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Abstract: Latent variables analysis is an important part of psychometric research. In this context,
factor analysis and other related techniques have been widely applied for the investigation of the
internal structure of psychometric tests. However, these methods perform a linear dimensionality
reduction under a series of assumptions that could not always be verified in psychological data. Pre-
dictive techniques, such as artificial neural networks, could complement and improve the exploration
of latent space, overcoming the limits of traditional methods. In this study, we explore the latent space
generated by a particular artificial neural network: the variational autoencoder. This autoencoder
could perform a nonlinear dimensionality reduction and encourage the latent features to follow a
predefined distribution (usually a normal distribution) by learning the most important relationships
hidden in data. In this study, we investigate the capacity of autoencoders to model item—factor
relationships in simulated data, which encompasses linear and nonlinear associations. We also extend
our investigation to a real dataset. Results on simulated data show that the variational autoencoder
performs similarly to factor analysis when the relationships among observed and latent variables are
linear, and it is able to reproduce the factor scores. Moreover, results on nonlinear data show that,
differently than factor analysis, it can also learn to reproduce nonlinear relationships among observed
variables and factors. The factor score estimates are also more accurate with respect to factor analysis.
The real case results confirm the potential of the autoencoder in reducing dimensionality with mild
assumptions on input data and in recognizing the function that links observed and latent variables.

Keywords: machine learning; variational autoencoders; factor analysis; dimensionality reduction

1. Introduction

In psychometric research, the objects of study, such as personality traits, motivation, or
attitudes, are often not directly observable or measurable. Consequently, the structure and
effects of these unobservable variables, referred to as “latent variables”, are typically inves-
tigated through specific techniques like factor analysis. These methods aim to statistically
relate the covariation between observed variables to latent variables [1].

Factor analysis, originally developed by Spearman [2], is a popular and widely used
multivariate technique. Its goal is to approximate the original observed variables of a
data set by linear combinations of a smaller number of latent variables called factors.
In psychological research, factors are fundamental as they reduce dimensionality and
represent psychological constructs strongly tied to psychological theory [3]. Indeed, factor
analysis is mostly used to assess the degree to which the items on a scale conform to
a theoretically indicated higher-order structure, investigating the construct validity and
internal validity of psychometric tests [4].

However, factor analysis relies on a set of assumptions that may not always hold in
psychological data [5]. Notably, it assumes that the relationships between indicators and
factors are linear. The use of factor analysis for theory validation implies that the theory
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behind the factor-indicator relationship must assume linearity. Hence, it constrains the
kinds of theories that can be validated through factor analysis.

In cases where nonlinear relationships exist, this assumption can lead to biased results
and misleading interpretations [6]. Bauer [6] and Belzak and Bauer [7] highlighted two
significant consequences of excluding nonlinear relationships. Firstly, it can result in the
rejection of measurement invariance tests, and secondly, it can lead to the misidentification
of nonlinear effects as interaction effects. Bauer [6] demonstrated that even a slight cur-
vature in the relationship between a single indicator and a factor could cause metric and
scalar invariance tests to be rejected. The rejection occurs because the data from different
groups cover different regions of the nonlinear function, resulting in different slopes and
intercepts when fitting a linear factorial model, leading to the rejection of invariance tests.
Additionally, failure to account for nonlinear effects can confound the identification of
interaction effects, as shown by Busemeyer and Jones [8] and later by Belzak and Bauer [7].

It is important to consider that items with nonlinear relationships may deviate from
the assumptions underlying traditional psychometric methods. As a result, these items are
often excluded during the initial stage of test construction or validation, even though they
may contain valuable information about the latent variable being measured. Therefore,
including them in the analysis could enhance the overall performance of the hypothesized
model and provide a deeper understanding of the construct.

In this context, the availability of analysis techniques that do not rely on the assumption
of linearity and allow for the exploration of the relationship between items and factors
while accommodating nonlinearities could significantly improve psychometric research.
Such techniques would enable researchers to fully explore the nature of the relationships
within the data and capture the complex dynamics that may exist.

Various nonlinear factor analysis techniques have been proposed over the years. When
considering nonlinearity in latent variable models, it is crucial to examine how and where
the nonlinearity is modeled. Specifically, nonlinearity can exist in the relationship between
items and factors or in the relationship between factors, referring to the measurement
model or the latent model, respectively. The focus of this study is on the former kind
of relationship.

To the best of our knowledge, although some studies have proposed nonlinear factor
analysis models, the focus has primarily been on nonlinear relationships among factors,
with a few exceptions. Since McDonald’s [9] pioneering work, new estimation methods
for nonlinear factor analysis models have been developed successively. Some of these
include the maximum-likelihood-based methods proposed by Klein and Moosbrugger [10],
Klein and Muthén [11], Lee and Zhu [12], and Yalcin and Amemiya [13]. Other relevant
methods include the method of moments introduced by Wall and Amemiya [14] and the
Bayesian approaches developed by Arminger and Muthén [15] and Zhu and Lee [16].
However, the proposed methods to estimate nonlinear factor models are computationally
demanding and require specialized techniques. Unlike linear factor models that often have
closed-form solutions, nonlinear models typically involve iterative optimization algorithms.
These algorithms aim to estimate the model parameters by minimizing the discrepancy
between the observed data and the model’s predicted values. The complexity of nonlinear
optimization routines, combined with the potential presence of local optima, can pose
challenges in achieving convergence and obtaining reliable estimates.

Furthermore, these techniques are rarely used because they are complex to implement
and interpret. Nonlinear relationships are often more nuanced and complex than their linear
counterparts, making the identification and meaningful interpretation of latent factors more
intricate. Researchers must carefully interpret the nature and direction of nonlinear associa-
tions, considering the specific functional form employed in the analysis. This interpretation
process requires expertise and a deep understanding of the underlying constructs.

Despite these complexities, nonlinear methods hold great potential for advancing
psychometric research, as they provide a means to capture the intricacies and nonlinear
dynamics present in psychological constructs.
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One interesting solution to address the issue of nonlinearity lies in the use of artificial
neural networks (ANNSs). ANNs are computational models inspired by the structure and
function of biological neurons. They possess the ability to learn relationships between
input and output variables automatically through training data without the need for man-
ually programmed decision rules. This characteristic enables ANNSs to extract relevant
features from raw input data, eliminating the requirement for manual feature engineer-
ing [17]. Consequently, ANNs can handle complex and nonlinear patterns within the
input-output relationship.

Unlike traditional psychometric methods that rely on predefined notions about the
data’s nature and variables’ relationships to create data models, ANNs do not assume a
specific function or relationship between variables. Instead, they operate as algorithmic
models aiming to find the function that maximizes predictive power for a given dataset.

Autoencoders, a type of ANN, have been extensively studied for their capacity to
reduce the dimensionality of input data [18,19]. Their aim is to reconstruct the input data
and encode the most relevant information for input reconstruction in a smaller central layer,
known as the “bottleneck layer” [20]. While perfect reconstruction of the input vectors
is not possible due to the smaller size of the bottleneck layer, the central neurons of the
autoencoder are associated with the intrinsic dimensionality of the data [21]. In certain
conditions, autoencoders can converge to the solution of principal component analysis
(PCA) [22].

Among the variants of autoencoders, the variational autoencoder (VAE) is of particular
interest and has garnered attention in psychometric research [23,24]. VAE is a generative
model that aims to describe how a dataset is generated in terms of a probabilistic model.
It differs from traditional autoencoders as it imposes restrictions on the distribution of
the central nodes, encouraging the latent space of the VAE to be independent and follow
a predefined distribution, often a normal distribution [25]. This characteristic makes the
latent space of VAEs more interpretable than that of simple autoencoders. The structured
latent space of VAESs can also be used for data generation.

In this study, our primary objective is to employ variational autoencoders as a tool
for identifying nonlinear relationships between items and the underlying factors. Our
research goal is to identify the relationship between the items and the underlying factors
without having an a priori idea about this relationship. We remain within the framework
of classical test theory and compare factor analysis and variational autoencoders using
different datasets, real and simulated.

In the initial phase of our work, we focus on analyzing the characteristics of autoen-
coder solutions using two synthetic datasets. The first synthetic dataset demonstrates a
linear relationship between items and a single factor. Here, our aim is to evaluate whether
the variational autoencoder’s solution converges toward a similar outcome as that of linear
factor analysis. The second synthetic dataset illustrates a nonlinear relationship between a
varying number of items and the factor. Specifically, the relationship between items and the
factor follows a sigmoidal function. In this scenario, our hypothesis is that the autoencoder
will yield more accurate estimates of factor scores and effectively capture the shape of the
relationships between the input variables and the factor. At this point, we also investigate
the generalizability of our results using a simulated dataset based on a two-factor model.

Furthermore, as we will provide an illustrative example of applying VAEs to a real-
world dataset, demonstrating their applicability and relevance in practical scenarios.

Thus, we propose autoencoders as a valuable tool for exploring the relationship
between observed and latent variables, enabling dimensionality reduction while accounting
for nonlinear relationships.

This work is structured as follows. First, we discuss the use of artificial neural networks
and autoencoders in psychometrics research, offering an overview of the existing literature.
Next, we present the technical details of variational autoencoders and describe how the
data used in this study were simulated. We then proceed to present our analyses and
discuss the results derived from the application of the VAE model to the synthetic datasets.
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At this point, we show an illustrative example of an application on a real dataset. Finally,
we offer concluding remarks that summarize the key findings and discuss the implications
of employing VAEs in psychometric research.

2. Artificial Neural Networks in Psychometrics

Artificial neural networks have proven to be an advantageous predictive methodology
in psychometrics, both in applied contexts and in the realm of methodology research.
ANN s can easily master very large and different types of data, removing some constraints
that characterize more traditional techniques of data analysis, especially when applied
to behavioral recorded data, which are often noisy, large in quantity, and structured in a
complex temporal fashion.

In the realm of psycho-diagnosis, for example, Linstead et al. [26,27] used neural net-
works to predict the extent to which children with autism spectrum disorders would benefit
from early behavioral interventions. A recent study by Perochon et al. [28] automated the
detection of ASD by analyzing motion features detected during a task performed on a
tablet, assuming that motor abnormalities may be a potential hallmark of ASD [29]. Milano
et al. [30], using a variational autoencoder, showed that the motion features of children
with autism differ consistently from those of children with typical development. ANNs
have also been used to enhance the diagnosis of psychological disorders, as shown in a
review by Kaur and Sharma [31]. Growing evidence suggests that artificial intelligence
approaches to classify psychiatric patients offer superior predictions of treatment outcomes
compared with traditional DSM/ICD-based diagnoses [32].

From a methodological perspective, as noted by Lanovaz and Bailey [33], artificial
neural networks have been used for the development and evaluation of psychological
theories [34,35], for behavior measurement [36-38], and within the Item Response Theory
framework [39,40]. Furthermore, many tutorial works specifically targeted at psychologists
about machine learning and neural networks have been proposed recently [17,41].

In particular, artificial neural networks have been used to select variables for inclusion
in a psychopathological model [42] and for the development of short forms of tests [43].
Staying within the methodological realm, the demonstrated ability of autoencoders to
extract essential information from data has paved the way for new applications of autoen-
coders. Urban and Bauer [23] introduced a novel deep learning-based variational inference
(VI) algorithm using an importance-weighted autoencoder (IWAE) for exploratory item
factor analysis (IFA). The IWAE can predict the log-likelihood of all possible responses on a
Likert scale, enabling the retrieval of the five-factor structure of the Big Five model from a
large Big5 dataset. In addition, Huang and Zhang [44] proposed a variational autoencoder
(VAE) model to study the structure of personality tests, comparing it with linear factor
analysis. In their work, they used autoencoders to derive the values of factor loadings.
Finally, Esposito et al. [45] explored the use of autoencoders as a method to extract causal
structure from psychometric data, showing that a nonlinear autoencoder has a greater
ability than PCA to capture item—factor relationships.

3. Methods
3.1. Variational Autoencoder

In this section, we introduce the concept of variational inference, and then we explain
how this statistical concept can be incorporated into a neural network, thus generating the
variational autoencoder.

Latent variable models allow us to express observed data, x € X, through unobserved,
or latent, variables z € Z. By doing this, we can better describe our data in terms of
unobserved factors, assuming dim(Z) < dim(X).

In the variational inference framework, we suppose that x is an observation from
our dataset and assume that x is generated from the unobserved latent variable z. The
generative process of x can be summarized in two steps: First, a latent variable z is
sampled from the prior distribution p(z); second, the data x is sampled from the conditional
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likelihood distribution p(x | z). At this point, we can use the Bayes’ theorem to connect the
prior p(z) and the likelihood distribution p(x | z):

p(x|2)p(2)

p(x) @

plzlx) =
where p(z | x) is the posterior probability that we are looking for, and p(x) is the marginal
probability. In order to sample from p(z | x), we need to compute the marginal p(x) integrat-
ing out the unobserved variables:

= [ dzp(xRp(2) @

This integral has a time complexity exponential in dim(Z) and is often intractable even
for simple conditionals like a mixture of Gaussians. To circumvent the direct computation
of p(x) in variational inference (VI), the model posterior is approximated by a family of
simpler distributions, Q, that allows efficient evaluation and sampling and are as close
as possible to the true posterior. The problem is to find an approximating distribution
g0(z) € Q, where 6 are the variational parameters that are as close as possible to the
true latent variable posterior. The canonical choice is the reverse KL divergence between
KL(q4(2)|[p(z]x)):

_ ; 90 (2)
0"y = argmingE,, - {logp(zpc)} ©)]
The final optimized version of g4+ (z) can be used instead of the true posterior Because
we do not know the true posterior, we cannot directly optimize KL(q4(2)||p(z|x)), so we

have to use Bayes’ theorem to define the problem in terms of evaluable quantities:

L(q4(2)||p(z]x)) = Egy() log g0 (z) — log p(z[x)]
= Egy(z)[ log 96(z) — (logp(x,z) — logp(x))] (4)
= logp(x) — F(x;0)

where the variational free energy F is defined as follows.

F(x;:0) = [ dz q4(2) (logp(x,2) — logaa(2)) ©

The free energy sets a lower bound on log p(x) due to the non-negativity of the KL-
divergence, so it is common to refer to F(x; ) as the evidence lower bound (ELBO), and the
likelihood p(x) is also referred to as the evidence. Because the evidence is a constant with
respect to the variational parameters 0, maximizing the ELBO is equivalent to minimizing
the KL-divergence KL(q,(z)||p(z]

Variational autoencoder (VAE) [25] is a latent variable model that applies variational
inference, i.e., maximizes the ELBO throughout artificial neural networks, making the
problem differentiable for the backpropagation training. It is composed of two symmetrical
neural networks, an encoder and a decoder, connected by a hidden layer that maps the
inputs in a low-dimensional space, usually referred to as latent space. Differently from
traditional autoencoders, which directly encode the inputs x into latent points z in a
deterministic way and then decode these points to reconstruct x, VAE is formed by a
probabilistic encoder, defined by p(z|x), that describes the distribution of the encoded
variable given the input x. This process enables us to define a conditional model p(x|z)
that describes how observed data depends on latent variables, as well as a prior density
p(z) over the latent space.

The encoder part of a VAE models the distribution g(z;) = P(z; | x;,0,), wherex; € R"
are the inputs, the parameters of the distribution 0, are the weights of encoder layers, and
z; € RP are the latent variables. As shown in Figure 1, the outputs of the encoder are
the parameters of the conditional distribution P(z; | x;, 6, ). This conditional distribution
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is usually defined by m numbers of parameters. Consequentially, we will have m set of
output neurons from the encoder. The dimension of this set depends on the parameters.
For example, if the latent space is p-dimensional, and the distribution is a multivariate
Gaussian distribution, we have two sets of output neurons, the p neuron referring to the
mean (“I/lz‘x) and (p x p) neuron for the covariance matrix (X,,) of this distribution. For
diagonal distribution, the number of neurons for the covariance is reduced to p. In principle,
any distribution with any number of parameters can be chosen to model P(z; | x;,6.), but
a typical choice is the multivariate Gaussian with diagonal covariance:

q(zi) = P(zi | x;,0¢) = N<Zi ”z|xrzz\x) (6)
2
© | Encoder | Decoder 2
; network X network S
= @)
(0c) 64)
X P(z;] x4, 0,) z; ~P(z;]x;,0,.) X=P(x;|2,0q)

Figure 1. Graphical representation of the variational autoencoder.

So, when a sample x; is given as input to the encoder, the parameters of the conditional
distribution g(z;) are obtained. We can sample the corresponding latent variables from the
distribution of the latent space:

zi ~q(z;) = P(z; | x;,6,) 7)

As shown in Figure 2 this latent variable is then passed to the decoder part of the
network that tries to reconstruct the input starting from a compact latent representation.
Sampling from the latent space is reduced to one single MonteCarlo draw in the base
version of VAE, and other methods have been proposed to reduce the noise, augmenting the
number of samplings from the latent space [46]. The structure of the decoder is symmetrical
with respect to the encoder and models a conditional distribution P (;, ’ z;, 6,1) , where 6,
are the weights of the decoder layers. The input and output of the decoder are z; € R?
and x; € R". The outputs of the decoder can directly compute the reconstructed data
Z;, 6,,1) , just like in the
encoder case; usually, the former is more common, so the decoder tries to reconstruct the
input as well as possible.

or determine the parameters of the conditional distribution P (;1
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Figure 2. Graphical representation of the relationship between the factor scores and the eight-item
values for the FA reconstruction of the linear case dataset. Blue dots are the true item values, red points
are the reconstruction from factor analysis, and the black solid line is the result of the curve fitting.

In VAE, to overcome the problem of computing the derivative through P(z;|x;, 6.),
when sampling from the latent space, the reparameterization technique is used [25]. Sam-
pling from latent space blocks the gradient flow, so we assume that z; is a deterministic
function of another random variable &;:

zi = g(&i,xi,0¢) 8)

where ¢; is a random variable sampled from P(¢). If ¢; and z; are considered univariate
Gaussian variables, we have the following;:

zi ~N(u,0%), &~N(01), z=+o0g 9)

Reparameterization relies on the ability to express the expectation over some distri-
bution gy, (z;) parametrized by 6, replacing z; with g(e;, x;, 8,) and converting it into an
expectation over the base distribution P(e). Given this transformation, ¢ became differen-
tiable and invertible.

Finally, VAE is trained by backpropagation, where the backpropagation algorithm
is used for training the weights of the encoder and decoder networks so that the whole
network is trained together. If we denote the whole network weights with 6 = {6,,60,},
backpropagation trains VAE using gradient descent to maximize the ELBO. The loss func-
tion is then composed of a reconstruction term and a regularization term that ensures the
regularity of the latent space and the correct approximation to our chosen prior distribution.
This regularization term is expressed as the Kullback-Leibler divergence between the
returned latent distribution and, in our case, a diagonal Gaussian distribution prior with a
0 mean and standard deviation of 1.

loss = Ly(x;,%;) + KL(9¢(2:)|N(0,1)) (10)

where L, (xi, 371) is a reconstruction error of the data and KL(q,(z;)|N(0,1)) is the Kullback-

Leibler divergence between our latent distribution and a diagonal Gaussian distribution
with zero mean and unitary variance.
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3.2. Data Simulation Process

The data used in this study consists of two simulated datasets generated using the
approach described in Bauer [6]. In the following sections, we provide a more detailed
description of each of them.

3.2.1. Dataset with Linear Relationships

The first synthetic dataset is simulated according to the general factor model equation:
xi=T+AG + ¢ (11)

where x; is a vector of scores for p manifest variables (or factor indicators) for individual
i. The vector T represents the indicator intercepts, and A is a matrix of factor loadings
that describes the regression of the manifest variables on the q latent common factors in
the q x 1 vector ¢;. The vector ¢; contains the residual variability of the indicators after
accounting for the influence of the common factors. This residual variability includes both
random measurement error and true-score variability that is specific to each indicator.

For this study, we simulated a single sample of 1000 subjects, considering a one-factor
model. We generated a total of 8 observed variables. The specified population model has
the following form:

X1i 0 0.8 €1
X2i 0 0.8 €9
X3 0 0.8 €3
X4 0 0.8 €4
X5 1o + 0.8 (61) + €5 (12)
Xei 0 0.8 Epi
X7i 0 0.8 E7i
Xgi 0 0.8 €g;

¢; was drawn from a normal distribution with a mean of 0 and a variance of 1. The
residuals of the indicators were assumed to be normally distributed and independent, with
a variance of 0.20 for each indicator. This assumption corresponds to setting the reliabilities
of the linear indicators to 0.80. Indicators simulated with this method are continuous.

3.2.2. Dataset with Nonlinear Relationships

In the second dataset used for this study, we have incorporated observed vari-
ables with nonlinear relationships to the latent factor. Specifically, the dataset consists
of 8 observed variables. We have generated two alternative conditions. One in which only
one item has a nonlinear relationship with the factor and the other in which four have linear
relationships, as described earlier, and the remaining four have nonlinear relationships
with the factor.

In general, for a single manifest variable x; and a latent factor &;, the measurement
model is as follows:

xi =T+f(AG;) +e (13)

where f(A, {;) is a nonlinear function, and ¢ denotes residuals. In this study, we define the
nonlinear function as follows:
(14)

1
fAg) = m/\

¢; was drawn from a normal distribution with a mean of 0 and a variance of 1. The
residuals of the indicators were assumed to be normally distributed and independent, with
a variance of 0.20 for each indicator. In this case, observed variables simulated with this
method are continuous.
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3.3. VAE's Architecture and Performance Measures

In the specific VAE architecture used in this study, the encoder network consists of
3 fully connected layers. The input layer has 8 neurons (the number of observed variables),
and the first hidden layer has 4 neurons and a RELU activation function. The central layer
has 2 neurons, representing the mean and log-variance of the latent space. The decoder
network also consists of three fully connected layers and is specular to the encoder.

The VAE also includes a reparameterization trick to allow the gradient to flow through
the latent space. Instead of directly sampling from the learned latent distribution, the trick
samples from a standard normal distribution scale the sample by the learned variance and
shifts the sample by the learned mean. This results in a differentiable operation that can be
used to train the model via backpropagation. The VAE loss function is a combination of the
reconstruction error and the KL divergence regularization term. The reconstruction error
is measured using the mean squared error (MSE) loss function. To train the autoencoder,
we used Adam as an optimization algorithm with a learning rate of 0.001 for a total of
100 learning epochs. We used a K-fold cross-validation on the dataset with k = 10; we did
not find a statistical difference in performance among the networks trained with different
folds. For the analysis implemented in this work, we choose the network showing the
best generalization performance. The network’s hyperparameters are obtained from a
preliminary optimization process where we tested different numerosity of hidden neurons,
different activation functions and learning rates.

To test the performance of the VAE and of the factor analysis in retrieving the factor
scores, we used the Mean Average error (MAE) and Root Mean Squared Error (RMSE):

MAE — Ziz116i =il
n

where ¢; and (§;) are the true and the estimated factor scores, respectively, and n is the
sample size. To test the ability in reconstructing the true item values we reported the
explained variance of the two methods.

4. Results

The Results section is structured as follows: First, we test the VAE and factor analysis
with the linear dataset, where the items have a linear relationship with their underlying
factor. Next, we evaluate both methods using datasets with nonlinear relationships. The
simulated data results conclude with a paragraph that compiles all the previous results
and provides an extension using a two-factor dataset. Finally, we test the FA and VAE in a
real-world scenario, as discussed in the final paragraph of the Results section.

4.1. Linear Case

For the first series of experiments, we use the dataset described by Equation (11), and

then we perform a factor analysis to estimate the loadings and the factor scores (&;) and
reconstruct the item values (32). Formally, we can connect these two quantities:

%= f(&) (16)

The f function ideally should be equivalent to Equation (11), where the slope of f is
the loadings A of each item. To verify this hypothesis, we fit f with the linear Equation (11)
using the least squares method, leaving as a free parameter the loadings A. Table 1 reports
the values and the standard deviation obtained from the fitting and the loadings and
communalities directly derived from the FA:
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Table 1. Fitting loadings and FA loadings for the linear case scenario are reported for each item, along
with their errors. Communalities from the FA are also reported.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8
Fitting loadings 0.80 £0.01  0.80 = 0.01 0.80 & 0.01 0.80 £ 0.01 0.80 £ 0.01 0.80 &= 0.01 0.80 & 0.01 0.80 £ 0.01
FA loadings 0.80 £0.02  0.80 & 0.02 0.80 & 0.02 0.80 £ 0.02 0.80 £ 0.02 0.80 £ 0.02 0.80 & 0.02 0.80 £ 0.02
Communalities 0.95+£0.03 0.95 £ 0.03 0.95 & 0.04 0.95 £ 0.03 0.95 £ 0.03 0.95 £ 0.03 0.95 & 0.03 0.95 £ 0.04

As shown in Table 1, the slope of the curve obtained from the fitting process matches
the loadings used to generate the dataset. In this case, we achieve a total explained
variance of 0.92. To visualize the relationship between the reconstructed item values and
the estimated factor scores, Figure 2 reports the observed item response with respect to the
true factor scores (blue dots), the reconstructed items with respect to estimated scores (red
dots), and the result of curve fitting (black solid line).

In Figure 2, it is clear how FA captures the linear relationship between the factor scores
and each item. In Figure 3, we also report the distribution of the factor scores for the true
and estimated scores. Figure 3 shows how the density of estimated scores from FA correctly
resembles the true Gaussian distribution of the factor scores.

0.40
—— true scores
—— estimated scores
0.35
0.30
0.25
Py
@ 0,204
()
©
0.15 -
0.10 -
0.05
0.00 ; . . : : : . -
-3 -2 - 0 1 2 3 4
factor scores
Figure 3. Density of true and estimated factor scores for the FA scores in the linear case scenario. The
curve follows a Gaussian distribution with mean zero and unitary variance.

We measured an MAE of 0.11 and 0.15 RMSE between the two distributions. For the
variational autoencoder, we repeated the same analysis. We connected the reconstruction
x; and the estimated scores &; through the linear function f and performed a least-squares
fitting to find the slope of the curve representing the factor loadings. Results are reported
in Table 2.

Table 2. Fitting loadings for each item using the VAE in the linear case scenario, fitting standard
deviation is also reported.
Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8
Loadings 080+0.01 081£0.01 079+0.01 080+0.01 0804+£0.01 0.794+0.01 0.80+0.01 0.80=+0.01

The VAE, just like the FA, correctly reconstructs the relationship between factor scores
and item values with an explained variance of 0.91. In Figure 4, the graphical reconstruction
is reported.
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Figure 4. Graphical representation of the relationship between the factor scores and the eight-item
values for the VAE reconstruction of the linear dataset. Blue dots are the true item values, red points
are the reconstruction from factor analysis, and the black solid line is the result of the curve fitting.

From Figure 4, we can see that the VAE, differently from the FA, also reconstructs the
noise in the relationship between factor scores and item values. This is due to the fact that
sampling from the latent space with a single MonteCarlo draw is subject to Gaussian noise,
and the reconstruction results are more scattered with respect to the FA. Nevertheless,
the noise does not affect the correct reconstruction of the function used to specify the
relationship between the factor and the items. The density of factor scores estimated from
the VAE, along with the true scores density, is also reported in Figure 5.

—— true scores
0.40 - —— estimated scores

0.00 - T T T
-3 -2 -1 0 1 2 3 4

factor scores

Figure 5. Density of true and estimated factor scores for the VAE in the linear case scenario. The
curve follows a Gaussian distribution with mean of zero and unitary variance.
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The VAE correctly finds the Gaussian distribution of the factor scores as imposed by
the regularization on the VAE latent space. The MAE between the true and estimated scores
is 0.13, and the RMSE is 0.17, a little bit higher than FA in the linear setting.

These findings show that a VAE with a single hidden layer correctly finds the underly-
ing relationship between factor scores and observed items in a linear scenario, retrieving
the same loadings of the FA.

4.2. Nonlinear Case

In this section, we modify the dataset by injecting one or more items with a nonlinear
relationship to their underlying factor, as described by Equation (13). The fitting process is
the same as described above, with the difference that we use for the function f, representing
the connection between items and scores in the nonlinear equation.

In the first experiment that we conducted, item number eight of the dataset was
modified to have a nonlinear relationship with the factor. The loadings and communalities
estimated from the FA are reported in Table 3, along with the parameters estimated from
the fitting.

Table 3. Fitting loadings and FA loadings obtained with the FA with the dataset having one nonlinear
item, results are reported for each item along with their errors. Communalities from the FA are also
reported. For items identified with the asterisk, fitting is not performed due to the impossibility of
fitting linear data according to the true sigmoidal generative function.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8
Fitting loadings 0.79 £0.02 0.81 £ 0.02 0.81 £ 0.02 0.79 & 0.02 0.81 4+ 0.02 0.79 £ 0.02 0.80 £ 0.01 *
FA loadings 0.81+0.03 0.80 £ 0.03 0.80 £ 0.03 0.81 4 0.03 0.81 +0.03 0.81 + 0.03 0.80 £ 0.02 2.35 £ 0.05
Communalities 0.95+0.03 0.95+0.03 0.95+ 0.04 0.95 4 0.03 0.95 4+ 0.03 0.95 + 0.03 0.95 £ 0.03 0.47 4+ 0.04
As we can see, the loadings of item number eight returned from FA are completely
different from the right loading. In Figure 6, the graphical representation is reported.
3 3 31 34 o
21 ] 1
2 °| 2 X
g 17 14 11 14
g
£ 04 04 0 0 -
2
2 N
-2 °
'K o 2 2 0 2
Factor scores
31 o 7.5 A )
5.0 -
2.5 - o
0.0
_2.5 <
_5.0 B
2 o 2 K 2 0 2

Figure 6. Graphical representation of the relationship between the factor scores and the eight-item
values for the FA reconstruction with the dataset having one nonlinear item. Blue dots are the true
item values, red points are the reconstruction from factor analysis, and the black solid line is the
result of the curve fitting.
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We can see that the last item—factor relationship, represented by the FA with a linear
function, does not capture the correct relation. The fitting curve is not reported because
it is not possible to perform the fit between a linear data reconstruction and a nonlinear
sigmoidal curve. The explained variance is still pretty high, 0.88, but lower than before.
In Figure 7 is reported the density of estimated factor scores and the true scores density.
We can see that the estimation still resembles the true Gaussian distribution (MAE = 0.16,
RMSE = 0.20) also if an item is wrongly reconstructed.

0.40
—— true scores

0.35 1 —— estimated scores

0.30 A

0.25 4

0.20

density

0.15 A

0.10 A

0.05 A

0.00 T T T T T
-3 -2 -1 0 1 2 3 4

factor scores

Figure 7. Density of true and estimated factor scores of the dataset with one item nonlinear using the
FA. The curve follows a Gaussian distribution with mean of zero and unitary variance.

On the other hand, the VAE correctly captures the relationship between all the items
and the factor, fitting all the items as well and retrieving the corresponding loadings, as
used to generate the data (see Table 4 and Figure 8).

Table 4. Fitting loadings for each item obtained using the VAE with a dataset having one item
nonlinear, fitting standard deviation is also reported.

Item 1

Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8

Loadings 0.81 +0.01

079+0.01 080+0.01 081+001 079+001 079+0.01 0.80+0.01 0.81+0.01

We can see how the last item is correctly approximated, and the fit is able to find
the loading connecting the scores and the item values through the sigmoid function. The
explained variance of the VAE is 0.92. In Figure 9, the density of the estimated factor scores
is reported.

The Gaussian distribution is correctly identified with an MAE of 0.12 and RMSE of
0.16. The VAE is able to reconstruct the relationship and to estimate the factor scores also
when the dataset is composed of one nonlinear item.

When the dataset is composed of a mixture of 50% of linear items and 50% of nonlinear
items, we found that the FA correctly finds the loading for the linear items but completely
fails on the nonlinear reconstruction of the remaining items (Table 5).
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Figure 8. Graphical representation of the relationship between the factor scores and the eight-item
values for the VAE using the dataset with one item nonlinear. Blue dots are the true item values,
red points are the reconstruction from factor analysis, and the black solid line is the result of the curve

fitting.

0.40
—— true scores
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0.35 A

0.30 A
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0.20

density
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Figure 9. Density of true and estimated factor scores using the VAE with the dataset having one item
nonlinear. The curve follows a Gaussian distribution with mean zero and unitary variance.

From the graphical reconstruction showed in Figure 10, we can see how the FA tries
to minimize the error, focusing mostly on the linear part of the sigmoid and leaving out
item values related to high and low factor scores. We can see that also the linear items are
reconstructed only in the central part of factor scores, leaving the more extreme values

basically unpredictable.
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Table 5. Fitting loadings and FA loadings obtained with the FA using the dataset having four
nonlinear items, results are reported for each item along with their errors. Communalities from
the FA are also reported. For items identified with the asterisk, fitting is not performed due to the
impossibility of fitting linear data according to the true sigmoidal generative function.

Item 1

Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8

Fitting loadings 0.74 + 0.02

0.75 £ 0.02 0.75 £ 0.02 0.75 £ 0.02 * * * *

FA loadings 0.81 + 0.03

0.80 = 0.03 0.80 + 0.03 0.81 4 0.03 2.32 £0.05 2.28 +0.05 2.47 £ 0.05 2.24 +0.05

Communalities 0.95 + 0.03

0.95 + 0.03 0.95 + 0.04 0.95 4 0.03 0.32 +£0.07 0.35 + 0.06 0.33 £ 0.05 0.34 4 0.06

Item values

=2 0

Factor scores

2

@

T -4 T T T T T T T T T

2 -2 0 2 -2 0 2 -2 0 2

Figure 10. Graphical representation of the relationship between the factor scores and the eight-item
values for the FA with the dataset having four items nonlinear. Blue dots are the true item values,
red points are the reconstruction from factor analysis, and the black solid line is the result of the

curve fitting.

The factor scores estimation is less accurate than before (MAE = 0.35, RMSE = 0.46),
and, from Figure 11, we can see how there are two peaks in the density estimation, the two
classes of the items (linear and sigmoidal) are probably separated into distinct latent factor
scores and the FA is not able to find the correct Gaussian distribution of the factor scores.

The VAE, on the other hand, correctly reconstructs all the item—factor relationships
(Figure 12) and the right loadings (Table 6) with an explained variance of 0.92.
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Figure 11. Density of true and estimated factor scores obtained using the FA using the dataset
having four nonlinear items. The curve follows a Gaussian distribution with mean of zero and

unitary variance.
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Figure 12. Graphical representation of the relationship between the factor scores and the eight-item
values for the VAE with the dataset having four items nonlinear. Blue dots are the true item values,
red points are the reconstruction from factor analysis, and the black solid line is the result of the

curve fitting.

Table 6. Fitting loadings for each item obtained using the VAE with the dataset having four nonlinear

items, fitting standard deviation is also reported.

Item 1

Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8

Loadings 0.78 £ 0.01

079+0.01 082+0.01 081+001 079+001 0.79+0.01 0.81+0.01 0.81+0.01

Furthermore, the VAE correctly infers the Gaussian distribution of the factor score,
with an error just a little bit higher than in the previous, simpler experiments (MAE = 0.15,
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RMSE = 0.18) (Figure 13). The VAE is able to reconstruct the relation for a larger range of
factor scores providing a more accurate reconstruction in both linear and nonlinear items.

0.40
—— true scores

0.35 4 —— estimated scores

0.30

0.25 4

0.20 4

density

0.15 A

0.10 A

0.05

0.00 T T T T T
-3 -2 -1 0 1 2 3 4

factor scores

Figure 13. Density of true and estimated factor scores obtained using the VAE with the dataset
having four nonlinear items. The curve follows a Gaussian distribution with mean of zero and
unitary variance.

4.3. Results Summary and Generalization to a Two-Factors Dataset

In this section, for clarity of reading, we present a table summarizing all previous re-
sults, including the explained variance of item reconstruction and the MAEs and RMSEs of
factor scores retrieval in Table 7. Additionally, we include the results of experiments with a
two-factor dataset in Table 8. The data generation procedure follows the same method as be-
fore: for each factor, eight related items are generated according to Equations (11) and (14)
for linear and nonlinear relationships.

Table 7. MAE and RMSE for the factor score reconstruction and explained variance for the item
reconstruction of the two methods. Different levels of nonlinearity in the dataset are reported.

VAE Linear FA Linear

VAE One Item FA One Item VAE Four Item  FA Four Item

Nonlinear Nonlinear Nonlinear Nonlinear
MAE and RMSE factor 1 17 0.11,0.15 0.12,0.16 0.16,0.20 0.15,0.18 0.35, 0.46
scores reconstruction
Explained variance 0.91 0.92 0.92 0.88 0.92 0.80

item reconstruction

Table 8. MAE and RMSE for the factor scores reconstruction and Explained variance for the item
reconstruction of the two methods with a two-factors dataset. Different levels of nonlinearity in the
dataset are reported.

VAE Linear FA Linear

VAE One Item FA One Item VAE Four Item  FA Four Item

Nonlinear Nonlinear Nonlinear Nonlinear
MAE and RMSE factor ;14 0.10,0.15 0.11,0.17 0.17,0.21 0.14,0.18 0.37, 0.49
scores reconstruction
Explained variance 0.91 0.92 0.92 0.85 0.91 0.66

item reconstruction
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As shown in Table 8, the FA results are worse for two factors in terms of explained
variance, while the VAE remains stable. This is due to the increased amount of nonlinearity
in the dataset; in this case, each factor has one to four nonlinear items, doubling the total
number of nonlinear items compared with the experiments presented in Table 1. The factor
analysis performance in terms of factor score reconstruction is similar to the errors obtained
with the one-factor reconstruction, likely because the number of nonlinear items related
to each factor remains the same. We report the average MAE and RMSE between the
two factors.

4.4. Discussion

In the study described in the previous paragraph, we tested a variational autoen-
coder on two datasets simulated from a factor-based population. The first dataset con-
tained linear relationships between items and the factor, while the second dataset had
nonlinear relationships.

Our results show that when the relationships between items and factors are linear,
the VAE produces results comparable to linear factor analysis. Indeed, the VAE converged
towards the factor analysis solution, accurately estimating the latent scores and giving the
possibility to retrieve the factor loading values.

However, when the relationships between items and factors are nonlinear, the VAE
outperforms factor analysis in terms of estimating latent scores and reconstructing the
original data. In particular, the results show that the relationship between the internal
nodes of the VAE and the reconstructed output approximates the function that defined the
relationship between the items and the factors. By fitting this function, we obtained the
values of the loadings, which are the parameters of the function.

One important limitation of such a study is that common psychometric data are often
ordinal in nature. In the context of psychometric data analysis, several methods, such
as polychoric correlation and weighted least-squares estimation techniques, have been
proposed to deal with ordinal data in the linear case.

Moreover, while we simulated a sigmoid function in this study and successfully
retrieved the factor loading values, the relationships between items and factors in real cases
may exhibit more complex and peculiar forms. Consequently, research should focus on
exploring how VAEs learn these intricate relationships.

So, it seems clear that testing the VAE on real datasets is dutiful to evaluate its per-
formance under more realistic conditions and consequently to test its applicability in
practical situations.

In the next study presented, we explore the application of VAEs on real and ordinal
data, considering both linear and nonlinear relationships among items and factors.

5. Real Case Analysis
5.1. Emotional Stability in Teachers across Cultures

The real data used in the present study to compare the variational autoencoder with
factor analysis come from a study by Vallone et al. [47] and consists of responses from
589 teachers to the items of the “Emotional Stability” scale, belonging to the short form
of the Multicultural Personality Questionnaire (MPQ-SF; Van Der Zee, Van Oudenhoven,
Ponterotto, and Fietzer [48]).

Regarding the participants’ characteristics, 29.4% (n = 173) were male, and 70.6%
(n =416) were female. Most of the teachers were over 45 years old (age over 45 years:
n =291, 49.4%; between 35 and 45 years: n = 144, 24.5%; under 35 years: n = 154, 26.1%)
and highly experienced (working seniority over 10 years: n = 338, 57.4%; between 5 and 10
years: n = 121, 20.5%; under 5 years: n = 130, 22.1%). Regarding their country of origin,
18.5% of the participants (n = 109) were from Austria, 19.7% (n = 116) from Belgium, 7.1% (n
=42) from Germany, 18.5% (n = 109) from Italy, and finally, 36.2% (n = 213) were from Spain.

The short version of the Multicultural Personality Questionnaire assesses five key per-
sonality characteristics closely related to the general personality scales of the Big Five [49].
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The “Emotional Stability” factor of the MPQ-SF is measured on a 5-point Likert
scale (1 = not applicable at all, 5 = completely applicable) used to respond to 8 personal
descriptors (e.g., “Keeps calm when things don’t go well”) attached to the following
statement: “To what extent do the following statements apply to you?” A higher score
represents a higher presence of the multicultural personality trait.

The MPQ-SF has been adopted and tested in various populations (e.g., teachers,
students, employees, spouses/children of expats, immigrants) and cultures (e.g., Spain,
Italy, Germany, Britain, Netherlands, United States, Canada, Singapore, Australia, New
Zealand, China), including the countries involved in the study from which the data come
from [50]. In all cases, the questionnaire has received wide empirical support internationally
as one of the most valid and robust measures for assessing multicultural personality and,
more generally, intercultural competence [49,50].

In the study of Vallone et al. [47], Cronbach’s « values for the MPQ-SF scales were
all acceptable. The mean and the standard deviation of participants’ scores on Emotional
Stability descriptors are 3.26 and 0.61, respectively.

5.1.1. Real Case Results

In this section, we reconstruct the relationship between latent factors and the item
response in a real-world scenario. Differently from the previous section, here we do not
know the true relationships that link the item scores and the latent factor, and we use the
VAE as a universal function approximator to reconstruct this relationship. To reconstruct
this relationship, we used the VAE as a reconstruction model and compared the results with
the reconstruction given from the factor analysis. Given that classical methods of analysis,
like factor analysis, fail to capture the nonlinearity present in the data, we explore the item—
factor relationship in search of nonlinearity, if any, with the VAE. The VAE hyperparameters
are the same as discussed in the Methods section, and we only changed the number of
hidden neurons, set to eight.

Figure 14 shows the reconstructed relation between the latent factor and the eight
items from the VAE and the FA.

Item values

Factor scores

Figure 14. Graphical representation of the relationship between the factor scores and the eight-item
values as reconstructed from the VAE and the FA. Blue dots are the VAE reconstruction, and red
points are the reconstruction from factor analysis.
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From Figure 14, it is clear how not all items are linearly connected with their underlying
factor. We can clearly see how the VAE evidences a strong nonlinear relationship between
the latent factor and several items. For clarity, the FA loadings for each item are reported in
Table 9, along with the loadings that we retrieve fitting the VAE with a linear function.

Table 9. Loadings found by factor analysis on the real dataset, results are reported along with the error.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8
FA loadings 048 £0.04 0.52+0.03 0.56 £+ 0.03 0.59 + 0.03 0.69+ 0.03 0.60 £+ 0.03 0.40 + 0.04 0.41 £+ 0.04
VAE loadings 0.52+0.05 0.62+0.04 0.53 £ 0.02 0.57 £+ 0.04 0.67+ 0.05 0.65 + 0.03 0.40 + 0.04 0.52 £+ 0.04

We stress the fact that the factor scores in the case of the VAE are directly computed
from the latent layer of the network, while in the case of FA, we use the maximum likelihood
method to estimate them. The FA fails to correctly reconstruct the relations and tries to
minimize the error approximating the nonlinearity of the true relation.

5.1.2. Discussion

Our results on the real-world dataset confirm the potential of variational autoencoders
(VAE) in reconstructing the intricate relationship between latent factors and item responses.
It is worth noting that in contrast to the previous section, where we had the advantage of
knowing the true relationship due to simulation, the true shape of the relationship remains
unknown in this real-world scenario. However, having demonstrated the VAE's ability
to reconstruct the correct shape of the function linking items and factors in the previous
section, we can reasonably hypothesize that the shape discovered by the autoencoder
mirrors this relationship.

In this particular case, we observed that certain items exhibit a curvilinear relationship
with the latent factor. Interestingly, some of these items show relatively low factor loadings.

In a traditional factor analytic approach, items with lower loadings are often labeled
as less informative or weakly associated with latent factors. However, our findings suggest
a different perspective. Some of the items with lower factor loadings may not be inherently
less informative; rather, they might have unique and nonlinear relationships with latent
factors that elude linear techniques.

This perspective carries substantial implications for psychometric research and data
analysis in a broader context. It underscores the critical importance of incorporating non-
linear modeling approaches when investigating the connections between latent variables
and observed indicators.

Integrating nonlinear modeling techniques like VAE can offer researchers the possibil-
ity to have a deeper and more informative insight into the complex relationships between
latent factors and observed items, enriching their understanding of item characteristics.

6. General Conclusions

The research presented in this paper has aimed to explore the capabilities of varia-
tional autoencoders (VAEs) in the realm of psychometric data analysis. Our investigations
sought to evaluate the performance of VAEs in capturing both linear and nonlinear re-
lationships between items and latent factors. This involved testing the VAE’s ability to
accurately estimate latent scores and reconstruct original data using both simulated and
real psychometric data.

The findings from these studies suggest that VAEs could offer valuable contributions
to the study of psychometric data dimensionality, complementing traditional psychometric
data analysis by effectively capturing nonlinear relationships among items and factors.
When dealing with linear relationships, these models produced results similar to those
of linear factor analysis. However, the true advantages of VAEs emerged in the presence
of nonlinear relationships. The VAE's ability to reconstruct original data more accurately
than conventional methods opens up possibilities for developing psychometric question-
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naires that include items that do not conform to the assumptions of classical psychometric
methods yet provide valuable insights and enhance our understanding of the constructs
being measured.

In simulated cases, the VAE demonstrated an ability to estimate latent scores more
accurately than linear factor analysis, which directly impacts the measurement of psycho-
logical constructs. This ability reduces the risk of obtaining false knowledge about the
quantities of latent traits possessed by subjects and of incorrectly identifying the behaviors
to expect from individuals based on their latent traits, thus providing a more comprehensive
and nuanced understanding of individuals.

Future research should continue to explore and refine the use of VAEs in psychometric
analysis, addressing the challenges related to model interpretability and accuracy.
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