝑆
𝜏𝜀+𝜏0+𝐵2∕𝐶2𝜏𝑆

1
𝐵

𝐵2∕𝐶2𝜏𝑆
𝜏0 + 𝐵2∕𝐶2𝜏𝑆

1
𝐵

=
(𝜃 + 1)

𝛾
𝜏0 + 𝐵2∕𝐶2𝜏𝑆

𝜏𝜀 + 𝜏0 + 𝐵2∕𝐶2𝜏𝑆
(12)

𝑝 =
1
𝛾

(13)

By the Law of Large Numbers, ∫ 𝑠𝑖𝑑 𝑖 = 𝑉 . So 𝐷 = 𝛼 𝑉 + 𝜂E(𝑉 ∣

) −𝑝∕𝛾. Defining 𝑘 =
𝐵2∕𝐶2𝜏𝑆

𝜏0 + 𝐵2∕𝐶2𝜏𝑆
, we have 𝐷 = 𝛼 𝑉 +𝜂 𝑘(𝑝−𝐴)∕𝐵−𝑝∕𝛾.

So the market clearing reads:

𝑝 = −𝜇𝑆 − 𝑆 + 𝛽∕𝛾(𝛾 𝛼 𝑉 + 𝛾 𝜂 𝑘(𝑝 − 𝐴)∕𝐵 − 𝑝)

Solving for 𝑝:

𝑝 =
−𝛾 𝜇𝑆 − 𝛾 𝑆 + 𝛽(𝛾 𝛼 𝑉 − 𝛾 𝜂 𝑘𝐴∕𝐵)

𝛾 + 𝛽(1 − 𝛾 𝜂 𝑘∕𝐵)
So:

𝐵 =
𝛽 𝛾 𝛼

𝛾 + 𝛽(1 − 𝛾 𝜂 𝑘∕𝐵)

1 = 𝛽 𝛾 𝛼
𝐵(𝛾 + 𝛽) − 𝛽 𝛾 𝜂 𝑘

𝐵 = 𝛽 𝛾 𝛼 + 𝜂 𝑘
𝛾 + 𝛽

𝐶 =
𝛾

𝛾 + 𝛽(1 − 𝛾 𝜂 𝑘∕𝐵)

𝐶 =
𝛾 𝐵

(𝛾 + 𝛽)𝐵 − 𝛾 𝛽 𝜂 𝑘 =
𝛾 𝛽 𝛾 𝛼+𝜂 𝑘

𝛾+𝛽

(𝛾 + 𝛽)𝛽 𝛾 𝛼+𝜂 𝑘 − 𝛾 𝛽 𝜂 𝑘
=

𝛾(𝛼 + 𝜂 𝑘)
(𝛾 + 𝛽)𝛼
𝛾+𝛽

9 
so that: 𝐵2∕𝐶2 = 𝛽2𝛼2, and so: 𝜏𝑝∣𝑉 = 𝛼2𝛽2𝜏𝑆 . Now define 𝑎 = 𝛼∕(𝜃+ 1).
It must satisfy the equation:

𝛾 𝑎 =
𝜏𝜀

𝜏𝜀 + 𝜏0 + 𝐵2∕𝐶2𝜏𝑆
=

𝜏𝜀
𝜏𝜀 + 𝜏0 + 𝛽2𝑎2(𝜃 + 1)2𝜏𝑆

that is Eq. (8) in the text of the Proposition.
From this, we find that in equilibrium, 𝛼 and 𝜂 must satisfy:

𝛼 = 1
𝛾

(𝜃 + 1)𝜏𝜀
𝜏𝜀 + 𝜏0 + 𝐵2∕𝐶2𝜏𝑆

= 1
𝛾

(𝜃 + 1)𝜏𝜀
𝜏𝜀 + 𝜏0 + 𝛽2𝛼2𝜏𝑆

𝜂 = 1
𝛾

(𝜃 + 1)𝛽2𝛼2𝜏𝑆
𝜏𝜀 + 𝜏0 + 𝛽2𝛼2𝜏𝑆

1
𝐵

= 1
𝛾

(𝜃 + 1)𝛽2𝛼2𝜏𝑆
𝜏𝜀 + 𝜏0 + 𝛽2𝛼2𝜏𝑆

1
𝐵

= (𝜃 + 1)(1 − 𝛾 𝑎)∕𝛾
generating expression (7) in the main text.

Since the RHS is monotone decreasing and the LHS is monotone
increasing (from 0 to ∞), there is a unique positive solution.

Using the expressions for 𝛼 and 𝜂, we get the equilibrium coeffi-
ients:

𝐴 =
−𝛾 𝜇𝑆
𝛾 + 𝛽

𝐵 =𝛽
(𝜃 + 1)
𝛾 + 𝛽

𝐶 = 𝜃 + 1
𝛼(𝛾 + 𝛽)

(14)

where the expression for 𝐴 comes from:

𝐴 =
−𝛾 𝜇𝑆 − 𝛽((1 − 𝛾 𝑎)(𝜃 + 1)𝐴∕𝐵)
𝛾 + 𝛽(1 − (1 − 𝛾 𝑎)(𝜃 + 1)∕𝐵)

𝐴 +
𝛽((1 − 𝛾 𝑎)(𝜃 + 1)𝐴∕𝐵)

𝛾 + 𝛽(1 − (1 − 𝛾 𝑎)(𝜃 + 1)∕𝐵) =
−𝛾 𝜇𝑆

𝛾 + 𝛽(1 − (1 − 𝛾 𝑎)(𝜃 + 1)∕𝐵)

𝐴 =
−𝛾 𝜇𝑆
𝛾 + 𝛽

Finally, define 𝜏 = 𝜏0 + 𝛽2𝑎2(𝜃 + 1)2𝜏𝑆 the precision of public
nformation. The posterior after public information alone is:
E(𝑉 ∣ 𝑝) = 𝛽2𝛼2𝜏𝑆

𝜏0 + 𝛽2𝛼2𝜏𝑆
(𝑝 − 𝐴)∕𝐵 (15)

Using the Law of the Large Numbers, we can express the total
demand as:

𝐷 =
𝛾 𝛼 𝑉 + 𝛾 𝜂E(𝑉 ∣ 𝑝) + 𝑆 + 𝜇𝑆

𝛽 + 𝛾
or:

𝐷 =
𝛾 𝑎(𝜃 + 1)𝑉 + (1 − 𝛾 𝑎)(𝜃 + 1)E(𝑉 ∣ 𝑝) + 𝑆 + 𝜇𝑆

𝛽 + 𝛾
□

C.2. Proof of Corollary 2.1

1. The first point follows from the implicit function theorem. In-
deed, we have:

d𝑎
d𝜃

= −
2𝑎2𝛽2(𝜃+1)𝜏𝑆 𝜏𝜖

(𝑎2𝛽2(𝜃+1)2𝜏𝑆+𝜏0+𝜏𝜖)2
2𝑎𝛽2(𝜃+1)2𝜏𝑆 𝜏𝜖

(𝑎2𝛽2(𝜃+1)2𝜏𝑆+𝜏0+𝜏𝜖)2 + 𝛾
= −

2𝛾 𝑎(1 − 𝛾 𝑎) 𝜏−𝜏0
𝜏(𝜃+1)

2𝛾(1 − 𝛾 𝑎) 𝜏−𝜏0
𝜏

+ 𝛾
= −

2𝑎(1 − 𝛾 𝑎) 𝜏−𝜏0
𝜏(𝜃+1)

2(1 − 𝛾 𝑎) 𝜏−𝜏0
𝜏

+ 1

so d𝑎
d𝜃 < 0. But:

d𝛼
d𝜃

= d𝑎
d𝜃

(𝜃 + 1) + 𝑎 = −𝑎
2𝛾(1 − 𝛾 𝑎) 𝜏−𝜏0𝜏

2𝛾(1 − 𝛾 𝑎) 𝜏−𝜏0𝜏 + 𝛾
+ 𝑎 > 0

2. from the proof of Proposition 1 we get that 𝐵2∕𝐶2 = 𝑎2(𝜃 +
1)2𝛽2𝜏𝑆 = 𝛼2𝛽2𝜏𝑆 , hence it is increasing in 𝜃.

3. the volatility of the price is given by:

𝑉 𝑎𝑟(𝑝) = 𝐵2 + 𝐶2 = 1
(𝛾 + 𝛽)2

(

𝛽2(𝜃 + 1)2 1
𝜏0

+ 1
𝑎2𝜏𝑆

)

that is increasing in 𝜃. □
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C.3. Proof of Proposition 2

The results follow from monotonicity of the loadings, and the fact
hat they touch every nonnegative value for the relevant 𝜃. To see this
recisely, first, we compute the limits of 𝛼 at the extreme of the domain.
or 𝜃 → −1 we have that 𝑎 goes to its maximum, 𝑎 = 𝜏𝜀

𝜏𝜀+𝜏0
, and 𝛼 → 0,

s 𝜏 does. For 𝜃 → ∞ instead we have 𝑎 → 0 but 𝛼 → ∞. Indeed, both 𝑎
nd 𝛼 are monotonic so they have a limit. Indeed, if lim𝜃→∞ 𝑎 = 𝑎′ > 0

(possibly infinite) we would have:

lim
𝜃→∞

𝑎 = lim
𝜃→∞

𝜏𝜀
𝛾(𝜏𝜀 + 𝜏0(𝑎′)2𝛽2(𝜃 + 1)2) = 0

and if lim𝜃→∞ 𝛼 = 𝛼′ < ∞ (possibly zero), we would have:

lim
𝜃→∞

𝛼 = lim
𝜃→∞

𝜏𝜀(𝜃 + 1)
𝛾(𝜏𝜀 + 𝜏0(𝛼′)2𝛽2)

= ∞

that would be contradictions.
Now, for part 1, the limits computed above show that 𝛼 increases

from 0 to infinity, so there is at least a value 𝜃′ satisfying the condition.
Moreover, Corollary 2.1 shows that 𝛼 is monotonically increasing in 𝜃,
o there can be only one. Finally, since 𝛼 is monotonically increasing,
e have that 𝜃′ > 0 if and only if 𝑎𝑇 = 𝛼(𝜃′) > 𝛼(0) = 𝑎∗, proving the

last part of the statement.
For part 2, the reasoning is analogous: the derivative of the loading

is:
d
d𝜃

(𝜂) = d
d𝜃

(

𝜃 + 1
𝛾

− 𝛼
)

= 1
𝛾
− d𝛼

d𝜃
= 1

𝛾
− 𝑎+ 𝑎

2𝛾(1 − 𝛾 𝑎) 𝜏−𝜏0
𝜏

2𝛾(1 − 𝛾 𝑎) 𝜏−𝜏0
𝜏

+ 𝛾
>

1 − 𝛾 𝑎
𝛾

> 0

so it is monotonically increasing. Moreover, for 𝜃 → −1 the loading
goes to zero. Instead, for 𝜃 → ∞ we have that 𝛼 → ∞, so:
𝜃 + 1
𝛾

− 𝛼 = 𝜃 + 1
𝛾

(

1 − 𝜏𝜀
𝜏𝜀 + 𝜏0(𝛼)2𝛽2

)

the term in the parenthesis goes to 1 as 𝛼 → ∞, so the loading diverges.
So, the equation has one and only one solution. Finally, since 𝜂 is
monotonically increasing, we have that 𝜃′′ > 0 if and only if 1

𝛾 − 𝑎𝑇 =
𝜃′′+1
𝛾 − 𝛼(𝜃′′) > 1

𝛾 − 𝛼(0) = 1
𝛾 − 𝑎∗, that is equivalent to 𝑎∗ > 𝑎𝑇 , proving

he last part of the statement.
For part 3, we have that:

1
𝛾
− 𝛼(𝜃′) = 𝜃′′ + 1

𝛾
− 𝛼(𝜃′′) ⟺

𝛼(𝜃′′) − 𝛼(𝜃′) = 𝜃′′

𝛾

from which the thesis follows. □

C.4. Proof of Lemma 3.1

The expression for the welfare loss is:
𝑊 𝐿 = 𝑊 ∗ −𝑊 = (𝛽 + 𝛾) 1

2
E(𝐷𝑜 −𝐷)2 +

𝛾
2
E𝑉 𝑎𝑟(𝐷𝑖)

The second term is:
E(𝑉 𝑎𝑟𝐷𝑖) = E∫ (−𝛼 𝑠𝑖 + 𝛼 𝑉 )2 = 𝛼2

𝜏𝜀
The first is:

𝐷𝑜 −𝐷 =
𝑉 + 𝜇𝑆 + 𝑆

𝛽 + 𝛾
− 1

𝛽 + 𝛾
(

𝜇𝑆 + 𝑆 + 𝛾 𝛼 𝑉 + 𝛾 𝜂E(𝑉 ∣ 𝑝)
)

=
(1 − 𝛾 𝛼)
𝛽 + 𝛾

(𝑉 − E(𝑉 ∣ 𝑝)) + 1 − 𝛾 𝛼 − 𝛾 𝜂
𝛽 + 𝛾

E(𝑉 ∣ 𝑝)

Now we want to compute the expectation of the square. This is equiv-
alent to the variance since all the variables involved have zero expec-
tation:

E(𝐷𝑜 −𝐷)2 =
(1 − 𝛾 𝑎)2
(𝛽 + 𝛾)2

E(𝑉 − E(𝑉 ∣ 𝑝))2 +
(1 − 𝛾 𝛼 − 𝛾 𝜂)2

(𝛽 + 𝛾)2
E(E(𝑉 ∣ 𝑝))2

+ 2 (1 − 𝛾 𝛼)(1 − 𝛾 𝛼 − 𝛾 𝜂)
(𝛽 + 𝛾)2

𝐶 𝑜𝑣((𝑉 − E(𝑉 ∣ 𝑝))E(𝑉 ∣ 𝑝))

𝜃

10 
We are going to use the following facts:

E(𝑉 −E(𝑉 ∣ 𝑝))2 = E(E((𝑉 −E(𝑉 ∣ 𝑝))2 ∣ 𝑝)) = E(𝑉 𝑎𝑟(𝑉 ∣ 𝑝)) = E
( 1
𝜏

)

= 1
𝜏

E(E(𝑉 ∣ 𝑝)2) = (𝜏 − 𝜏0)2

𝜏2
E
(

𝑉 − 𝐶
𝐵
𝑆
)2

=
(𝜏 − 𝜏0)2

𝜏2

(

1
𝜏0

+ 𝐶2

𝐵2
1
𝜏𝑆

)

= 1
𝜏0

− 1
𝜏

and:

𝐶 𝑜𝑣((𝑉 − E(𝑉 ∣ 𝑝))E(𝑉 ∣ 𝑝)) = E(E(𝑉 ∣ 𝑝)𝑉 ) − E(E(𝑉 ∣ 𝑝)2) = 0

So:

E(𝐷𝑜 −𝐷)2 =
(1 − 𝛾 𝑎)2
(𝛽 + 𝛾)2𝜏

+
(1 − 𝛾 𝛼 − 𝛾 𝜂)2

(𝛽 + 𝛾)2

(

1
𝜏0

− 1
𝜏

)

So, the total welfare loss is:
𝑊 𝐿 = 1

2
(1 − 𝛾 𝛼)2
(𝛽 + 𝛾)

1
𝜏
+ 1

2
(1 − 𝛾 𝛼 − 𝛾 𝜂)2

(𝛽 + 𝛾)

(

1
𝜏0

− 1
𝜏

)

+
𝛾 𝛼2
2𝜏𝜀

where from Proposition 1, we have that 1 − 𝛾 𝛼 − 𝛾 𝜂 = 𝜃. So it can be
decomposed as:

𝑊 𝐿𝐵(𝛼) = 1
2
(1 − 𝛾 𝛼)2
(𝛽 + 𝛾)

1
𝜏
+

𝛾 𝛼2
2𝜏𝜀

𝑊 𝐿𝐷 = 1
2
(1 − 𝛾 𝛼 − 𝛾 𝜂)2

(𝛽 + 𝛾)

(

1
𝜏0

− 1
𝜏

)

= 1
2

𝜃2

(𝛽 + 𝛾)

(

1
𝜏0

− 1
𝜏

)

□

C.5. Proof of Proposition 3

The proof proceeds by computing the derivatives of the welfare loss,
nd using the decomposition of Lemma 3.1.

From Lemma 3.1, we have that the welfare loss has two compo-
nents:

𝑊 𝐿 = 𝑊 𝐿𝐵 +𝑊 𝐿𝐷

where 𝑊 𝐿𝐵 depends on 𝜃 only via 𝛼, and 𝑊 𝐿𝐷 is second order in 𝜃.
Hence, in 𝜃 = 0:
d𝑊 𝐿
d𝜃

∣𝜃=0=
𝜕 𝑊 𝐿𝐵

𝜕 𝛼
d𝛼
d𝜃

∣𝜃=0

Moreover, from Corollary 2.1 we know that 𝛼 is increasing in 𝜃, so we
conclude that, in 𝜃 = 0, d𝑊 𝐿

d𝜃 this has the same sign as 𝜕 𝑊 𝐿𝐵

𝜕 𝛼 . Since this
is the Bayesian welfare loss, this is positive if and only if 𝑎∗ > 𝑎𝑇 .

The derivatives are:
𝜕 𝑊 𝐿𝐵

𝜕 𝛼 = − (1 − 𝛼 𝛾) (𝛾 𝜏0 + 𝛼 𝛽2𝜏𝑆
)

(𝛽 + 𝛾)
(

𝛼2𝛽2𝜏𝑆 + 𝜏0
)

2
+

𝛼 𝛾
𝜏𝜖

𝜕 𝑊 𝐿𝐷

𝜕 𝜃 = 𝜃
𝛽 + 𝛾

(

1
𝜏0

− 1
𝜏

)

𝜕 𝑊 𝐿𝐷

𝜕 𝛼 =
𝛼 𝛽2𝜃2𝜏𝑆

(𝛽 + 𝛾)
(

𝛼2𝛽2𝜏𝑆 + 𝜏0
)

2

Using the limits computed in the proof of Proposition 2, it follows
hat for 𝜃 → −1 d𝛼

d𝜃 goes to the finite value 𝑎 > 0, while for 𝜃 → ∞ it
goes to zero.

Now for 𝜃 → ∞ we have that 𝜕 𝑊 𝐿𝐷

𝜕 𝜃 goes to infinity for 𝜃 → ∞,
𝜕 𝑊 𝐿𝐷

𝜕 𝛼 > 0 and 𝜕 𝑊 𝐿𝐵

𝜕 𝛼 > 0 because 𝑊 𝐿𝐵 has a finite minimum. So we
conclude that lim𝜃→∞

d𝑊 𝐿
d𝜃 = +∞.

Instead, for 𝜃 → −1 𝜕 𝑊 𝐿𝐷

𝜕 𝜃 < 0, 𝜕 𝑊 𝐿𝐷

𝜕 𝛼 goes to zero, and d𝛼
d𝜃 goes

o the finite value 𝑎 > 0. So only 𝜕 𝑊 𝐿𝐷

𝜕 𝜃 < 0 survives, and the limit is
egative: lim𝜃→−1

d𝑊 𝐿𝐷

d𝜃 < 0
Now for 𝜃 → ∞ the welfare loss diverges: hence the optimal value

f 𝜃 has to be finite. (take any finite value 𝑡 = 𝑊 𝐿(𝜃′), there is a 𝜃′′

such that 𝑊 𝐿 > 𝑡 for all 𝜃 > 𝜃′′ and so the optimum is smaller than
′′). Hence, for 𝜃 large enough, d𝑊 𝐿 > 0. □
d𝜃



M. Bizzarri and D. d’Arienzo

w

f

t

a

h

z
𝛾

h
t
w

Journal of Mathematical Economics 115 (2024) 103067 
C.6. Proof of Proposition 4

All the equilibrium expressions are analogous to what derived in
Proposition 1, with 𝛾+𝛿 in place of 𝛾 and 𝛽+𝛿 in place of 𝛽. In particular

e obtain the following expressions for the equilibrium loadings:

𝛼(𝛿) = 𝑎(𝛿)(𝜃 + 1)

𝜂(𝛿) =
(

1
𝛾 + 𝛿

− 𝑎(𝛿)
)

(𝜃 + 1) = 𝜃 + 1
𝛾 + 𝛿

− 𝛼(𝛿)

𝜂𝑝(𝛿) = 1
𝛾 + 𝛿

(16)

where 𝑎(𝛿) solves:

(𝛾 + 𝛿)𝑎(𝛿) = 𝜏𝜀
𝜏𝜀 + 𝜏(𝑎(𝛿))

and 𝜏(𝑎(𝛿)) = 𝑎(𝛿)2(𝜃 + 1)2(𝛽 + 𝛿)2𝜏𝑆 . Now we use these expressions
and compute their derivatives to see the behavior of the loadings as
unctions of 𝛿.

Using the implicit function theorem, the effect of 𝛿 on the loading
on private information is:
d𝛼
d𝛿

= −𝛼
(

𝛼2(𝛽 + 𝛿)𝜏𝑆 (𝛽 + 2(𝛾 + 𝛿) + 𝛿) + 𝜏0 + 𝜏𝜀
)

(𝛾 + 𝛿)
(

3𝛼2(𝛽 + 𝛿)2𝜏𝑆 + 𝜏0 + 𝜏𝜀
) < 0

So it is monotonic in 𝛿. Moreover, the limit of 𝛼 for 𝛿 → ∞ is zero, and
he limit for 𝛿 → −𝛾 is +∞ (the proof of these two statements is below).

So, there always is a unique 𝛿∗ such that 𝛼(𝛿∗) = 𝑎𝑇 , proving point 1.
If the limit for 𝛿 → ∞ was a finite or infinite value 𝛼′ > 0 we would

have:

lim
𝛿→∞

𝛼 = lim
𝛿→∞

1
𝛾 + 𝛿

(𝜃 + 1)𝜏𝜀
𝜏𝜀 + 𝜏(𝛼′)

=
(𝜃 + 1)𝜏𝜀
𝜏𝜀 + 𝜏(𝛼′)

lim
𝛿→∞

1
𝛾 + 𝛿

= 0 = 𝛼′

that would contradict 𝛼′ > 0.
The limit for 𝛿 → −𝛾 is +∞. Indeed, if it was a finite value 𝛼′, as

bove:

lim
𝛿→−𝛾

𝛼 = lim
𝛿→−𝛾

1
𝛾 + 𝛿

(𝜃 + 1)𝜏𝜀
𝜏𝜀 + 𝜏(𝛼′)

=
(𝜃 + 1)𝜏𝜀
𝜏𝜀 + 𝜏(𝛼′)

lim
𝛿→−𝛾

1
𝛾 + 𝛿

= +∞ = 𝛼′

that would contradict the fact that 𝛼′ is finite.
The effect of the tax on the loading on public information is, instead:

d
d𝛿

(

𝜃 + 1
𝛾 + 𝛿

− 𝛼
)

= − 𝜃 + 1
(𝛾 + 𝛿)2

+
𝛼
(

𝛼2(𝛽 + 𝛿)𝜏𝑆 (𝛽 + 2(𝛾 + 𝛿) + 𝛿) + 𝜏0 + 𝜏𝜀
)

(𝛾 + 𝛿)
(

3𝛼2(𝛽 + 𝛿)2𝜏𝑆 + 𝜏0 + 𝜏𝜀
)

= − 𝜃 + 1
(𝛾 + 𝛿)2

(

1 − 𝜏𝜀
𝜏𝜀 + 𝜏

(

𝛼2(𝛽 + 𝛿)𝜏𝑆 (𝛽 + 2(𝛾 + 𝛿) + 𝛿) + 𝜏0 + 𝜏𝜀
)

(

3𝛼2(𝛽 + 𝛿)2𝜏𝑆 + 𝜏0 + 𝜏𝜀
)

)

= − 𝜃 + 1
(𝛾 + 𝛿)2

(

𝜏
𝜏𝜀 + 𝜏

−
2𝛼2(𝛽 + 𝛿)𝜏𝑆 (𝛾 − 𝛽)

(

3𝛼2(𝛽 + 𝛿)2𝜏𝑆 + 𝜏0 + 𝜏𝜀
)

)

If 𝛾 < 𝛽 we have that the derivative is negative. Instead, for 𝛾 > 𝛽, we
ave that the derivative is positive if and only if:
𝜏

𝜏𝜀 + 𝜏
−

2𝛼2(𝛽 + 𝛿)𝜏𝑆 (𝛾 − 𝛽)
(

3𝛼2(𝛽 + 𝛿)2𝜏𝑆 + 𝜏0 + 𝜏𝜀
) ≤ 𝜏

𝜏𝜀 + 𝜏
−

2(𝜏 − 𝜏0)(𝛾 − 𝛽)
3(𝜏 + 𝜏𝜀)

that is negative if and only if 𝛾 > 𝛽 + 3𝜏
2(𝜏 − 𝜏0)

. The LHS grows from
ero to ∞ and the RHS decreases from ∞ to zero, so it follows that for
large enough this is satisfied, proving point 2.

Part 3 and 4 are immediate from 𝜂𝑝 =
1

𝛾 + 𝛿
□

C.7. Proof of Proposition 5

All the equilibrium expressions are analogous to what derived in
Proposition 1, with 𝛾+𝛿 in place of 𝛾 and 𝛽+𝛿 in place of 𝛽. In particular,
the level of trade for agent 𝑖 is:

𝐷𝑖 = (𝜃 + 1)𝑎𝑠𝑖 +
(1 − (𝛾 + 𝛿)𝑎)(𝜃 + 1)E(𝑉 ∣ 𝑝) − 𝑝

𝛾 + 𝛿

where 𝑎 solves:

(𝛾 + 𝛿)𝑎 =
𝜏𝜀
𝜏𝜀 + 𝜏(𝑎) e

11 
and 𝜏(𝑎) = 𝑎2(𝜃 + 1)2(𝛽 + 𝛿)2𝜏𝑆 , and:

𝐷 = 1
𝛽 + 𝛾 + 2𝛿

(

𝑆 + 𝜇𝑆 + (𝛾 + 𝛿)𝑎(𝜃 + 1)𝑉 + (1 − (𝛾 + 𝛿)𝑎)(𝜃 + 1)E(𝑉 ∣ 𝑝)
)

We now use these expressions to compute the expression of the new
Welfare loss, and compute its derivatives.

From Lemma 1.1, we know that the expression for the welfare loss
is:
1
2

(

(𝛽 + 𝛾)E(𝐷𝑜 −𝐷)2 + 𝛾E𝑉 𝑎𝑟(𝐷𝑖)
)

this is not affected, because the lump-sum rebate means that the tax
terms cancel out.

The first best solution 𝐷𝑜 is of course not affected by the tax. We
ave to compute the two terms using the individual demands under a
ax 𝛿. The dispersion term has the same form as a function of 𝑎 as would
ithout the tax:

E𝑉 𝑎𝑟(𝐷𝑖) = E∫ 𝛼2(𝑠𝑖 − 𝑉 )2d𝑖 = 𝛼2 ∫ E(𝑠𝑖 − 𝑉 )2d𝑖

= 𝛼2 ∫ E(E((𝑠𝑖 − 𝑉 )2 ∣ 𝑉 ))d𝑖 = 𝛼2

𝜏𝜀

Instead, for the volatility term:

𝐷
𝑜
−𝐷

=
𝜇𝑆 + 𝑆 + 𝑉

𝛽 + 𝛾
− 1

𝛽 + 𝛾 + 2𝛿
(

𝑆 + 𝜇𝑆 + (𝛾 + 𝛿)𝑎(𝜃 + 1)𝑉 + (1 − (𝛾 + 𝛿)𝑎)(𝜃 + 1)E(𝑉 ∣ 𝑝)
)

=
(𝛽 + 𝛾)((1 − (𝛾 + 𝛿)𝑎(𝜃 + 1)𝑉 ) + (1 − (𝛾 + 𝛿)𝑎)(𝜃 + 1)E(𝑉 ∣ 𝑝)) + 2𝛿(𝜇𝑆 + 𝑆 + 𝑉 )

(𝛽 + 𝛾)(𝛽 + 𝛾 + 2𝛿)
= 1

(𝛽 + 𝛾)(𝛽 + 𝛾 + 2𝛿) ((𝛽 + 𝛾)(1 − (𝛾 + 𝛿)𝛼)(𝑉 − E(𝑉 ∣ 𝑝))+

+(𝛽 + 𝛾)𝜃E(𝑉 ∣ 𝑝) + 2𝛿(𝜇𝑆 + 𝑉 + 𝑆)
)

Taking the square and the expectation we get:

E(𝐷𝑜 −𝐷)2 =
(1 − (𝛾 + 𝛿)𝛼)
(𝛽 + 𝛾 + 2𝛿)2 𝜏

(

(1 − (𝛾 + 𝛿)𝛼) + 4𝛿
𝛽 + 𝛾

(1 + (𝛽 + 𝛿)𝛼)
)

+
4𝛿2(𝜇2

𝑆 + 𝜏−1𝑆 + 𝜏−10 )
(𝛽 + 𝛾)2(𝛽 + 𝛾 + 2𝛿)2

+
(

1
𝛽 + 𝛾 + 2𝛿

)2 (

𝜃2 − 4𝛿 𝜃
𝛽 + 𝛾

(

1 − 𝜏0
(𝛽 + 𝛿)𝛼 𝜏𝑆

)) (
1
𝜏0

− 1
𝜏

)

So the total welfare loss is:
𝑊 𝐿𝛿 = 1

2

(

(1 − (𝛾 + 𝛿)𝛼)
(𝛽 + 𝛾 + 2𝛿)2 𝜏 ((1 − (𝛾 + 𝛿)𝛼)(𝛽 + 𝛾) + 4𝛿(1 + (𝛽 + 𝛿)𝛼))

+
4𝛿2(𝜇2

𝑆 + 𝜏−1𝑆 + 𝜏−10 )
(𝛽 + 𝛾)(𝛽 + 𝛾 + 2𝛿)2

+
(

1
𝛽 + 𝛾 + 2𝛿

)2 (

𝜃2(𝛽 + 𝛾) − 4𝛿 𝜃
(

1 − 𝜏0
(𝛽 + 𝛿)𝛼 𝜏𝑆

)) (
1
𝜏0

− 1
𝜏

)

+
𝛾 𝛼2

𝜏𝜀

)

(17)

Calculating the derivatives in 𝛿 = 0 we get:
𝜕 𝑊 𝐿𝛿

𝜕 𝛼 = − (1 − 𝛼 𝛾) (𝛾 𝜏0 + 𝛼 𝛽2𝜏𝑆
)

+ 𝜃2𝛼 𝛽2𝜏𝑆
(𝛽 + 𝛾)

(

𝛼2𝛽2𝜏𝑆 + 𝜏0
)

2
+

𝛼 𝛾
𝜏𝜖

𝜕 𝑊 𝐿𝛿

𝜕 𝛿 =
𝛼
(

𝜏20 (1 − (𝛼 𝛾)(𝛽 + 𝛾) + 2𝛽 𝜃) − 2𝛼3𝛽4𝜃(𝜃 + 1)𝜏2𝑆
𝜏0(𝛽 + 𝛾)2

(

𝛼2𝛽2𝜏𝑆 + 𝜏0
)

2

+
−𝛼 𝛽 𝜏0𝜏𝑆

(

(𝛼 𝛾 − 1)(𝛽 + 𝛾)(𝛼(𝛽 + 𝛾) − 1) − 2𝛽 𝜃(𝛼 𝛽 − 1) + 𝜃2(𝛽 − 𝛾)
))

𝜏0(𝛽 + 𝛾)2
(

𝛼2𝛽2𝜏𝑆 + 𝜏0
)

2

(18)

Now consider part 1 of the result. In the limit for 𝜃 → ∞ we have
that d𝛼

d𝛿 diverges negatively, while in 𝜕 𝑊 𝐿𝛿

𝜕 𝛿 the leading term is:
−
2𝛼4𝛽4𝜃(𝜃 + 1)

𝛼4𝛽4𝜏4𝑆
→ −∞

Moreover, we have seen in Proposition 3 that 𝜕 𝑊 𝐿𝛿

𝜕 𝛼 > 0 for 𝜃 small
nough: so we get that 𝜕 𝑊 𝐿𝛿

< 0 for 𝜃 large enough.
𝜕 𝛿
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Consider part 2. The total derivative goes to zero as 𝜃 → −1 (and
𝛼 → 0). We can observe that both 𝜕 𝑊 𝐿

𝜕 𝛿 and d𝛼
d𝛿 have a factor of 𝛼. So,

e collect 𝛼, and calculating we get:

lim
→−1

1
𝛼
d𝑊 𝐿𝛿

d𝛿
= lim

𝜃→−1

1
𝛼

(

𝜕 𝑊 𝐿𝛿

𝜕 𝛿 + 𝜕 𝑊 𝐿𝛿

𝜕 𝛼
d𝛼
d𝛿

)

=
4𝛾

(𝛽 + 𝛾)2𝜏0
> 0

Now consider part 3. If 𝜃 = 0 expression (18) shows that
𝜕 𝑊 𝐿𝛿

𝜕 𝛿 = 𝑎∗(1−𝛾 𝑎∗)(𝑎∗𝛽 𝜏𝑆 (𝑎∗(𝛽+𝛾)−1)+𝜏0)
(𝛽+𝛾)((𝑎∗)2𝛽2𝜏𝑆+𝜏0)2

. If 𝑎∗ = 𝑎𝑇 , by definition, 𝜕 𝑊 𝐿𝛿

𝜕 𝛼 = 0,
nd d𝛼

d𝛿 remains finite. So the total derivative is positive if and only if
𝛼 𝛽 𝜏𝑆 (𝛼(𝛽 + 𝛾) − 1) + 𝜏0 > 0. □

C.8. Proof of Proposition 6

All the equilibrium expressions are analogous to what derived in
Proposition 1, with 𝛾 + 𝛿 in place of 𝛾, but where, crucially, 𝛽 is not
substituted by 𝛽 + 𝛿 as in the proof of Proposition 5. The level of trade
for agent 𝑖 is:

𝐷𝑖 = (𝜃 + 1)𝑎𝑠𝑖 +
(1 − (𝛾 + 𝛿)𝑎)(𝜃 + 1)E(𝑉 ∣ 𝑝) − 𝑝

𝛾 + 𝛿

where 𝑎 solves:

(𝛾 + 𝛿)𝑎 =
𝜏𝜀

𝜏𝜀 + 𝜏(𝑎)

We now use these expressions to compute the expression of the new
elfare loss, and compute its derivatives.
From Lemma 1.1, we know that the expression for the welfare loss

is:
1
2

(

(𝛽 + 𝛾)E(𝐷𝑜 −𝐷)2 + 𝛾E𝑉 𝑎𝑟(𝐷𝑖)
)

The first best solution 𝐷𝑜 is of course not affected by the tax. We
have to compute the two terms using the individual demands under a
ax 𝛿. The dispersion term has the same form as a function of 𝑎 as would

without the tax.
Instead, for the volatility term:

𝐷 = 1
𝛽 + 𝛾 + 𝛿

(

𝑆 + 𝜇𝑆 + (𝛾 + 𝛿)𝑎(𝜃 + 1)𝑉 + (1 − (𝛾 + 𝛿)𝑎)(𝜃 + 1)E(𝑉 ∣ 𝑝)
)

𝐷
𝑜
−𝐷

=
𝜇𝑆 + 𝑆 + 𝑉

𝛽 + 𝛾
− 1

𝛽 + 𝛾 + 𝛿
(

𝑆 + 𝜇𝑆 + (𝛾 + 𝛿)𝑎(𝜃 + 1)𝑉 + (1 − (𝛾 + 𝛿))(𝜃 + 1)E(𝑉 ∣ 𝑝)
)

=
(𝛽 + 𝛾)((1 − (𝛾 + 𝛿)𝑎(𝜃 + 1)𝑉 ) + (1 − (𝛾 + 𝛿)𝑎)(𝜃 + 1)E(𝑉 ∣ 𝑝)) + 𝛿(𝜇𝑆 + 𝑆 + 𝑉 )

(𝛽 + 𝛾)(𝛽 + 𝛾 + 𝛿)

= 1
(𝛽 + 𝛾)(𝛽 + 𝛾 + 𝛿)

((𝛽 + 𝛾)(1 − (𝛾 + 𝛿)𝛼)(𝑉 − E(𝑉 ∣ 𝑝))+

+(𝛽 + 𝛾)𝜃E(𝑉 ∣ 𝑝) + 𝛿(𝜇𝑆 + 𝑉 + 𝑆)
)

Taking the square and the expectation we get:

E(𝐷𝑜 −𝐷)2 =
(1 − (𝛾 + 𝛿)𝛼)
(𝛽 + 𝛾 + 𝛿)2 𝜏

(

(1 − (𝛾 + 𝛿)𝛼) + 2𝛿
𝛽 + 𝛾

(1 + 𝛽 𝛼)
)

+
𝛿2(𝜇2

𝑆 + 𝜏−1𝑆 + 𝜏−10 )

(𝛽 + 𝛾)2(𝛽 + 𝛾 + 𝛿)2

+
(

1
𝛽 + 𝛾 + 𝛿

)2 (

𝜃2 − 2𝛿 𝜃
𝛽 + 𝛾

(

1 − 𝜏0
𝛽 𝛼 𝜏𝑆

)) (
1
𝜏0

− 1
𝜏

)

So the total welfare loss is:
𝑊 𝐿𝛿 = 1

2

(

(1 − (𝛾 + 𝛿)𝛼)
(𝛽 + 𝛾 + 𝛿)2 𝜏

((1 − (𝛾 + 𝛿)𝛼)(𝛽 + 𝛾) + 2𝛿(1 + 𝛽 𝛼))

+
𝛿2(𝜇2

𝑆 + 𝜏−1𝑆 + 𝜏−10 )
(𝛽 + 𝛾)(𝛽 + 𝛾 + 𝛿)2

+
(

1
𝛽 + 𝛾 + 𝛿

)2 (

𝜃2(𝛽 + 𝛾) − 2𝛿 𝜃
(

1 − 𝜏0
𝛽 𝛼 𝜏𝑆

)) (
1
𝜏0

− 1
𝜏

)

+
𝛾 𝛼2

𝜏𝜀

)

(19)
12 
Using the implicit function theorem, the effect of 𝛿 on the loadings
s:
d𝛼
d𝛿

= − 𝛼

(𝛾 + 𝛿)
(

2𝛼2𝛽2(𝜃+1)2𝜏𝑆
𝛼2𝛽2(𝜃+1)2𝜏𝑆+𝜏0+𝜏𝜖

+ 1
) < 0

d𝜂
d𝛿

= − 𝜃 + 1
(𝛾 + 𝛿)2

+ 𝛼

(𝛾 + 𝛿)
(

2𝛼2𝛽2(𝜃+1)2𝜏𝑆
𝛼2𝛽2(𝜃+1)2𝜏𝑆+𝜏0+𝜏𝜖

+ 1
)

= − 𝜃 + 1
(𝛾 + 𝛿)2

⎛

⎜

⎜

⎜

⎝

1 − 𝜏𝜀
𝜏 + 𝜏𝜀

1
(

2𝛼2𝛽2(𝜃+1)2𝜏𝑆
𝛼2𝛽2(𝜃+1)2𝜏𝑆+𝜏0+𝜏𝜖

+ 1
)

⎞

⎟

⎟

⎟

⎠

< 0

For 𝜃 → ∞ we can see that since 𝛼 → ∞ we have d𝛼
d𝛿 → −∞. For

𝜃 → −1 since 𝛼 → 0 we have d𝛼
d𝛿 → 0.

Calculating the derivatives in 𝛿 = 0 we get:
𝜕 𝑊 𝐿𝛿

𝜕 𝛼 ∣𝛿=0 = −(1 − 𝛼 𝛾) (𝛾 𝜏0 + 𝛼 𝛽2𝜏𝑆
)

+ 𝜃2𝛼 𝛽2𝜏𝑆
(𝛽 + 𝛾)

(

𝛼2𝛽2𝜏𝑆 + 𝜏0
)

2
+

𝛼 𝛾
𝜏𝜖

(20)

𝜕 𝑊 𝐿
𝜕 𝛿 ∣𝛿=0 = − 𝛼 𝛽 𝜃 (𝛼 𝛽(𝜃 + 1)𝜏𝑆 − 𝜏0

)

𝜏0(𝛽 + 𝛾)2
(

𝛼2𝛽2𝜏𝑆 + 𝜏0
) (21)

Now consider part 1 of the result. The total derivative is:
d𝑊 𝐿𝛿

d𝛿
∣𝛿=0=

𝜕 𝑊 𝐿𝛿

𝜕 𝛿 ∣𝛿=0 +
𝜕 𝑊 𝐿𝛿

𝜕 𝛼
d𝛼
d𝛿

∣𝛿=0

We have 𝜕 𝑊 𝐿𝛿

𝜕 𝛼 ∣𝛿=0> 0, d𝛼
d𝛿 ∣𝛿=0 𝑡𝑜 − ∞, and 𝜕 𝑊 𝐿𝛿

𝜕 𝛿 ∣𝛿=0 also goes to −∞.
So, the welfare loss is decreasing for 𝜃 high enough.

Consider part 2. The total derivative goes to zero as 𝜃 → −1 (and
𝛼 → 0). We can observe that both 𝜕 𝑊 𝐿𝛿

𝜕 𝛿 ∣𝛿=0 and d𝛼
d𝛿 ∣𝛿=0 have a factor

of 𝛼. So, we collect 𝛼, and calculating we get:

lim
→−1

1
𝛼
d𝑊 𝐿𝛿

d𝛿
∣𝛿=0= lim

𝜃→−1

1
𝛼

(

𝜕 𝑊 𝐿𝛿

𝜕 𝛿 ∣𝛿=0 +
𝜕 𝑊 𝐿𝛿

𝜕 𝛼
d𝛼
d𝛿

∣𝛿=0

)

=
2𝛾

𝜏20 (𝛽 + 𝛾)2
> 0

Now consider part 3. If 𝜃 = 0 expression (21) shows that 𝜕 𝑊 𝐿𝛿

𝜕 𝛿 ∣𝜃=𝛿=0=
0. Moreover, for 𝜃 = 0 the welfare loss is the same function of 𝛼 as the
Bayesian, and we know from Vives (2017) that it is convex, with a
minimum in 𝑎∗ = 𝑎𝑇 . □

Data availability

No data was used for the research described in the article.
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