
European Journal of Heart Failure (2024) POSITION PAPER
doi:10.1002/ejhf.3516

State of the art and perspectives of gene
therapy in heart failure. A scientific statement
of the Heart Failure Association of the ESC,
the ESC Council on Cardiovascular Genomics
and the ESC Working Group on Myocardial &
Pericardial Diseases
Sophie Van Linthout1,2*, Konstantinos Stellos3,4,5,6,7, Mauro Giacca8,
Edoardo Bertero9, Antonio Cannata10, Lucie Carrier11,12, Pablo Garcia-Pavia13,14,15,
Alessandra Ghigo16, Arantxa González17,18,19, Kristina H. Haugaa20,21,
Massimo Imazio22, Luis R. Lopes23,24, Patrick Most25, Piero Pollesello26,
Heribert Schunkert27,28, Katrin Streckfuss-Bömeke29,30,31,32, Thomas Thum33,
Carlo Gabriele Tocchetti34, Carsten Tschöpe1,2,35, Peter van der Meer36,
Eva van Rooij37,38, Marco Metra39, Giuseppe M.C. Rosano40,41,42,
and Stephane Heymans43,44,45*
1Berlin Institute of Health (BIH) at Charité – Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; 2German Center for Cardiovascular
Research (DZHK), partner site Berlin, Berlin, Germany; 3Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany;
4Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany; 5German
Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany; 6Helmholtz Institute for Translational AngioCardioScience (HI-TAC),
Mannheim, Germany; 7Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle, UK; 8School of Cardiovascular
and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King’s College London, London, UK; Department of Medical Sciences, University
of Trieste, Trieste, Italy; 9Cardiovascular Unit, Department of Internal Medicine, University of Genova, Genova, Italy; 10School of Cardiovascular and Metabolic Medicine &
Sciences and British Heart Foundation Centre of Research Excellence, King’s College London, London, UK; 11Department of Experimental Pharmacology and Toxicology,
University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 12German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg,
Germany; 13Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain; 14Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid,
Spain; 15Universidad Francisco de Vitoria (UFV), Madrid, Spain; 16Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone,"
University of Torino, Torino, Italy; 17Program of Cardiovascular Diseases, CIMA and Department of Pathology, Anatomy and Physiology, Universidad de Navarra, Pamplona, Spain;
18IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; 19CIBERCV (Network for Biomedical Research in Cardiovascular Disease), Instituto de Salud Carlos II, Madrid,
Spain; 20ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; 21Faculty of Medicine, Institute of Clinical
Medicine, University of Oslo, Oslo, Norway; 22Department of Medicine (DMED), University of Udine, and Cardiothoracic Department ASUFC, University Hospital Santa Maria
della Misericordia, Udine, Italy; 23Institute of Cardiovascular Science, University College London, London, UK; 24Barts Heart Centre, St Bartholomew’s Hospital, London, UK;
25Department of Cardiology, Angiology, Pulmonology, University Hospital Heidelberg, Heidelberg, Germany; 26Content and Communication, Branded Products, Espoo, Finland;

*Corresponding author. Sophie Van Linthout, Translational Immunocardiology, Berlin Institute of Health at Charité – Universitätmedizin Berlin, BIH Center for Regenerative
Therapies (BCRT), Föhrer Strasse 15, 13353 Berlin, Germany. Tel: +49 30 450539486, Fax: +49 30 450539409, Email: sophie.van-linthout@bih-charite.de
Stephane Heymans, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium; Department of Cardiology, Maastricht University, CARIM School for Cardiovascular
Diseases, Maastricht, The Netherlands. Tel: +31 43 3882950, Fax: +31 43 3882952, Email: s.heymans@maastrichtuniversity.nl

© 2024 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fejhf.3516&domain=pdf&date_stamp=2024-11-22


2 S. Van Linthout et al.

27Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany; 28German Center for Cardiovascular Research (DZHK),
Partner Site Munich Heart Alliance, Munich, Germany; 29Clinic for Cardiology and Pneumology, University Medical Center, Göttingen, Germany; 30German Center for
Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany; 31Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany;
32Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany; 33Institute of Molecular and
Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany; 34Department of Translational Medical Sciences; Center for Basic and Clinical
Immunology Research (CISI); Interdepartmental Center for Clinical and Translational Research (CIRCET); Interdepartmental Hypertension Research Center (CIRIAPA), Federico
II University, Naples, Italy; 35Deutsches Herzzentrum der Charité (DHZC), Department of Cardiology, Angiology and Intensive Medicine, Campus Virchow Klinikum, Berlin,
Germany; 36Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; 37Hubrecht Institute, Royal Netherlands
Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands; 38Department of Cardiology, University Medical Center Utrecht,
Utrecht, The Netherlands; 39Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of
Brescia, Brescia, Italy; 40Cardiovascular Clinical Academic Group, St. George’s University Hospitals, NHS Trust, University of London, London, UK; 41Cardiology, San Raffaele
Cassino Hospital, Cassino, Italy; 42Department of Human Sciences and Promotion of Quality of Life, San Raffaele University of Rome, Rome, Italy; 43Centre for Molecular and
Vascular Biology, KU Leuven, Leuven, Belgium; 44Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands; and
45European Reference Network for Rare Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands

Received 26 May 2024; revised 6 October 2024; accepted 23 October 2024

Gene therapy has recently become a reality in the treatment of cardiovascular diseases. Strategies to modulate gene expression using
antisense oligonucleotides or small interfering RNA are proving to be safe and effective in the clinic. Adeno-associated viral vector-based
gene delivery and CRISPR-Cas9-based genome editing have emerged as efficient strategies for gene delivery and repair in humans. Overall,
gene therapy holds the promise not only of expanding current treatment options, but also of intervening in previously untackled causal
disease mechanisms with little side effects. This scientific statement provides a comprehensive overview of the various modalities of gene
therapy used to treat heart failure and some of its risk factors, and their application in the clinical setting. It discusses specifically the
possibilities of gene therapy for hereditary heart diseases and (non)-genetic heart failure. Furthermore, it addresses safety and clinical trial
design issues and challenges for future regulatory strategies.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Keywords Adeno-associated viral vector • Gene editing • Gene replacement • Gene silencing • Gene
therapy • Heart failure

Introduction
The concept of gene therapy, a strategy to treat diseases using viral
or non-viral vectors that introduce therapeutic exogenous genes
into target cells and tissue to supplement or correct defective
genes, was first formally proposed by Friedmann and Roblin in
the 1970s.1 Fifty years later, gene therapy has become a reality in
treatment of cardiovascular diseases (CVD). In addition to adding
genes using protein-coding cDNAs, strategies that enable precise
gene editing using clustered regularly interspaced short palin-
dromic repeat (CRISPR)-associated protein 9 (CRISPR-Cas9),2

modulation of gene expression using RNA therapeutics (antisense
oligonucleotides [ASOs], small interfering RNAs [siRNAs] and
microRNAs [miRNAs])3–5 and of protein expression using mod-
ified mRNA (modRNA) have entered the gene therapy field.
Adeno-associated viral (AAV) vectors have become the gold stan-
dard for in vivo viral gene therapy,6 while formulations based on
polymers, lipids, peptides or other nano- or micro-sized particles
have been developed as non-viral carriers (Figure 1).7 Several gene
therapies for cardiac diseases have been investigated in clinical
trials, but success in clinical translation has been highly dependent
on delivery technologies. Clinical success has been reached pri-
marily with liver-directed therapies that target genes of risk factors
underlying heart failure8–11 or diseases in which proteins produced
by the liver affect the heart and its vasculature.12 However, gene
therapies targeting the cardiac muscle have been less successful so
far.13–15 This scientific document provides an overview of existing
gene therapy modalities and their clinical application, and discusses ..
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.. the opportunities and challenges of gene therapy for non-genetic
heart failure and inherited heart diseases.

Updates on different modalities
for gene therapy
Antisense oligonucleotides and small
non-coding RNAs (siRNAs and miRNAs)
Single-stranded ASOs and small non-coding RNAs (siRNAs and
miRNAs) share a fundamental principle: an oligonucleotide binds
a target RNA by Watson–Crick base pairing. An ASO must
survive and function as a single strand. In contrast, an siRNA or
miRNA, delivered as a small RNA duplex, is loaded within the
RNA-induced silencing complex (RISC), whereupon one strand
(the passenger strand) is discarded, and the remaining strand (the
guide strand) cooperates with RISC to bind complementary RNA.
This distinction between ASOs and siRNAs/miRNAs results in
different strengths and weaknesses that affect drug development.16

Unmodified single-stranded ASOs are too unstable to be used
in cells. Their stability and pharmacological properties can be
increased by incorporating chemical modifications.3,17,18

One category of ASOs targets endogenously expressed miR-
NAs, which have emerged as pivotal regulators in the pathogen-
esis of CVD, including atherosclerosis, arrhythmias, and heart fail-
ure. miRNAs modulate gene expression at the post-transcriptional
level and play a critical role in regulating vascular function,
cardiomyocyte hypertrophy, inflammation, and fibrosis, all of which

© 2024 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Gene therapy in heart failure 3

Figure 1 Cardiac- and liver-directed gene therapy for heart failure and risk factors underlying heart failure. Main delivery methods, cargo, and
targets currently used in gene therapy for heart failure and risk factors underlying heart failure distinguishing cardiac- and liver-directed gene
therapy with the latter mainly focused on gene silencing/gene editing strategies (ASO, siRNA, CRISPR-Cas9) delivered via lipid nanoparticles.
In contrast, cardiac gene therapy comprises adeno-associated viral- and lipid nanoparticle-mediated delivery strategies which may carry cDNA
or modified mRNA, respectively, or modalities for gene silencing/editing/replacement (ASO, siRNA, miRNA, CRISPR-Cas9). Genes/mRNA
for overexpression are outlined in black, silencing/editing/replacement targets are marked in red. ANGPTL3, angiopoietin-like 3; ARVC,
arrhythmogenic right ventricular cardiomyopathy; ASO, antisense oligonucleotide; ATTR, transthyretin amyloidosis; CM, cardiomyopathy;
DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; LAMP2B, lysosome-associated membrane protein 2b; Lp(a), lipoprotein(a);
MYBPC3, cardiac myosin-binding protein C; PCSK9, proprotein convertase subtilisin/kexin type 9; PKP2A, plakophilin 2a; PLN, phospholamban;
RBM20, RNA binding motif protein 20; SERCA2a, sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a; siRNA; small interfering RNA; TTR,
transthyretin; VEGF-A, vascular endothelial growth factor-A. Created in BioRender. Van Linthout S. (2024) BioRender.com/n39e845

are central to CVD development and progression.19 Anti-miRNA
ASOs have already progressed to clinical trials for heart failure and
other CVD.20

While ASOs continue to be used for gene silencing, the robust
nature of siRNAs and the relative ease of identifying active siR-
NAs through systematic screenings have made these molecules a
preferred silencing tool.

One area where miRNA therapy appears particularly exciting is
cardiac regeneration, as this process requires the reprogramming
of cardiomyocytes to a proliferative state, which can be achieved by
miRNAs due to their ability to simultaneously target multiple cellu-
lar mRNA targets.4 In mice, single intramyocardial injection of the ..
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.. pro-regenerative miR-199a-3p or miR-590-3p,21 miR-19a/19b,22

miR302b/c,23 or miR-70824 mimics, has been shown to promote
cardiomyocyte proliferation, cardiomyocyte stress resistance and
cardiac regeneration in response to myocardial ischaemia. Therapy
with some of these miRNAs is now being investigated for efficacy
and safety in large animal studies and will eventually be tested in
clinical trials.

Modified mRNAs
Modificationof structural elements of mRNA – notably the 5′ cap,
5′- and 3′-UTRs, the coding region, and the poly(A) tail – has

© 2024 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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systematically improved its intracellular stability, reduced its
immunogenicity (recognition via toll-like receptors) and increased
its translational efficiency.25–28 These improvements ultimately
have led to the production of significant levels of the encoded
protein over a longer timeframe. Consequently, the use of
modRNAs has emerged as an appealing therapeutic tool for
protein overexpression in heart disease.29–31 The challenge still
remains to improve modRNA delivery to achieve non-invasive,
cell-specific delivery targeting the heart, the same challenge as
with ASO, siRNA and miRNA. Moreover, protein expression is
transient and repeated administration would be needed in chronic
conditions.

Most research in this area has focused on ischaemic heart
disease and myocardial infarction. A reduction in infarct size
and improvement in cardiac function has been shown following
application of modRNA for mutated human follistatin-like 1,32

pyruvate kinase muscle isoform 2,33 yes-associated protein,34

acid ceramidase,35 insulin growth like factor-136 and vascular
endothelial growth factor-A37,38 in mice or pigs. The success of
this strategy has prompted its translation to human clinical trials
(see below).

Interestingly, modRNAs have also been used to generate
transient antifibrotic chimeric antigen receptor (CAR) T cells
in vivo targeting activated fibroblasts.39 Treatment with mod-
RNA encoding a CAR against fibroblast activation protein
encapsulated in CD5-targeted lipid nanoparticles reduced fibro-
sis and restored cardiac function in an experimental murine
heart failure model, illustrating the potential of in vivo gen-
eration of CAR T cells as a therapeutic platform to treat
various CVD.

Non-viral carriers
Nucleic acids are hydrophilic, positively charged and susceptible
to nuclease degradation, all of which are barriers to their delivery
through cell membranes. Single-stranded ASOs are endocytosed
and can pass freely through cellular membranes when adminis-
tered as naked molecules.40 Delivery of naked siRNA is more
challenging since the RNA duplex is highly hydrophilic, making
cellular permeability relatively modest. Targeting of both ASOs
and siRNAs to hepatocytes is facilitated by their conjugation
with N-acetylgalactosamine, which binds the asialoglycoprotein
receptor, which is highly expressed on hepatocytes.41 Conjugation
with N-acetylgalactosamine is the most effective delivery method
today, which allows specific delivery to the liver.41 It is hoped
that the discovery of new conjugations will allow more specific
delivery to the heart and other organs or cells such as the kidney
or inflammatory cells.

ModRNAs can be injected into the myocardium as naked
molecules in sucrose citrate buffer,31,33 but this requires relatively
high doses. In most applications, RNA is therefore delivered using
formulations based on polymers, lipids, peptides or other parti-
cles at the nano- or microscale.5 Currently, the most successful
formulations are lipid nanoparticles obtained by the stable nucleic
acid lipid particle technology,7 which were originally developed
in the late 1990s, gradually improved42,43 and popularized by the ..
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.. mRNA-based COVID-19 vaccines. This technology is further
instrumental for the development of in vivo CRISPR/Cas9 gene
editing strategies directed to the liver.12

Adeno-associated viral vectors
A family of vectors that is currently considered the gold standard
for gene therapy and gene editing of the heart is based on
cardiotropic serotypes of the small parvovirus AAV. AAV
transduce postmitotic cells, especially cardiomyocytes, and can
effectively, persistently and safely express foreign genes in host
cells with low cytotoxicity and immunogenicity. Despite these
unique characteristics, the ability to deliver the genetic payload
(physical transduction) and achieve high transgene expression
(functional transduction) remains the most important feature
for the selection and improvement of AAV variants for clinical
applications.6

As AAV capsid proteins play an essential role in deliv-
ery/tropism, AAV capsid variants have been generated for
improved cardiac selectivity and liver de-targeting. Besides
variants targeting cardiomyocytes,44 variants based on AAV245 or
AAV946 serotypes have also been generated to target endothelial
cells. Moreover, AAV targeting cardiac fibroblasts47 have recently
been developed for therapies to counteract fibrosis and the
fibro-inflammatory response therapeutically.48,49 In addition to
AAV-specific targeting of cardiac cells, selective promoters and
enhancers for cardiac cell types (cardiomyocyte,50 endothe-
lial cell,51 cardiac fibroblast) are used to avoid ectopic gene
expression.

Gene editing
CRISPR/Cas9 edits genes by precisely introducing double-stranded
breaks into the DNA and then allowing natural DNA repair
processes to take over. The system consists of two components:
the Cas9 enzyme, which generates site-specific double-stranded
breaks and a guide RNA, which directs the endonuclease to the
site to be edited. Base editing allows the precise modification of
a single base in the target site without causing double-stranded
breaks,52 with cytidine base editors (which convert a C-G base pair
to T-A) and adenine base editors (which convert a A-T to G-C)
being the two most commonly used editors so far.53 Finally, prime
editing enables precise correction of relatively long DNA segments,
using a modified guide RNA carrying the desired sequence as
a template.2

CRISPR-Cas9 gene editing technology is commonly used to
correct specific genetic variants prior to disease onset,2 as shown
for the treatment of inherited cardiomyopathies in experimental
models, as well as in hereditary transthyretin (TTR) amyloidosis
(ATTR) (ATTRv) and familial hypercholesterolaemia. Recently,
CRISPR-Cas9 adenine base editors have also been used in a
murine ischaemia/reperfusion model to disrupt the pathological
overactivation of calcium (Ca2+)/calmodulin-dependent protein
kinase IIδ, a primary driver of cardiac disease.54 This cardioprotec-
tive strategy is potentially applicable to a broad range of patients
with already-established heart disease. The concept of using

© 2024 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Gene therapy in heart failure 5

CRISPR-Cas9 to block the activation of harmful signalling pathways
can also be translated to harmful signalling cascades in other human
diseases.

What has already reached
the clinic?
Clinical trials evaluating gene therapy strategies for heart failure and
risk factors underlying heart failure are outlined in Table 1, which
gives an overview of their clinical endpoint, safety measures and
clinical side effects.

Small interfering RNA
Transthyretin amyloid cardiomyopathy

Patisiran is the first siRNA-based drug approved by the U.S. Food
and Drug Administration (FDA) and the European Medicines
Agency (EMA) in 2018 for the treatment of polyneuropathy of
ATTRv.55 ATTR cardiomyopathy is caused by the deposition of
the misfolded TTR protein in the myocardium.56 Since TTR is
produced primarily by the liver, patisiran was encapsulated in lipid
nanoparticles covered with apolipoprotein E, which mediated
its internalization by hepatocytes via the low-density lipopro-
tein (LDL) receptor.57 In the phase 3 APOLLO randomized
controlled trial, patisiran improved neuropathy scores and gait
speed in patients with ATTRv and polyneuropathy.55 Non-invasive
pressure–volume analysis of the APOLLO study demonstrated
that patisiran may delay progression of left ventricular chamber
dysfunction starting at 9 months of therapy.58 In a predefined sub-
population of APOLLO, patisiran decreased mean left ventricular
wall thickness, global longitudinal strain, N-terminal prohor-
mone of brain natriuretic peptide (NT-proBNP), and adverse
cardiac outcomes compared with placebo at month 18.59 In
the APOLLO-B trial, patisiran preserved functional capacity, as
assessed by changes in 6-min walking test, and improved the quality
of life after 1 year in patients with wild-type ATTR (ATTRwt)
and ATTRv cardiomyopathy.60 However, the FDA rejected
the supplemental new drug application for patisiran to treat
ATTRwt and ATTRv cardiomyopathy, citing insufficient evidence of
clinical benefit.

Vutrisiran is another siRNA that prevents hepatic production
of TTR. In contrast to patisiran, vutrisiran is directed to the liver
by conjugation to N-acetylgalactosamine. Vutrisiran significantly
improved multiple disease-relevant outcomes for ATTRv with
polyneuropathy in the phase 3 HELIOS-A trial61 and demonstrated
evidence of potential benefit on exploratory cardiac parameters
in HELIOS-A patients.62 The HELIOS-B63 trial showed that among
patients with ATTR-cardiomyopathy, treatment with vutrisiran led
to a lower risk of all-cause mortality and cardiovascular events
than placebo and preserved functional capacity and quality of
life.

Overall, siRNA-based agents targeting TTR production effec-
tively halt neuropathy progression and maintain functional
capacity in patients with ATTR-related neurological and car-
diac involvement. Further investigations are warranted to ..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.. determine whether these agents can improve cardiovascular
outcomes in ATTR cardiomyopathy patients and reverse
the cardiac structural abnormalities associated with the
disease.

Risk factors of cardiovascular disease and heart failure

Inclisiran is a siRNA that inhibits the translation of the proprotein
convertase subtilisin/kexin type 9 (PCSK9), a serine protease
that degrades the LDL receptor, which mediates LDL removal
by the liver. Its efficacy in reducing LDL-cholesterol levels has
been demonstrated in the phase 3 ORION-9 trial in patients
with heterozygous familial hypercholesterolaemia8,9 and in the
subsequent ORION-10 and ORION-11 randomized controlled
trials.64 A patient-level analysis of the three ORION randomized
controlled trials showed a lower incidence of major adverse
cardiovascular events in patients treated with inclisiran compared
to placebo.65

Furthermore, LDL-cholesterol levels could be reduced by block-
ing angiopoietin-like 3, a circulating inhibitor of lipoprotein lipase,
the enzyme that clears triglyceride-rich lipoprotein from the
circulation, and endothelial lipase.66 Results from the phase 1

AROANG1001 study indicated that angiopoietin-like 3 silencing
with the N-acetylgalactosamine-conjugated siRNA ARO-ANG3
was generally well tolerated and can effectively lower circulating
concentrations of atherogenic lipoproteins.67 Phase 2/3 trials are
required to confirm the LDL reduction along cardiovascular out-
come events.

Lipoprotein(a) is another lipoprotein whose levels strongly cor-
relate with the risk of atherosclerotic CVD and cardiovascu-
lar events.68 The phase 1 OCEAN-DOSE trial demonstrated
that inhibition of hepatic lipoprotein(a) synthesis with the siRNA
olpasiran abated lipoprotein(a) levels in patients with established
atherosclerotic CVD.11 Longer and larger trials are ongoing to
determine the effect of olpasiran therapy on CVD outcomes
[OCEAN(a)-Outcomes Trial, NCT05581303].

Finally, knockdown of hepatic angiotensinogen, the precursor
of all angiotensins, via the siRNA zilebesiran markedly decreases
serum angiotensinogen, the precursor of angiotensin II, and blood
pressure for a duration of at least 24 weeks.10 Zilebesiran is being
further evaluated as a potential treatment for hypertension in two
phase 2 studies: KARDIA-1 and KARDIA-2.69

Antisense oligonucleotides
Inotersen is a 2′-O-methoxyethyl-modified ASO that targets the
3′ untranslated region of human TTR mRNA, both wt and vari-
ant. In the NEURO-TTR phase 3 trial, inotersen improved the
course of neurologic disease and quality of life of patients with
ATTRv.70 However, several adverse events occurred in the treat-
ment group including injection site reactions, nausea, headache,
glomerulonephritis and thrombocytopenia. For this reason, fre-
quent monitoring of renal function and platelet count is advised
during treatment.70 A small single-centre, open-label study involv-
ing patients with ATTRwt- or ATTRv cardiomyopathy and New
York Heart Association (NYHA) class I–III showed a reduction

© 2024 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Gene therapy in heart failure 9

in left ventricular mass and an improvement in exercise toler-
ance at a 2- and 3-year follow-up.71 A further study is ongoing
(NCT03702829).

Eplontersen is a novel ASO formulation that reduced serum
TTR, lessened neuropathy impairment, and improved quality of life
compared to a historical placebo in ATTRv polyneuropathy patients
in the phase 3 NEURO-TTRansform trial.72 Eplontersen was asso-
ciated with stable or improved measures of cardiac structure and
function in patients with ATTRv polyneuropathy and cardiomyopa-
thy compared to historical placebo.73 The CARDIO-TTRansform
trial continues to investigate the effect of eplontersen on ATTR car-
diomyopathy (NCT04136171). The primary endpoint is the change
from baseline in the 6-min walk test distance at week 65, measuring
physical function.

Anti-miRNA
The therapeutic potential of targeting miRNAs in CVD is being
extensively investigated in clinical trials. These trials aim to har-
ness the potential of miRNAs as biomarkers for early diagnosis,
prognosis, and as therapeutic targets. Various approaches are
being explored,74,75 including the use of miRNA mimics to restore
miRNA levels, be it at lesser extent, and anti-miRNA oligonu-
cleotides to inhibit the activity of disease-associated miRNAs.
Furthermore, nanoparticle-mediated delivery systems are being
developed to improve the targeted delivery of miRNA-based
therapeutics. Based on in vitro and in vivo mode-of-action studies
revealing reversal of cardiomyocyte hypertrophy, normalization of
autophagy and Ca2+ signalling, and reduction of cardiac fibrosis
following treatment with the miR-132 inhibitor CDR132L,76–78

CDR132L was tested in a first clinical study patients with stable
chronic heart failure. In this study, CDR132L proved to be safe
and well tolerated and already showed indications for therapeutic
efficacy such as NT-proBNP reductions in addition to standard of
care treatment.79 A phase 2 study testing CDR132L in 280 patients
with acute myocardial infarction and reduced ejection fraction
(HF-REVERT) is ongoing (NCT05350969).80 Primary outcome
measure is the change in ejection fraction.

Modified mRNAs
ModRNA for vascular endothelial growth factor-A has been tested
for the treatment of heart failure.81 A safety and tolerability ran-
domized phase 1 clinical trial was performed in patients with type
2 diabetes mellitus and no other disease.82 Intradermal injection
of vascular endothelial growth factor-A modmRNA transiently
increased the local expression of vascular endothelial growth
factor-A protein and enhanced skin blood flow without relevant
adverse side effects. A small, randomized, double-blind phase 2a
study (EPICCURE) evaluating the safety and exploratory efficacy of
a naked vascular endothelial growth factor-A modRNA (AZD8601;
3 mg/patient) in patients with systolic dysfunction undergoing coro-
nary artery bypass surgery has been completed.83 Seven patients
received 30 epicardial injections of AZD8601 targeting ischaemic
but viable myocardium identified by positron emission tomogra-
phy, while four patients were injected with a placebo. The therapy ..
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.. proved to be safe and showed preliminary subjective effects in
patients, but the sponsor decided to discontinue its development
in 2022.

Adeno-associated viral vectors
The first phase 1/2 clinical trial in 2009 for the treatment of
heart failure using AAV was based on an AAV1 vector that
expressed the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase
2a (SERCA2a) cDNA, which was administered safely through intra-
coronary infusion.13 The rationale for this trial was the observation
that SERCA2a levels were lower in failing hearts and that over-
expression of SERCA2a improved heart function in both small
and large animals.84 This first trial was followed in 2011 by a
phase 2, double-blinded, randomized, placebo-controlled, multi-
centre study (the CUPID trial) with 39 patients with severe
heart failure.14 The results of this study demonstrated that the
treatment was safe and led to significant improvement in car-
diac function and a reduction in hospitalizations. Based on these
findings, a larger, phase 2b, randomized, double-blind, multicen-
tre trial, the CUPID2 study, was conducted in 250 patients
with stable symptomatic heart failure of both ischaemic and
non-ischaemic aetiology. Primary endpoint was the composite
of recurrent heart failure-related events, and safety parameters
included immune response monitoring (antibody, innate immunity
and T-cell response to AAV1 vector) and viral shedding with detec-
tion of AAV1 vector DNA in bodily fluids. This trial, however,
generated neutral results.85 The possible reasons for the neutral
results of CUPID2 have been extensively reviewed.15,86 The most
likely explanations are the low efficiency of myocardial transduc-
tion, possibly related to the relatively low dose of vector adminis-
tered (1×1013 AAV1.SERCA2a viral particles) and the suboptimal
cardiomyocyte tropism of the AAV1 serotype, and the unaltered
SERCA2a levels in human heart failure.87 Two other related stud-
ies using the same vector – the AGENT-HF study, which evalu-
ated efficacy in patients with left ventricular assist devices15 and
the SERCA-LVAD study,88 which studied left ventricular remod-
elling – were prematurely terminated in 2016 as the sponsor sus-
pended further enrolment following neutral results of the CUPID2
outcome trial.

A cardiotropic AAV variant (AAV2i8, also known as BNP11689)
is currently being tested in a phase 1 clinical study in which a
vector carrying the cDNA for a constitutively active form of
inhibitor-1c is administered intracoronary (NCT04179643), and
studied for its safety and tolerability in heart failure patients. Work
in small and large animals has shown that inhibitor-1c inhibits
the protein phosphatase-1, which dephosphorylates phospholam-
ban (PLN) and thus blocks SERCA2a. Thus, the ultimate effect
of this gene therapy approach is to increase SERCA2a levels
and restore β-adrenergic stimulation.90 In addition, clinical trials
with AAV carrying cardiac myosin-binding protein C (MYBPC3)
in hypertrophic cardiomyopathy (HCM), lysosome-associated
membrane protein 2b (LAMP2b) in Danon disease and plakophilin
2a (PKP2A) in arrhythmogenic right ventricular cardiomyopathy
(ARVC) patients are currently ongoing (see below, Table 1). These
phase 1 trials using AAV vectors have safety and tolerability

© 2024 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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10 S. Van Linthout et al.

Figure 2 Main strategies used in gene therapy for inherited cardiomyopathies: allele-specific silencing, gene replacement and gene editing.
Created in BioRender. Van Linthout S. (2024) BioRender.com/a38k263

as primary outcome, including immunogenicity and viral shed-
ding as safety measures. In AAV gene therapy studies for
liver diseases, hepatotoxicity is the most common adverse
event,91 and therefore, despite using AAV vectors with cardiac
specific promotors, liver toxicity should and will be closely
monitored.

CRISPR-Cas9
The first CRISPR/Cas9-based treatment approved by regulatory
authorities in late 2023 was a therapy for sickle cell disease and
β-thalassemia to be administered ex vivo to hematopoietic stem
cells before bone marrow transplantation.92 Despite the enthu-
siasm in this field and the increasing number of CRISPR-based
treatments in clinical trials each year, adapting CRISPR/Cas9
technologies to in vivo applications for organs other than the
liver remains a challenge. One of the best known examples
of successful CRISPR/Cas9-based in vivo gene editing in humans
is the treatment of ATTR.12,93 A liver-targeted lipid nanoparti-
cle delivery system called NTLA-2001, administered by intra-
venous infusion, decreased serum TTR protein levels up to
87% in six patients with ATTRv.12 In the follow-up of this trial
(NCT04601051), a single intravenous infusion of NTLA-2001 sig-
nificantly reduced abnormal TTR levels in ATTR cardiomyopathy
patients.94 Still, the primary outcome of these phase 1 trial include
safety and tolerability, and further studies are needed for proving
their efficacy.

Another example of liver-directed CRISPR-editing using
lipid nanoparticles is the base-editing of PCSK9. Supported
by pre-clinical evidence in mice and macaques95,96 showing
stable reduction of plasma PCSK9 and LDL-cholesterol levels
without adverse side effects, this base-editing technology is
currently being evaluated in a phase 1b trial in patients with
established atherosclerotic CVD due to heterozygous familial
hypercholesterolemia (NCT05398029), with safety and tol-
erability as primary outcomes, with therapeutic efficacy as
secondary endpoint. Distinct safety measures for CRIPR-editing
includes (i) detailed assessment of potential off-target editing
to ensure that base editing is confined to the targeted gene
without unintended modifications elsewhere in the genome; (ii) ..
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.. evaluation of immune responses against the components of the
gene-editing system, including any potential immune reaction to the
delivery vector.

What are the future perspectives
for the treatment of genetic
cardiomyopathies?
Cardiomyopathies are either inherited (genetic/familial) and/or
acquired. They can also be accelerated by disease modifiers. They
are a heterogeneous group of diseases and major causes of heart
failure. Dilated cardiomyopathy has an estimated prevalence of 1 in
250 to 1 in 2500 of the general population, HCM ranges between
1 in 250 to 1 in 500, and ARVC is estimated to be present in
around 1 in 1000 to 1 in 5000 people.97–99 The current pharmaco-
logical treatment of heart failure in cardiomyopathy patients does
not significantly differ from general heart failure management.100

Phenotype- or genotype-specific drugs are under investigation,
with mavacamten being the first disease-specific drug for inherited
HCM, with the exception of ATTRv. In a phase 3, randomized,
double-blind, placebo-controlled trial (EXPLORER-HCM), treat-
ment with mavacamten improved exercise capacity, left ventricular
outflow tract obstruction, NYHA functional class, and health sta-
tus in patients with obstructive HCM.101 Mavacamten selectively
binds to the myosin motor domain, reducing the ATPase activ-
ity of myosin. This inhibition decreases the interaction between
myosin heads and actin filaments, leading to a reduction in the
force of cardiac muscle contraction. As such, mavacamten stabilizes
myosin heads in a ‘super-relaxed’ state, a low-energy conformation.
Gene-specific treatments, based upon molecular profile or specific
cellular, metabolic, contractile, immune or pro-fibrotic pathways
hold therefore great promise, but require further molecular stud-
ies to understand the complex mechanisms leading from genetic
variants to disease manifestation. Nevertheless, the most logical
way to cure an inherited cardiomyopathy would certainly be by
gene silencing, replacement or correction (Figure 2), depending
on the type of disease-causing genetic variant (poison peptide or
loss-of-function). Still, these approaches – in particular AAV and
CRISPR – as described in this review still have major challenges

© 2024 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Gene therapy in heart failure 11

in safety, immunogenicity, aspecific gene editing, and long-term
efficacy.

Silencing gene therapy
Allele-specific silencing with siRNA or ASO can be used to silence
a poison gene product from a mutated allele. In a homozygous PLN
R14del-associated cardiomyopathy mouse model, administration of
PLN-ASO led to a dose-dependent reduction in PLN. Further-
more, this PLN-ASO prevented PLN protein aggregation, reduced
cardiac dysfunction, and increased survival rate in mice.102,103 In
a Mybpc3-targeted knock-in mouse model of HCM, skipping of a
mutated exon 6 in the Mybpc3 gene utilizing AAV-mediated ASO
transfer resulted in decreased levels of incorrectly spliced mRNA,
restored cardiac function, and halted the development of left ven-
tricular hypertrophy.104 Similarly, allele-specific silencing of mutant
Myh6 transcripts via AAV-mediated siRNA suppressed HCM in
R403Q heterozygous mice.105

Gene replacement therapy
Gene replacement therapy consists of the introduction of a fully
functioning gene to replace a loss-of-function genetic variant in
target cells. Loss-of-function variants are non-sense, splice, or
insertion-deletions causing a frameshift and a premature termina-
tion codon (commonly referred to as ‘truncating’ variants, even
though the truncated protein is rarely present, due to active
degradation of the mutant transcript by the nonsense-mediated
RNA decay).106,107 Loss-of-function variants are common causes of
cardiomyopathy in several genes involved in all cardiomyopathies,
HCM (MYBPC3)108, dilated cardiomyopathy (titin [TTN]),109

Bcl-2–associated athanogene 3 (BAG3),110 filamin C (FLNC),111

desmoplakin (DSP)112 and ARVC (PKP2).113

Gene replacement therapy has been tested in mouse or human
cellular models of HCM (MYBPC3) and ARVC (PKP2). It is worth
noting that gene replacement therapy may also be effective for
missense variants in sarcomeric proteins, because of stoichiomet-
ric replacement of endogenous protein. For MYBPC3, it has been
shown that AAV9-Mybpc3 prevented the development of the car-
diomyopathic phenotype in Mybpc3-deficient mice114 and rescued
cell hypertrophy in patient-derived induced pluripotent stem cell
(iPSC)-derived cardiomyocytes.115 These proof-of-concept studies
motivated the development of a Mybpc3 gene therapy medicinal
product, TN-201, which is now tested in a phase 1 clinical study
(NCT05836259) (Table 1). Similarly, Pkp2 gene therapy has been
shown to reduce ventricular arrhythmias, reverse right ventricu-
lar remodelling, improve cardiac function and prolong survival in a
Pkp2-deficient mouse model of ARVC.116 A gene therapy medicinal
product, RP-A601 (AAVrh.14-PKP2a), is now evaluated in a phase
1 trial (NCT05885412) (Table 1).

An additional gene replacement therapy relevant to cardiomy-
opathy is RP-A501. It is designed to address Danon disease, a rare
X-linked monogenic condition, caused by mutations in the LAMP2B
gene that often leads to heart failure due to massive left ventricular
hypertrophy, and in male patients to frequent death in adolescence
or earlier.117 Evaluation of RP-A501, an AAV with a normal copy ..
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.. of the human LAMP2B gene (AAV9:LAMP2B), is currently ongoing
in a phase 2 trial (NCT06092034) (Table 1).

Gene editing therapies
In the context of heart failure, studies have now shown in vitro
(hiPSC-derived cardiomyocytes) and in vivo efficacy of base editing
by correcting specific pathogenic variants for lamin A/C (LMNA),
RNA binding motif protein 20 (RBM20), myosin heavy chain 6
(MYH6) and myosin heavy chain 7 (MYH7) in relevant disease
models.118–122 Beyond correcting disease-causing variants, base
editing can also be used for exon skipping, which has shown
therapeutical relevance particularly in the context of Duchenne
muscular dystrophy.123,124

Prime editing is of particular interest for modelling and cor-
recting variants associated with cardiac disease because it can
target a wide range of single nucleotide variants and more com-
plicated types of genetic alterations (such as short deletions or
insertions).125 While multiple studies have successfully used prime
editing in hiPSC-derived cardiomyocyte cultures123,126,127 and in
vivo,119 this technology so far remains less developed due to lower
efficiency rates.

Safety
Many advances have been made in the management of acute effects
related to gene therapies. However, the potential for delayed
effects remains a concern, particularly since most gene therapies
are designed to achieve permanent or long-lasting effects in the
human body, and this inherently increases the risk of delayed
adverse events.128 Published evidence of long-term safety (>1 year)
in pre-clinical setting is rare and has been shown for AAV-mediated
gene therapy outside the cardiovascular field, in the canine model
of haemophilia A after a median follow-up of 10.8 years.129 In
the cardiovascular field, follow-up of gene therapy for 6 months
or 1 year in large animal models including pigs and non-human
primates have been reported.12,78 As far as the safety profile of
cardiovascular gene therapy in patients is concerned, trials have
shown a very good safety profile even after 10-year follow-up
for AAV gene transfer overexpressing a gene of interest.130–132 In
general, safety concerns of gene therapy should be differentiated
depending on the gene therapy modality used. In 2020 the FDA
updated guidelines on the design of long-term follow-up studies
for the collection of data on delayed adverse events following
the administration of a gene therapy product. For studies using
integrating vectors and genome-editing products, patients should
be followed up for at least 15 years, while for AAV, a minimum
5-year follow-up period is recommended. These recommendations
are aligned with those suggested by European Union regulators.128

An overview of adverse side effects of gene therapy modalities
and mitigation strategies is listed below and in Table 2.

Adverse side effects of oligonucleotides
While oligonucleotide therapies offer exciting possibilities for novel
therapeutic approaches, they are not free of potential adverse

© 2024 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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12 S. Van Linthout et al.

Table 2 Adverse effects of gene therapy modalities

Gene therapy modality Adverse effects Mitigation strategies
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Targeted gene silencing and regulation therapy

Oligonucleotides133,134

(ASO, siRNA, miRNA)
Off-target effects • Selection of sequences with high target specificity and minimal off-target

potential via bio-informatics.
• Study of endogenous RNA modifications, RNA structure and

RNA-binding protein binding sites at or near the target sequence to
increase the understanding of RNA biology at the target site of interest.

• Use of chemically modified nucleotides to increase specificity.
• Pre-clinical testing.

Immunogenicity
• Use of biocompatible and biodegradable materials for RNA delivery

minimizing long-term effects.
• Targeted delivery: development of targeting ligands on delivery systems

to ensure specific delivery to the affected tissues, reducing systemic
exposure.

• Chemical modifications to the oligonucleotide to reduce
immunogenicity.

• RNA molecule encapsulation in lipid nanoparticles to shield them from
immune surveillance.

• Dose adjustment to minimize immune activation while maintaining
therapeutic efficacy.

• Anti-inflammatory drug administration before or after the treatment.
• Pre-clinical testing.

Liver toxicity
• Monitoring of liver toxicity.
• Delivery optimization.
• Pre-clinical testing.

Renal toxicity
• Monitoring of renal toxicity.
• Delivery optimization.
• Proper hydration before and during treatment to reduce renal

accumulation.
• Pre-clinical testing.

Injection site reactions
(pain, swelling, or redness)

• Documentation of local site reactions.
• Delivery optimization.
• Pre-clinical testing.

Thrombocytopenia and coagulation
disorders

• Documentation of systemic immune responses and monitoring of
leucocyte and platelet counts, coagulation, temperature and flu-like
symptoms. In case of thrombosis, search for secondary causes.

• Monitoring of bleeding history, coagulation molecules, haemoglobin and
platelet count before therapy application.

• Delivery optimization.
• Dose schedule optimization by increasing the time intervals between

drug administration regimes to enable the platelet count and the
coagulation system to recover before the next treatment.

• Therapy discontinuation if therapy interferes with blood cell production.
• Pre-clinical testing.

Hypersensitivity and allergic reactions
• Pre-treatment screening for allergies or hypersensitivity to any

components of the RNA therapeutic or its delivery system.
• Documentation of systemic immune responses and monitoring of

leucocyte counts, temperature and flu-like symptoms.
• For patients with mild allergies, gradual dose escalation or

pre-treatment with antihistamines or corticosteroids to mitigate
hypersensitivity reactions.

• Regularly monitoring for signs of autoimmunity during and after
treatment to intervene early if symptoms arise.

• Therapy discontinuation in case of involvement of a systemic adaptive
immune response and consideration for alternative delivery systems if
hypersensitivity to a specific delivery vehicle is confirmed.

© 2024 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Gene therapy in heart failure 13

Table 2 (Continued)

Gene therapy modality Adverse effects Mitigation strategies
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CNS effects (headaches, mood alterations,
or dizziness)

• Documentation of CNS effects.
• Presentation to a neurology specialist in case of symptom persistence.
• Design RNA therapeutics with restricted ability to cross the

blood–brain barrier unless CNS targeting is intended.
• Discontinuation in case of drug penetrations across the blood–brain

barrier.
• Pre-clinical testing.

Targeted gene repair therapy

AAV135–138 Immunogenicity • Screening of pre-existing neutralizing antibodies against AAV.
• Immunosuppressive (pre-) treatment.
• Vector design optimization and shielding to escape the immune system

surveillance.
• Preclinical testing.
• Regularly monitoring for signs of autoimmunity during and after

treatment to intervene early if symptoms arise.

Liver toxicity • Monitoring of liver function
• Development of AAV variants for liver de-targeting and improved

cardiac targeting.
• Use of engineered nanoparticles to promote cardiac tropism.
• Preclinical testing.

Insertional mutagenesis
• Long-term follow-up studies, including genetic monitoring of

vector-treated tissues.

Precision gene editing therapy

CRISPR-Cas9139–146,154 Off-target effects leading to mutations
and DNA damage

• Improved Guide RNA Design: design of highly specific guide RNAs with
optimized algorithms to reduce off-target effects.

• High-fidelity Cas9 variants: use of engineered Cas9 variants with
reduced off-target activity to minimize off-target cuts.

• Chemical modifications of CRISPR/Cas9
• In silico prediction tools to predict on-target efficiency and on- and

off-target activity
• Whole exome sequencing as a diagnostic tool to detect off-target

effects, at least in preclinical setting.
• Use of transient expression of Cas9 delivery systems.
• Use of self-limiting vectors that are biodegraded after gene delivery.

Immunogenicity • Pre-treatment with immunosuppressive drugs to reduce immune
reactions against Cas9, which is a bacterial protein and may trigger an
immune response.

• Chemical modifications to the guide RNA oligonucleotide to reduce
immunogenicity.

• Monitoring of systemic immune responses.
• Anti-inflammatory treatment.

Genomic instability • Comprehensive genomic screening including whole-genome sequencing.
• Use of base-editing or prime-editing strategies that are less likely to

cause large genomic alterations.
• Use of tissue-specific promoters to avoid systemic effects.
• Use of targeted delivery systems.

Ethical concerns in case of germline
editing

• Strict regulation and therapy administration monitoring
• Public engagement and transparency.

AAD, adeno-associated virus; ASO, antisense oligonucleotide; CNS, central nervous system; miRNA, microRNA; siRNA, small interfering RNA.

© 2024 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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14 S. Van Linthout et al.

side effects,133,134 including those listed in Table 2. In general, the
occurrence and severity of these side effects can vary depending
on the specific oligonucleotide, its mode of delivery, and individ-
ual patient factors. It is important that potential adverse effects
are intensively investigated during the safety and toxicological eval-
uation in the pre-clinical phase. Clinical trials are crucial to thor-
oughly assess and manage the safety profile of oligonucleotide ther-
apies and ensure their optimal and responsible use in the medical
field.

Adverse side effects of adeno-associated
viral vectors
Immunogenicity is a significant concern with AAV-based gene
therapies due to the body’s immune response to the viral vec-
tor (reviewed in references135,136). Many individuals have been
exposed to wild-type AAVs, leading to pre-existing antibodies that
can neutralize the vector, reducing its effectiveness. AAV vec-
tors can trigger innate immune responses shortly after adminis-
tration, including the activation of complement pathways and the
inflammasome.137 The capsid proteins of AAV can be recognized
by the adaptive immune system, leading to the activation of T
cells that may attack transduced cells, reducing gene expression
and potentially causing tissue (liver/cardiac) damage. Therefore,
patients will get immunosuppressive treatment during 2–3 months,
favouring fluid retention, which may be challenging in heart failure
patients.

Another important concern is the liver toxicity as AAV vectors
accumulate in the liver.135 Higher doses of AAV vectors increase
the likelihood of hepatotoxicity, which can manifest as elevated
liver enzymes, inflammation, and, in severe cases, acute liver failure,
resulting in death. The immune responses against the AAV capsid
or transgene can lead to cytotoxicity in liver cells, causing inflam-
mation and tissue injury. Mitigation strategies include careful dose
selection to balance therapeutic benefits and minimize liver toxic-
ity, provide immunosuppression to minimize the immune response
in the liver. Regular monitoring of liver function tests to detect
early signs of hepatotoxicity is therefore required. Specific AAV
capsid variants have been generated to improve liver de-targeting
and cardiac targeting as well as engineered nanoparticles
to promote cardiac tropism of AAV vectors (see up and below).138

Adverse side effects of CRISPR-Cas9
A major concern with CRISPR-Cas9 gene editing is the off-target
effects of this gene-editing tool, where unintended editing events
of unrelated genes can lead to mutations and DNA damage.139

Off-target mutations occur more frequently than expected muta-
tions when CRISPR/Cas9 is used.140 These off-target mutations
not only disrupt the functionality of unrelated genes, but can
also induce genomic instability.140 Recent findings reveal that the
expression of Cas9 protein in pigs significantly increases genomic
damages, induces transcriptome changes, and enriched genomic
mutations with prolonged expression of Cas9 resulting in growth
retardation and alterations of key tumor-driving genes in the ..
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.. absence of direct tumour development.141 Various modifications of
the CRISPR/Cas9 system have been proposed to address this issue.
In silico prediction tools are used to predict the on-target efficiency
and enable the development of improved algorithms to predict
on- and off-target activity.142 Additionally, chemical modifications
to guide RNA have been proposed to minimize the probability
of off-target DNA cuts.143 Regulating the activity of Cas9 is also
crucial for safe and efficient editing. Optimizing Cas9 by engineer-
ing high-fidelity variants, adding cytosine extensions to single-guide
RNAs, or using Cas9-targeting guide RNA to restrict CRISPR
expression have been shown to reduce off-target effects.144–146

The immunogenicity of the CRISPR-Cas9 system has also been
reported as a detrimental feature. It may lead to frequent activa-
tion of p53, DNA damage, large-scale on-target genomic deletion
and chromosomal rearrangement.147–150

The half-life of the editors in the cells has a major influence
on the activity and reliability of gene editing. The methods by
which Cas9/single guide RNA is introduced into target cells, such
as plasmid transfection, ribonucleoprotein, electroporation, or
viral transduction, may affect its off-target effects.151 AAV and
lipid nanoparticles are commonly used vectors for in vivo gene
therapy. AAV9 is effective in infecting the hearts of mice and large
mammals,54 but it may accumulate off-target mutations over time
due to its long-lasting expression.152,153 On the other hand, lipid
nanoparticles can be rapidly degraded in vivo, making them popular
for gene editing.154 In this regard, lipid nanoparticle-encapsulating
Cas9/single guide RNA targeting TTR has been shown to be a safe
and efficient form of delivering gene editing tools in patients.12

However, it is important to point out that these reflect interim
results until day 28 post application, whereas patients will be
long-term followed up.

Design of clinical studies
and regulatory strategies
Gene therapies are still in their infancy. To date 26 gene ther-
apy products have been approved worldwide.155 Guidelines by the
regulatory agencies FDA156 and EMA are expected to further accel-
erate clinical application in this area and provide greater clarity
for manufacturers and healthcare professionals.157 The role of the
pharmaceutical industry in securing the investments needed for the
expensive regulatory trials allowing full clinical development (from
phase 1 to 4) cannot be ignored in this process.158 Therefore, it is
advised to be aware – even in the early stages of research – not
only of the therapeutic potential of a novel therapy, but also of
its potential to become both realistic and attractive to the phar-
maceutical industry.159 The requirements for such trials – and
the timeframe for the development phase – can be considerably
reduced for rare diseases and orphan drugs, or if the clinical phase
can be optimized through innovative features such as adaptive
designs, umbrella or basket designs, or n-of-1 trials.158 In the car-
diology field, however, the traditional phase 1, 2, 3 design is still
followed in most cases. However, it is acceptable to conduct phase
1 trials directly in patients with heart failure or the specific dis-
ease phenotype of interest without a preliminary phase in healthy

© 2024 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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volunteers, as was done in a recent antisense RNA trial in heart fail-
ure patients.79 This is one way of making drug development faster
and more efficient without compromising on safety. The safety and
efficacy requirements defined by the regulatory authorities and
guideline committees for the approval and indications of drugs must
of course also apply for novel gene therapies.

Future new modalities for viral
and non-viral therapy
Cardiac targeting
In contrast to the success in the development of AAV vari-
ants with improved cardiac targeting and liver de-targeting (see
before),86,160,161 specific targeting of cardiomyocytes and liver
detargeting has been more problematic so far for non-viral RNA
delivery. This is due to the fact that there is no molecule like
N-acetylgalactosamine in the liver for any cardiac cell type. Most
of the systemically administered nucleic acid-containing nanoparti-
cles are phagocytosed by mononuclear cells in the spleen, lymph
nodes and bone marrow or end up in the liver, and only a
small proportion is retained in the heart. Cardiac retention, how-
ever, is increased after acute damage and inflammation, such as
myocardial infarction. This is thanks to the transient vascular
permeability and retention effect, by which relatively large fen-
estrations form between endothelial cells, permitting nanosized
particles to extravasate from the circulation into the inflamed
tissue.162

A number of cardiac-specific peptides have been identified that
can be conjugated by nanoparticles to enhance cardiac targeting.
These have been identified by screening phage display libraries
or are ligands for or antibodies against endogenous cardiomy-
ocyte or endothelial receptors.5 Recent evidence demonstrates
that cargo-less, safe poly (lactic-co-glycolic acid) particles can dras-
tically improve heart delivery of AAVs and nanoparticles based on
the interaction of the glucose–GLUT axis, circumventing active tar-
geting (e.g. via epitope recognition) or serotype engineering for
AAV.138

While these targeting technologies are promising but do not yet
appear to be mature for clinical application, with liver detarget-
ing remaining a major unsolved issue, the heart can however be
reached through direct intravascular catheterization for local vec-
tor or RNA administration. In the case of vascular infusion, this
can be done anterograde through the coronary arteries or retro-
grade from the coronary sinus, or, in the case of intramyocardial
injection, trans-endocardial from the left ventricle.86

Delivery route
Choosing the best approach for cardiac gene therapy deliv-
ery – whether intracoronary, intravenous, intramyocardial or
epicardial – depends on factors like the target cardiac dis-
ease, desired gene expression level, and invasiveness. Intracoro-
nary delivery is often favoured for its ability to target the
heart with less invasiveness compared to direct intramyocardial ..
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.. injections, and higher transduction efficacy in the target area
and a reduced off-target contamination compared to systemic
intravenous application. Antegrade delivery however, may be
impaired by coronary heart disease, such as stenosis or occlu-
sion of a coronary artery. Coronary veins appear not to be
affected and might therefore be the preferable application route
for gene therapy.163 For an effective and safe retrograde applica-
tion, selective catheterization of the coronary vein draining the
target area is necessary. A selective pressure regulation of retroin-
fusion enhances safety and seems to be a favourable approach for
gene therapy transduction in combination with reduced systemic
contamination.163 Intracoronary application paired with proximal
balloon occlusion to limit competitive flow, results in efficient
uptake of both AAV and similarly sized nanoparticles and allows
for delivery to the entire vascular bed of interest and regions of
the heart not easily reached via epicardial injection.164 Epicardial
approaches offer more precise delivery but are also more invasive.
Non-invasive, intratracheal administration is used for gene therapy
directed to treat pulmonary hypertension.165 For AAV gene ther-
apy, mostly the intravenous route is now being tested in view of
the cardiac promotors that allow high cardiac specificity of gene
overexpression.166

Ultrasound-assisted gene delivery to the heart is an exciting
and emerging methodology showing tremendous advancements in
pre-clinical models to date, reinforcing the idea that translation of
contrast echocardiography-mediated localized cardiac gene deliv-
ery is a feasible near-term objective.167 Further investigations in
large animal models are warranted to understand the implications
of each technique for AAV- and nanoparticle-based therapeutic
outcomes.

RNA editing with CRISPR/Cas9
In addition to targeted DNA mutagenesis, the CRISPR/Cas system
can edit various types of RNA, such as miRNA, long-noncoding
RNA, and mRNA.168 Aberrant m6A RNA methylation and dys-
regulated adenosine-to-inosine editing, mediated by the enzymes
adenosine deaminases acting on RNA (ADARs)169,170 contribute
to the development of heart failure.171,172 The combination of
CRISPR/Cas technology with single-chain m6A methyltransferase
or demethyltransferase enables site-specific insertion or deletion
of m6A modifications.173 In addition, several innovative RNA edit-
ing platforms have been developed to perform targeted RNA
base conversions mediated by ADARs.168,174–176 These RNA edit-
ing systems exhibit versatility, high specificity, and efficiency and
facilitate the editing of full-length mRNA transcripts containing
disease-associated point mutations.177

RNA editing is considered less risky than DNA editing because
it is only transient and may not cause off-target mutations.169 RNA
editing/modifying platforms are therefore promising additions to
existing CRISPR/Cas systems.

Conclusion
Advances in gene therapy including the advent of CRISPR genome
editing and improved targeting and silencing strategies, have

© 2024 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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launched a new era of cardiovascular research, enabling targeted
therapeutics and improved implementation of precision and per-
sonalized medicine. To date, clinical success has been achieved
primarily with gene therapies targeting the liver, but there have also
been initial breakthroughs in the development of cardiac-directed
therapies for inherited cardiomyopathies in pre-clinical models.
In addition, pivotal clinical trials are currently underway to test
cardiac gene therapy for cardiomyopathies. Despite the many
advances in the field of gene therapy, there is still much to
learn. A better understanding of the consequences of introduc-
ing lifelong genetic modifications and the safety profile of these
editing techniques will be crucial for the development of gene
editing-based therapies for cardiac conditions. Further improve-
ments in tissue-specific delivery through chemical modifications,
bioconjugation and the use of nanocarriers may ultimately lead
to reduced toxicity, lower immunogenicity and better efficacy.
With regard to anti-miRNAs in CVD, further research is needed
to uncover the complex regulatory networks involved to ensure
the safety and efficacy of miRNA-based therapies. Overall, gene
therapy has the potential to transform treatment strategies aimed
at alleviating symptoms and complications into strategies that
address the underlying causes of diseases. Further success of
this promising but delicate field of future medical treatment will
depend on close cooperation between regulatory authorities, the
pharmaceutical industry, patients and research institutions.
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