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a b s t r a c t

In this brief, we consider an extended opinion dynamic framework by including both transmitting
and perceiving behaviors in the agents’ interactions: the first represents how the agent transmits his
own opinion to the neighbors, while the latter models how personal features of the agent affect the
final perception of external opinions. The agents’ interactions are modeled by general piecewise linear
functions that can be heterogeneous and not necessarily monotone, thus generalizing the analytical
framework usually considered in the literature, in particular, the well-known interval consensus
(Fontanet al., 2020). In the considered novel multi-agent scenario, we formulate sufficient operative
LMI conditions to assess global network asymptotic stability for either a consensus or a cluster
equilibrium, without necessarily requiring strong network connectivity. The proposed approach is
validated through illustrative examples.

© 2024 Elsevier Ltd. All rights reserved.
1. Introduction

During recent years agreement problems have attracted great
ttention from the scientific communities due to their impact in
ifferent fields spanning from sensor networks, formation con-
rol, and electric power grid (see e.g. Dörfler, Chertkov, & Bullo,
013; Manfredi & Angeli, 2018 and references therein) to opin-
on and social dynamics (Angeli & Manfredi, 2019; Hegselmann
Krause, 2002). For the latter, the main aim is to formulate

ufficiently representative mathematical models of social groups’
nteractions and analyze when the attained equilibrium results in
onsensus or clustering of opinions. One important example is the
ell-known Hegselmann–Krause (HK) model, where the agents

nteract only with those ones with sufficiently close opinions and
imultaneously update their opinions by averaging all the opin-
ons of their neighbors (Hegselmann & Krause, 2002). HK models
an be classified as agent-based, bounded confidence models,
nd have been presented in numerous variations in the litera-
ure, concerning the possible agents’ homophilous, heterophilous,
omogeneous, heterogeneous behaviors, see among others (Ier-
olino, Vasca, & Tangredi, 2018). Recently in Fontan, Shi, Hu,
nd Altafini (2020) an interesting and novel class of multi-agent

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Solmaz
Kia under the direction of Editor Christos G. Cassandras.
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005-1098/© 2024 Elsevier Ltd. All rights reserved.
networks has been considered, where each agent can limit the
interval of values in which a consensus can be accepted. It is still
a constrained consensus problem, but the bounds can be violated
during the transient regime. More recently Altafini’s model has
been extended in Su, Wang, and Gao (2023) considering interval
coordination problems for multi-agent systems with antagonistic
interactions. In such models, each agent is an influencer in the
sense that he transmits to his neighbors an opinion value accord-
ing to a transmission function. Such a function represents how the
influencer shows his opinion to the network, and it is assumed
to be a saturation-like (and, hence, monotone) function, whose
parameters are link-dependent, rather than node-dependent as
in Fontan et al. (2020).

On the other hand, a growing body of literature has demon-
strated the conditional influence of issue frames on self-reported
opinion. The capacity to frame issues defines how an issue comes
to be understood, and represents a key factor in communication
strategies available to political elites and the media, strongly af-
fecting the opinion dynamics in social networks (Joslyn & Haider-
Markel, 2002). The effects of frames influence on respondents’
perceptions of public opinion and are conditioned by message
content, the medium of communication, and the predispositions
of respondents (Jones, 1994; Rochefort & Cobb, 1994; Stone,
1997). Therefore, the issue frames, or the perception agent’s
behavior, are crucial as well to determine the overall opinion
dynamics.

Herein we extend the above-mentioned multi-agent mod-
els (Fontan et al., 2020; Su et al., 2023) by considering a combined
behavior derived from the composition of both transmission and

https://doi.org/10.1016/j.automatica.2024.111510
https://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2024.111510&domain=pdf
mailto:rafierv@unina.it
mailto:smanfred@unina.it
https://doi.org/10.1016/j.automatica.2024.111510
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erception functions. The resulting behavior is modeled by a
ore general piecewise linear function to take into account more
omplex types of interaction. A sufficient condition is then for-
ulated to assess the global stability of both consensus and
lustering final equilibria of the multi-agent system.
More specifically, the paper’s contributions are:

• we extend the models presented in the literature (i.e.
Fontan et al., 2020) by considering the frame issue effect.
Specifically, the agent interacts with his neighbors through
both active (or transmitting) and passive (or perceiving)
behavior. The first represents how the agent transmits his
own opinion to the neighbors, while the latter models how
the personal features of the agent affect the final percep-
tion of external opinions. Therefore the same opinion of a
node may be perceived in different ways by distinct agents.
This involves the model including link-dependent interac-
tions rather than node-dependent ones, differently from the
model in Fontan et al. (2020);

• the agents’ link interactions are modeled by general piece-
wise linear functions that can be heterogeneous and not
necessarily monotone. In addition, the nature of the agent’s
interaction, being defined by the sign of the piecewise linear
function, can exhibit a ‘‘piecewise’’ cooperative/antagonistic
behavior. In this respect, we enlarge the analytical frame-
work of interval consensus (Fontan et al., 2020; Su et al.,
2023) where the single agent’s interaction is modeled
through a saturation-like function and can be merely coop-
erative or antagonistic.

• we formulate sufficient operative LMI conditions to assess
global network asymptotic stability of the equilibrium point.
Differently from similar works in the literature (Fontan et al.,
2020; Su et al., 2023), herein it is not required the strong
network connectivity assumption to formulate the stabil-
ity conditions, which are valid for either a consensus or a
cluster equilibrium.

• the proposed stability analysis approach can be extended to
deal with networks of agents with more general nonlinear
transmitting and perceiving interactions by approximating
them with piecewise linear functions, i.e., splitting the func-
tion interval of definition into a number of subintervals
and using a linear function approximation on each of them.
Indeed, piecewise linear functions have universal approxi-
mation properties in the sense that they can approximate
a generic nonlinear function with adequate accuracy, pro-
vided that the function domain is partitioned into a large
enough number of subdomains where the linear function
approximation is performed (see, e.g., Bemporad, Heemels,
& Lazar, 2010). This extension will be the subject of a future
paper.

. Preliminaries

Given two positive integers p, q, we denote by 0p×q the zero
atrix of pq components. In the case of square matrices, we use

he simplified notation 0p. Analogously, Ip is the p × p identity
atrix.
Let us consider a network of n agents, represented by a graph

(I, E), where I = {1, . . . , n} is the set of nodes, and E ⊆ I × I
the set of ordered and connected pairs of nodes. A weight aij > 0
is assigned to every edge (j, i) ∈ E . We propose the following
odel for each agent’s opinion dynamics:

˙i(t) =

∑
aij

(
φij(θj(xj(t))) − xi(t)

)
, i ∈ I, (1)
j∈Ni

2

where xi ∈ R, and Ni ≜ {j ∈ I : (j, i) ∈ E, aij > 0} is the neighbors
set of a node i. It is assumed the network does not contain self-
loops, i.e. aii = 0, ∀i. We denote by A = [aij] the network
adjacency matrix, and, by setting di =

∑
j∈Ni

aij, the input degree
matrix as D = diag([d1, . . . , dn]T ). The vector x = [x1, . . . , xn]T
collects all the agents’ opinions.

The model (1) includes the presence of stubborn agents, with
a constant opinion (i.e., for a given i, aij = 0, ∀j and there exists
at least an agent j such that aji > 0), and we denote by S ⊆ I
their index set. Notice that isolated agents (i.e., for a given i,
aij = aji = 0, ∀j) can be considered in this framework, too,
however, being their evolution uncoupled to the dynamics of all
the other agents, they are not considered in this study, for the
sake of simplicity.

The multi-behavior characteristic of (1) is represented by the
influence functions1 θj and the perception functions φij. Specifi-
cally, θj represents how the agent j transmits his own opinion to
the network , while φij represents how personal features of agent
i affect the final perception of external opinions (defined for all
the agents’ pairs with i ∈ I \ S and j ∈ Ni).

The model (1) can be recast in the more compact form:

ẋi(t) =

∑
j∈Ni

aij
(
ψij(xj(t)) − xi(t)

)
, i ∈ I \ S, (2a)

˙i(t) = 0, i ∈ S, (2b)

here ψij(·) ≜ (φij ◦ θj)(·), i ∈ I \ S , j ∈ Ni, is the composite
unction of the influence function θj of the agent j on i, and
he perception function φij of the agent i with respect to j. It
epresents how the opinion of an agent i ∈ I \ S depends on
he combination of both individual and neighbor features. In the
ollowing, for the sake of presentation, we refer to ψij(xj) as the
esulting belief of agent i ∈ I \ S with respect to agent j ∈ Ni. In
rder to avoid trivial results, we assume that ψij is not identically
ero, whenever aij ̸= 0. Of course, if aij = 0 this function can be
rbitrary in the mathematical representation (2a).
For the analysis performed in this paper, we make the fol-

owing assumptions, for all the pairs i, j of interacting agents,
.e., i ∈ I \ S , j ∈ Ni.

ssumption 1. The perception functions φij are bounded and
he transmission functions θj are with an unbounded domain.

ssumption 2. The composition of perception and transmission
unctions generates a continuous resulting belief ψij.

ssumption 3. The belief function ψij is piecewise linear with a
inite number of breaking points.

Assumptions 1 and 2 are usually present in the literature on
nterval consensus problem (Fontan et al., 2020), which this paper
eneralizes. Assumption 3 allows extending the current approach
dopted for the case of limited transmitted/perceived opinions
rom saturation to piecewise linear functions. Such an assumption
olds, for instance, when the internal functions θj are monotone
nd the external ones φij are piecewise linear and bounded with a
inite number of breaking points (see Chua & Kang, 1977, p. 923).

Note that model (2) extends (and contains) the framework
roposed in Fontan et al. (2020), Su et al. (2023), as the piecewise
inear functions ψij have not to be necessarily all monotone and
aturation like.
The problem of the existence of the equilibrium for the system

2) is related to the problem of the existence of the solution

1 In the literature, they are also called transmission functions (Fontan et al.,
2020).



R. Iervolino and S. Manfredi Automatica 162 (2024) 111510

f
c
x
t
d
i
B

t
e
p
t
c
a
s

L
2
c

I
t

a
i
x
A
d

x

r
i
x

s

j
o
t
i
i
a
t
o
n

v

e

w
t

Ψ

N
n
b

t
S
a

R
d

P

w

a

or the system under analysis. The existence and uniqueness of
lassical solutions for system (2) for any initial condition x(0) =

0 are guaranteed as the characteristics are locally Lipschitz from
he Assumptions made (Agarwal & Lakshmikantham, 1993; Cod-
ington & Levinson, 1955). Therefore, a solution always exists and
t is unique in any compact set, for any fixed initial condition.
eing ψij bounded for all i ∈ I \ S , j ∈ Ni from Assumption 1, let
ψ ≜ maxi,j,i̸=j{maxxj ψij(xj)}, ψ ≜ mini,j,i̸=j{minxj ψij(xj)}; it is easy
o verify the polytope P ≜ [ψ,ψ]

n is an invariant set under the
nsemble dynamics (2). As a consequence, from Brouwer’s fixed-
oint theorem (Basener, Brooks, & Ross, 2006), it is guaranteed
he existence of at least one equilibrium point in P . This result
an be generalized, as shown by the following Lemma related to
polytope that takes into account the initial conditions of the

ystem (2).

emma 4. Consider the system (2), under the Assumptions 1 and
. For any initial condition x(0) = x0, the trajectory x(t; x0) is
ontained in the set P0 ≜

[
min{xm0 , ψ},max{xM0 , ψ}

]n, where xM0 ≜

maxi∈I(xi(0)) and xm0 ≜ mini∈I(xi(0)), i.e. the set P0 is positively
invariant under the ensemble dynamics (2), and it includes at least
one equilibrium point.

Proof. If x0 ∈ P the proof is obvious, being P ⊆ P0 an invariant
set. Suppose then that x0 /∈ P , which means, for instance, and
with no loss of generality, there exists at least an agent i such
that xi(0) > ψ . At any instant of time t ≥ 0, let IM (t) ≜ {j ∈

|xj(t) = maxi∈I xi(t)} be the set of the indices of the agents with
he maximum opinion. Since ψij(xj(t)) ≤ ψ , ∀i, j ∈ I, it is:

max
i∈IM

ẋi ≤ max
i∈IM

∑
j∈Ni

aij(ψ − xi(t)) ≤ 0. (3)

The second inequality in (3) is strict for all t ≥ 0 such that
xi(t) > ψ , with i ∈ IM , and there exists at least one j with
ij > 0 (i.e. Ni ̸= ∅); it is zero if the agent i is a stubborn agent,
.e. if aij = 0 for all j (or, equivalently, Ni = ∅), which implies
i(t) = xi(0). As a result, the maximum opinion cannot increase.
nalogously, we can conclude that the minimum opinion cannot
ecrease. Indeed, let Im(t) ≜ {j ∈ I|xj(t) = mini∈I xi(t)}, the

opinion xi(t) is not decreasing in time for all t ≥ 0 such that
xi(t) < ψ , with i ∈ Im. Thus, the convex hull of the opinions is
nonincreasing in P0 \ P , which means that the system trajectory
x(t; x0) cannot escape from the set P0, for any x0 ∈ P0. Finally, by
applying Brouwer’s theorem to P0 the proof is complete. □

The conditions to determine the equilibrium point, say x∗
=

[x∗

1, x
∗

2, . . . , x
∗
n]

T , are obtained by setting all the time derivatives
of the state-variables in (2) equal to zero, i.e.:∑
j∈Ni

aij
(
ψij(x∗

j ) − x∗

i

)
= 0,∀i ∈ I \ S, (4a)

ẋi = 0, ∀i ∈ S. (4b)

Since for all agents i ∈ I \ S there exists at least one agent
j ∈ I such that aij > 0, and by fixing the initial opinion values,
conditions (4) can be rewritten as:

x∗

i =

∑
j∈Ni

aijψij(x∗

j )∑
j∈Ni

aij
, ∀i ∈ I \ S, (5a)

∗

i = xi(0), ∀i ∈ S. (5b)

In what follows we refer to the solution x∗ as a cluster equilib-
ium if there exists at least a pair (i, j) such that x∗

i ̸= x∗

j . Another
nteresting case corresponds to a consensus equilibrium, where
∗

i = x̄,∀i. From (5) it follows that a sufficient condition for the
equilibrium being a consensus state is the existence of a common
 a

3

opinion value x̄ such that ψij(x̄) = x̄ = xs(0), for all i ∈ I\S , j ∈ Ni,
∈ S.
For a given equilibrium point, let e ≜ x−x∗ be the disagreement

variable, and, for each pair of agents i ∈ I \ S, j ∈ Ni, let
ψ ′

ij(ej) ≜ ψij(xj) − ψij(x∗

j ) be the shifted characteristic function,
then we can define the error model as:

ėi =

∑
j∈Ni

aij
(
ψ ′

ij(ej) + ψij(x∗

j ) − ei − x∗

i

)
=

∑
j∈Ni

aij
(
ψ ′

ij(ej) − ei
)
+

∑
j∈Ni

aij
(
ψij(x∗

j ) − x∗

i

)
=

∑
j∈Ni

aij
(
ψ ′

ij(ej) − ei
)
, i ∈ I \ S, (6)

where
∑

j∈Ni
aij

(
ψij(x∗

j ) − x∗

i

)
= 0 from (4a). If i ∈ S , it is

ėi = 0, (7)

that, with ei(0) = 0, means ei(t) = 0, ∀t ≥ 0, i.e. the stubborn
agents are always at the equilibrium, by definition. It is easy
to verify that the origin is an equilibrium point for the error
dynamics, being ψ ′

ij(0) = 0, for all i, j. Moreover, (6) and (7) are
decoupled, being ψ ′

ij(ej) = 0 for all pairs (i, j) with i ∈ I \ S ,
∈ Ni ∩ S , and the stubborn agents dynamics not influenced by
ther agent’s opinions. As a result: (i) in the stability analysis of
he error dynamics, we can refer to non-stubborn agents only,
.e., in order to avoid repetitions, it is implicitly assumed that
∈ I \ S , and (ii) being

∑
j∈Ni

aijψ ′

ij(ej) =
∑

j∈Ni\S
aijψ ′

ij(ej) for
ny (i, j) in (6), we also implicitly assume that Ni = Ni \ S. For
he sake of notation simplicity, the index set can be conveniently
rdered such that the first n′

≤ n and the last n − n′ agents are
on-stubborn and stubborn ones, respectively.
By assembling Eqs. (6), the dynamics of the disagreement

ariables for the first n′ agents can be written in the matrix form:

˙ = −D′e + Ψ ′(e), (8)

here, with some abuse of notation, e = [e1, e2, . . . , en′ ]
T , D′ is

he input degree matrix related to the non-stubborn agents,2 and:

′(e) =

⎡⎣
∑

j∈N1
a1jψ ′

1j(ej)

...∑
j∈Nn′

an′ jψ
′

n′ j
(ej)

⎤⎦ . (9)

otice that Ψ ′ defines the node interactions according to the
etwork topology (i.e., the adjacency matrix A) and the agents’
ehavior (perception/transmission functions composition).
In the following section, we will provide a sufficient condition

o assess the global asymptotic stability of the error dynamics.
ome considerations on the formulation of a local stability result
re also introduced, based on the following remark.

emark 5. Referring to the error model (6), (7) it is easy to
emonstrate that the polytope
′

0 ≜
[
min{em0 , ψ

′
},max{eM0 , ψ ′}

]n
, (10)

here eM0 ≜ maxi∈I(ei(0)), em0 ≜ mini∈I(ei(0)), ψ ′ ≜ maxi,j,i̸=j
{maxej ψ

′

ij(ej)}, and ψ
′ ≜ mini,j,i̸=j{minej ψij(ej)}, is a positively

invariant set in the error space.

2 Note that, even though the stubborn agents do not contribute to the overall
gent’s characteristic in the error model, their presence is anyway taken into
ccount in the input degree computation.
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Fig. 1. An example of a piecewise linear (shifted) characteristic with m = 5
reaking points.

. Global stability result

In this section, we present a global stability result based on
sing a quadratic Lyapunov function. In order to reduce the
onservativism of the proposed approach, we take explicitly into
ccount an analytical representation of the (shifted) characteristic
unctions of the agents. Under Assumptions 1, 2, 3, the resulting
ranslated belief ψ ′

ij is still a bounded, continuous, and piecewise
inear function with a finite number of breaking points, for all
, j ∈ I. More specifically, each composite function ψ ′

ij, associated
o an i, j pair, i ∈ I \ S , j ∈ Ni \ S , is composed of m +

1 segments,3 or, equivalently, defined by m distinct breaking
points, say {ϵ1ij , . . . , ϵ

m
ij }, and m + 1 slopes, say {σ 0

ij , σ
1
ij , . . . , σ

m
ij }

see, e.g., Fig. 1 for a case with m = 5). Let M = {1, . . . ,m}

e the index set related to the characteristic breaking points.
ithout loss of generality, it can be assumed that ϵ1ij < · · · < ϵmij ,
(i, j), i ̸= j, and the slopes can be numbered from left to right.
Any (continuous) piecewise linear function can be represented

ccording to the following canonical form (Chua & Kang, 1977):

′

ij(ej) = α0
ij + α1

ijej +
m∑

h=1

βh
ij |ej − ϵhij |, (11)

here:

(a) α0
ij = ψ ′

ij(0) −
∑m

h=1 β
h
ij |ϵ

h
ij |;

(b) α1
ij =

1
2 (σ

0
ij − σm

ij ) = 04;
(c) βh

ij =
1
2 (σ

h
ij − σ h−1

ij ), h ∈ M.

From (11) and definitions (a)–(c), the ith row of (9) is:

Ψ ′

i (e) =

∑
j∈Ni

aijψ ′

ij(ej) =

∑
j∈Ni

[
α̂0
ij +

m∑
h=1

β̂h
ij |ej − ϵhij |

]
, (12)

where α̂0
ij = aijα0

ij , β̂
h
ij = aijβh

ij .
Before introducing the stability results, let us consider the

following Lemma that provides some useful properties of the
components of the vector Ψ ′(e).

Lemma 6. Consider the vector Ψ ′(e) in (9) and the expression (12)
of its ith row. For all (i, j) pairs, the following properties hold:

(i)
∑m

h=1 β̂
h
ij = 0.

(ii) −
∑

j∈Ni
α̂0
ij =

∑
j∈Ni

∑m
h=1 β̂

h
ij |ϵ

h
ij | ≤ 0.

(iii) Let M+

ij ≜ {h ∈ M|β̂h
ij > 0, j ∈ Ni} and M−

ij ≜ {h ∈

M|β̂h
ij < 0, j ∈ Ni}, m+

ij = |M+

ij | and m−

ij = |M−

ij |,

3 For ease of notation, we assume the same number of segments for all the
airs (i, j). Indeed, it is always possible to fictitiously decompose a characteristic
nto m+1 segments with m being the largest number of distinct breaking points
(i, j), i ̸= j.
4 Note that α1

ij = 0, ∀i, j, being σ 0
ij = σm

ij = 0, for the boundedness
ssumption.
4

β̃+

i = maxj∈Ni,h∈M β̂h
ijm

+

ij di and β̃
−

i = minj∈Ni,h∈M β̂h
ijm

−

ij di,
then it results: β̃−

i
∑

j∈Ni
|ej| ≤ Ψ ′

i (e) ≤ β̃+

i
∑

j∈Ni
|ej|.

Proof. The property (i) can be easily verified by using (12) and
the assumption about the continuity and boundedness of (the
sum of) all the characteristic functions for (all) ej → ∞. Indeed,
if ej ≤ ϵ1ij or ej ≥ ϵmij , ∀j ∈ Ni then it must be:

Ψ ′

i (e) =

∑
j∈Ni

α̂0
ij +

∑
j∈Ni

m∑
h=1

β̂h
ijϵ

h
ij , if ej ≤ ϵ1ij , (13a)

′

i (e) =

∑
j∈Ni

α̂0
ij −

∑
j∈Ni

m∑
h=1

β̂h
ijϵ

h
ij , if ej ≥ ϵmij . (13b)

rom (13a), (13b), it follows property (i), which implies that,
xcept for the trivial case of all β̂h

ij = 0, for each agent i there
ust be at least two indices, say hi,1, hi,2 ∈ M, hi,1 ̸= hi,2, such

hat β̂hi,1
ij β̂

hi,2
ij < 0, ∀j ∈ Ni \ S.

For e = 0 (equilibrium point) it is Ψ ′

i (0) = 0 and hence from
12) the equality condition in property (ii) holds. Moreover, it
s easy to verify that it is also

∑
j∈Ni

∑m
h=1 β̂

h
ij |ϵ

h
ij | ≤ ϵmij m(n −

)
∑m

h=1 β̂
h
ij = 0 from property (i).

Finally, ∀j ∈ Ni, it is |ej − ϵhij | ≤ |ej| + |ϵhij |, and then Ψ ′

i (e) ≤

j∈Ni
α̂0
ij +

∑
j∈Ni

∑
h∈M β̂h

ij |ej|+
∑

j∈Ni

∑m
h=1 β̂

h
ij |ϵ

h
ij |. From prop-

rty (ii) and simple algebra, it follows Ψ ′

i (e) ≤
∑

j∈Ni

∑
h∈M β̂h

ij |ej|∑
j∈Ni

∑
h∈M+

ij
β̂h
ij |ej| ≤ β̃+

i
∑

j∈Ni
|ej|. Analogously, it is |ej−ϵhij |

|ej|−|ϵhij |, and hence Ψ ′

i (e) ≥
∑

j∈Ni
α̂0
ij +

∑
j∈Ni

∑
h∈M β̂h

ij |ej|−
n
j=1

∑m
h=1 β̂

h
ij |ϵ

h
ij |. From property (ii) and simple algebra, it also

ollows Ψ ′

i (e)≥
∑n

j=1
∑

h∈M β̂h
ij |ej|+2

∑
j∈Ni

α̂0
ij ≥

∑
j∈Ni

∑
h∈M−

ij
ˆ h
ij |ej| ≥ β̃−

i
∑

j∈Ni
|ej|. □

The expression (12) represents the cumulative effect of the
erception/transmission function of agent i from his neighbors
∈ Ni. The boundedness assumption of all the resulting be-

ieves (and hence on their sum (12), made explicit by property
iii)) implies that each neighbor j has a limited effect on i, con-
trained by the following sufficient conditions for property (iii):

Ψ ′

i (e) − β̃+

i |ej|) · (Ψ ′

i (e) − β̃−

i |ej|) ≤ 0, j ∈ Ni. (14)

n order to tackle (14) by more amenable conditions, we consider
hat, from property (i) in Lemma 6, it is β̃+

i ≥ 0 and β̃−

i ≤ 0.
herefore, by letting β̃i = max{β̃+

i , |β̃
−

i |},5 (14) are implied by
he conic sector conditions:

Ψ ′

i (e) − β̃iej) · (Ψ ′

i (e) + β̃iej) ≤ 0, j ∈ Ni. (15)

n a more compact matrix form, conditions (15) become:[
ej

Ψ ′

i (e)

]T

Mi

[
ej

Ψ ′

i (e)

]
≤ 0, j ∈ Ni, (16)

here

i =

[
−β̃2

i 0
0 1

]
.

For each element of the vectors e and Ψ ′(e) we can write

j = νTj e, (17)
′

i (e) = νTi Ψ
′(e), (18)

5 Except the trivial case of all βh
= 0, it is always β̃ > 0.
ij i
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w
F[
w

T

f

N

T

t

here νi, νj is the ith and jth canonical vector in Rn′

, respectively.
rom (17)–(18) it is

ej
Ψ ′

i (e)

]
= Tij

[
e

Ψ ′(e)

]
, (19)

ith

ij =

[
νTj 0T

n′×1
0T
n′×1 νTi

]
, (20)

or which condition (16) becomes[
e

Ψ ′(e)

]T

T T
ij MiTij

[
e

Ψ ′(e)

]
≤ 0. (21)

ow we are ready to state the following stability result.

heorem 7. Given the error model (8), under Assumptions 1–3,
the origin is globally asymptotically stable if there exist a symmetric
positive definite matrix P, and positive scalars τij, i ∈ I\S , j ∈ Ni\S
such that the following LMI has a solution:[
−D′P − PD′

+
∑

i∈I\S
∑

j∈Ni\S
τijβ̃

2
i νjν

T
j

P
P

−
∑

i∈I\S
∑

j∈Ni\S
τijνiν

T
i

]
< 0. (22)

Proof. Let us consider as a candidate Lyapunov function for the
error model (8) the quadratic function defined as follows:

V (e) = eTPe (23)

with P a symmetric positive definite matrix of appropriate di-
mensions. The derivative of the Lyapunov function along the
trajectories of the system (8) is:

V̇ (e) = −eT (D′P + PD′)e + 2eTPΨ ′(e), (24)

or, in a more compact matrix form:

V̇ (e) =[
e

Ψ ′(e)

]T [
−D′P − PD′ P

P 0n′

][
e

Ψ ′(e)

]
. (25)

It is possible to include the quadratic constraints (21) into the
decreasing condition along the system trajectories of the Lya-
punov function (23), i.e. V̇ (e) < 0, by applying the S-procedure.
The latter is a Lagrange relaxation technique to express through
LMIs a sign condition on a quadratic form (e.g., the Lie derivative
of the Lyapunov function (25)) subject to some quadratic inequal-
ity constraints (e.g., the conic sector conditions (21)) (Fradkov &
Yakubovich, 1979). Then we have:[

e
Ψ ′(e)

]T [
−D′P − PD′ P

P 0n′

][
e

Ψ ′(e)

]
−

[
e

Ψ ′(e)

]T ( ∑
i∈I\S

∑
j∈Ni\S

τijT T
ij MiTij

) [
e

Ψ ′(e)

]
< 0. (26)

Indeed, it is easy to verify that condition (26) implies the decreas-
ing condition V̇ (e) < 0 for all pairs e,Ψ ′(e) which satisfy the
sector constraints. By considering that

T T
ij MiTij =

[
−β̃2

i νjν
T
j 0n′

0n′ νiν
T
i

]
, (27)

condition (26) becomes[
e
′

]T [
−D′P − PD′

+
∑

i∈I\S
∑

j∈Ni\S
τijβ̃

2
i νjν

T
j

Ψ (e) P c

5

P
−

∑
i∈I\S

∑
j∈Ni\S

τijνiν
T
i

][
e

Ψ ′(e)

]
< 0. (28)

If the LMI condition (22) holds then (28) is satisfied. By virtue
of Lyapunov’s direct method (Khalil, 1992) (being V (e) positive
definite, radially unbounded, and its derivative along the sys-
tem trajectories negative definite), the global asymptotic stability
of the origin of the error system (6), under the sector condi-
tions (21), can be concluded, which implies the global asymptotic
stability of the equilibrium point of the original model (2). □

Theorem 7 allows evaluating if an equilibrium point of system
(2) is asymptotically stable, regardless if it is a consensus or
a clustering, and, being a global stability result, requires as a
necessary condition, that the original model (1) admits a unique
equilibrium point. Such a stability result is global also because the
constraints (15) are all globally fulfilled, being the characteristics
assumed to be bounded. The following considerations can be
made on how to extend the proposed approach.

Remark 8. If the origin of error space belongs to the interior
of the invariant set P ′

0, then the stability analysis through a
candidate quadratic Lyapunov function, as performed in Section 3,
necessarily leads to a global stability result. Indeed, the sign
condition of a quadratic function (as the function (23) and (25))
on any set is equivalent to its sign condition on the conical hull
of that set, which is the entire state space when it has the origin
as an interior point. However, if the origin of system (8) is a
boundary point of P ′

0, i.e. if ψ
′
= 0 with em0 ≥ 0, which implies

that ψ ′ > 0, or, equivalently, ψ
′
= 0 with eM0 ≤ 0, which implies

hat ψ ′ < 0,6 by adopting cone-copositivity arguments (Iervolino,
Tangredi, & Vasca, 2017; Iervolino, Trenn, & Vasca, 2018), it is
possible to get local stability results even though a quadratic
candidate Lyapunov function is employed. Due to the page limit,
this study has not been reported and is the topic of an ongoing
research project.

Remark 9. The LMI (22) becomes infeasible when the input
degree matrix D′ is null (i.e. the network is composed of all
isolated agents), as it appears from the (1, 1) block element of the
matrix. Such a circumstance is ruled out since we have considered
the scenario where the network nodes are not isolated.

4. Illustrative examples

In what follows we validate the proposed LMI-based stability
condition considering the network graph of Fig. 2, composed of
7 followers (from 1 to 7) and two stubborn agents (8 and 9).
The edge weights are assumed to be unitary. The line style of
the links (solid or dashed) refers to the considered piecewise
linear characteristic ψ̃ and ψ̂ , reported in Fig. 3, whose canonical
representations are:

ψ̃(u) =
7
4

−
1
2
|u| +

3
4
|u − 1| −

1
4
|u − 2|,

ψ̂(u) =
5
4

−
1
2
|u| +

1
4
|u − 1| +

1
4
|u − 2|.

In particular, it is ψ12 = ψ28 = ψ34 = ψ54 = ψ̃ , ψ41 = ψ49 =

ψ65 = ψ76 = ψ̂ .
In the first scenario, consider the presence of the stubborn

agent 8 only, as the root of the spanning tree corresponding to
the network graph, with x8(0) = 1. Since the belief functions are
such thatψij(xj) = xj when xj = 1, we get a consensus equilibrium

6 It is easy to verify that, thanks to the continuity assumption of the
haracteristic functions, it is ψ ′

≤ 0 and ψ ′ ≥ 0.
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Fig. 2. Network graph with two stubborn agents.

Fig. 3. Two piecewise linear characteristics representing two different agents’
interaction behaviors.

value x∗
=

[
1, 1, 1, 1, 1, 1, 1, 1

]T . The input de-
ree matrix of the follower agents is D = diag(1, 1, 1, 1, 1, 1, 1),
hile the characteristic parameters of the conic sectors are β̃1 =

˜3 = β̃5 = 1, β̃4 = β̃6 = β̃7 =
1
2 . By applying Theorem 7,

he solutions of the LMIs are P = diag(0.221, 0.081, 1.327, 1.196,
.060, 0.618, 2.873) and τ12 = 0.130, τ34 = 0.913, τ41 = 0.986,
54 = 0.022, τ65 = 0.487, τ76 = 2.057. The application of
heorem 7 allows assessing that the correspondent consensus
quilibrium point is globally asymptotically stable. Fig. 4 shows
he opinions dynamic evolutions of the agents from the initial
ondition x(0) =

[
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1

]T , confirming
he final equilibrium is a consensus.

As a second simulation experiment, we modify the previous
cenario by reversing the link between agents 4 and 5. Starting
rom the same initial condition, the final equilibrium is a cluster-
ng, as shown in Fig. 5. Indeed, the stubborn agent 8 is no more
root of a spanning tree covering the overall network graph and
54(x5(0)) ̸= 1 (and ψ56(x5(0)) ̸= 1), resulting in a final clustering
quilibrium.
6

Fig. 4. Consensus scenario with one stubborn 8.

Fig. 5. Clustering scenario with one stubborn 8.

Finally, consider the complete scenario with the two stubborn
gents 8 and 9 in Fig. 2. If the stubborn agents 8 and 9 are
n agreement (e.g. ψ82(x8(0)) = x8(0) = 1 and ψ94(x9(0)) =

9(0) = 1), then the network presents a consensus equilibrium
∗

=
[
1, 1, 1, 1, 1, 1, 1, 1, 1

]T . By using Theo-
rem 7 we can conclude the global asymptotical stability of such
an equilibrium, see Fig. 6. When the two stubborn are not in
agreement, the equilibrium is a clustering. For x8(0) = 1 and
x9(0) = 2, it is x∗

=
[
1, 1, 1.25, 0.75, 1.25, 0.875, 1.125, 1, 2

]T ,
which is globally asymptotically stable as can be proved by ap-
plying Theorem 7.

Finally, the simulation from the initial condition x(0) =[
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1, 2

]T is reported in Fig. 7, show-
ing how the final followers’ states are affected by both stubborn 8
and 9 opinions and their propagation through the network belief
functions ψij(·).

Remark 10. Notice that the stability analysis of the network
equilibrium (either consensus or clustering) in the example con-
sidered cannot be carried out for instance by using the ap-
proaches proposed in Fontan et al. (2020), Su et al. (2023) since
herein we require weaker assumptions and consider more gen-
eral interactions. Specifically, the graph is not strongly con-
nected, the agents’ characteristics are not saturation-like ones,
and the monotonicity assumption is not needed since our aim
is to provide global stability conditions for a given equilibrium,
not necessarily a consensus one.
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Fig. 6. Consensus scenario with two stubborn 8, 9.

Fig. 7. Clustering scenario with two stubborn 8, 9.

. Conclusions and future work

In this paper, the stability analysis of the equilibrium point
f a multi-behavioral agent system has been analyzed by con-
idering both transmitting and perceiving agents’ interactions.
he resulting beliefs of the agent are modeled by heterogeneous
iecewise linear functions. Sufficient operative LMI condition has
een derived to evaluate the global asymptotic stability of the
rigin of the error space.
A potential extension of the proposed approach may include

he stability analysis of more general multi-agent systems with
ontinuous nonlinear interactions approximated by piecewise lin-
ar functions. A further development of this study could be the
ocal stability analysis of the error dynamics performed with
espect to a positively invariant set having the origin on its
oundary and exploiting some results on cone-copositivity of
uadratic forms, or to a more general agreement subspace. More-
ver, a vectorial opinion framework with possibly discontinuous
haracteristic interactions could be a natural future extension of
he present work. Finally, the formulation of sufficient conditions
or the LMIs’ feasibility is an interesting topic of ongoing research.

eferences

garwal, R. P., & Lakshmikantham, V. (1993). Uniqueness and nonunique-
ness criteria for ordinary differential equations. World Scientific Publishing,
Singapore.

ngeli, D., & Manfredi, S. (2019). Criteria for asymptotic clustering of opinion
dynamics towards bimodal consensus. Automatica, 103, 230–238.

Basener, W., Brooks, B. P., & Ross, D. (2006). The Brouwer fixed point theorem

applied to rumour transmission. Applied Mathematics Letters, 19, 841–842.

7

Bemporad, A., Heemels, W. P. M. H., & Lazar, M. (2010). On the synthesis of
piecewise affine control laws. In IEEE international symposium on circuits and
systems (pp. 3308–3311).

Chua, L. O., & Kang, S. M. (1977). Section-wise piecewise-linear functions:
Canonical representation, properties, and applications. Proceedings of IEEE,
65, 915–929.

Coddington, E. A., & Levinson, N. (1955). Theory of ordinary differential equations.
New York, USA: McGraw-Hill.

Dörfler, F., Chertkov, M., & Bullo, F. (2013). Synchronization in complex oscillator
networks and smart grids. Proceedings of the National Academy of Sciences,
110(6), 2005–2010.

ontan, A., Shi, G., Hu, X., & Altafini, C. (2020). Interval consensus for multiagent
networks. IEEE Transactions on Automatic Control, 65(5), 1855–1869.

radkov, A. L., & Yakubovich, V. A. (1979). The S-procedure and a duality reala-
tions in nonconvex problems of quadratic programming. Vestnik Leningrad
University. Mathematics, 5(1), 101–109.

egselmann, R., & Krause, U. (2002). Opinion dynamics and bounded confi-
dence models, analysis, and simulations. Journal of Artificial Societies Social
Simulation, 5(3), 1–33.

ervolino, R., Tangredi, D., & Vasca, F. (2017). Piecewise quadratic stability of
consensus in heterogeneous opinion dynamics. In 2016 European control
conference (pp. 549–554).

ervolino, R., Trenn, S., & Vasca, F. (2018). Stability of piecewise affine sys-
tems through discontinuous piecewise quadratic Lyapunov functions. In
2017 IEEE 56th annual conference on decision and control, vol. 2018-January
(pp. 5894–5899).

ervolino, R., Vasca, F., & Tangredi, D. (2018). A consensus policy for heteroge-
neous opinion dynamics. In Proc. of IEEE international symposium on circuits
and systems (pp. 1–5).

ones, B. D. (1994). Reconceiving decision-making in democratic politics: Attention,
choice, and public policy (p. 111). Chicago: University of Chicago.

oslyn, M. R., & Haider-Markel, D. P. (2002). Framing effects on personal opinion
and perception of public opinion: The cases of physician-assisted suicide and
social security. Social Science Quarterly, 83(3), 690–706.

halil, H. K. (1992). Nonlinear systems. MacMillan.
anfredi, S., & Angeli, D. (2018). Asymptotic consensus on the average of a field
for time-varying nonlinear networks under almost periodic connectivity. IEEE
Transactions on Automatic Control, 63(8), 2389–2404.

ochefort, D. A., & Cobb, R. W. (1994). The politics of problem definition: Shaping
the policy agenda. Lawrence, Kan.: University Press.

tone, D. (1997). Policy paradox: The art of political decision making. New York:
WW. Norton & Company.

u, H., Wang, X., & Gao, Z. (2023). Interval coordination of multiagent networks
with antagonistic interactions. IEEE Transactions on Automatic Control, 68(4),
2552–2559.

Raffaele Iervolino received his laurea degree cum
laude in Aerospace Engineering from the University
of Naples Federico II, Italy, where he also obtained
his Ph.D. in Electronic and Computer Science En-
gineering. He is currently an Assistant Professor of
Automatic Control at the University of Naples. He is
involved in several international research projects, is
the co-founder of two academic spin-offs, holds an
international patent and collaborates with companies
as consultant. His research interests are impulsive
dynamical linear systems, finite time stability and sta-

bilization, switched systems, opinion dynamics and consensus in social networks,
reinforcement learning, and human telemetry systems.

Sabato Manfredi currently holds the position of Asso-
ciate Professor of Automatic Control in the Department
of Electrical Engineering and Information Technology
at the University of Naples Federico II, Italy. He has
authored or co-authored over 100 scientific publi-
cations, including the monograph titled ‘‘Multilayer
Control of Networked Cyber-Physical Systems: Applica-
tion to Monitoring, Autonomous, and Robot Systems’’
(Advances in Industrial Control Series, Springer, 2017).
He collaborates with various international universities,
such as Imperial College, and companies, holds Euro-

pean patent and is involved in a range of academic, industrial and consulting
projects His research interests primarily focus on automatic control, with a
special emphasis on the distributed estimation, control, and optimization of
cyber–physical systems, Multi-Agent Systems and complex networks. He also
explores decentralized machine learning techniques for intelligent networked
systems, multi-agent systems and smart cities.

http://refhub.elsevier.com/S0005-1098(24)00002-5/sb1
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb1
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb1
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb1
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb1
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb2
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb2
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb2
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb3
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb3
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb3
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb4
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb4
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb4
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb4
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb4
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb5
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb5
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb5
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb5
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb5
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb6
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb6
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb6
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb7
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb7
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb7
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb7
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb7
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb8
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb8
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb8
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb9
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb9
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb9
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb9
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb9
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb10
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb10
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb10
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb10
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb10
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb11
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb11
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb11
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb11
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb11
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb12
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb12
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb12
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb12
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb12
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb12
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb12
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb13
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb13
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb13
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb13
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb13
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb14
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb14
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb14
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb15
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb15
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb15
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb15
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb15
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb16
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb17
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb17
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb17
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb17
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb17
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb18
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb18
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb18
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb19
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb19
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb19
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb20
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb20
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb20
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb20
http://refhub.elsevier.com/S0005-1098(24)00002-5/sb20

	Global stability of multi-agent systems with heterogeneous transmission and perception functions
	Introduction
	Preliminaries
	Global Stability Result
	Illustrative examples
	Conclusions and future work
	References


