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Abstract: The field of maritime surveillance is one of great strategical importance from the point of

view of both civil and military applications. The growing availability of spaceborne imagery makes it

a great tool for ship detection, especially when paired with information from the automatic identifica-

tion system (AIS). However, small vessels can be challenging targets for spaceborne sensors without

relatively high resolution. Moreover, when faced with non-cooperative targets, hull detection alone is

insufficient for obtaining critical information like target speed and heading. The wakes generated by

the movement of ships can be used to solve both of these issues. Several interesting solutions have

been developed over the years, based on both traditional and learning-based methodologies. This

review aims to provide the first thorough overview of ship wake detection solutions, highlighting

the key ideas behind traditional applications, then covering more innovative applications based on

deep learning (DL), to serve as a solid starting point for present and future researchers interested in

the field.

Keywords: ship wakes; wake detection; maritime surveillance; multi-spectral; SAR; deep learning

1. Introduction

Ship detection is a topic of great significance in the context of both civil and military
applications, which stems from its utility in enhancing maritime security, safety, and
environmental protection. A critical challenge for these systems is posed by “dark” ships,
which are defined as vessels that do not broadcast their location or identification through
the automatic identification system (AIS). AIS, despite being a pivotal tool for real-time
maritime monitoring, is an opt-in system for most ships, with only vessels over 300 tons
being required to keep broadcasting from their AIS transmitter [1]. This means that smaller
vessels can deliberately turn off their AIS transmitter, making it difficult to track their
movements. This creates a pressing need for alternative methods to monitor and detect
ships, especially those engaged in illegal activities like smuggling, unauthorized fishing,
and bypassing environmental regulations.

Moving ships generate a wake that can highlight their trajectory for tens of kilometers [2].
Theoretically, if one had a complete model of the wake characteristics and their generation
mechanism, accompanied by full knowledge of significant local meteo-marine phenomena,
the appearance of wake in remote sensing imagery could be used to discern not only the
position of the vessel, but also its size, velocity, and heading [3–5]. This is because the
features of the wake of a ship are highly dependent on the previously listed variables [2].
Furthermore, ship detection from spaceborne remote sensing is intrinsically limited by the
resolution of the sensors, which greatly reduces the potential for detection of small vessels.
In this sense, wake detection provides another avenue for small ship detection, since some
structures of the wake offer significantly larger features than the hull itself.

Thus, the field of ship wake detection has attracted a wide range of researchers and
practitioners from various disciplines, including remote sensing, maritime surveillance,
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environmental science, and computer science. This interdisciplinary interest underscores
the complexity and importance of accurately detecting ships in different conditions and
for various applications, and the utility that wake detection can offer for surveillance
and security.

The methodologies for ship wake detection have evolved from traditional approaches
to advanced deep learning (DL) techniques. The methods traditionally used to tackle
the problem were based on the application of transforms like Radon and Hough, which
served to highlight linear features in the imagery [6,7]. The transformed data would
then be subjected to threshold-based techniques like constant false alarm rate (CFAR).
Other approaches required manual feature extraction, following hierarchical paradigms
involving the shape, texture, local binary pattern (LBP), and histogram of oriented gradients
(HOG) [8]. With the development of DL in recent years, convolutional neural networks
(CNNs) have seen an explosive rise in popularity for computer vision (CV) tasks requiring
image-based feature extraction [9]. Initial experiments on the application of DL-based
detection or segmentation models to the problem in question resulted in an improved
detection accuracy of ships and their wakes in complex environmental conditions.

However, the most recent developments have involved the application of more task-
specific DL models, which often include ideas from traditional approaches. One example
of this is the inclusion of a Radon transform (RT) in the architecture of DL detection
models [10]. One issue with DL-based applications is that they require large amounts
of carefully curated data. For relatively niche applications such as wake detection, data
availability can be an issue when it comes to training and testing the neural networks. Thus,
most research on DL-based wake detection is accompanied by the development of relevant
datasets. In some newer applications, the issue of scarce data has been offset by the use of
synthetic data to augment existing datasets [11].

Li et al. [12] made a synthetic review of hull and wake detection, focusing specifically
on the use of infrared bands in multi-spectral applications. However, many new appli-
cations have been reported, especially when considering the broader field of interest in
both optical and radar applications. Moreover, both traditional and DL-based solutions
have been proposed over the years, with a wide spectrum of ideas that have influenced
the evolution of the field. Applications using both multi-spectral and synthetic aperture
radar (SAR) spaceborne imagery are taken into account, with the objective of providing the
reader with a thorough and complete review of the state of the field of wake detection in
all its aspects. For that reason, this work can be effectively considered the first thorough
overview of the field, and, hopefully, serve as a point of reference for future researchers
interested in the topic.

The review is organized as follows:

• Section 2 provides an overview of the materials and methodology used while conduct-
ing the research and data gathering required for this review;

• Section 3 provides the results of the review. In particular, it first covers an overview
of the characteristics of ship wakes, then moves onto traditional and state-of-the-art
DL-based methods of ship wake detection;

• Section 4 contains a more high-level discussion of the field as a whole, as well as the
challenges posed by ship wake detection, and the strengths and weaknesses of the
state-of-the-art approaches. A meta-analysis is also provided in this section.

• Section 5 contains the conclusions of the review.

2. Materials and Methods

2.1. Literature Search Strategy

To conduct a comprehensive review of ship wake detection methods, a systematic
literature search was performed across multiple academic databases, including IEEE Xplore,
ScienceDirect, SpringerLink, SPIE Digital Library, and Google Scholar. The search was
conducted up to April 2024, to capture the most recent developments in the field. We
used a combination of keywords and phrases related to ship wake detection and maritime
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surveillance. The primary search terms included: “ship wake detection”, “wake detection”,
“maritime surveillance”, “synthetic aperture radar”, “SAR”, “optical imagery”, “multi-
spectral”, “deep learning”, “machine learning”, “object detection”, “Radon transform”,
“Kelvin wake”, and “ship wake characteristics.”

2.2. Inclusion and Exclusion Criteria

Specific inclusion criteria were established to select relevant studies for this review.
Inclusion criteria included

• Studies that propose or evaluate methods for ship wake detection using remote sensing
imagery, both SAR and optical.

• Research involving traditional and learning-based image processing techniques.
• Articles published in peer-reviewed journals or reputable conference proceedings.
• Publications in English.

Exclusion criteria were also established, which helped to outline the scope of this re-
view and better interpret the meta-analysis presented in the subsequent sections. Exclusion
criteria included

• Studies focusing solely on ship detection without considering wake detection.
• Papers dealing with wake detection in non-maritime contexts (e.g., aircraft wakes).
• Articles not available in full text.
• Non-peer-reviewed literature such as theses, dissertations, and white papers.
• Duplicate publications or extended versions of previously published works without

significant new contributions.

2.3. Data Extraction and Synthesis

For each study that met the inclusion criteria, pertinent information was extracted.
Firstly, publication details like authors, year of publication, and source were noted. The
objectives and hypotheses of the study were extracted, together with the proposed method-
ology. The latter was the main focus of this work. Key findings and contributions were also
noted, including improvements over previous methods.

Other information of note was the type of remote sensing data used by the authors, as
well as any preprocessing techniques they applied. For datasets built to train DL models,
their characteristics and those of their annotations were extracted. In terms of performance
metrics, the wide variety of different metrics used for different data through different
detection methodologies did not allow for a thorough comparison. While there are some
widely accepted metrics for object detection (e.g., accuracy, precision, recall), these were
most often not provided by the authors. Moreover, the provided metrics referred to the
performance of their methods on different test data. As such, it was not deemed useful to
conduct a value comparison.

The extracted information was organized into categories based on the type of detection
method (traditional vs. DL) and image type (optical vs. SAR imagery).

2.4. Quality Assessment

To ensure the reliability and validity of the studies included in this review, a quality
assessment was conducted based on the following criteria:

• Clarity and completeness of the methodological description, including data prepro-
cessing steps, algorithm implementation details, and parameter settings.

• Adequacy of the experimental design, including the use of appropriate datasets,
validation techniques (e.g., cross-validation), and statistical significance testing.

• Availability of datasets, code repositories, or detailed explanations that enable other
researchers to replicate the study.

• The extent to which the study introduces novel approaches or significantly improves
upon existing methods.
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• Acknowledgment and discussion of any limitations, potential biases, or assumptions
made in the study.

Studies that met most of these criteria were considered of higher quality and their
findings were given more weight in the analysis. Any discrepancies or concerns about
quality were noted and are discussed in the review.

2.5. Limitations

It is deemed important to note certain limitations of the review process:

• Only articles published in English were included, which may have excluded relevant
studies in other languages.

• Despite using multiple databases, some relevant studies may have been missed due to
the limitations of the search algorithms or restricted access.

• Given the fast-paced developments in DL and remote sensing technologies, some
recent advancements may not be fully captured if they were published after our search
had been completed.

• There is a possibility of publication bias, as studies reporting significant or positive
results are more likely to be published.

• It would have been ideal to be able to reproduce and test the described methods
on publicly available data. This, however, was not done for this review due to the
inherent cost of such a thorough analysis.

These limitations were considered when interpreting the results, and efforts were
made to mitigate their impact by cross-referencing citations and including studies from a
range of sources and publication years.

3. Results

3.1. Overview of Ship Wake Characteristics

Although this report is not intended as a deep dive into the mechanisms behind wake
formation, its modeling, or its imaging, it is deemed important to provide a basic overview
of the phenomenon of interest and its basic structure, as this is often referenced in later
sections. Wakes are generated by the movement of the hull of a ship through the sea surface.
While the generation of wakes is a complex phenomenon which is affected by the sea
state, ship characteristics, and the speed of the vessel, several common features can be
generally identified in remote sensing imagery of high enough resolution. These features
are highlighted in Figure 1.

Figure 1. Schematic synthesis of the basic structure of a ship wake with the hypothesis of infinite

depth. Divergent waves are divided into crests (continuous lines) and troughs (dotted lines).
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In general, the wake field of a ship is generated by the interaction of a stationary wave
pattern and a turbulent wake. The stationary wave pattern travels at the same velocity as
the ship and is formed by divergent and transverse waves. These are usually well-defined
for displacement ships, which are, in general, slower. The propagation of these wave groups
is bounded within the so-called Kelvin angle, which, under infinite depth conditions, is
always equal to 19.47° [13]. In real conditions, this angle varies, becoming narrower with
increasing speeds when above a threshold depending on the characteristics of the vessel.
A turbulent wake, instead, is generated by the boundary layer effects of the hull of the
ship. For ships mounted with propellers, the most common propulsion system in use, the
turbulence is further increased. Pichel et al., in the “Ship and Wake detection” chapter of
their “Synthetic Aperture Radar Marine User’s Manual” [2], divide wake structures into
four categories:

• Turbulent wakes, which stretch directly behind the vessel. With favorable conditions,
a turbulent wake can be observed for several kilometers behind the ship itself.

• Kelvin wakes, formed by transverse and divergent waves. Divergent waves, as they
propagate outwards from the track of the vessel, interact with transverse waves
and generate a V-shaped pattern of cusp waves. These wave groups are strongly
influenced by the depth of the seabed and the Froude number of the vessel, as shown
in Equation (1):

Fr =
u

√

gL
, (1)

where u is the local flow velocity (in m/s), g is the local gravity field (in m/s2),
and L is a characteristic length (in m) usually selected as the ship’s length along the
center-line [14].

• Narrow-V wakes, visible through Bragg scattering from short centimeter-scale waves
along the vessel.

• Internal wave wakes, generated under certain conditions of shallow stratification.

Generally, the bow of the ship creates a system of waves whose wavelength is related
to the ship speed but not necessarily to the ship length [14].

Before analyzing capabilities for detection of ship wakes using SAR, it is important to
note that the detection and analysis of wakes in SAR images is further complicated by the
fact that the wake image that is observed using SAR does not correspond to an instanta-
neous snapshot of the wake itself. The SAR collects data over a period of time, leading to
phenomena such as hydrodynamic modulation and velocity bunching. Consequently, the
wake characteristics that can be observed depend significantly on the relative geometry
between the wake and the direction of motion of the SAR-mounting platform [15]. The
other parameter that has a great effect on wake visualization in SAR imagery is wind speed,
due to its influence over sea surface roughness [2].

In SAR imagery, turbulent wake is the most visible of the ship-related signatures
after the ship itself. This type of wake appears as a dark line (due to its smooth surface)
stretching from the ship and up to a few kilometers behind it. Although less common than
turbulent wake, Kelvin wakes are imaged in higher-resolution SAR imagery. It is often the
case that only one Kelvin arm is visible, or even only its cusp waves. This is often due to
the relative geometry between the SAR and the wake, as previously stated. A narrow-V can
sometimes be seen in SAR imagery, usually at low wind speeds (less than 3 m/s). Finally,
internal wave wakes are only observed in regions of shallow water stratification, under
moderate wind conditions (3 to 10 m/s).

The internal waves generated by a moving ship mostly occur in coastal waters where
water stratification is strong because of the mixing of freshwater and seawater [16]. They
are more apparent in L-band imagery than they are in X-band or C-band imagery, and they
are significantly more distinct if the SAR sensor is perpendicular to the ship track.

Another characteristic of wakes in SAR images is the azimuth offset of the wake and
the hull [3,5]. This effect is proportional to the Doppler shift effect of the back-scattered
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signal in SAR, and, thus, can be re-conducted to the slant range component of the speed of
the ship. Some studies have exploited this effect to obtain an approximate evaluation of
ship velocity, proving an interesting capability.

Tings et al. studied the detectability of wake components using different SAR sensors
through quantitative and qualitative analyses [17], as well as the non-linear dependencies
of oceanographic characteristics and the said detectability [18]. They found that near-hull
turbulence and turbulent wakes are not significantly influenced by C-Band or X-Band
frequencies or by slant range variations. However, Kelvin wakes are more detectable at
shorter slant ranges, due to the scattering effects of tilt modulation, hydrodynamic modula-
tion, and velocity bunching. This effect diminishes with increasing slant ranges, making
Kelvin wakes less detectable. Narrow-V wakes, primarily caused by Bragg scattering,
are better detected by X-Band sensors than C-Band sensors, as X-Band’s shorter Bragg
wavelengths align more effectively with the wakes. The study also confirmed that ship
wakes are generally more detectable in TerraSAR-X imagery compared to RADARSAT-2
and Sentinel-1, likely due to the prevalence of Bragg-based wake components.

In optical imagery, wake appears very differently. Because of an easier interpretability,
there are less studies on the ways ship wakes appear in optical images. In 2018, Liu and
Deng [16] provided basic information for ship detection and identification by observing
and summarizing the features of different types of ships and their wakes in optical images.
Their focus was mainly on turbulent wakes and Kelvin wakes in Gaofen GF-1 satellite
images. The turbulent region appears as a bright trail in optical images, since bubbles
significantly increase the reflectivity, almost equally in each band. This is especially true for
the smooth regions of turbulent wakes, and for parts of Kelvin wakes.

Liu et al. [19], while proposing a hull detection method with cascaded wake detection,
conducted a statistical analysis of a large amount of ships with varying Froude numbers.
They found that fishing vessels with short hulls often only generate turbulent wakes visible
in satellite imagery, while motorboats (with very short hulls) also produce two visible
bright narrow V-shape Kelvin arms. Bigger vessels, like cargo ships and warships, can
produce visible Kelvin wakes, and, depending on their speed, they may also generate
striped wakes and internal waves.

Kelvin waves are of particular interest, as they contain a plethora of valuable informa-
tion on ships. For example, the propagation of a transverse wave, if one is generated, can
be related to the speed of the ship that generated it (the propagation velocity of the wave’s
center is the same as the speed of the ship). Furthermore, the reflectance of Kelvin waves
is deeply influenced by the draft of the ship, as well as its speed, width, and length [13].
While it is widely recognized that Kelvin waves appear in remote sensing images with
meter-level resolution, valuable information contained within these images is sometimes
overlooked. For instance, the speed of a ship generating a transverse wave matches the
propagation velocity of the wave’s center.

Regarding the optical sensing of ship wakes, there is a fervent interest in the use
of infrared bands. This is because there is a difference, both in surface roughness and
temperature, between the wake structures generated by the passage of a ship and the
background. In this context, researchers speak of a “thermal” wake, formed by the cooling
water and exhaust heat discharged by a ship, framed by a cold wake formed by the cool
water in the lower part of sea that rises to the surface due to the ship propeller and the
rolling vortexes generated by the hull [20]. Zhang et al. [21] characterized the infrared
response of a ship wake through simulations using a ray tracing method with different
detecting conditions; Yang et al. [20] developed and tested different simulating models of
infrared imaging of ship wakes based on different sources of radiance and their transmission
through the atmosphere.

One general output from all of these studies is that there is a strong dependence of
the wake radiance on the observing geometry (i.e., the observer zenith angle). Van Iersel
and Devecchi [22] modeled the infrared and radar signatures of wakes, in particular the
characteristic V-shaped Kelvin wakes, comparing them in different wind and vessel speed
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conditions. They concluded that the Kelvin wake is more visible at low wind speeds with a
flat sea surface, and that higher vessel speeds are needed the higher the sea state becomes.
They also noted that, in general, radar observations allow for a better signal than infrared
for higher sea states.

Another characteristic of wakes that can be exploited for detection comes from the
application of the Fourier transform. When analyzing the frequency spectrum, Kelvin
wake and turbulent wake have stable X-shaped and linear distribution patterns, respec-
tively [19,23]. An example of this pattern is shown in Figure 2. While this pattern is
predictable given the geometrical nature of the structures under discussion, analysis in the
frequency domain can be useful to isolate the aforementioned components of wakes from
sea clutter. In particular, the shapes of these patterns do not significantly change due to
varying sea states or illumination conditions, contrary to sea clutter, which exhibits a more
distributed pattern in the frequency domain [10].

Figure 2. (a) Gray-scale optical image of a ship wake. (b) Fourier transform of the same image

As is true for all spaceborne remote sensing, and more specifically for object detection,
spatial resolution is a critical parameter. In this sense, ship wake detection has a clear
advantage when compared to simple hull detection: the wake of moving vessels is, in
general, a larger target. In fact, as previously discussed, some of the structures of a wake
can extend for kilometers behind the generating ship. This characteristic is especially
interesting when dealing with the detection of small ships.

In optical imagery, spatial resolution has been shown to be significantly more im-
portant than spectral resolution [11], with wake detection methods performing better in
high-resolution panchromatic imagery than multi-spectral imagery, with the previously
discussed exception of thermal infrared bands. This has been shown to be true for SAR
imagery as well [24].

When referring to maritime surveillance, there is also something to be said for re-
visit time requirements. D’Errico et al. [25] analyzed the re-observation capabilities of
complex satellite systems involving different radar constellations. Their study found that
re-observations occur rapidly, at fractions of the orbital period, but there is an average
“blind” interval of about 12 h due to the inherent limitations of the commonly selected
sun-synchronous orbits. While utilizing multiple-satellite systems greatly increases the
frequency of successive observations compared to a single satellite or constellation, it still
does not ensure continuous observation throughout the day, unless sparse constellations are
also employed. This is an inherent limitation that should be considered when developing a
spaceborne monitoring system.
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3.2. Overview of Traditional Methods of Wake Detection

Traditional methods of wake detection exploit the common features of ship wakes to
discriminate them from other phenomena present in image acquisitions of the sea surface.
The main characteristic feature of wakes that has been traditionally used in this context
is their linear wedge-like shape. Therefore, the traditional approach to wake detection
includes several methods and transforms able to detect straight lines in images. Other
methods have been developed and tested over the decades. The following subsections
serve to highlight these different methodologies for both SAR and optical imagery.

3.2.1. Methods Based on the Extraction of Linear Features

As stated, the most common traditional approaches for ship wake detection are based
on exploiting their linear structure. The most common methods used in this context to
detect straight lines [6] in images are RT [26], the Hough transform [27,28], and the scan
curve [29]. These methods are applied to images, turning a line detection problem into a
simpler task closer to the detection of dark or bright spots.

Of the three, the RT is the most commonly used for wake detection [3,30–38]. The RT
is an invertible transform that was first published by Johann Radon in 1986 [26]. A form of
the RT for a 2D image f(x,y) is given by Equation (2):

∫∫

x,y f (x, y)δ(x cos θ + y sin θ) dx dy,

−∞ < x < ∞,
−∞ < y < ∞,

0 ≤ θ < π.

(2)

where (x cos θ + y sin θ) is the range ρ in the Radon-transformed space. The RT was not
originally intended for line detection, but it fits the task for images of the sea. This is
because ship wakes are either very bright or very dark, while the sea returns are generally
average. When all the pixels of a given line are bright, and the others are closer to dim,
in the Radon-transformed space the particular ρ and θ of the line are highlighted [7]. A
threshold can then be used to extract these peaks and isolate straight wake structures.
Figure 3 shows an example of RT usage for ship wake detection.

Figure 3. (a) Original Sentinel-1 image, where the red rectangle indicates a mask used to cover the

ship and propeller wake returns; (b) detected wake features in the Radon domain. Two red sinusoidal

curves define the restricted Radon domain. The blue diamond is the turbulent wake, the green

squares are the narrow-V wakes, and the yellow dots are the Kelvin arms. Reprinted with permission

from Ref. [39]. 2017, Graziano et al.

It is necessary to note that, while ship wakes are characterized by linear features, they
do not appear as ideal lines with uniform brightness in satellite imagery, due to noise,
clutter, and other atmospheric or sea surface phenomena. Thus, ship wake detection using
traditional methods may lead to poor accuracy. Enhancing the linear features of wakes from



Remote Sens. 2024, 16, 3775 9 of 29

space [3,29,31–43] is insufficient to reduce false detections due to other linear phenomena,
for example, those that might be generated by waves.

Some applications used other forms of processing to further enhance the wakes in
imagery before or after using RT or other line-based transforms [8]:

• Wavelet transform was used to sharpen wake edges using the frequency difference
between sea clutter and wake stripes [37]. Krishnaveni et al. [44] proposed a wake
detection method for SAR imagery using wavelet filters together with the RT.

• Recent studies have used the idea of compressed sensing to separate wake signals
from sea clutter. A so-called low-rank plus sparse decomposition (LRSD) algorithm
was used to suppress sea clutter and extract wake components [32,38].

• Sparse regularization was used to enhance linear features of the RT [31,45].

The scanning-based method was first described in [29]. It starts by computing the
mean picture brightness in all directions surrounding the object ship to create a scanning
curve. From this curve, one can infer the likely wake direction. By using pre-processing
to improve the wake signal, Nan et al. [46] and Björn and Domenico [47] increased al-
gorithm performance. A Kelvin arm’s alternating light and dark streaks were found by
Wei et al. [48] using a periodic function as the scanning curve. Recognizing that Kelvin
wakes exhibit distinct periodic patterns due to the interference of divergent and transverse
waves forming at specific angles relative to the ship’s heading, they modeled the Kelvin
arms as sinusoidal periodic surfaces through nonlinear fitting of the wave elevation data.
By applying Floquet theory, the T-matrix method, and the extended boundary condition
method (EBCM), they derived the scattering cross-section formula for a finite periodic
dielectric surface representing the Kelvin arms. Their simulations analyzed how ship speed,
shape parameters, and incident angles influenced the scattering intensity distribution of
the wakes.

Most of the studies referenced above only focused on a relatively small manually
selected subset or localized data from their respective imagery. Moreover, transforms are
often applied locally, sometimes after hull detection [12]. Indeed, the issue of false alarms
and failed detections due to surface marine phenomena significantly reduces the range
of successful applicability of these traditional methods of detection. In this sense, the
DL-based methods analyzed in the following section have a powerful advantage, in that
they are able to learn hidden and complex patterns at various scales in the data, as long as
enough properly annotated data are provided for their training.

Regardless of the issues with these methods, knowledge of them is an important
starting point. Tools such as RT are powerful in their simplicity and can be integrated into
DL-based wake detection processing chains to improve their performance [10].

3.2.2. Methods Based on Polarimetric Enhancement

One interesting recent development came from Yanni Jiang et al. [49], who explored
the application of SAR imagery for detecting ship wakes in the ocean, particularly under
challenging conditions such as high sea states. Polarimetric SAR (PolSAR), which captures
the polarimetric properties of target backscatter, was tested as a potential solution to
enhance ship wake features.

The authors proposed a methodology that included the simulation of fully polarized
SAR imagery of ship wakes (both turbulent and Kelvin types) using a two-scale composite
model. A polarimetric whitening filter (PWF) and polarimetric detection optimization filter
(PDOF) were applied for feature enhancement, and a pre-processing approach involving
logarithmic transformation and z-score normalization was used to mitigate the impact
of bright and singular points. They also employed a RT-based method for detecting ship
wakes in various polarimetric conditions, demonstrating an average improvement of nearly
50 percent in wake detection performance using PWF and PDOF compared to traditional
HH and VV polarizations.

Their findings suggest that polarimetric enhancement methods, particularly PWF and
PDOF, can significantly improve the detection of ship wakes in SAR imagery by reducing
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the influence of sea clutter and enhancing the visibility of wake features. However, a
dark turbulent wake becomes almost invisible after PWF and PDOF, and sometimes single
artifact points are created which may cause misdetections. Their study showed that
wakes were generally correctly detected in VV polarization, and only partially in the
other polarizations.

3.2.3. Other Methods

Several other methods of wake detection have been developed throughout the years,
mostly focusing on SAR products, due to their inherent advantages for maritime surveil-
lance, but exploiting different methodologies and domains.

Fast computation and rapid detection were the focus of Liu et al. [50], Chen et al. [51],
and Yang et al. [52]. Liu et al. proposed a frequency-domain-based method that leverages
the fast Fourier transform (FFT), achieving fast computation and low complexity for real-
time ocean surveillance and practical SAR systems. Their approach capitalizes on the “V”
pattern waves generated by moving ships, which are detectable by SAR. Chen et al. [51]
utilized a dynamic threshold and morphological filtering to binarize and clean the detection
region, followed by a linear fitting method to confirm long ship wakes, with the final aim
of a rapid detection method to identify long ship wakes in SAR images. The method
leverages SAR imaging parameters and the ship’s axial direction to pinpoint potential wake
detection areas. The authors then tested their method on ENVISAT and GF-3 SAR data.
Finally, Yang et al. [52] proposed a method for SAR imagery using sparse regularization
and a Cauchy prior. This method enhances linear features in the RT domain by employing
the Cauchy proximal operator and the Moreau–Yoshida unadjusted Langevin algorithm
(MYULA) for computational efficiency and robustness. They experimented with their
method on imagery from COSMO-SkyMed.

Sea state conditions and their impact on detection were analyzed in [53,54]. An
anomaly-detection-based method to enhance ship wake detection in SAR images across
various sea states was the topic of Guan et al. [53]. Traditional methods using RT and
other methods based on detection of linear features operate best in conditions of calm seas,
as the presence of excessive surface roughness and other sources of surface clutter can
result in a significant increase in false detections. The method by Guan et al. leverages
image reconstruction errors from dictionaries trained on sea clutter images to identify
anomalies. Ship wake detection was framed as an anomaly detection problem, where the
reconstruction errors of ship wakes exceeded a certain threshold set by anomaly detectors.
They utilized three anomaly detectors—isolation forest (iForest), local outlier factor (LOF),
and one-class support vector machine (OCSVM)—to distinguish ship wakes from sea clutter.
The issue of complex background conditions was also addressed by Yang et al. [54], who
proposed morphological component analysis (MCA) and dictionary learning to decompose
the SAR image into a “cartoon” component with ship wakes and a sea-background texture
component. The method adaptively learns separate dictionaries for these components and
then uses a shearlet transform to enhance the ship wakes in the cartoon component. The
enhanced wakes are detected using the principal component (PC) transform.

Multi-image or multi-object detection has, finally, been the topic of other works,
starting from Liang Zhang [55], who explored the application of ship wake detection in
SAR images for the Chinese Coast Guard’s monitoring and enforcement capabilities. Their
study reviewed several algorithms for ship wake detection, including two-parameter CFAR,
K-distribution-based CFAR, multi-polarization detection, and multi-image correlation
methods. Ding et al. [56] proposed a method to detect multi-ship and multi-scale wakes
in SAR products. Their method detects highlighted pixel areas and generates specific
windows around centroids to identify wakes of varying sizes. It uses wake clustering
to locate all wake components and statistical features to determine the visible length of
wakes. Testing on Gaofen-3 SAR images demonstrated the effectiveness of the method.
The approach involves a specific window search that reduces the detection area, utilizing a
localized Radon-based enhancement algorithm to screen real ship targets and accurately
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locate wake axes. Then, Liu et al. [19] proposed a method for cascaded detection of ship
hulls and wakes using high-resolution satellite optical imagery from Gaofen-1. Candidate
hulls are identified using the phase spectrum of the Fourier transform, followed by hull
refinement to acquire accurate shapes and eliminate false alarms based on shape and
texture features. The inclusion of wake information is used to increase the probability of
correctly identifying true ships. Detected ships are classified using a fuzzy classifier that
combines hull and wake information.

Wang et al. [24] investigated the detection of Kelvin ship wakes in numerically simu-
lated SAR images using advanced signal processing techniques. They modeled the Kelvin
wake geometry based on classical ship wave theory and calculated the scattering echo
using a two-scale method. To detect the wakes within these images, they reconstructed
them in the Radon domain using Cauchy proximal splitting (CPS), incorporating a non-
convex regularization. They found that Kelvin wakes are more readily detectable in HH
polarization, at larger incidence angles, and in the X-band frequency range.

3.3. Introduction to DL-Based Methods for Wake Detection

While applications based on the RT are extremely common, it is known that they are
limited to small images, often centered around the vessel, and work best with low-wind
conditions. Other traditional applications of wake detection from airborne and space-
borne remote sensing imagery, while based on different processes, generally have issues
with different working conditions (i.e., hull characteristics, hull speed, wind conditions,
illumination conditions, etc.) and with the presence of too much sea clutter. DL-based
applications have shown the ability to overcome these limitations. It is not a surprise, then,
that research on wake detection has moved onto DL-based solutions, empowered by the
ever-increasing availability of high-quality spaceborne remote sensing data.

Object detection is the task of detecting single or multiple instances of certain objects
of a certain class (such as cars or buildings) in digital images and videos. Object detection
in spaceborne remote sensing imagery has its own specific set of challenges, related to
very high background-to-foreground ratios, and more specific characteristics related to the
respective sensing platforms [57]. When focusing on ship wake detection, as previously
explained, one should remember that ship wakes appear differently in optical and SAR
images. In both cases, successful detection depends on both spatial and spectral capabilities.

One important thing to note about DL-based applications is that they require large
datasets for training, validation, and testing purposes [58]. Not only do the data need to
be numerous, but they need to be of high quality (relative to the application of interest)
and correctly labeled. In the recent decade, the need for high-quality data has resulted
in the generation of several benchmark datasets. Common examples of these are COCO
(Common Objects in Context) [59] and ImageNet [60]. In a field that progresses as rapidly
as AI, these benchmark datasets provide stable ground for comparison between models,
which is precious to researchers and developers alike. Moreover, pre-trained weights for
these benchmark datasets are available for most common state-of-the-art architectures, and
can represent a great starting point for more specific applications through the application
of transfer learning.

Although simple datasets of ship wakes have been collected for both SAR [8,61,62]
and multispectral spaceborne images [10,13,63,64], currently there is no benchmark dataset
for wake detection. Information on the few high-quality freely available ship wake datasets
is compiled in Table 1, including information on their imagery and corresponding links.

One notable case from the abovementioned table is the SynthWakeSAR dataset [66] by
Rizaev and Achim, which was developed in terms of ship classification based on synthetic
SAR images of wakes. While this work is not further explored in this review, as it is
not strictly related to wake detection, it is a notable reference regarding the possibility of
extracting vessel information directly from the appearance of their wake, without the need
of AIS data.
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Table 1. A short list of open high-quality ship wake datasets.

Reference Dataset Image Type Images Characteristics Annotations
Links (Last Accessed
27 September 2024)

[10]
Ship Wake

Imagery Mass
(SWIM)

Optical

768 × 768 pixels Google Earth
optical images (2.5-m to 0.5-m

resolution). 11,600 positive
examples and 3010 negative
examples, up to 15,356 wake

instances

Oriented
bounding box

and landmarks

https://www.kaggle.
com/datasets/

lilitopia/swimship-
wake-imagery-mass

[65] OpenSARWake SAR

This collection provides 3973
1024 × 1024 pixels SAR

images of two polarization
modes. 4096 instances. Bands
L, C, X, with resolutions going

from 1.25 m to 12.5 m

Oriented
bounding box

https://github.com/
libzzluo/

OpenSARWake

[66] SynthWakeSAR
Synthetic

SAR

10 ship models for a total of
46,080 images. 0.96 × 0.96 km

scene, 3.3-m azimuth and
range resolutions. 227 × 227

× 1 pixels. Noised and
despeckled images provided.

Classification
annotations

https://data.bris.ac.
uk/data/dataset/30
kvuvmatwzij2mz157

3zqumfx

While these datasets exist, new publications on novel wake detection methods are
almost always accompanied by their own proprietary datasets with specifically structured
annotations. In this sense, it is hard to separate a DL-based wake detection application
from its accompanying dataset. Therefore, the following subsections will also contain
information on the datasets gathered by the respective authors and the types of annotations
they feature.

It is important to note that dealing with datasets of satellite imagery poses more
limitations than natural images like those from the COCO and ImageNet datasets. For
example, when applying data augmentation to SAR imagery, it is important to keep in
mind that some standard operations like simple rotations and flips may not have physical
significance and could thus introduce errors into the learning process if applied without
careful consideration.

In conclusion, it is deemed necessary for the usability of this review to provide a
quick introduction to several concepts that are useful to better understand DL architectures
and, more specifically, DL-based object detectors. The following subsections contain
such an overview.

3.3.1. Backbone, Neck, and Heads

When analyzing detection models, and DL architectures in general, three different
parts can usually be identified: these are commonly known as the “backbone”, “neck”,
and “head” [67]. Figure 4 summarizes the basic idea behind this division into a more
digestible scheme.

The backbone is the part of the detection architecture that extracts features from the
input imagery. This denomination is often used interchangeably with the word “encoder”,
since the extraction of feature maps can be considered analogous to a representation
problem. Backbones are usually characterized by a CNN, where the input imagery goes
through a series of convolution operations and non-linear activation functions to extract
significant features and patterns in the data. After each convolution, the data can be
downsampled through pooling operations, allowing subsequent convolutional layers to
extract higher-level features with higher semantic values but lower spatial resolution. One
thing to note is that CNNs are not the only solution to feature extraction, as Transformer-
based backbones are also gaining traction [68].

https://www.kaggle.com/datasets/lilitopia/swimship-wake-imagery-mass
https://www.kaggle.com/datasets/lilitopia/swimship-wake-imagery-mass
https://www.kaggle.com/datasets/lilitopia/swimship-wake-imagery-mass
https://www.kaggle.com/datasets/lilitopia/swimship-wake-imagery-mass
https://github.com/libzzluo/OpenSARWake
https://github.com/libzzluo/OpenSARWake
https://github.com/libzzluo/OpenSARWake
https://data.bris.ac.uk/data/dataset/30kvuvmatwzij2mz1573zqumfx
https://data.bris.ac.uk/data/dataset/30kvuvmatwzij2mz1573zqumfx
https://data.bris.ac.uk/data/dataset/30kvuvmatwzij2mz1573zqumfx
https://data.bris.ac.uk/data/dataset/30kvuvmatwzij2mz1573zqumfx
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Figure 4. A schematic view of a detection model, divided into backbone, neck, and heads. The

backbone module extracts the essential features at different resolutions and at different levels of

spatial and semantic values. The neck combines the feature maps in various ways. Finally, multiple

head modules produce the finals outputs, from the localization of objects, their classes, or any other

information the model is designed to provide.

The neck takes the feature maps generated at various levels by the backbone as input
and combines them in various ways. The combination of maps from different levels serves
to enrich feature maps with higher semantic value with the spatial context of higher-
resolution maps. The basic idea is that, after all the downsampling applied to obtain these
high-level feature maps, the information regarding the position of objects would be partially
or completely lost without some form of recombination. A classic neck architecture was
introduced with feature pyramid networks (FPNs) [69].

Finally, the heads of the network are tasked with outputting the desired results by
feeding combinations of the processed data to specifically designed layers, often fully
connected layers (also called “dense” layers). The simplest detection models will usually
output the coordinates of regressed bounding boxes (BBs), with the predicted class of the
detected objects accompanied by some form of confidence score. For semantic segmentation
tasks, the outputs will consist of masks related to every class.

It is important to note that the previous overview is very general, and that significant
differences and exceptions can be found in the literature and in working applications.
In the last decade, the field of DL-based CV has significantly evolved, with innovations
being presented every day and large investments both in the private and public sectors.
Throughout this evolution process, different paradigms have emerged, like single-stage and
two-stage detectors, as well as anchor-based and anchor-free architectures. The following
subsections serve to highlight some of these differences, accompanied by state-of-the-
art examples.

3.3.2. Single-Stage and Two-Stage Detectors

DL-based object detectors are usually categorized into two-stage and single-stage
detectors [57]. The following subsections describe the main differences between the two
types of detectors and provide examples regarding the evolution and state-of-the-art of
such models.

The first detection models developed were the two-stage detectors, a categorization
which refers to the sequential application of two processes:

• Region proposal is performed by region proposal networks (RPNs), where the image
is scanned for a set number of regions in the image that most likely contain objects of
interest. In general, the output on an RPN will be a set number of BB proposals and
scores representing the probability of the presence of objects at each location.

• Classification, where the content in each BB is classified as one of the object classes of
interest or discarded as background. During this stage, BBs are also adjusted through
regression to better fit the detected objects.
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The first DL-based detection algorithms were very slow and inefficient, as they used in-
tuitive but computationally inefficient methods of region proposal, such as sliding windows.
Nowadays, region proposal has become much more efficient, and two-stage detectors are
still used at large scale. Common examples of two-stage detectors include the R-CNN
family of networks (e.g., R-CNN, Fast R-CNN) [70,71].

Differently from two-stage detectors, single-stage or one-stage detectors use pre-
generated candidate regions as region proposals, applying object classification and BB
regression directly. When compared to two-stage detectors, this approach sacrifices a
certain amount of accuracy in exchange for smaller networks with less parameters and
increased processing speed. Representative examples of one-stage detectors are the single
shot multibox detector (SSD) [72] and its descendants, and the family of you only look
once (YOLO) models [73–77]. By approaching the detection task as a single-shot regression,
YOLO implements a grid-based approach to predict class probabilities, BBs, and the relative
confidence scores.

It is important to note that research in the field of maritime surveillance favors single-
stage detectors, which provide better characteristics for real-time or near-real-time appli-
cations, due to being lighter and, in general, more efficient. A 2023 survey conducted
by Li et al. [78] on real-time ship detection in SAR imagery showed a clear prevalence of
one-stage detectors for this type of application, with architectures based on several versions
of YOLO being widely favored in 37 out of the 70 reviewed works. This is consistent with
similar works related to DL-based ship detection in optical imagery [79]. However, as
shown in the following sections, for wake detection, both one-stage and two-stage detec-
tors are found, with a prevalence of custom architectures developed specifically to tackle
this challenge.

3.3.3. Anchors and Key-Points

Detection models can also be divided into anchor-based and anchor-free categories [57,80].
Anchors are predefined BBs of various scales and aspect ratios that serve as references for
predicting the presence and location of objects within an image [81]. These anchors are
densely tiled across the image, ensuring comprehensive coverage and the ability to detect
objects at different scales and orientations. The primary advantage of using anchors is their
capacity to standardize the prediction process, allowing models to learn to predict offsets
from these anchor boxes to the actual object boundaries, thereby facilitating the detection
of a wide range of object sizes and shapes with a unified framework. It is important to note
that the use of anchors requires deep contextual knowledge of the objects of interest by
the developer.

In response to the complexities and limitations associated with anchor-based methods,
anchor-free models have emerged as a simpler yet effective alternative. These models
eliminate the need for predefined anchors, instead relying on other mechanisms to identify
and localize objects.

Another possible solution is the use of key-points [57]. Models like CornerNet [82]
and CenterNet [83] represent a shift towards using key-points such as object corners or
centers to define the spatial extent of objects. In particular, CornerNet detects objects by
predicting paired key-points for the corners of BBs, while CenterNet identifies the central
point of objects and estimates their size directly. These types of solutions can also effectively
make use of heat-maps, which are, in general, a natural output of CNNs.

3.3.4. Attention Modules

One of the biggest issues when it comes to accurately detecting ship wakes is the
presence of a complex background. Moreover, there is the general issue in object detection
that is the unbalance between foreground and background. In object detection tasks, this
problems can be mitigated by the use of attention mechanisms [84].

Attention mechanisms, in general, work by re-weighting a feature map to highlight
useful features and suppress background information that is semantically redundant.
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Xue et al. [10] cited several works that exploit interesting attention mechanisms for their
object-detection purposes:

• Pang et al. [85] increased classification accuracy by better utilizing small object contex-
tual semantics through the usage of a global attention module.

• A spatial and scale attention module was developed by Zhang et al. [86] to allow vary-
ing kinds of objects with varying scale attributes to have varying intensity responses
at each layer of the FPN.

• Yang et al. [87] used a supervised semantic segmentation method to change the weights
of the features of objects of different classes into different channels and, respectively,
enhanced and weakened the object and background features in the spatial domain.

In the context of ship wake detection, implementing an attention mechanism can
significantly enhance a model’s precision. By focusing on the wake’s characteristics and
minimizing the influence of the surrounding water and noise, the model can achieve higher
accuracy and reliability.

3.4. DL-Based Applications for Optical Imagery

Applications for optical satellite imagery are common in the field of ship and wake
detection, due to an easier interpretability than their radar-based counterparts, as well as
due to the ability to use the spectral information from multiple frequencies in the near and
far infrared. On this point, while in the literature there is no complete review on the topic
of wake detection using DL-based methods, it is important to mention a useful review
by Li et al. [12], which compiles some interesting information related to hull and wake
detection methods based on infrared remote sensing.

The first interesting example of wake detection in optical satellite imagery came from
Xue et al. [10]. Their focus was on developing an end-to-end detector named WakeNet,
based on CNNs. One innovative idea to come from WakeNet is the addition of a specific
head (see Section 3.1) for regression of the wake tip coordinate and Kelvin arm direction.
Moreover, they applied a spectral and a multi-scale attention module (MSAM) which
exploits the X-shaped wake spectral pattern. In particular, WakeNet is a single-stage
anchor-based object detection network composed of four modules:

1. A backbone CNN for feature extraction.
2. An FPN with a MSAM that enhances the contextual spatial relevance of feature maps

at different scales.
3. Classic heads for oriented bounding box (OBB) classification and regression
4. An additional head for landmark regression.

Using the property of frequency domain wake images, the backbone for WakeNet
integrates a ResNet with a frequency channel attention module. In this way, the network
extracts the wake texture features in the image domain, while also learning the wake
features in the frequency domain.

Apart from the usual classification and BB regression heads, another head is added
for landmark regression. In particular, since Kelvin arms are often the most prominent
feature of ship wakes in optical imagery, WakeNet regresses the wake tip and the direc-
tion of the Kelvin arms. These landmarks also serve to indicate the heading of the ship,
which could not be automatically extracted from just the OBBs. Because of this multi-task
concept, WakeNet minimizes the multi-task loss function shown in Equation (3) during its
training phase:

L(p, t, q) = Lclass(p, p∗) + λ1LOBB(t, t∗) + λ2Llandmarks(q, q∗), (3)

where Lclass, LOBB, and Llandmarks represent the classification loss, OBB regression loss,
and landmark regression loss, respectively. The idea is that the landmarks are mainly
used for auxiliary supervision, and thus are weighted less. The landmark head the authors
developed also included the use of the RT, to improve the regression of the angles of the line
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features of the Kelvin arms, as the transformed feature map, and thus the peak detection
task was deemed to be more compatible with the nature of a convolutional layers with a
rectangular receptive field.

To develop WakeNet, Xue et al. [10] gathered their own dataset of about 11,600 optical
images, which they called SWIM (Ship Wake Imagery Mass), that is available for researchers.
One particular feature of the dataset are its annotations, including both BBs and landmark
labels, as well as providing a discrimination for instances with “difficult” labels. The
dataset contains 14,610 visible waveband satellite and aerial images and can provide up to
15,356 annotated wake instances, with images of spatial resolution from 2.5 m to 0.5 m.

Another interesting application came from Esposito et al. [63]. They proposed an
application of a Mask R-CNN [88] for instance segmentation of ship wakes in Sentinel-2
imagery. The authors focused on imagery from Sentinel-2, considering B2 (blue), B3 (green),
B4 (red), and B8 (near infrared) bands, which are all at 10 m. These images were gathered
into a dataset , which was called the Ship Wake Dataset (SWD), containing 766 examples
including single and multiple wakes, as well as negative examples with no wakes, all
validated using AIS data.

Liu and Zhao [13] approached the problem of low data availability using simulated
data to enhance their dataset, focusing on Kelvin wake detection in optical imagery. In
particular, they employed a point source perturbation, simulating a specific motorboat in a
fixed velocity range, coupled with sea surface slope probability density functions. With
this approach, they paid particular attention to the specular reflections of sunlight on the
wake regions, which are crucial for Kelvin wake identification in optical imagery, and to
accurately simulating the reflectance for each pixel. They populated their dataset, including
examples of different illumination and observation geometries, by simulating different Sun
zenith angles and satellite zenith angles.

These synthetic examples enhanced a dataset composed of 2124 wake samples from
Gaofen-1 2 m resolution panchromatic imagery and 8 m resolution multi-spectral imagery.
The authors then adopted the GoogLeNet architecture, built on Inception modules [89],
which substitutes dense layers with sparse ones, thus significantly reducing the compu-
tational efficiency. Their general framework employs pre-processing of the input image,
followed by clipping it into overlapping sub-images, which are then classified as either
Kelvin wakes or natural surfaces. The clips containing wakes are then merged to highlight
the areas covered by wakes. This framework successfully turns a detection task into a much
simpler classification task, with an process much akin to classic two-stage detectors using
region proposals.

The authors also tested their methods by removing wake regions distant from ship
hulls, which were manually logged, and labeling ships that did not produce Kelvin wakes
as true negatives. The results presented an increase in precision and a slight decrease
in recall, as many false positives occurred in areas far away from any identified ships.
One final output of interest comes from their study of multi-spectral imagery and the
possibility of enhancing the resolution of color and infrared bands using pan-sharpening.
However, they noted that the original panchromatic images yielded the most efficient
detection outcomes, indicating that high-resolution spatial details are the most critical for
identifying Kelvin wakes.

In 2023, Del Prete et al. [64] developed and validated a novel DL approach for detecting
ship wake components in electro-optical satellite imagery based on the detection of the
key-points of wake components. By employing a transfer-learning procedure to fine-
tune ImageNet weights, the authors were able to train a lightweight model based on
the EfficientNet architecture [90] with a smaller custom dataset made of Sentinel-2 multi-
spectral images and corresponding AIS data.

Their method demonstrated robustness across different spectral bands and a heading
accuracy under 10°. Del Prete et al. [64] demonstrated the model’s effectiveness on
lower-resolution Landsat-9 images, confirming its generalizability. The authors also noted
that their approach should be applicable to SAR data, advising the use of ensemble or
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cascade methods to address false positives, and noted that denoising techniques should be
thoroughly investigated.

A very recent contribution came from Liu and Zhao [11], who tackled the challenge
of Kelvin wake detection in large-scale, high-resolution optical imagery. Recognizing the
scarcity and limited diversity of real Kelvin wake samples, they proposed a method that
utilized simulated Kelvin wakes to augment their training dataset. These simulations were
generated based on physical models of wake formation and imaging mechanisms, focusing
on accurately reproducing the specular reflections of sunlight on the wake regions, which
are crucial for Kelvin wake identification in optical imagery.

Their approach involved dividing large-scale GF-1 optical images into overlapping sub-
images of 224 by 224 pixels. They employed a deep neural network, specifically GoogLeNet
with inception modules [89], to classify each sub-image as containing a Kelvin wake or a
natural sea surface. By merging the classified sub-images, they effectively detected and
delineated wake regions. This framework transformed the detection task into a simpler
classification problem, similar to classic two-stage detectors using region proposals.

Liu and Zhao’s method achieved a high recall rate of 94.0% and demonstrated that
high-resolution spatial details are critical for detecting Kelvin wakes. Interestingly, they
found that incorporating multispectral data through pan-sharpening did not improve the
detection performance, indicating that the original high-resolution panchromatic images
were most effective. They also experimented with removing wake regions distant from
ship hulls—manually logged to simulate known ship locations—which increased precision
and slightly decreased recall. This suggested that many false positives occurred in areas far
from any identified ships.

3.5. DL-Based Applications for SAR Imagery

SAR-based maritime monitoring has been the subject of fervent study by the scientific
community due to its all-weather all-time characteristics. In fact, research on wake detection
methods using SAR imagery is much more common than with optical imagery, making
use of its characteristics and looking for smart ways to approach the problem that often do
not involve DL. However, traditional methods of wake detection in SAR imagery are often
based on threshold evaluations and are naturally susceptible to high false alarm rates, not
only due to the presence of clutter, but also due the inevitable presence of speckle. In this
sense, learning-based methods can help to improve performance, by being more robust
against any kind of interfering factor.

The first publication analyzed in the context of SAR-based applications came from
Del Prete et al. [61]. This work, published in 2021, represented the first DL approach to
specifically detect ship wakes without any a priori knowledge, and without more specific
information about the location of the vessel that generated the wake. The authors first
introduced the field as a whole, with a complete analysis of the field of DL-based detectors,
then deployed several architectures on the same custom SAR wake detection dataset to
evaluate the strengths and weaknesses of each.

The dataset in question, called SSWD (SAR Ship Wake Dataset) by the authors, in-
cludes 261 wake chips extracted from Interferometric Wide (IW) swath Sentinel-1 SAR
images with VV polarization and with a pixel resolution of about 10 m × 10 m (ground
range × azimuth), with particular attention paid to obtaining a reasonable statistical distri-
bution of orientations of instances. Polygon annotations were used to overcome the problem
of the narrow shape during the random rotations in the data augmentation strategy.

The authors selected several object detection architectures, testing 21 combinations of
different backbones and necks, including Faster R-CNN [91], Mask R-CNN [88], Cascade
Mask R-CNN [92], and RetinaNet [93]. All combinations were tested, starting from transfer
learning of pre-trained weights on the ImageNet and COCO benchmark datasets.

The best performing model from their evaluation was Cascade Mask R-CNN with a
ResNet + FPN backbone, which showed a robust performance in wake detection, despite
the challenges posed by coherent speckle-noise. The authors, noting the performance
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of the Cascade approach, further explored its generalizability by testing its performance
on X-band SAR images from TerraSAR-X and COSMO-SkyMed satellites, evaluating its
detection capabilities across different sensors, resolutions, and polarization. The model
demonstrated strong generalizability when applied to X-band SAR images, indicating its
potential versatility across different radar imaging platforms and conditions. An example
of the application of the model to X-band SAR is shown in Figure 5.

Figure 5. Subset of a TerraSAR-X product in VV polarization (azimuth–slant range coordinates).

(a) Reference image. (b) Segmentation results of the model based on Cascade Mask-RCNN. Adapted

with permission from Ref. [61]. 2021, Del Prete et al.

As previously stated, the interest in security and surveillance applications regarding
ship and wake detection has pushed a significant subset of the field towards lightweight
solutions that can offer near-real-time capabilities, as timeliness is highly valued in this
context. Thus, Ding et al. [8] focused on developing a lightweight DL-based ship and wake
detector trained on Gaofen-3 imagery, which was primarily intended for embedded devices
in a military context. In particular, they used a YOLO-like structure with some specific
modifications and an attention mechanism.

In line with the “lightweight idea”, their backbone has only three layers, which
are also not traditional convolution-batch normalization-activation layers, but combined
convolution layers (CBC) specifically developed by the authors for this application. These
modules involve the use of squeeze and excitation (SE) modules [94], enabling them to
perform dynamic channel-wise feature re-calibration.

It is important to note that the SAR images in the application in question are used as
gray-scale images, as polarization and multi-channel image information are deemed less
critical. Similarly to in previously described applications, the linear features of the wake
are exploited to enhance the capabilities of the model. In particular, horizontal BBs are used
in conjunction with the wake line (considered as the turbulent wake), which is aligned
with the diagonal of the corresponding BB. To do this, intersection over union (IoU) is
insufficient, and an angle-IoU loss function is proposed to achieve high angular correlation.
This angle-IoU is defined as the normalized angular distance coefficient between actual
and predicted wakes, as shown in Equation (4):

RAIoU =
|θp − θg|

θc
, (4)

where the superscripts p, g, and c denote the prediction box, the ground truth, and the
smallest enclosing box covering two boxes, respectively. This angular consideration was
further improved by adding a distance loss between the diagonal of the predicted BBs and
the actual wake line. Finally, Ding et al. [8] developed a loss function which takes into
consideration integrity, coincidence degree, and directionality, which they identified as the
critical elements for a wake BB.
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As with previous applications, Ding et al. also collected a dataset for their training and
testing activities. Their dataset contained 862 pairs of ships and wake SAR images from
Gaofen-3, containing different scales of ship and wake images in various sea conditions
and imaging modes, including spotlight, stripmap, and scan, to ensure diversity.

Wang et al. [62] used YOLOv5 for their application, which focused on detecting
non-linear ship wakes and weak wakes in SAR images. The authors made large use
of simulated data to augment their dataset of SEASAT SAR and TerraSAR-X imagery,
using a semi-deterministic facet scattering model (SDFSM) to simulate the electromagnetic
scattering distribution of the sea surface and Kelvin ship wakes. The modeling process
involved generating a composite scene of the sea surface and ship wake, simulating various
conditions such as different sea states, ship speeds, and headings. Then, key parameters
like the radar incident frequency, radar incident angle, ship dimensions, and sea surface
wind speed were used to generate realistic SAR image simulations. The authors then
employed several models to simulated various facets of the scene:

• The sea surface was simulated utilizing the Elfouhaily wave spectrum and Mitsuyasu di-
rectional function to simulate the sea surface’s randomness and anisotropic characteristics.

• A Kelvin wake mathematical model was used to simulate the wake’s wave height,
considering ship speed and direction.

• An SAR image simulation was obtained combining the facet scattering distribution
and the SAR imaging mechanism to produce SAR images of the composite sea surface
and wake scenes under various conditions.

The authors compared the performance of YOLOv5 with traditional RT-based methods.
According to their analysis, the DL-based solution successfully detected the non-linear
wakes, while methods based on linear feature extraction were obviously unable to succeed.

Finally, in early 2024, Xu and Wang [65] addressed the scarcity of publicly available
SAR ship wake datasets by introducing OpenSARWake, a large-scale dataset annotated
with oriented bounding boxes, as cited in Table 1. To effectively detect ship wakes, they
also developed SAR Wake Net (SWNet), a two-stage detection algorithm tailored for SAR
imagery. Recognizing that the attention mechanisms commonly used in optical image
processing may not enhance performance in SAR tasks, due to complex sea clutter and
often indistinct wake features, SWNet utilizes a ConvNeXt-T [95] backbone and introduces
a specifically developed feature pyramid network called HR-FPN*. Their method achieved
a mean average precision (mAP) of 49.0%, outperforming existing approaches on the
OpenSARWake dataset. Their work served to highlight the importance of designing
specialized network architectures that consider the unique characteristics of SAR images in
ship wake detection.

3.6. Final Overview

A complete overview of all previously referenced methods, together with their ad-
vantages, disadvantages, and image sources is provided in Table 2. Further meta-level
analysis is provided in the Discussion Section.

Table 2. Summary of referenced ship wake detection methods.

Reference Type Method Advantages Disadvantages Imagery Source

[31] Traditional, SAR
Radon Transform (RT)

with filtering (e.g.,
Wiener filter)

Effective for detecting
linear features;

increases SNR; filters
reduce false alarms

High false alarm rate
without

post-processing;
requires additional

filters

Seasat-A (L-band)
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Table 2. Cont.

Reference Type Method Advantages Disadvantages Imagery Source

[32]
Traditional,

SAR/Synthetic

Localized RT using
Feature Space Line

Detector (FSLD)
algorithm.

Robust against noise;
better localization of

short and curved
wakes

Computationally
intensive; less

accurate for long
wakes without full

coverage

Seasat-A and
simulated imagery

[29] Traditional, SAR
Digital terrain models
for masking land; RT

for wake detection

Fast system; reduces
false alarms;

demonstrated on
ERS-1 and Seasat data

Higher false wake
detection in ERS-1;
some ships missed

(7.4% Seasat, 8%
ERS-1)

Seasat-A, ERS-1

[33] Traditional, SAR

RT with band-pass
filtering and
non-linear

amplification

Enhances detection of
faint wakes; effective
preprocessing steps

Dependent on wake
appearance and

image quality; may
not eliminate all false

positives

N/A

[37] Traditional, SAR

Localized RT
combined with
wavelet filter

(LRTWF)

Detects linear and
chirp-like features

simultaneously;
robust to Gaussian

noise

Increased
computational

complexity; local
N/A

[50] Traditional, SAR
Frequency-domain

linear feature
detection (FLD).

Reduces
computational
complexity by

20–40%; feasible for
real-time detection.

Requires
pre-processing to

reduce false alarms;
careful threshold

adjustment needed

Real and synthetic
SAR data

[35] Traditional, SAR

Fast Discrete Radon
Transform (FDRT);
speed estimation

from wake spectrum.

Efficient speed and
beam estimation;

works with Kelvin
and turbulent wakes.

Limited to straight
ship paths; less

accurate for
maneuvering ships

Airborne SAR
(X-band)

[38] Traditional, SAR
RT with stochastic
matched filtering.

Reduces speckle
noise; enhances wake

features.

Higher
computational cost
due to interpolation

at each rotation angle.

SIR-C/X-SAR, ERS
SAR

[44]
Traditional,

SAR/Synthetic

RT combined with
wavelet filters for

denoising

Improves SNR;
enhances wake

detection in noisy
images

Higher
computational

complexity; struggles
with heavy noise

N/A

[42] Traditional, SAR

CFAR detection using
signal-to-clutter ratio
(SCR) enhancement

and Normalized
Hough Transform

(NHT).

Enhances wake
detection in terms of

SCR; improves
performance of CFAR

Usual weaknesses of
thresholding and line

detection

RADARSAT-1,
TerraSAR-X

[46] Traditional, SAR
CFAR detection based
on length normalized

scan

Higher accuracy than
Radon/Hough

transforms; accurate
velocity estimation

Requires ship
detection beforehand;

computationally
complex

COSMO-SkyMed,
ERS-2,

RADARSAT-1/2

[4] Traditional, SAR
Classic RT application
for heading extraction

Simple to apply
Inherits weaknesses

of RT
COSMO-SkyMed
and TerraSAR-X

[21]
Traditional,

Optical
(IR)/Synthetic

Infrared imaging
model using

Cook–Torrance model
and ray tracing

Comprehensive
environmental

modeling

Difficult to model all
environmental

conditions accurately
Synthetic data
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Table 2. Cont.

Reference Type Method Advantages Disadvantages Imagery Source

[54] Traditional, SAR

Morphological
dictionary learning

with component
analysis

Outperforms
traditional methods;
effective in complex

backgrounds

Computationally
complex; requires

quality initial
dictionaries

ERS-2

[3] Traditional, SAR

Wake feature
identification using

hydrodynamic theory;
azimuth shift for

heading and velocity

Better than simple
thresholding; simple

application

Low agreement
among methods

COSMO-SkyMed
and TerraSAR-X

Stripmap

[36] Traditional, SAR

RT-based detection of
turbulent and

narrow-V wakes;
azimuth shift for

estimation.

Accurate detection;
robust against noise
and multiple wakes.

Tested on limited
images; ineffective for

curvilinear wakes.

TerraSAR-X,
COSMO-SkyMed

[39] Traditional, SAR
RT with classification
and feature validation

on Sentinel-1.

High detection
accuracy (78.5%);

robust against false
confirmations.

Some false
confirmations (18.5%

on Kelvin arms).
Sentinel-1

[34] Traditional, SAR

Dual-stage Low-Rank
Plus Sparse

Decomposition
(LRSD) with RT.

Robust wake
detection; effective

under heavy clutter.

Computationally
intensive due to

dual-stage
processing.

COSMO-SkyMed

[40]
Traditional,

PolSAR

Polarimetric LRSD
and RT for clutter

reduction

High precision;
effective clutter
reduction and
classification.

Not tested in adverse
weather conditions

UAVSAR airborne
SAR

[51] Traditional, SAR

Detection using
Doppler shift curve
analysis and linear

fitting

Fast detection;
effective for long

wakes

Less effective for
short wakes; requires

precise parameter
tuning

ENVISAT ASAR,
GF-3 SAR

[48]
Traditional,

Synthetic SAR

Periodic structure
scattering using

Floquet theorem and
EBCM.

Useful for synthetic
applications; efficient
scattering calculation

Limited to Kelvin
wakes; excludes
turbulent wakes

Synthetic data

[52] Traditional, SAR
Wake detection using

Cauchy
regularization

Enhanced
performance with
Moreau Yoshida

unadjusted Langevin
algorithm (MYULA)

Computationally
complex; requires

fine-tuning
COSMO-SkyMed

[30] Traditional, SAR
RT for wake detection

with two-step
validation

Effective for detecting
go-fast boats; reduces

false alarms

Requires favorable
sea and wind

conditions

TerraSAR-X
Stripmap

[45]
Traditional,

SAR/Synthetic

Inverse problem
approach with sparse
regularization and RT

Handles wakes as
inverse problem

Lower performance
on low-resolution

images;
computationally

demanding

TerraSAR-X,
COSMO-SkyMed,

Sentinel-1,
Advanced Land

Observing Satellite
2 (ALOS-2),
Synthetic

[6]
Traditional,

Optical

RT of images with
centered hulls;

verification of true
wakes

The demonstrated
principle is

interesting for
post-processing

Requires
hull-centered

imagery; inherits RT
weaknesses

Gaofen-1,
Sentinel-2,
Landsat-8
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Table 2. Cont.

Reference Type Method Advantages Disadvantages Imagery Source

[55] Traditional, SAR

Detection using
two-parameter CFAR

and multi-image
correlation

Suitable for wide-area
monitoring; high

accuracy

Difficulties in
complex sea
backgrounds;

sensitive to sea
conditions

N/A

[43] Traditional, SAR
RT-based detection
for identifying dark

vessels

Effective in
homogeneous sea

clutter; reconstructs
wake lines

Struggles with sharp
wind transitions or

surface films
Sentinel-1

[56] Traditional, SAR

Multi-ship and
multi-scale wake

detection using RT
enhancement

High accuracy;
effective on complex

wakes; no large
datasets needed

May miss small
wakes; challenging in
complex backgrounds

Gaofen-3

[53] Traditional, SAR
Anomaly detection

using sea clutter
dictionaries

Improves detection
under varying sea
states; adaptable to

complex
environments

Requires extensive
training data;

computationally
intensive dictionary

learning

HRSID dataset

[19]
Traditional,

Optical

Cascaded hull and
wake detection using

Fourier transform;
fuzzy classifier

Cascaded approach is
effective; of great

interest

Higher
computational
requirements

Gaofen-1
panchromatic and

multi-spectral

[24]
Traditional,

Synthetic SAR

Non-convex
regularization with

Cauchy-based
penalty

High accuracy in
simulated conditions;

sensitive to ship
parameters

Limited to simulated
data; unverified in

real conditions

Numerically
simulated data

[49]
Traditional,

Synthetic SAR

Pre-processing with
polarimetric
enhancement

Enhanced detection
using PWF and PDOF

filters

Complex
pre-processing;

mitigation of bright
points needed

Synthetic data

[5] DL, SAR

Vessel velocity
estimation via

azimuth offset using
CNNs; RT for wake

highlighting

Validated with AIS
data; effective

velocity estimation

Inherits RT
weaknesses; issues
with dark ships in

AIS data

TanDEM-X Single
Look Complex
(SLC) images

[10] DL, Optical
CNN architecture

exploiting X-shaped
wake patterns and RT

Combines CNN with
traditional

knowledge; effective
detection.

Inherits weaknesses
of traditional CNNs

Google Earth
imagery (0.5–2.5 m

resolution)

[61] DL, SAR
Wake detection using

Cascade Mask
R-CNN

Robust detection in
Sentinel-1 images;

generalizes to X-band
data.

High false alarm rate
in rough seas; limited

dataset size

Sentinel-1,
TerraSAR-X,

COSMO-SkyMed

[63]
DL, Optical

(Multi-spectral)
Wake detection using

Mask R-CNN

High accuracy in
complex scenarios;

effective in multiple
configurations

Requires large
training dataset;

sensitive to weather
conditions

Sentinel-2

[62] DL, SAR

Nonlinear wake
detection using
electromagnetic

scattering model and
YOLOv5

High efficiency and
accuracy; detects
weak wakes in
complex seas

Requires high
computational power;

some limitations in
high sea states.

SEASAT,
TerraSAR-X,

Synthetic SAR data
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Table 2. Cont.

Reference Type Method Advantages Disadvantages Imagery Source

[64] DL, Optical
Keypoints method

using deep learning
for wake recognition

High accuracy; fast
processing;

lightweight model for
edge devices

Struggles under poor
conditions; limited to

optical images

Sentinel-2,
Landsat-9

[8] DL, SAR

Lighter version of
YOLOv4 for

efficiency; detects
ships and wakes

Novel method; more
efficient than classic

YOLOv4

Small dataset used in
study; may limit
generalizability.

Gaofen-3

[11]
DL, Opti-

cal/Synthetic

Kelvin wake
detection from

large-scale optical
imagery using
simulated data

trained deep neural
network

High accuracy (Recall
94%, Precision 70.8%),

effective use of
simulated data to

address data scarcity

Moderate precision,
requires synthetic

data to compensate
for limited real wake

samples

Gaofen-1

[65] DL, SAR

Presented
OpenSARWake
dataset. Tested

several architectures
on it. Feature

Refinement Oriented
Detector (SWNet)

Large-scale SAR
dataset, multi-band
data, diverse wake

types

Moderate mAP,
challenges with

complex sea clutter
and small targets in

SAR images

Sentinel-1A,
TerraSAR-X,

ALOS-PALSAR

4. Discussion

The main problems that every ship wake detection method has to face are as follows:

• Several sources of clutter are present on the marine surface, which can cause a higher
rate of false positives. Furthermore, these sources of clutter vary greatly in their
appearance [24,96] and can be difficult to filter out;

• The quality of wake imaging is strongly dependent on local and, often, global meteo-
marine conditions. Even with SAR, which is heavily researched due to its all-weather
all-time capabilities, the visualization of wake structures is influenced by wind, sea,
and local atmospheric conditions;

• The mechanism behind wake generation is not consistent at a high-level analysis, and
real images often feature different combinations of wake structures, if any at all;

• Wake detection near coasts and low depth areas is, in general, particularly problematic
and requires different considerations. Very few works have focused on wake detection
in these conditions;

• Ship wake detection is limited to moving ships.

Table 3 contains an overview of the methods cited in this review. As previously stated,
applications on SAR imagery have been investigated more thoroughly than optical imagery.
While traditional methods have been investigated for at least three decades, DL-based
techniques are newer and growing in number. Publications referenced in this review
regarding ship wake visualization or detection in airborne or spaceborne remote sensing
images were not included in the table if they did not propose and test a solution to tackle
the task.

Figure 6 contains a timeline of referenced publications involving wake detection
methods up to April 2024. The trend shows an increased interest in the topic in the last
decade, and the recent increase in DL-based solutions. Nonetheless, traditional methods
still prove of great interest to the scientific community.
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Table 3. Overview of referenced publications proposing and testing solutions for wake detection.

Traditional Deep Learning

SAR 29 5

Optical 3 4

TOTAL 41

Figure 6. Year-by-year timeline of referenced publications on traditional and DL-based wake detection.

Updated up to April 2024.

Of the traditional methods, those based on RT and other linear feature extraction
methods are the most common. However, these encounter issues when facing non-linear
wakes, strong sea clutter, and any conditions that do not allow the formation or conservation
of linear features in the remotely sensed scene. Nonetheless, these methods are still
powerful and are often paired with other techniques and transforms, which can enhance
their performance.

Recently, DL-based methods have proven their capabilities in terms of overcoming
some of the aforementioned weaknesses. Comparative studies have shown that DL-based
methods outperform traditional techniques, particularly in complex and high sea state
conditions. For example, Wang et al. [62] demonstrated that YOLOv5 could detect non-
linear and weak wakes more effectively than RT-based methods. Similarly, the lightweight
DL model proposed by Ding et al. [8] achieved real-time detection capabilities suitable for
embedded systems, highlighting potential for practical, real-world applications.

However, the lack of a well-recognized large benchmark dataset for ship wake detec-
tion hurts the field, as data availability is the most important factor for the development,
training, and validation of learning-based methods. At the time of writing, each new
work on the topic requires a significant expenditure of time and resources to develop a
well-annotated dataset that suits its focus.

Nonetheless, there is a clear growth of interest in the field, as maritime surveillance
remains a topic of great strategical importance. The use of synthetic data is an interesting
solution to the issue of low data availability, and represents a feasible and powerful
approach that cab be paired with the usual techniques of data augmentation.

Moreover, there is unexplored potential for the use of more advanced architectures
and methodologies, such as vision-transformer-based detectors and physics-informed DL,
which may incorporate hydrodynamic laws or information related to local meteo-marine
conditions. As a final remark, hitherto, the multi-spectral (in electro-optical imagery) or the
multi-polarization (in SAR data) content of wake images and features has remained largely
unexplored or underutilized for both wake detection and false alarm reduction.

5. Conclusions

Ship wake detection is a powerful tool that can be used to effectively enhance existing
hull detection methods. In fact, it has been proven that precious information such as
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heading, speed, and even hull shape and dimensions can be reliably extracted from the
appearance of ship wakes in spaceborne remote sensing imagery. Both optical and SAR
applications were explored in this work, highlighting their differences, as well as their
strengths and weaknesses.

The field has evolved significantly in the past decades, transitioning from traditional
linear feature extraction methods to advanced DL-based approaches. While effective in
detecting basic linear features, traditional methods based on RT and Hough transforms are
limited by high false alarm rates and sensitivity to sea clutter. Applications based on other
concepts have also been developed and presented in this overview, proving how much
exploration has been carried out on the topic.

Recently, DL-based applications have demonstrated superior performance in detect-
ing complex wake patterns under varying environmental conditions. The integration of
attention mechanisms and multi-task learning has further enhanced detection accuracy.
The generation of synthetic data has proven crucial in overcoming the scarcity of annotated
datasets, enabling DL models to generalize well to real-world conditions. Lightweight DL
models, designed for embedded systems, offer promising solutions for real-time maritime
surveillance and security applications.

To advance the field of ship wake detection, several key areas require further re-
search and development. The creation of standardized benchmark datasets for wake
detection would facilitate the comparison of different models and foster collaboration
among researchers. Developing more sophisticated data augmentation techniques that fit
the characteristics of the respective types of satellite imagery, including better simulations
of diverse maritime conditions, could enhance the training of DL models. Improving the
interpretability of DL models and their robustness to adversarial conditions is essential
for reliable real-world applications. Furthermore, combining wake detection models with
other maritime surveillance systems, such as information from the AIS, could provide a
more comprehensive solution for monitoring and tracking vessels. Finally, the inclusion
of information regarding sea characterization and the sources of sea clutter could offer
interesting solutions to reduce false positives.
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