
Neurocomputing 599 (2024) 128061

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Insights on the different convergences in Extreme Learning Machine
Davide Elia De Falco a, Francesco Calabrò b,∗, Monica Pragliola b

a Scuola Superiore Meridionale, Via Mezzocannone, 4, Naples, I-80138, Italy
b Department of Mathematics and Applications ‘‘Renato Caccioppoli’’, University of Naples Federico II, Via Cintia, Monte S. Angelo, Naples, I-80126, Italy

A R T I C L E I N F O

Communicated by G.-B. Huang

MSC:
65D05
65Y20

Keywords:
Extreme Learning Machine
Computational costs
Convergence rates
Neural Networks

A B S T R A C T

Neural Networks (NN) are a powerful tool in approximation theory because of the existence of Universal
Approximation (UA) results. In the last decades, a significant attention has been given to Extreme Learning
Machines (ELMs), typically employed for the training of single layer NNs, and for which a UA result can also
be proven. In a generic NN, the design of the optimal approximator can be recast as a non-convex optimization
problem that turns out to be particularly demanding from the computational viewpoint. However, under the
adoption of ELM, the optimization task reduces to a – possibly rectangular – linear problem. In this work, we
detail how to design a sequence of ELM networks trained via a target dataset. Different convergence procedures
are proposed and tested for some reference datasets constructed to be equivalent to approximation problems.
1. Introduction

In the last decades, Neural Networks (NNs) have significantly at-
tracted the interest of researchers. One of the most relevant theoretical
aspects related to the analysis of NNs, and motivating their extensive
use, is the so-called Universal Approximation (UA) property, which
states that NNs with increasing sizes can recover functions in very gen-
eral settings. A simple construction of NN satisfying the UA property is
the case of networks trained via Extreme Learning Machine (ELM) [1–
4]. Neural Networks trained via ELM fall in the category of Random
Neural Networks [5] and are strongly related to other definitions,
including Random Feature Learning [6], Random Neural Networks in
Reservoir Systems [7], Echo State Networks [8,9], Random Vector
Functional Link Network [10]. ELM networks are very simple to handle,
being single-layer random projection networks, and are demonstrated
to work very well in different applications, see [11,12]. Among others,
we point out that recently ELMs have been profitably applied for the
resolution of Partial Differential Equations, both via Physics Informed
Neural Networks [13–15] and via collocation [16,17]. In particular, the
choices made for the first time in [16] regarding the determination of
randomization have inspired the analysis of Section 3.3 in the present
work.

Here, we aim to explore the behavior of ELMs when their sizes
increase along the computations. In fact, there exist several results
stating that in many cases increasing the number of neurons in NNs
can improve the reproduction capabilities of the networks; some of the
mentioned results are stated in terms of expected convergence rates.

∗ Corresponding author.
E-mail addresses: de.defalco@ssmeridionale.it (D.E. De Falco), francesco.calabro@unina.it (F. Calabrò), monica.pragliola@unina.it (M. Pragliola).

For instance, the case of activation functions given by sigmoidal-type
functions is covered by the theory of superposed sigmoidal functions,
also known as Ridge functions [18]. In this case, it can be proven
that the squared approximation errors decrease as 1∕𝑁 , as 𝑁 tends to
+∞, 𝑁 being the number of superposed sigmoidal functions, see [19–
24]. However, such results only hold true when all the parameters
of the network are fixed in an optimal way, which is not the case of
ELM whose design is based on random projections. Interestingly, also
the case of random projection networks gives squared approximation
errors of the type 1∕𝑁 , 𝑁 being the number of activation functions,
see [5–7,25–28]. Moreover, the case of increasing available data is
also considered in some references, leading to similar estimates, see ad
example [6]. Nevertheless, in practical cases, the observed convergence
rates of ELM networks when both the number of activation functions
and the number of interpolation sites (thus available data) is increased,
are of spectral type thus overperforming the theoretical result, see
also [29].

Clearly, the mentioned result is related to the ability of determining
optimal choices both for the internal parameters that determinate the
activation functions and the weights of the linear combination. Since
the training in ELM networks only involves a least square resolution
for the external weights, this fails in designing optimal functions, and in
general is challenging to provide theoretical results on the convergence
rates in the case of specific target functions.
vailable online 18 June 2024
925-2312/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.neucom.2024.128061
Received 1 August 2023; Received in revised form 15 May 2024; Accepted 12 June
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2024

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
mailto:de.defalco@ssmeridionale.it
mailto:francesco.calabro@unina.it
mailto:monica.pragliola@unina.it
https://doi.org/10.1016/j.neucom.2024.128061
https://doi.org/10.1016/j.neucom.2024.128061
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2024.128061&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Neurocomputing 599 (2024) 128061D.E. De Falco et al.

N

w

The limitations in providing a rigorous analysis of the ELMs con-
vergence rates motivate our interest in exploring the empirical conver-
gence of ELMs in different incremental scenarios, i.e. when the number
of neurons and/or the number of available data is increased along the
computations.

Although, it is well-established that in many applications – e.g., de-
noising – regularization is also included in the ELM network so as
to improve its performance, here we restrict our attention to non-
regularized networks, so as to analyze the convergence of ELMs without
the additional problem of determining a suitable value for the regu-
larization parameter, which is a particularly difficult task in general
settings [3,30]. Moreover, we fix the case of sigmoidal functions as
activation functions in neurons, so as to be as close as possible to
the case of previous references. Nevertheless, we point out that UA
applies to ELM networks for a much more general class of activation
functions [2].

In this work, we provide a uniform framework for the analysis of dif-
ferent configurations for the increase of the size of ELM networks. The
considered strategies are based on augmenting, separately and jointly,
the number of neurons and the number of data. The computational
costs of the different schemes are discussed, and their convergence
rates are compared in an extensive computational analysis. Finally, as
a way to mitigate the ill-conditioning of the problem solved in the
ELM training – that can be considered a natural consequence of the
size increase – we propose a novel initialization strategy for the input
parameters aimed at defining more informative sigmoidal activation
functions.

The paper is organized as follows. In Section 2 we recall some pre-
liminary linear algebra results. The generic extreme learning machine
will be introduced in Section 3 together with a novel initialization
strategy for the input parameters of the network. In Section 4 we
discuss in detail the different scenarios considered in the experimental
part, presented in Section 5. We conclude the paper with some outlook
for future research in Section 6

2. Preliminaries

In this section, we recall some classical linear algebra results – see,
e.g., [31] – that will be exploited in Section 4. The first result has to
do with the inversion of a block matrix.

Lemma 1. Let 𝐀 ∈ R𝑛×𝑛, 𝐁 ∈ R𝑛×𝑚, 𝐂 ∈ R𝑚×𝑚 be real matrices and
consider a block matrix of the form

𝐃 =
[

𝐀 𝐁
𝐁T 𝐂

]

∈ R(𝑛+𝑚)×(𝑛+𝑚)

Then,

𝐃−1 =
[

𝐀−1 +𝐐𝐏𝐐𝑇 −𝐐𝑷
−𝐏𝐐𝑇 𝐏

]

where

𝐏 = (𝐂 − 𝐁T𝐀−1𝐁)−1 ∈ R𝑚×𝑚

𝐐 = 𝐀−1𝐁 ∈ R𝑛×𝑚

Notice that Lemma 1 turns out to be particularly advantageous
when matrix 𝐀−1 is already available and 𝑛 ≫ 𝑚. In this case we only
need to invert a 𝑚×𝑚 matrix in order to compute the inverse of a 𝑛× 𝑛
matrix.

The next result is a specific instance of the Woodbury formula.

Lemma 2. Let 𝐀 ∈ R𝑛×𝑛, 𝐕 ∈ R𝑟×𝑛 be real matrices and consider a matrix
of the form

𝐃 = 𝐀 + 𝐕T𝐕 ∈ R𝑛×𝑛

Then,

𝐃−1 = 𝐀−1 − 𝐀−1𝐕T (𝐈 + 𝐕𝐀−1𝐕T)−1 𝐕𝐀−1 (1)

Again, when 𝐀−1 is available and 𝑛 ≫ 𝑟, formula (1) can be
2

computed very efficiently.
3. Main results on ELM

In this section, we are going to introduce the generic ELM network
and recall some results that motivated interest in the topic. While
reporting theoretical results, we emphasize that such results could
be reported in a more general framework. As pointed out in the
introduction, there are available results following different notations,
and the unification of such is out of the scope of the present paper.
Then, we are going to outline a simple procedure aimed at mitigating
the ill-conditioning of the linear problems arising when training ELM
networks.

3.1. Definitions and notations

A Single Layer Feedforward Neural Network (SLFN) with 𝑁 hidden
neurons is determined by the input weights {𝒂𝑗 ∈ R𝑑}1≤ 𝑗 ≤𝑁 , the
hidden neurons’ biases {𝑏𝑗 ∈ R}1≤ 𝑗 ≤𝑁 , and an activation function
𝑔 ∶ R → R; in what follows, we restrict our attention to the case in
which 𝑔 is the sigmoid activation function, that is denoted by 𝜎(⋅).

Given 𝑛 samples (𝒙𝑖, 𝑦𝑖) ∈ R𝑑 ×R, the SLFN aims to approximate the
data 𝑦1,… , 𝑦𝑛 with weighted sums; in formula
𝑁
∑

𝑗=1
𝑤𝑗 𝜎(𝒂T𝑗 𝒙𝑖 + 𝑏𝑗 ) ≈ 𝑦𝑖 , 𝑖 = 1 … , 𝑛 ,

where 𝒘 = [𝑤1,… , 𝑤𝑁 ] ∈ R𝑁 is referred to as output weights vector.
We remark that in general, the scalar input data 𝑦𝑖 may be a vector,
i.e. 𝒚𝑖 ∈ R𝑚, 𝑚 > 1. To avoid heavy notations, in our derivations we
consider 𝑚 = 1, which, as we will show shortly, does not represent a
restrictive hypothesis.

ELM is a training algorithm for SLFNs that computes the output
weights vector 𝒘 as the solution of a linear optimization problem of
the form

min
𝒘∈R𝑁

‖𝐇𝒘 − 𝒚‖ ,

with ‖ ⋅‖ denoting the Euclidean norm, and where 𝐇 ∈ R𝑛×𝑁 is defined
as the output matrix of the hidden layer, whose entries are given by

H𝑖𝑗 = 𝜎(𝒂T𝑗 𝒙𝑖 + 𝑏𝑗 ) . (2)

The input weights {𝒂𝑗}1≤𝑗≤𝑛 and the biases of hidden neurons {𝑏𝑗}1≤𝑗≤𝑛
are randomly selected from a continuous distribution, therefore the
matrix 𝐇 is fixed and the weights 𝒘 can be computed by means of the
Moore–Penrose pseudoinverse:

𝒘 = 𝐇†𝒚 ,

where

𝐇† = 𝐇−1 when 𝑛 = 𝑁

𝐇† = (𝐇T𝐇)−1𝐇T when 𝑛 > 𝑁 (over-determined system) (3)
𝐇† = 𝐇T(𝐇𝐇T)−1 when 𝑛 < 𝑁 (under-determined system) .

ote that in presence of vector data 𝒚𝑖 ∈ R𝑚, ELM amounts to compute
the solution of the minimization problem

min
𝐖∈R𝑚×𝑁

‖𝐇𝐖T − 𝐘T
‖ ,

here 𝐇 ∈ R𝑛×𝑁 is defined as in (2), 𝐘 = [𝒚1,… , 𝒚𝑛] ∈ R𝑚×𝑛 is
the data matrix, and 𝐖 = [𝒘1,… ,𝒘𝑁 ], with 𝒘𝑗 ∈ R𝑚, is the output
weights matrix. In other words, due to the linearity of the problem,
the case of vector data amounts to consider 𝑚 SLFNs sharing input
weights and hidden neurons’ biases, but each one with its own output
weights. Also notice that the Moore–Penrose pseudoinverse is not the
sole choice to obtain the solution to the minimization problem. In fact,
being the problem of Least-Square type, one can consider other valid
resolution strategies such as the ones related to the resolution of the
normal equations. In order to keep a general framework for the incre-
mental procedures presented in Section 4 we adopt the pseudoinverse,

interested readers in valid alternatives can refer to [32].



Neurocomputing 599 (2024) 128061D.E. De Falco et al.

𝑁

p

𝑁
p
d

a

T
u

m
t
(

4

s
i
o

o
𝒘

3.2. Theoretical results

To explore the approximation capabilities of ELMs, one can adopt
the interpolation theory viewpoint, so that the following result can be
proven.

Theorem 1 (Theorem 2.1 & 2.2 [2]). Given any small positive value 𝜖 > 0
and any activation function 𝑔 ∶ R → R, which is infinitely differentiable in
any interval, and 𝑛 arbitrary distinct samples (𝒙𝑖, 𝑦𝑖) ∈ R𝑑 ×R, there exists

≤ 𝑛 such that, for any {(𝒂𝑗 , 𝑏𝑗 )}1≤ 𝑗≤𝑁 randomly generated from any
interval of R𝑑×R, according to any continuous probability distribution, with
robability one, ‖𝐇𝒘−𝒚‖ < 𝜖. Furthermore, if 𝑁 = 𝑛, then with probability
one, ‖𝐇𝒘 − 𝒚‖ = 0.

In the following, by ‘‘continuous probability distribution’’ or ‘‘con-
tinuous sampling distribution’’ we mean the law of a random variable
𝑋 ∶ (𝛺, ,P) → (R𝑛,(R𝑛)) whose cumulative distribution function
𝐹𝑋 (𝒙) = P(𝑋1 < 𝑥1,… , 𝑋𝑛 < 𝑥𝑛) is continuous.

Theorem 1 provides a finite upper bound to the size of the network
for any given training dataset, since one can achieve the highest accu-
racy by considering 𝑁 = 𝑛. Notice that, in practice, one tends to keep

< 𝑛 so as to limit the ill-conditioning of matrix 𝐇. Nonetheless, the
revious theorem is a reference result in investigations concerning the
ecreasing rate of ‖𝐇𝒘 − 𝒚‖ when regarded as a function of 𝑁 .

The next theorem extends the previous results to the case of function
pproximation:

heorem 2 (Theorem 2.3 [33]). Given any nonconstant piecewise contin-
ous function 𝐺 ∶ R𝑑 × R𝑑 × R → R, if span{𝐺(𝒙,𝒂, 𝑏) ∶ (𝒂, 𝑏) ∈ R𝑑 × R}
is dense in 2, for any continuous target function 𝑓 and any function
sequence {𝜎(𝒂T𝑗 𝒙+ 𝑏𝑗 ) = 𝐺(𝒙,𝒂𝑗 , 𝑏𝑗 )}1≤𝑗 ≤𝑁 randomly generated according
to any continuous sampling distribution, then lim𝑁→∞ ‖𝑓 − 𝑓𝑁‖ = 0 holds
with probability 1, with 𝑓𝑁 =

∑𝑁
𝑗=1 𝑤

∗
𝑗 𝐺(𝒙,𝒂𝑗 , 𝑏𝑗 ) and the weights 𝑤∗

𝑗
determined by minimizing ‖‖

‖

∑𝑁
𝑗=1 𝑤𝑗𝐺(𝒙,𝒂𝑗 , 𝑏𝑗 ) − 𝑓 (𝒙)‖‖

‖

.

This time the conclusions are exclusively theoretical, but if we
look at a function 𝑓 as an infinite dataset (𝒙𝑖, 𝑓 (𝒙𝑖)) we can see some
similarities with Theorem 1 when 𝑛 → ∞.

3.3. Some consequences of random initialization

In Theorems 1, 2, one assumes that the input parameters {𝒂𝑗 , 𝑏𝑗}𝑗
are random realizations of a given continuous probability distribution
that, in general, is chosen to be a uniform distribution. However,
this choice can strongly affect the condition number of the overall
resolution because the 𝑗th column of 𝐇 is the sampling of the function
𝜎(𝒂T𝑗 𝒙 + 𝑏𝑗 ) on the point 𝒙𝑖. We aim to explore such behavior with the
final goal of designing a strategy that can mitigate this phenomenon.

Since we are interested in the approximation of functions on a
bounded domain, a source of computational instability is the case in
which several sigmoids have a flat behavior inside the domain — see
also the discussion in [34]. For simplicity, we consider the case in
which there is a single node in the input layer, therefore the 𝑗th sigmoid
has an inflection point in −𝑏𝑗∕𝑎𝑗 , while far from this value its variations
are modest.

Let 𝑝𝑎, 𝑝𝑏 denote the probability density functions of which 𝑎𝑗 and
𝑏𝑗 , respectively, are realizations. Assume that both 𝑎𝑗 and 𝑏𝑗 are drawn
from a uniform distribution in the interval [−𝑀,𝑀], that is

𝑝𝑎(𝑥) = 𝑝𝑏(𝑥) =

{

1
2𝑀 if 𝑥 ∈ [−𝑀,𝑀]
0 otherwise

.

Then, one can regard 𝑏𝑗∕𝑎𝑗 , i.e. the opposite of the inflection point, as
a realization of a random variable given by the ratio of two uniform
distributions in [−𝑀,𝑀], whose probability density function, based on
basic calculus rules, reads
3

𝑝𝑏∕𝑎(𝑧) =

⎧

⎪

⎨

⎪

⎩

1
4 if 𝑧 ∈ [−1, 1]
1
4𝑧2 otherwise

. (4)

An alternative approach is to use a uniform distribution to initialize
directly the position of the inflection points – originally computed as
𝑐𝑗 = −𝑏𝑗∕𝑎𝑗 – and the slopes – i.e. 𝑎𝑗 – of the sigmoids. Finally, we can
compute the biases as 𝑏𝑗 = −𝑎𝑗𝑐𝑗 . In Section 5.1 we see how this choice
is much more feasible for our computations.

4. Convergence of ELM

The theoretical results reported in the previous section motivate the
interest in exploring the convergence of ELM network when the number
of neurons 𝑁 or the number of input data 𝑛 increases. Here, we consider
these two scenarios in a separate and combined way.

More specifically, given a SLFN characterized by 𝑁 neurons and
taking as input 𝑛 sampling data, we are going to discuss the following
cases:

(i) the number of neurons 𝑁 is increased and the output weights
vector is entirely updated;

(ii) the number of neurons 𝑁 is increased, the weights corresponding
to the new neurons are computed and the old weights are not
modified;

(iii) the number of training samples 𝑛 is increased;
(iv) the number of neurons 𝑁 and the number of training samples 𝑛

are increased.

We are going to detail the computational cost of each procedure, while
a comparison in terms of convergence rate will be set up in Section 5.
Notice that increasing the number of neurons 𝑁 , as in cases (𝑖), (𝑖𝑖), will
give us the chance to empirically explore the convergence result stated
in Theorem 2 and holding for 𝑁 → +∞. This is the usual framework of
incremental ELMs, as presented in [1,35]. The case where the increase
involves the training samples is referred to as online sequential, mean-
ing that the training data are received sequentially [36]. Moreover,
generally speaking, cases (𝑖), (𝑖𝑖𝑖) involve the inversion either of a block

atrix or of a matrix that is adjusted by adding a low-rank update. In
his perspective, we will heavily exploit Lemma 1, 2. Finally, in case
𝑖𝑣) we will investigate the implications of Theorem 1.

.1. Case (i): increase the number of neurons and update the output weights

The first case that we consider is the one where, having more
amples than neurons, we can increase the number of neurons. This
s the case of the least-square approximation, where the system is
verdetermined — see (3).

Assume a SLFN has already been trained with 𝑁𝑘 hidden neurons
n 𝑛 samples, with 𝑁𝑘 < 𝑛, and the resulting output weights vector is
𝑘 ∈ R𝑁𝑘 .

We want to re-train the same network with 𝛿𝑁𝑘 additional hidden
neurons on the same data. We introduce

𝑁𝑘+1 = 𝑁𝑘 + 𝛿𝑁𝑘

𝐇𝑘+1 =
[

𝐇𝑘 𝜹𝐇𝑘
]

,

with 𝜹𝐇𝑘 containing the columns of the new coefficient matrix account-
ing for the newly introduced neurons.

Note that we want the overall system to remain over-determined,
that is 𝛿𝑁𝑘 is such that 𝑁𝑘+1 < 𝑛. According to (3), the new output
weights vector 𝒘𝑘+1 can be computed as follows:

𝒘𝑘+1 = (𝐇T
𝑘+1𝐇𝑘+1)−1𝐇T

𝑘+1𝒚

=

[

𝐇T
𝑘𝐇𝑘 𝐇T

𝑘𝜹𝐇𝑘

𝜹𝐇T
𝑘𝐇𝑘 𝜹𝐇T

𝑘𝜹𝐇𝑘

]−1
[

𝐇T
𝑘

𝜹𝐇T
𝑘

]

𝒚 .



Neurocomputing 599 (2024) 128061D.E. De Falco et al.

T
n

o
e
n
t

4
w

s
R
n
𝑤
k

w
n

𝑟

T

m

W

m

a

m

B
t

∑

R

𝒉

a

𝑤

𝐂

I
b
p
r
s
c
s

5

a
b
m
E
n
d

Notice that 𝐇T
𝑘𝐇𝑘 takes the form of a block matrix; for computing its

inverse, we can thus rely on Lemma 1, that can be easily applied by
setting

𝐀 = 𝐀𝑘 = 𝐇T
𝑘𝐇𝑘 , 𝐁 = 𝐁𝑘 = 𝐇T

𝑘𝜹𝐇𝑘 , 𝐂 = 𝐂𝑘 = 𝜹𝐇T
𝑘𝜹𝐇𝑘 .

his procedure can be iterated many times without retraining the
etwork from scratch. It produces the ELM network at each iteration.

Notice that, when 𝑁𝑘 = 𝑛 we recover the same optimal solution
btained by matrix inversion so that in this case the expected training
rror vanishes, as stated in Theorem 1. This implies that, neglecting
umerical perturbations arising in the solution of the linear system,
here is no advantage in terms of training error when selecting 𝑁𝑘 > 𝑛.

.2. Case (ii): increase the number of neurons and compute the new output
eights

Let us consider a SLFN with 𝑁 − 1 hidden neurons and 𝑛 input
amples. Assume that the output weights vector [𝑤1,… , 𝑤𝑁−1]T ∈
𝑁−1 is available. In what follows we will address the case in which a
ew neuron is added to the network, which implies that a novel weight
𝑁 has to be computed, while the remaining weights, up to 𝑤𝑁−1, are
ept unchanged.

The minimization problem of interest now takes the form

min
𝑤𝑁

‖𝒓[𝑛,𝑁]‖2 (5)

here 𝒓[𝑛,𝑁] ∈ R𝑛 is the residual error of a network with 𝑁 hidden
eurons trained on 𝑛 samples, with entries defined as

𝑖[𝑛,𝑁] = 𝑦𝑖 −
𝑁
∑

𝑗=1
H𝑖,𝑗𝑤𝑗 , 𝑖 = 1,… , 𝑛 . (6)

he explicit form of problem (5) reads

in
𝑤𝑁

𝑛
∑

𝑖=1

(

𝑦𝑖 −
𝑁
∑

𝑗=1
H𝑖,𝑗𝑤𝑗

)2

.

e isolate the term depending on 𝑤𝑁

in
𝑤𝑁

𝑛
∑

𝑖=1

(

𝑦𝑖 −
𝑁−1
∑

𝑗=1
H𝑖,𝑗𝑤𝑗 − H𝑖,𝑁𝑤𝑁

)2

,

nd using (6) we get

in
𝑤𝑁

𝑛
∑

1=1
(𝑟𝑖[𝑛,𝑁 − 1] − H𝑖,𝑁𝑤𝑁 )2 .

y imposing a first order optimality condition for the above minimiza-
ion problem, we have that 𝑤𝑁 has to solve
𝑛

𝑖=1
2(H2

𝑖,𝑁𝑤𝑁 − H𝑖,𝑁 𝑟𝑖[𝑛,𝑁 − 1]) = 0 .

eferring to the 𝑁th column of 𝐇 as 𝒉𝑁 , we get in vector notation:
T
𝑁𝒉𝑁𝑤𝑁 − 𝒉T𝑁𝒓[𝑛,𝑁 − 1] = 0

nd finally

𝑁 =
𝒉T𝑁𝒓[𝑛,𝑁 − 1]

𝒉T𝑁𝒉𝑁
.

Note the computation of 𝑤𝑁 does not involve solving linear sys-
tems, therefore there is no need to make a distinction between over-
determined and under-determined problems.

4.3. Case (iii): increase the number of samples

Assume a SLFN has already been trained with 𝑁 hidden neurons on
𝑛𝑘 samples, with 𝑁 < 𝑛𝑘 and resulting output weights vector 𝒘𝑘 ∈ R𝑁 .

This is the case where new labeled data are available and the
4

dimension of the network cannot change, that in supervised learning p
is known as online sequential training. Also in this case, we can benefit
from the structure of the matrix problem and avoid calculating the
new weights from scratch, but we rather update them with lower
computational cost. In fact, if we want to retrain the same network with
the same hidden neurons on 𝛥𝑛𝑘 additional samples, we can introduce

𝑛𝑘+1 = 𝑛𝑘 + 𝛥𝑛𝑘 , 𝐇𝑘+1 =
[

𝐇𝑘
𝜟𝐇𝑘

]

, 𝒚𝑘+1 =
[

𝒚𝑘
𝜟𝒚𝑘

]

.

The new output weights vector 𝒘𝑘+1 can be computed as follows:

𝒘𝑘+1 = (𝐇T
𝑘+1𝐇𝑘+1)−1𝐇T

𝑘+1𝒚

= (𝐇T
𝑘𝐇𝑘 + 𝜟𝐇T

𝑘𝜟𝐇𝑘)−1
[

𝐇T
𝑘 𝜟𝐇T

𝑘
]

𝒚 .

The updated matrix can be inverted as shown Lemma 2, with the
following substitutions

𝐀 = 𝐀𝑘 = 𝐇T
𝑘𝐇𝑘 , 𝐕 = 𝐕𝑘 = 𝜟𝐇𝑘 .

Hence, the network can be updated when new data is available without
re-training, at the cost of storing the inverted matrix of the previous
iteration.

We point out that in this case, we are not in the framework of
Theorem 1, and do not expect convergence of the training error, while
we do expect a better generalization error because new issues are taken
into account.

4.4. Case (iv): increase the number of samples and the number of neurons

We can also combine the two approaches to efficiently increment
both hidden neurons and training samples in one step. We introduce:

𝑛𝑘+1 = 𝑛𝑘 + 𝛥𝑛𝑘
𝑁𝑘+1 = 𝑁𝑘 + 𝛿𝑁𝑘

𝐇𝑘+1∕2 =
[

𝐇𝑘
𝜟𝐇𝑘

]

𝐇𝑘+1 =
[

𝐇𝑘+1∕2 𝜹𝐇𝑘+1∕2
]

𝒚𝑘+1 =
[

𝒚𝑘
𝜟𝒚𝑘

]

.

The fractional index is used to make explicit the fact that we are first
adding new samples, so that we apply Lemma 2 by setting

𝐀 = 𝐀𝑘 = 𝐇T
𝑘𝐇𝑘 , 𝐕 = 𝐕𝑘 = 𝜟𝐇𝑘 .

Then, in a second stage, new neurons are added. The output weights
vector is computed on the updated sample set relying again on Lemma 1
with

𝐀 = 𝐀𝑘+1∕2 = 𝐀𝑘 + 𝜟𝐇T
𝑘𝜟𝐇𝑘

𝐁 = 𝐁𝑘+1∕2 = 𝐇T
𝑘+1∕2𝜹𝐇𝑘+1∕2

= 𝐂𝑘+1∕2 = 𝜹𝐇T
𝑘+1∕2𝜹𝐇𝑘+1∕2 .

n this case, we benefit from both approaches, so we expect the
est results. Moreover, we point out that the underdetermined (over
arametrized) problem, solved via pseudo-inversion, has an intrinsic
egularization due to the least square interpretation of the solution
o that the test (or generalization) error can further decrease in the
ase where the number of neurons is taken greater than the number of
amples.

. Experimental studies

The goal of this numerical section is twofold. First, we want to
ssess the performance of the initialization strategy, the constrained
iases, outlined in Section 3.3, see Section 5.1. To this purpose, we
onitor the behavior of the condition number of the matrix 𝐇 of the
LM training, with and without the proposed strategy, for different
umber of neurons. Second, our initialization is used to test the four
ifferent scenarios discussed in Section 4 on the function approximation

roblem, see Section 5.2.



Neurocomputing 599 (2024) 128061D.E. De Falco et al.
Fig. 1. Behavior of 2-norm condition number of matrix 𝐇 for different values of M. In all three cases 𝑛 = 1000 and each panel gives a boxplot description of quartiles obtained
with 100 initializations of the basis functions.
5.1. Testing constrained biases: Condition number

The tails in Eq. (4) make explicit that even with small values of 𝑁 ,
the classical initialization of input weights and hidden biases could pro-
duce a very ill-conditioned linear problem. To measure the condition
number in this work, we evaluate numerically the 2-norm condition
number of the matrix, that is to say, the ratio of the biggest and
smallest singular values. We evaluate the collocation matrix defined via
Eq. (2), the basis functions evaluated on random points, and calculate
the condition number of this matrix 𝐇. In Fig. 1 we report results
obtained after 100 initializations of the basis functions: in the boxplot
we report first and third quartile (blue box) and the median value (red
line).

One can notice that when all the inflection points are inside the
domain, the condition number of the matrix is smaller by several orders
of magnitude, and on top of that increasing 𝑀 actually helps keep the
condition number under control, while increasing 𝑀 is unfeasible in
the classic ELM training. Recall that 𝑎𝑗 is taken in the interval [−𝑀,𝑀]
so that having more choices gives more various behaviors and that
greater 𝑀 (in norm) gives steeper functions. In the rest of the paper we
initialize the biases as specified at the end of Section 3.3, with 𝑀 = 103.

5.2. Testing approximation accuracy: Mean square error

In the test reported in this section, we address the problem of
approximating a function 𝑓 ∶ R → R starting from a given number
5

of training samples train = {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} with 𝑦𝑖 = 𝑓 (𝑥𝑖), 𝑖 =
1,… , 𝑛. The examples that we start from are the following:

𝑓1(𝑥) = cos(20 𝑥) , 𝑓2(𝑥) =
1

1 + 25 𝑥2
, 𝑓3(𝑥) = 𝑠𝑡𝑒𝑝

(

𝑥 − 1
√

2

)

,

with function 𝑠𝑡𝑒𝑝 ∶ R → R being defined as follows

𝑠𝑡𝑒𝑝(𝑥) =
{

1 if 𝑥 > 0
0 otherwise .

Notice that 𝑓1 is a highly-oscillating and smooth function, 𝑓2 is the
Runge function, while 𝑓3 is non-differentiable — see Fig. 2. These
are considered the standard target functions. Then, with the aim of
considering more general behaviors, we parametrize the vertical scaling
𝑘1, the horizontal scaling 𝑘2, and the horizontal translation 𝑘3, so as to
obtain the following families of test functions:

𝑓1(𝑥; 𝑘1, 𝑘2, 𝑘3) = 𝑘1 cos
(

𝑘2(𝑥 − 𝑘3)
)

𝑓2(𝑥; 𝑘1, 𝑘2, 𝑘3) =
𝑘1

1 + 𝑘2(𝑥 − 𝑘3)2
𝑓3(𝑥; 𝑘1, 𝑘3) = 𝑘1 𝑠𝑡𝑒𝑝

(

𝑥 − 𝑘3
)

(7)

with 𝑘1 ∈ [−3, 3], 𝑘2 ∈ [0, 30], and 𝑘3 ∈ [−1, 1].
In the tests, the training points 𝑥1,… , 𝑥𝑛 are randomly selected

within the interval [−1, 1]. To test the generalization capability of the
ELM in the different cases, for each test we are also going to consider a
testing set test = {(𝑥̄1, 𝑦̄1),… , (𝑥̄𝑛̄, 𝑦̄𝑛̄)}, with 𝑥̄1,… , 𝑥̄𝑛̄ being equidistant

points in [−1, 1].



Neurocomputing 599 (2024) 128061D.E. De Falco et al.

𝑛

Fig. 2. Target functions that are used to populate training and test sets: in (a) function 𝑓1(𝑥); in (b) function 𝑓2(𝑥); in (c) function 𝑓3(𝑥); in (d) some realizations of function
𝑓2(𝑥; 𝑘1 , 𝑘2 , 𝑘3).
The accuracy of ELM on the training and testing set is measured in
terms of the Mean Squared Error (MSE)

MSEtrain =
1
𝑛

𝑛
∑

𝑖=1
(𝑜𝑖 − 𝑓 (𝑥𝑖))2 , MSEtest =

1
𝑛̄

𝑛̄
∑

𝑖=1
(𝑜̄𝑖 − 𝑓 (𝑥̄𝑖))2

with 𝑜𝑖, 𝑜̄𝑖 denoting the value of the approximation provided by ELM
and corresponding to 𝑥𝑖, 𝑥̄𝑖, respectively.

5.2.1. Case (i)
We now consider the first scenario discussed in Section 4 and

corresponding to the case in which the number of neurons 𝑁 in the
SLFN underlying the ELM increases and the output weights vector is
entirely update every time that new neurons are added.

For each function, ELM is run 𝐾 times with 𝑁𝑘 = 𝑟𝑘 ⋅𝑁0 (geometri-
cally scaled) neurons, 𝑘 = 0,… , 𝐾 −1, and with 𝑁0 denoting the initial
number of neurons; we select 𝑁0 = 30, 𝑟 = 1.2 and 𝐾 = 13.1 The number
of training samples is 𝑛 = 103, while the number of test samples is
̄ = 6 × 103.

In Fig. 3, we show the behavior of MSEtrain, MSEtest for the three
set of functions when 𝑁𝑘 increases. In particular, with the continuous
line we report the results obtained for the original function, while the
boxpolt reports the first and third quartile (blue box) and the median
value (red line) obtained with 100 runs of the ELM approximation with
different choices of the parameters 𝑘𝑖 in the definition of the family of

1 Such choice, and the following in the next tests, are only dictated by
explanation purposes, and in all our testing the overall behavior is similar to
the one presented.
6

functions, see (7). The behavior of convergence in the regular cases is
very similar to what one would expect for general superposed sigmoidal
functions, even if these are constructed in an optimal way, with the
training also involves the optimization of the internal parameters. Then,
we can conclude that ELMs, where internal parameters are not trained
and fixed randomly do not suffer of a reduced convergence.

In light of Theorem 1, one would expect MSEtrain to decrease to 0
when 𝑁 gets larger. However, the recorded metrics achieve a minimum
around 𝑁𝑘 = 220. Then, the MSEs increase, thus suggesting that
the dimension of the linear systems to be solved at each instance of
ELM, which clearly influences the condition number of the coefficient
matrices, is such that round-off errors take over, and prevents from
exactly recovering the theoretical result stated in Section 3.2. To make
this more explicit, in the same figure we have included the condition
number of the matrix.

5.2.2. Case (ii)
Here, we consider the scenario of case (𝑖𝑖), where the number of

neurons is increased and only the output weights corresponding to
the newly introduced neurons are computed, while the others remain
unchanged.

Here, we consider 𝑁𝑘 = 2𝑘 ×𝑁0, with 𝑘 = 0,… , 8 and 𝑁0 = 50. We
also set 𝑛 = 2 × 103 and 𝑛̄ = 104.

The behavior of the MSEs for the three functions is shown in Fig. 4,
and also in this case we report results for randomized versions of the
original test functions, as discussed in the previous example and in the
relative caption. We can note that in these settings, the computation
of the new weights does not involve the solution of a possibly ill-
conditioned system. Recall that the iterative procedure is very fast,



Neurocomputing 599 (2024) 128061D.E. De Falco et al.
Fig. 3. Behavior of MSEtrain (on the left) and MSEtest (on the right) for the approximation of (a) function 𝑓1, (b) function 𝑓2, (c) function 𝑓3 in case (𝑖), i.e. when the number
of neurons increases and the output weights vector is entirely updated. The continuous line we report the results obtained for the original function, in blue the case on training
points and in black test points. The boxpolt reports the first and third quartile and the median value obtained with 100 runs of the ELM approximation with different choices of
the parameters 𝑘𝑖 in the definition of the family of functions, see (7). In panel (d) we report the condition number of the linear system that is solved, in red line the initial case
and in the boxplot the quartile values.
due to the structure of the update — see discussion in Section 4.2. As
a general result, we notice that the quality metrics decrease without
reaching 0, as in the current configuration Theorem 1 does not hold.

5.2.3. Case (iii)
Now, we consider the case in which 𝑁 is fixed and the number of

training samples increases. More specifically, we set 𝑁 = 100, 𝑛̄ = 104,
and consider 𝑛𝑘 = 𝑟𝑘 × 𝑛0, with 𝑛0 = 500, 𝑟 = 1.2 and 𝑘 = 1,… , 12.

From Fig. 5, one can observe that in the three examples, MSEtrain
increases while MSEtest decreases. This is exactly the generalization
performance improvement we expected from theory. As already noticed
in Section 4.3, in this case we do not expect overall convergence, but
the tests confirm that the incremental procedure is stable and able
to decrease test error. In this case we do not report results for the
randomized functions being the behavior not significant.

5.2.4. Case (iv)
We conclude by addressing the last case, here compared to the

other for the first time, where the number of input samples is increased
together with the number of neurons.

We set 𝑁𝑘 = 𝑟𝑘×𝑁0 and 𝑛𝑘 = 𝑟𝑘×𝑛0, with 𝑁0 = 30, 𝑛0 = 103, 𝑟 = 1.2,
𝑘 = 1,… , 12 and 𝑛̄ = 104.

The MSE curves shown in Fig. 6 are similar to the ones in Fig. 3,
after all, the only difference is that we are also increasing the number of
samples, and as a consequence, we can see that the condition number
of the matrix is actually lower by roughly an order of magnitude. This
suggests that maybe increasing neurons and samples with different
values of 𝑟 could be an alternative way to perform regularization. This
7

gives that the convergence can be compared to the spectral one typical
of polynomial interpolation, see [29].

6. Conclusions

In the present paper, we have studied what happens when one
considers constructing a convergent sequence of NNs trained via ELM.
Different increasing strategies have been introduced and for each of
them, we explore the advantages and disadvantages. A general matrix
framework has been introduced both for the evaluation and for the
incremental calculations in all cases; computational costs are compared.
Being interested in the interpolation and approximation ability of the
NN, we have evaluated the mean square error both in the training and
in the test set. Our numerical tests confirm that ELM with sigmoidal
activation functions is a very powerful machinery that has to be used
carefully in order not to be in the presence of ill-conditioned linear
problems. Our first result is that with a modification in the first phase
of the training, namely the selection of the random parameters in a wise
way, a remarkable reduction of the condition number is obtained. Then,
we empirically observed that the convergence of incremental ELM with
sigmoidal activation functions is not worst than the one known for
general superposed sigmoidal functions. Moreover, we obtain spectral-
type of convergence when the number of input samples and the number
of neurons increase at the same time.

We point out that in the ELM community, other strategies are
considered in order to increase the dimension of the network by se-
lecting new neurons iteratively, such as enhanced method [37] or
pruning [38,39]. These strategies can help in efficiency but, as seen



Neurocomputing 599 (2024) 128061

8

D.E. De Falco et al.

Fig. 4. Behavior of MSEtrain (on the left) and MSEtest (on the right) for the approximation of (a) function 𝑓1, (b) function 𝑓2, (c) function 𝑓3 in case (𝑖𝑖), i.e. when the number
of neurons increases and only the weights corresponding to the new neurons are computed. The continuous line we report the results obtained for the original function, in blue
the case on training points and in black test points. The boxpolt reports the first and third quartile and the median value obtained with 100 runs of the ELM approximation with
different choices of the parameters 𝑘𝑖 in the definition of the family of functions, see (7).

Fig. 5. Behavior of MSEtrain and MSEtest for the approximation of function 𝑓1 (a), 𝑓2 (b), 𝑓3 (c) in case (𝑖𝑖𝑖), i.e. when the number of input samples increases.



Neurocomputing 599 (2024) 128061D.E. De Falco et al.
Fig. 6. Behavior of MSEtrain (on the left) and MSEtest (on the right) for the approximation of (a) function 𝑓1, (b) function 𝑓2, (c) function 𝑓3 in case (𝑖𝑣), i.e. when the number of
input samples and the number of neurons increase. The continuous line we report the results obtained for the original function, in blue the case on training points and in black
test points. The boxpolt reports the first and third quartile and the median value obtained with 100 runs of the ELM approximation with different choices of the parameters 𝑘𝑖 in
the definition of the family of functions, see (7). In panel (d) we report the condition number of the linear system that is solved, in red line the initial case and in the boxplot
the quartile values.
in our results, for the considered tests we are able to obtain good
results without other modifications. Also in applications where data
are affected by errors, these strategies can help but, as discussed in the
introduction, special care has to be paid in these cases starting with
regularization strategies.

CRediT authorship contribution statement

Davide Elia De Falco: Writing – review & editing, Writing – origi-
nal draft, Software, Methodology, Investigation, Formal analysis, Con-
ceptualization. Francesco Calabrò: Writing – review & editing, Writ-
ing – original draft, Validation, Supervision, Methodology, Investiga-
tion, Funding acquisition, Formal analysis, Conceptualization. Monica
Pragliola: Writing – review & editing, Writing – original draft, Vali-
dation, Supervision, Software, Resources, Methodology, Investigation,
Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.
9

Acknowledgments

All authors are members of the Gruppo Nazionale Calcolo
Scientifico-Istituto Nazionale di Alta Matematica (GNCS-INdAM); FC
and MP were partially supported by projects ‘Progetti di Ricerca GNCS,
Italy’.

FC was partially supported by PRIN, Italy 2022 PNRR P2022WC2ZZ
‘A multidisciplinary approach to evaluate ecosystems resilience under
climate change’ and by PRIN, Italy 2022 2022N3ZNAX ‘Numerical
Optimization with Adaptive Accuracy and Applications to Machine
Learning’.

MP acknowledges the 2022 funding research program (FRA) of the
University of Naples Federico II, and the European Union-FSE- 394
REACT-EU, PON Research and Innovation 2014–2020 DM1062/2021.

References

[1] G.-B. Huang, L. Chen, C.K. Siew, et al., Universal approximation using incremen-
tal constructive feedforward networks with random hidden nodes, IEEE Trans.
Neural Netw. 17 (4) (2006) 879–892.

[2] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: Theory and
applications, Neurocomputing 70 (1) (2006) 489–501.

[3] G.-B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for
regression and multiclass classification, IEEE Trans. Syst. Man Cybern. B 42 (2)
(2011) 513–529.

[4] G. Huang, G.-B. Huang, S. Song, K. You, Trends in extreme learning machines:
A review, Neural Netw. 61 (2015) 32–48.

[5] A. Neufeld, P. Schmocker, Universal approximation property of random neural
networks, 2023, arXiv preprint arXiv:2312.08410.

[6] A. Rahimi, B. Recht, Random features for large-scale kernel machines, in:
Advances in Neural Information Processing Systems, vol. 20, 2007.

http://refhub.elsevier.com/S0925-2312(24)00832-4/sb1
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb1
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb1
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb1
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb1
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb2
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb2
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb2
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb3
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb3
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb3
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb3
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb3
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb4
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb4
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb4
http://arxiv.org/abs/2312.08410
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb6
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb6
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb6


Neurocomputing 599 (2024) 128061D.E. De Falco et al.
[7] L. Gonon, L. Grigoryeva, J.-P. Ortega, Approximation bounds for random neural
networks and reservoir systems, Ann. Appl. Probab. 33 (1) (2023) 28–69.

[8] L. Grigoryeva, J.-P. Ortega, Echo state networks are universal, Neural Netw. 108
(2018) 495–508.

[9] A. Hart, J. Hook, J. Dawes, Embedding and approximation theorems for echo
state networks, Neural Netw. 128 (2020) 234–247.

[10] B. Igelnik, Y.-H. Pao, Stochastic choice of basis functions in adaptive function
approximation and the functional-link net, IEEE Trans. Neural Netw. 6 (6) (1995)
1320–1329.

[11] S. Ding, X. Xu, R. Nie, Extreme learning machine and its applications, Neural
Comput. Appl. 25 (2014) 549–556.

[12] J. Wang, S. Lu, S.-H. Wang, Y.-D. Zhang, A review on extreme learning machine,
Multimedia Tools Appl. 81 (29) (2022) 41611–41660.

[13] V. Dwivedi, B. Srinivasan, Physics Informed Extreme Learning Machine (PIELM)–
a rapid method for the numerical solution of partial differential equations,
Neurocomputing 391 (2020) 96–118.

[14] E. Schiassi, R. Furfaro, C. Leake, M. De Florio, H. Johnston, D. Mortari, Extreme
theory of functional connections: A fast physics-informed neural network method
for solving ordinary and partial differential equations, Neurocomputing 457
(2021) 334–356.

[15] M. De Florio, E. Schiassi, F. Calabrò, R. Furfaro, Physics-informed neural
networks for 2nd order odes with sharp gradients, J. Comput. Appl. Math. 436
(2024) 115396.

[16] F. Calabrò, G. Fabiani, C. Siettos, Extreme learning machine collocation for the
numerical solution of elliptic PDEs with sharp gradients, Comput. Methods Appl.
Mech. Engrg. 387 (2021) 114188.

[17] F. Calabrò, S. Cuomo, D. di Serafino, G. Izzo, E. Messina, Time discretization
in the solution of parabolic PDEs with anns, Appl. Math. Comput. 458 (2023)
128230.

[18] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta
Numer. 8 (1999) 143–195.

[19] T. Chen, H. Chen, R.W. Liu, A constructive proof and an extension of Cybenko’s
approximation theorem, in: Computing Science and Statistics: Statistics of Many
Parameters: Curves, Images, Spatial Models, Springer, 1992, pp. 163–168.

[20] H.N. Mhaskar, C.A. Micchelli, Degree of approximation by neural and translation
networks with a single hidden layer, Adv. in Appl. Math. 16 (2) (1995) 151–183.

[21] B.I. Hong, N. Hahm, Approximation order to a function in C(R) by superposition
of a sigmoidal function, Appl. Math. Lett. 15 (5) (2002) 591–597.

[22] G. Lewicki, G. Marino, Approximation of functions of finite variation by
superpositions of a sigmoidal function, Appl. Math. Lett. 17 (10) (2004)
1147–1152.

[23] D. Costarelli, R. Spigler, Constructive approximation by superposition of
sigmoidal functions, Anal. Theory Appl. 29 (2) (2013) 169–196.

[24] S. Goebbels, On sharpness of error bounds for univariate approximation by single
hidden layer feedforward neural networks, Results Math. 75 (3) (2020) 109.

[25] L. Gonon, Random feature neural networks learn Black-Scholes type PDEs
without curse of dimensionality, J. Mach. Learn. Res. 24 (189) (2023) 1–51.

[26] S. Mei, A. Montanari, The generalization error of random features regression:
Precise asymptotics and the double descent curve, Comm. Pure Appl. Math. 75
(4) (2022) 667–766.

[27] A. Rahimi, B. Recht, Uniform approximation of functions with random bases,
in: 2008 46th Annual Allerton Conference on Communication, Control, and
Computing, IEEE, 2008, pp. 555–561.

[28] A. Rahimi, B. Recht, Weighted sums of random kitchen sinks: Replacing min-
imization with randomization in learning, in: Advances in Neural Information
Processing Systems, vol. 21, 2008.

[29] F. Auricchio, M.R. Belardo, F. Calabrò, G. Fabiani, A.F. Pascaner, On the accuracy
of interpolation based on single-layer artificial neural networks with a focus on
defeating the runge phenomenon, Soft Comput. Accepted Publicat. (2024) 00.

[30] J.M. Martínez-Martínez, P. Escandell-Montero, E. Soria-Olivas, J.D. Martín-
Guerrero, R. Magdalena-Benedito, J. Gómez-Sanchis, Regularized extreme
learning machine for regression problems, Neurocomputing 74 (17) (2011)
3716–3721.
10
[31] D.S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas with
Application to Linear Systems Theory, Princeton University Press, 2005.

[32] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, 1996.
[33] G.-B. Huang, L. Chen, Convex incremental extreme learning machine,

Neurocomputing 70 (16) (2007) 3056–3062.
[34] P. Horata, S. Chiewchanwattana, K. Sunat, Robust extreme learning machine,

Neurocomputing 102 (2013) 31–44.
[35] G. Feng, G.-B. Huang, Q. Lin, R. Gay, Error minimized extreme learning machine

with growth of hidden nodes and incremental learning, IEEE Trans. Neural Netw.
20 (8) (2009) 1352–1357.

[36] N.-Y. Liang, G.-B. Huang, P. Saratchandran, N. Sundararajan, A fast and accurate
online sequential learning algorithm for feedforward networks, IEEE Trans.
Neural Netw. 17 (6) (2006) 1411–1423.

[37] G.-B. Huang, L. Chen, Enhanced random search based incremental extreme
learning machine, Neurocomputing 71 (16–18) (2008) 3460–3468.

[38] H.-J. Rong, Y.-S. Ong, A.-H. Tan, Z. Zhu, A fast pruned-extreme learning machine
for classification problem, Neurocomputing 72 (1–3) (2008) 359–366.

[39] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, A. Lendasse, OP-ELM:
Optimally pruned extreme learning machine, IEEE Trans. Neural Netw. 21 (1)
(2009) 158–162.

Davide Elia De Falco is Ph.D. student at ‘‘Mathemati-
cal And Physical Sciences For Advanced Materials And
Technologies’’ of the ‘‘Scuola Superiore Meridionale’’ (SSM)
school of excellence. He is MS in Mathematical Engineering
at the Università ‘‘Federico II’’ di Napoli summa cum laude
in 2023 & BS in Computer Engineering at the Università di
Pisa, scholarship holder of the ‘‘Scuola Superiore Sant’Anna’’
school of excellence.

Francesco Calabrò is Associate Professor in Numerical
Analysis - University of Naples ‘‘Federico II’’, Italy, since
2020 and Member of the board of the Ph.D. program ‘‘Math-
ematical And Physical Sciences For Advanced Materials
And Technologies’’ of the ‘‘Scuola Superiore Meridionale’’
(SSM). He is BS in Applied Mathematics at the Università
‘‘Federico II’’ di Napoli summa cum laude in 2001 and MS
in Applications of Mathematics in Industry and Services
at the Università di Milano ‘‘Bicocca’’, Italy. He received
his Ph.D. in Computational Science and Informatics at the
Università di Napoli ‘‘Federico II’’ in 2004. His research
interests include IsoGeometric Analysis and Modeling in
Nanochannels and Membranes. Recently he has worked on
Scientific Machine Learning, in particular on the use of
Extreme Learning Machines for the resolution of differential
problems and applications in medical science.

Monica Pragliola received her Ph.D. in Pure and Applied
Mathematics from the University of Bologna (Italy) in 2020.
After a postdoctoral fellowship at the University of Bologna,
she is now assistant professor at the Department of Math-
ematics and Applications of University of Naples Federico
II (Italy). Her research interest includes numerical methods
for variational approaches in image processing and Bayesian
inverse problems.

http://refhub.elsevier.com/S0925-2312(24)00832-4/sb7
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb7
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb7
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb8
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb8
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb8
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb9
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb9
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb9
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb10
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb10
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb10
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb10
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb10
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb11
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb11
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb11
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb12
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb12
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb12
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb13
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb13
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb13
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb13
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb13
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb14
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb14
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb14
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb14
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb14
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb14
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb14
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb15
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb15
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb15
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb15
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb15
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb16
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb16
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb16
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb16
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb16
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb17
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb17
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb17
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb17
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb17
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb18
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb18
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb18
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb19
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb19
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb19
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb19
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb19
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb20
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb20
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb20
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb21
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb21
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb21
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb22
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb22
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb22
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb22
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb22
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb23
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb23
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb23
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb24
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb24
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb24
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb25
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb25
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb25
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb26
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb26
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb26
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb26
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb26
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb27
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb27
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb27
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb27
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb27
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb28
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb28
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb28
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb28
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb28
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb29
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb29
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb29
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb29
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb29
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb30
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb30
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb30
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb30
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb30
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb30
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb30
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb31
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb31
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb31
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb32
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb33
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb33
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb33
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb34
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb34
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb34
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb35
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb35
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb35
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb35
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb35
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb36
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb36
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb36
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb36
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb36
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb37
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb37
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb37
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb38
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb38
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb38
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb39
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb39
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb39
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb39
http://refhub.elsevier.com/S0925-2312(24)00832-4/sb39

	Insights on the different convergences in Extreme Learning Machine
	Introduction
	Preliminaries
	Main results on ELM
	Definitions and notations
	Theoretical results
	Some consequences of random initialization

	Convergence of ELM
	Case (i): increase the number of neurons and update the output weights
	Case (ii): increase the number of neurons and compute the new output weights
	Case (iii): increase the number of samples
	Case (iv): increase the number of samples and the number of neurons

	Experimental studies
	Testing constrained biases: Condition number
	Testing approximation accuracy: Mean Square Error
	Case (i)
	Case (ii)
	Case (iii)
	Case (iv)


	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


