Information Fusion 104 (2024) 102189

Contents lists available at ScienceDirect

Information Fusion
journal homepage: www.elsevier.com/locate/inffus //
Federated learning for IoT devices: Enhancing TinyML with on-board S

training

M. Ficco?, A. Guerriero ", E. Milite?, F. Palmieri **, R. Pietrantuono®, S. Russo”

a Universita degli Studi di Salerno, Salerno, Italy
b Universita degli Studi di Napoli Federico II, Napoli, Italy

ARTICLE INFO ABSTRACT

Keywords: The spread of the Internet of Things (IoT) involving an uncountable number of applications, combined with

Internet of things the rise of Machine Learning (ML), has enabled the rapid growth of pervasive and intelligent systems in a

Federated leal_“i“g variety of domains, including healthcare, environment, railway transportation and Industry 4.0. While this

T?ansfer learning opens up favorable scenarios, it also raises new challenges. The huge amount of data collected and processed

TinyML by ML applications requires efficient and scalable solutions that contrast with the constrained capabilities of
IoT devices as for memory, power consumption, processing and network bandwidth. The TinyML technologies
foster the adoption of ML algorithms running locally on IoT devices. However, they typically foresee a remote
training process (e.g., on cloud servers) combined with local inference — a strategy not always viable, e.g., for
privacy and security issues.

We present a technique to enable the on-board training of ML algorithms on IoT devices, through the
combination of federated learning (FL) and transfer learning (TL). We experimentally analyze it in classification
and regression problems, comparing it to traditional FL solutions, as well as with a consolidated technique
based on Tensorflow Lite. Results show that FL with TL reaches accuracy values better than FL without TL in
both classification (86.48%) and regression (0.0201). These results are comparable with a model trained on
the full dataset. We further analyze training and inference time and power consumption on various devices.
Finally, we evaluate how the performance changes with unbalanced training datasets, showing that although
they strongly impact accuracy, FL makes models more robust, letting them achieve accuracy comparable to
when trained on balanced datasets.

1. Introduction directly at the edge layer. However, traditional ML approaches are not
well suited to resource-constrained IoT devices.

The Internet of Things (IoT) is experiencing a rapid growth thanks TinyML is an ecosystem around hardware, algorithms, and soft-
to the spread of smart devices. The number of connected devices was ware platforms - supported by a growing community - that allows
estimated to be less than 9 billions in 2019, whereas in 2023 it reached running ML models on resource-constrained IoT devices. TinyML finds
15 billions and it is expected to reach 29 billions by 2030. Smart applications in wide a range of fields: e-health, transportation systems,

devices generate large amounts of data, nowadays often processed
by machine learning (ML) algorithms in many important application
fields, like healthcare, environment monitoring and industrial control.
In 2019, devices collected less than 20 zettaBytes of data; in 2025
the data volume associated with IoT devices is forecast to reach 79.4
zettaBytes [1].

The implementation of ML-based IoT applications typically - e.g., in
the Internet of Medical Things [2] - requires that the collected data is
sent for processing to central cloud servers. This may not be practical
due to network limitations, privacy, or security issues related to the of on-device training, or they are just simulated or demonstrated in
application context. An alternative approach could be to process data limited scenarios, and are not mature yet for real contexts.

agriculture and Industry 4.0 [3]. Most current TinyML solutions do not
support on-device model training [4]. Models are trained on powerful
servers and then transferred and put into operation on target devices.
Therefore, also such an approach may not be viable in sectors where
privacy is a concern. The challenge is to train the model directly on
devices, without requiring sensitive data to be transferred over the
network, and reducing latency and network bandwidth usage. Solutions
in the literature represent mainly proofs of concept of the feasibility

* Corresponding author.
E-mail address: fpalmieri@unisa.it (F. Palmieri).

https://doi.org/10.1016/j.inffus.2023.102189
Received 30 September 2023; Received in revised form 13 November 2023; Accepted 6 December 2023

Available online 8 December 2023
1566-2535/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

M. Ficco et al.

This work proposes a technique for on-board training and for im-
provement of the model performance, by combining Federated Learn-
ing (FL) and Transfer Learning (TL), which separately have been shown
to provide benefits in specific contexts. In FL, multiple models are
trained on different datasets, and then “merged” into a unique one [5].
This way, privacy is preserved because data are collected and managed
only on local devices. This strategy is here combined with TL to
improve accuracy.

The proposed technique is experimentally evaluated for classifi-
cation and regression tasks, through a supervised training approach.
The results are compared with consolidated ML approaches based on
TensorFlow Lite. We first evaluate two different FL techniques, the
FedAvg algorithm proposed by Google, and a simplified version of FL,
where nodes first complete the training process, and then transmit
the model weights to a central server for aggregation purposes. The
latter is useful in scenarios where devices have large differences in
performance or poor connectivity. We then evaluate the benefits of
combining FL and TL. Several metrics are computed, including training
time and power consumption, for various tiny devices. In classification
experiments, the model is trained on the ECG heartbeat dataset [6].
As for regression, the dataset is Car trips data log [7]. Additionally, a
comparison is presented of three neural network (NN) libraries in C
language, with no external dependencies. We show the optimizations
made to suit resource-constrained devices.

The main contributions of the paper are summarized as follows:

« A solution combining FL and TL for on-board training of ML
algorithms;

An analysis of how performances change in unbalanced vs. bal-
anced datasets;

A comparison of the execution cost of the proposed solution with
common tiny devices (including, Arduino WiFi Rev2, ESP8266,
ESP32, Arduino MKR1010, Raspberry Pi Zero W, and Raspberry
Pi3 B+);

An extensive experimental campaign to evaluate the performance
of the proposed solution by comparing it with traditional ML
approaches (e.g., based on Tensorflow Lite) on both classification
and regression tasks;

A preliminary analysis on continuous improvement of imple-
mented solution accuracy with manual sampling of newly col-
lected data.

The rest of the work is structured as follows. Section 2 provides
an overview of edge computing and TinyML. Section 3 introduces the
proposed technique to run ML models on resource-constrained devices.
Section 4 describes the design of both classification and regression
experiments. Section 5 presents results for the classification task, and
Section 6 for the regression task. Section 7 shows a comparison against
traditional TensorFlow Lite-based approaches. Section 8 reports a pre-
liminary analysis of continuous improvement. Section 9 concludes the

paper.
2. Machine learning on embedded devices
2.1. TinyML

Edge computing is a paradigm that scales computations from servers
down to locations closer to end users: artificial intelligence models can
run directly on devices, making low-latency and real-time predictions.
TinyML is a set of edge computing technologies enabling tiny devices,
such as microcontrollers, to run ML models. TinyML moves the data
mining process to the edge by addressing complications like high
latency and privacy violations. Ultimately, it allows edge devices to
make autonomous decisions without relying on cloud servers. The main
differences between TinyML and Traditional ML (Table 1) concern [4]:

* Hardware constraints:

Information Fusion 104 (2024) 102189

Table 1
TinyML vs. traditional ML.

Criterion TinyML Traditional ML

Hardware Resource-constrained devices, Unrestricted

constraints energy saving

Model size and Small-size models Unrestricted

complexity (few KB)

Privacy Only local data Data sent over
the network

Latency Low latency (local) Not a priority

— Traditional ML: The models are deployed on high-
performance servers;

— TinyML: The models are deployed on devices, such as micro-
controllers, that are both energy- and resource-constrained,
with 1 or 2 CPU cores, limited memory, and no access to
more advanced frameworks such as TensorFlow;

* Model size and complexity:

— Traditional ML: There is no model size limit, and it can use
large and complex models due to the absence of computa-
tional constraints;

- TinyML: It generates compressed and small-size ML models,
designed to suit minimal run-time resources (e.g., storable
within a few KB of RAM);

* Privacy:

— Traditional ML: Data is sent over the network and stored in
a centralized database;

— TinyML: Data and computational tasks are kept on the edge
device, minimizing the transfer of sensitive data;

+ Latency:

- Traditional ML: Latency is not a priority, as it is used mainly
for offline processing, with data distributed over the net-
work;

— TinyML: It supports real-time or near-real-time inference,
and decisions can be made directly on the device.

Two main research fields in ML on microcontrollers focus on: (1)
developing algorithms to convert more efficiently resources and pre-
trained NNs to be executed on tiny devices, and (2) improving hardware
design and developing more power-efficient hardware that can operate
for extended periods on battery power [4]. Currently, TinyML does
not support training the model directly on edge devices. As shown in
Fig. 1, the models are trained on a computer or server, and then a
smaller model is generated that can fit the embedded devices. These
compressed models, represented as C arrays, are then flashed onto de-
vices. These can then perform inference using the data collected by the
sensors [8]. Many libraries support these steps, including TensorFlow
Lite Micro and ST X-CUBE-AL

TinyML models are designed for inference on low-end devices, but
this can be challenging as the training task requires significantly more
computational power and memory than the inference task. It is also a
time-consuming process that can be energy inefficient and may drain
faster the battery life. Models require periodic updates with fresh data
collected by the sensors. If the device could learn from local data,
the model performance might improve. However, the lack of onboard
training support forces us to rely on cloud servers, an operation that
is not always possible due to privacy or communication performance
concerns.

2.2. Related work

Lo et al. [9] presented a literature review in the FL field: the
analyzed works do not consider the limitations of FL in resources- and

M. Ficco et al.

Training

XN
— X

L

. —
Training

dataset Central
server Trained

NN

Information Fusion 104 (2024) 102189

Upload L

[l

L)

TTTTTT

Conversion

|

— &

Heterogeneous
loT devices

Trained models
(array of NN weights)

Fig. 1. Traditional model training process.

bandwidth-constrained IoT environments. In particular, most of the lit-
erature studied TL through tuning of NN models and privacy-conscious
learning; aspects related to NN-based fine-tuning in significantly-
constrained tiny development boards used in IoT have not been much
investigated [10,11]. In this direction, the few proposed solutions
either supported only the deployment of static ML models on tiny
devices, or implemented FL solutions in mobile edge networks using
at most embedded-Linux devices like Raspberry Pi [12]. TensorFlow
Lite, CMSIS-NN, and TVM are libraries developed (from Google, ARM,
and Apache, respectively [12-14]) to support ML on tiny-constrained
devices. These libraries assume the model is trained in remote servers,
and then, uploaded to the tiny device for performing only inference
tasks. To update the model with new data, it must be retrained from
scratch and re-uploaded to edge devices.

Very few studies discussed the possibility of performing the training
process on tiny devices [15,16]. Montiel et al. [17] suggest an approach
that does not require training the model on the microcontroller, but
focuses on continuous model improvement. An edge node is deployed
only for inference, and however, it streams new data to an external
server to enhance the model over time. The first two on-board training
experiments have been performed in simulation environments without
taking into account client heterogeneity, which could lead to slow and
unsatisfactory learning progress [18,19]. Ren et al. present a framework
that enables incremental on-device training on streaming data, without
storing historical data on board. A preliminary implementation has
been tested on Arduino Nano 33 BLE Sense.

The first implementation of FL on the resource-constrained real
MCU development boards has been presented in [18]. It represents only
a proof of concept needed to demonstrate the feasibility of on-device
TL with constant storage costs. TinyTrain introduces a methodology for
on-device model training [20]. It reduces memory consumption by dy-
namically selecting layers to be updated and reducing the computation
cost of backpropagation. As this solution focuses on complex model
training, it suits more powerful boards (like Raspberry Pi) and it is
not compatible with most devices. In [21], a modified formulation of
the Reptile algorithm is presented [22]. It can be used to implement
model-agnostic meta-learning in a federated setting by tiny devices, for
finding initial shared models that can quickly adapt by new federated
agents. A recent work proposed a tiny FL algorithm to enable the
learning of Bayesian classifiers based on distributed tiny data storage.
It first performs in parallel by multiple tiny devices and then, a final
classification model is computed in a central node, by aggregating the
local Bayesian classifiers [23].

This work presents a technique for collaborative training of ML
models on board of resource-constrained IoT devices, leveraging a
combination of federated learning and transfer learning. An extensive
experimental campaign has been performed on heterogeneous real tiny
devices, comparing several NN libraries and traditional ML approaches
(e.g., Tensorflow Lite) on both classification and regression tasks, using
both unbalanced and balanced datasets.

3. Collaborative on-board training of ML models for IoT devices

This section describes the proposed technique to enable embedded
devices to train a ML model and make inferences. It introduces FL
and TL, the two techniques used for high performance collaborative
training. A comparison is presented of three neural network libraries
(written in C and without the requirement of external dependencies),
and the optimizations made to minimize the memory usage and extend
the device compatibility. Finally, the devices used to conduct the tests
are presented.

3.1. The proposed TinyML-based technique

The proposed technique allows devices with limited memory and
processing capabilities to perform training directly on board. It fosters
large compatibility for IoT devices. To this aim, the code that runs
on the boards is written in C, the most commonly used low-level
language. To simulate the real-world case where boards have different
resource constraints, a network of heterogeneous devices is used in the
experiments.

Fig. 2 provides an overview of the proposed collaborative learn-
ing process. It starts by reading the dataset from an external source.
Without loss of generality, the dataset is stored in a Comma-Separated
Values (CSV) file, e.g. stored on an SD card. Training is done by
devices collaboratively through Federated Learning. FL requires an
additional server to enable communication between all boards and the
exchange of trained model weights. Communication is carried out via
MQTT, a lightweight protocol designed for low power consumption
and limited bandwidth scenarios. Clearly, the central server is not a
resource-constrained device, as it requires proper hardware to handle
complex calculations on multiple numerical matrices. Since general-
purpose hardware does not have the same constraints as an IoT device,
it can use any external system libraries. In the FL experiments, we use
Python libraries (see Section 3.2).

When a new node connects to the federated system, it sends a
request to the central server to receive the weights of the final model in
few seconds. This offers an advantage compared to training the model
from scratch, which may take several hours. In traditional TinyML solu-
tions, the neural network is embedded in the microcontroller firmware.
The device is ready to do inference, but it will be limited to the NN
version loaded. In case the NN is upgraded, the firmware needs to be
updated. With the proposed solution, newly added devices will benefit
from the most recent model iteration available.

3.2. Federated learning

Federated learning is a modern approach to ML, that tries to solve
the problem of training models on distributed systems without the need
of directly sharing the data. Each node has its local dataset and aims
to collectively train an ML model without exposing the dataset’s data
to other nodes. The model is not trained on a centralized single server,
but on the edge devices, preserving privacy and security.

M. Ficco et al.

Trained models

Tlralallr:lplg exchange (MQTT)
m—
Rind \
LT [eee]
E 5 = % [
-_— = oz
- TIIIL ——
> / Central
E # server
Training Heterogeneous
datasets loT devices

Fig. 2. Proposed on-board collaborative training process.

The goal of FL is to obtain a model performance that is similar to
or better than the model trained through traditional training methods.
Thanks to the nature of the distributed system and using the local data
owned by each device, it is possible to train models on different and
heterogeneous datasets. The result is a more robust and generalized
model. More formally, let us consider N nodes, each characterized by
its own dataset D;, its local model 4; and its weights vector w;, where
A; is a function describing how weights w; conform to the local dataset
D; used for training. Once achieving consensus on w;, we can obtain a
global model A by aggregating the models trained locally as:

N
AWy, ..., Wy) = % Z A5(W;). ¢))
i=1

There are three main components in a FL system:

* Parties: The parties represent the distributed entities with their
dataset. They can be individual devices, such as IoT devices
or local servers. Each party has its data not shared with other
parties or the manager. They have the role of training the model
to preserve privacy and security. The hardware specifications,
including power and storage, affect the design of a FL system.
Parties with limited hardware capacity may not be able to handle
large models and may slow down the entire system.

« Manager: A server acts as a coordinator entity and does not have
direct access to the raw data held by the parties. It orchestrates
the training process, aggregates the model updates from the par-
ticipants, and creates a global model. The global model represents
the knowledge learned from all nodes without exposing the local
data.

Communication-Computation Framework: It is the backbone of the

FL system. It provides the infrastructure and protocols for the

communication and computation between parties and the man-

ager.

Data can be managed in two different ways:

* Cross-device FL: The participants are individual devices, such as
IoT devices. Each device has its local data.

« Cross-silo FL: It involves organizations. Each organization has its
own private data and collaborates to train a model with other
organizations. Devices from the same organizations share the
same dataset. It involves the use of a central server to store the
data. For example, hospitals that want to collaborate with other
hospitals to create a better model, but cannot share data [5].

Depending on the data distribution scenarios, horizontal or vertical
FL is possible:

Information Fusion 104 (2024) 102189

B ook

O 0O 0O
®U® % G

EE%

i

Fig. 3. Aggregation steps of the Federated Averaging (FedAvg) algorithm.

* Horizontal FL: The participants have similar features, but different
datasets;

» Vertical FL: The participants train on the same dataset, but for
different features.

The most adopted algorithm for aggregating model updates from
multiple participants is Federated Averaging (FedAvg). It is applied
to various domains, like healthcare and finance. It is an iterative
process [24]. As shown in Fig. 3, these are the steps:

1. A global model is initialized on a central server. The manager
selects a subset of participants for the training process. The
selection is random, based on the devices available or resources.

2. The selected devices train the model locally.

3. The weights from the locally trained model are sent to the
central server.

4. The central server aggregates the weights received applying
averaging techniques. All the weights are summed and divided
by the number of participants. Then, the updated weights are
sent back to the edge devices.

5. Steps 2, 3 and 4 are repeated for multiple rounds till the ends of
the epochs or a predefined stop criterion.

Some participants may have limited communication bandwidth or
intermittent connectivity. Using FedAvg all participants are required to
communicate their model updates to the central server each round, but
with limited connectivity, there can be bottlenecks. Some devices may
be highly unbalanced in performance and may cause a much slower
training time for all devices. Thus, performance can be undermined
when using heterogeneous devices [25]. Besides FedAvg, we also pro-
pose in this work a simplified alternative algorithm. It acts like FedAvg,
but rather than updating and generating a global model at each round,
the nodes first train the local model for all the epochs, and then send
the weights to the central server. In this way, faster nodes do not need
to wait for slower nodes to complete the training. The FL solution is
developed with Python using the library Numpy.

3.3. Transfer learning

Transfer learning is an ML technique in which the knowledge ac-
quired from solving a problem is transferred to improve the perfor-
mance related to another problem. It can be done by using a pre-trained
model. A dataset is used as a starting point for a new task instead
of training a model from scratch. More formally, if A"t is the model,
trained on dataset D, to solve the task ¢, transfer learning uses the
knowledge from the domain associated with such task to improve the

M. Ficco et al.

Table 2
Examples of accuracy of FL without TL and with TL.

Accuracy without
transfer learning

Accuracy with
transfer learning

Pre-trained model - 84.86%
Edge #1 85.01% 84.64%
Edge #2 84.60% 84.97%
Edge #3 84.77% 85.12%
Federated model 46.46% 86.49%

performance of the model A2, trained on dataset D, to solve the other
task ¢, so that:

/172* _ }',] ﬁ:lz and Mrz*l > Mle’ (2)

where A2* is the model for ¢, improved through transfer learning (T'L)
starting from the knowledge A"t related to task 7; and the | - | operator
indicates its performance.

With knowledge transfer, the model obtains benefits from the fea-
tures and patterns captured by the pre-trained model. The result is
faster training and improved performance, especially in cases where
the dataset is not complete enough. The use of a pre-trained model on
edge nodes can highly increase the performance of the final model. The
central server provides a pre-trained model to the edge devices partic-
ipating in the training process. This model is a starting point and can
acquire general features and patterns. Then, the devices fine-tune the
pre-trained model using their local data and share the fine-tuned model
with the central server. In the end, the server applies FL techniques to
generate a final model.

A comparative analysis is shown in Table 2. The models without TL
are trained with three distinct datasets with 16,000 entries. We used
8000 elements taken from unused dataset elements for pre-training the
network. Then, we adopt TL training the models with three different
datasets of 8000 entries.

3.4. Neural network implementation details

The neural networks considered in the experiments are trained
according to the supervised learning paradigm. This approach suits IoT
and TinyML applications, as it allows us fine-tuning of the model be-
havior, increasing the accuracy. However, deploying a neural network
on devices with limited resources is challenging.

For the implementation of the neural networks, we used Genann,
a lightweight library written in pure C, designed for simplicity, speed
and extensibility. It implements backpropagation training and supports
linear and sigmoid activation functions. It uses a lookup table to store
the output of the activation function which helps to obtain faster
and more efficient calculations and saves computational resources.
The lookup table can have high memory consumption - an issue for
some microcontrollers. However, the lookup table can be tuned to
the microcontroller. Compared to other available libraries (FANN and
Tinn), Genann has a good trade-off between simplicity, performance,
and ease of integration.

3.4.1. Enhancements to the Genann library

Several enhancements have been added to the Genann library to
improve its functionality and compatibility with resource-constrained
devices.

« Extended manufactures compatibility: The Genann library has
been modified to add compatibility with popular microcontrollers
produced by Arduino, Raspberry, and Espressif. The same code
can now be compiled on multiple devices without requiring fur-
ther modifications, allowing faster deployment.

+ Reading data set from CSV file has been optimized for low-
memory devices.

Information Fusion 104 (2024) 102189

+ Type conversion from double to float for memory efficiency: To
further reduce the memory usage and increase compatibility the
library has been updated using float data type instead of double.
This conversion significantly decreases memory usage without
compromising the accuracy and performance of the model [26].
Export and import weights: To facilitate the deployment in an FL
environment, Genann now supports the export and import of the
model’s weights.

Support for regression and classification tasks: Genann now sup-
ports regression and classification tasks, increasing the range of
scenarios where the library can be used. Regression functions
can predict a continuous value, while classification functions can
predict a discrete label or a class.

Extended performance metrics: The library has been improved
with proper metrics to assess the effectiveness of the NN. The
results are saved in a CSV file.

3.5. MQTT

The proposed technique adopts the MQTT (Message Queuing
Telemetry Transport) protocol with the following topics:

* /add-participant: Each node participating in the training phase
sends a message on this topic, including their ID number in the
payload.

/get-weights: The central server is subscribed to the topic. Nodes
not participating in training can request the actual global weights
by sending a message to this topic.

/receive-weights: Nodes are subscribed to the topic. When a mes-
sage in the “request-weights” topic is received, the central server
sends the weights as a message in the topic “receive-weights”.
Due to the limited resources of the nodes, the master cannot
send the entire model’s weights, but it sends individual weight
values as separate messages. Since microcontrollers have a small
message queue, every 100 messages there is a wait of 0.1s to allow
devices to process the queue.

Each node is assigned a unique numeric identifier. After com-
pleting a training session, a node sends its weight to a topic
corresponding to its identifier. Each weight is sent as a separate
message. Once all the weights have been sent, the node sends a
special END message, encoded as —1, to indicate the completion
of weight transmission.

Fig. 4 shows an example of the operations of Node 1 in the collab-
orative training phase.

4. Experimentation
4.1. Dataset import

Dataset storage needs to be efficiently handled on microcontrollers,
as they have a very constrained amount of memory, usually 64 kB.
The traditional approach is to save a dataset entirely in two matrices,
for the input and for the output features. While this suits training on
computers, it can quickly deplete memory on microcontrollers.

In our proposal, datasets are stored in CSV-format files, where each
row represents a data sample, with values separated by a comma. The
features are the information used to make predictions; a label or target
value is the output to predict. For a dataset with X input features and Y
labels, an input array of size X and an output array of size Y are created.
Two methods are experimented with for importing the dataset. The first
involves reading the dataset line-by-line. Every line read is split by a
comma to obtain an array of strings; the fields of the line are converted
into numbers. If the string index is less than X, it is added to the input
array, otherwise to the output array. In the second method, the dataset
is read character by character. Each character is inserted into an array
until a comma is reached; once a comma is encountered, the array of

M. Ficco et al.

Node #1

Train
-
local model —

| -

—Are all weights ™ .
—__ sent? _—

Send weight ‘
to topic /1

Yes

v
Send -1
to topic /1

l

Subscribe to
/receive-weights

)

Are all weights™
—__received?

e _~
~ Trained for T~ —
__allepochs? _—

|

Yes

v

Model is ready
to be used

Fig. 4. MQTT-based federated learning algorithm.

Table 3
Dataset memory consumption - Traditional matrix-based import.

Variables Memory consumption

Input float matrix of size 150 x 1000 600 kB
Output float matrix of size 5 x 1000 20 kB
Char matrix of size 3067 x 1000 to store the dataset 3067 kB
Support variable for number conversion 0.004 kB

Table 4
Dataset memory consumption - Method 1: Read the file line by line and save it in
arrays.

Variables Memory consumption
Input float array of size 150 0.6 kB

Output float array of size 5 0.02 kB

Char array of size 3067 to store one line of the dataset 3067 kB

Support variable for number conversion 0.004 kB

Table 5
Dataset memory consumption - Method 2: Read the file char by char and save it in
arrays.

Variables Memory consumption
Input float array of size 150 0.6 kB

Output float array of size 5 0.02 kB

Char array of size 15 to store one value of the dataset 0.015 kB

Support variable for number conversion 0.004 kB

characters is converted into a number, which is then added to the input
or the output array based on the number of commas encountered.
Tables 3 to 5 report results of the traditional import and of the two
proposed methods. Table 6 compares the three methods on a dataset -
1000 entries, 150 input features (each of 14 characters), and 5 output
features - representative of real TinyML applications. As the last method

Information Fusion 104 (2024) 102189

Table 6
Dataset memory consumption - Methods comparison.

Variables Memory consumption
Read the entire file and save it in two matrices ~3095 kB

Read the file line by line and save it in arrays ~3.1 kB

Read the file char by char and save it in arrays ~0.64 kB

revealed to be the most efficient, it is the one adopted in subsequent
experiments.

4.2. Devices for experiments

Experiments are performed on a network of heterogeneous IoT
devices, namely: (1) Arduino WiFi Rev2, (2) ESP8266, (3) ESP32, (4)
Arduino MKR1010, (5) Raspberry Pi Zero W, (6) Raspberry Pi3 B+, and
(7) a Personal Computer (PC). All devices are equipped with a WiFi
board (for collaborative learning). On Raspberry Pi Zero W and Pi3 B+,
and on PC, the dataset is saved in internal storage. On Arduino WiFi
Rev2 and MKR1010, ESP8266, ESP32, due to the limited flash memory
space, it is saved on a micro SD card connected through the HW-125
adapter. The devices characteristics are listed in Table 7.

For each device, we measure the time required to complete a
training epoch, the time taken to perform testing on the test set, and
the current consumption during training, measured with a USB digital
multimeter.

The FL architecture is composed of ESP8266, ESP32, and Arduino
MKR1010 nodes, and Raspberry PI3 B+ as the central server. The
MQTT broker server is hosted on Raspberry PI3 B+. Fig. 5 shows an
example of the designed FL architecture. The boards read from the SD
card the dataset as a CSV file; the model is trained; the weights are
sent to the server, which aggregates them. Fig. 6 shows the propagation
phase of the aggregated weights.

4.3. Experimental settings

Five experimental configurations are defined for both classification
and regression tasks; they are listed in Table 8.

Experiments for classification are performed on the ECG heartbeat
dataset [6]. The task is to classify new ECG input data into categories
learned during the training process. Tests are conducted first using
a balanced dataset, and then an unbalanced one to check how the
network behaves in extreme cases. Once the network is deployed, it
is important to continue to improve it with the new data acquired
by sensors. We hereafter present a continuous learning solution by
exploring a scenario where a specialist corrects the network’s wrong
results. The network learns from mispredictions to reduce future errors.

The experiments on a regression task use the automotive Car trips
data log dataset [7].

4.3.1. Metrics
In the following, we report the metrics implemented for the classi-
fication task:

+ Time to train: Time to complete a training epoch.

+ Time to test: Time to test the classification model on previously
unseen data.

Class accuracy: The proportion of correctly predicted instances on
the total number of instances. It is an indication of how well the
model performs in a class:

TP+TN
TP+TN+FP+FN’

3)

Accuracy =

Class precision: It measures the precision of a class prediction.
Precision is the reliability of positive predictions. It is focused on
minimizing false positives:

TP

Precision = —————.
recision TP+ FP (€))

M. Ficco et al.

Information Fusion 104 (2024) 102189

Table 7
Characteristics of devices for experiments.
Device CPU # of Clock Data bus Instruction RAM Storage
cores speed width set
Arduino Atmega 4809 1 16 MHz 8 bit RISC 6 kB 256 kB
WiFi Rev2
ESP8266 Tensilica 1 160 MHz 32 bit RISC 64 kB 96 kB
LX106
ESP32 Tensilica LX6 2 240 MHz 32 bit RISC 520 kB 512 kB
Arduino SAMD21 1 48 MHz 32 bit ARM 32 kB 256 kB
MKR1010 Cortex MO+
Raspberry Broadcom 1 1 GHz 32 bit ARM 512 MB 16 GB
P1 Zero W BCM2835
Raspberry Broadcom 4 1.4 GHz 64 bit ARM 1 GB 16 GB
PI3 B+ BCM2837B0
PC AMD Ryzen 12 3.8 GHz 64 bit X86 16 GB 1TB
3900X

ESP32 ESP8266 ARDUINO
MKR1010
LOCAL LOCAL LOCAL
MODEL MODEL MODEL
TRAINING TRAINING TRAINING

‘ iR ‘

00 | €

84.6% accuracy
0.033 MSE

010 0
10w |
0010
010w |

85.1% accuracy

84.9% accuracy
0.021 MSE

0.025 MSE

N

N
MQTT
— A— .
86.4% accuracy WEIGHTS RASPBERRY
0.012 MSE AGGREGATION PI3 B+

Fig. 5. Federated learning architecture - Training and weights aggregation.

Table 8
Experimental configurations.

Configuration Federated learning FedAvg Transfer learning
1 No No No
2 Yes No No
3 Yes No Yes
4 No Yes No
5 No Yes Yes

ESP32 ESPB266 ARDUING
MKR1010
86.4% accuracy 86.4% accuracy B86.4% accuracy
0.012 MSE 0.012 MSE 0.012 MSE
WEIGHTS PROPAGATION
=
N\
= MQTT

RASPBERRY FI3 B+

Fig. 6. Federated learning architecture - Weights propagation.

Class recall: It measures the ability of a model to identify positive
instances from all instances that truly belong to the positive class:

Recall = L (5)
TP+ FN

Class F1: Harmonic mean of precision and recall:

Fl= 2 % Prethszon * Recall.)
Precision + Recall

Macro accuracy: Average accuracy across all classes.

Macro precision: Average precision across all classes.

Mean Squared Error (MSE): Average squared difference between
predicted and actual class values:

_1 2
MSE =¥ (-9’ @

Multi-Class Entropy (MCE): Entropy of the predicted class proba-
bilities:

K
LG,y == Y yPlogy®). (8)
k

For the regression task, we instead consider the following metrics:

M. Ficco et al.

Table 9
Classification (ECG dataset) - Memory consumption.

Variables Memory consumption
5777 neurons 23.152 kB

Lookup table of size 4096 16.384 kB
(alternative) Lookup table of size 1024 4.096 kB

Input float array of size 187 0.748 kB

Output float array of size 5 0.020 kB

Char array of size 15 to store one value of the dataset 0.015 kB

Support variable for number conversion 0.004 kB

Time to train and time to test.

Accuracy: the proportion of correct predictions within a specific
tolerance range.

Mean Absolute Error (MAE): absolute difference between pre-
dicted and actual regression values:

n
1
MAE = =Y |y, y,l. 9
ni=1|y, Vil 9

Mean Squared Error (MSE) between predicted and actual values
(Eq. (7)).
Root Mean Squared Error (RMSE):

RMSE = (10)

4.3.2. Settings for classification

Dataset. The ECG heartbeat dataset is composed of two collections of
heartbeat signals generated from two sanitarian contexts: the MIT-BIH
Arrhythmia Dataset and The PTB Diagnostic ECG Database. The signals
correspond to electrocardiogram (ECG) shapes of heartbeats in healthy
conditions, arrhythmia, or myocardial infarction.

The trained model can predict if there is a type of arrhythmia or
myocardial infarction. The dataset contains 87,555 entries and 187
input features; each input feature is an input channel for ECG. There
are 5 categorical classes:

* N: Normal, left/right bundle branch block, atrial escape, or nodal
escape;

+ S: Atrial premature, aberrant atrial premature, nodal premature,
supra-ventricular premature;

+ V: Premature ventricular contraction and ventricular escape;

« F: Fusion of ventricular, normal;

* Q: Paced, fusion of paced and normal, unclassified.

Preprocessing. The output features are encoded via a one-hot scheme.
The dataset is divided into 5 parts, but is not entirely used for training.
Training the model with a large dataset makes the model achieve its
maximum performance, without leaving any tangible benefit in using
FL. The split of the dataset is shown in Fig. 7 and it is divided as follows:

» The pre-trained model used for transfer learning is trained on
8000 elements;

» Each node trains the local model on 8000 elements;

+ The test set is composed of 10,000 elements.

Neural network. The neural network is configured with 4 layers: an
input layer with 187 neurons, 2 hidden layers with 25 neurons each,
and an output layer with 5 neurons. The model is trained for 50 epochs.
The NN requires at least ~21 or ~44 kB of memory, depending on the
size of the lookup table (Table 9). Additional memory space is required
for the metrics computation and for libraries, such as SD, File, and
MOQTT.

Information Fusion 104 (2024) 102189

Pre-trained model
8000

Node 1
8000

Node 2
8000

Node 3
8000

Test
10000

Fig. 7. Classification: ECG dataset split.

Table 10
Regression: Car trips data log dataset input features.

Training input features

Total acceleration
Passenger count
Radio volume

Vehicle’s speed Shift number
Engine RPM Pitch

Car’s Load Air condit. status
Rain intensity Visibility

Engine load
Lateral acceleration
Window opening
Driver’s rush

Table 11
Regression (Car trips data log dataset) - Memory consumption.

Variables Memory consumption

426 neurons 1.746 kB
Lookup table of size 4096 16.384 kB
(alternative) Lookup table of size 1024 4.096 kB
Input float array of size 187 0.060 kB
Output float array of size 5 0.004 kB
Char array of size 15 to store one value of the dataset 0.015 kB
Support variable for number conversion 0.004 kB

4.3.3. Settings for regression

Dataset. The “Car trips data log” dataset, created by R. F. Vitor [7],
contains data acquired from 38 driving sessions in various conditions.
The trained model can predict the driver’s well-being. The model has
potential applications as:

« Fatigue detection and prevention: By monitoring the driver’s
well-being, it is possible to reduce the risk of road accidents.

+ Calculation of the insurance premium: Insurance companies can
adapt the insurance premium value depending on factors, such as
stress levels. A driver with a high level of well-being is synony-
mous of careful driving.

Each entry has 15 input features (Table 10).

Preprocessing. The dataset has been normalized and the values scaled
using the Python library sklearn. The dataset is divided into 5 parts
(Fig. 8). The pre-trained model used for transfer learning is trained on
2240 elements. Each node trains the local model on 2280 elements. The
test set is composed of 1520 elements.

Neural network. The neural network is configured with 4 layers: an
input layer with 15 neurons, 2 hidden layers with 12 neurons each, and
an output layer with 1 neuron. The model is trained for 70 epochs. As
shown in Table 11, the network requires at least ~10 kB or ~21.2 kB of
memory to be executed, depending on the lookup table size. Additional
space is required for metrics computation and for libraries, such as the
SD, File, and MQTT.

M. Ficco et al.

Test
1520

Node 3
2280

Node 2
2280

Information Fusion 104 (2024) 102189

Pre-trained model
2240

Node 1
2280

Fig. 8. Regression: Car trips data log dataset split.

Accuracy - Full dataset

088 { — Uain
validation //\/\/j\‘ SN
087 \/\/’\‘
A ”/\/\/\/ /V
086 ’!’ \
> A [
g A/
5 08% I\
g \
X i
084 “’
|
os{ \
082
[} 10 0) © 50

Precision - Full dataset

— tran
0864 validation

Ao~
0821 | ‘ A A F/ \ /\,“ Y
L MAMY?
g 0804 " Av \“

Fig. 9. Classification (ECG) - Full dataset training without federated learning: accuracy and precision.

Table 12

Classification (ECG dataset) - Full dataset training without FL.
Metric Training Testing
Accuracy 87.78% 85.65%
Precision 83.27% 77.17%
F1 0.7251 0.6617
MSE 0.0198 0.0210
MCE 0.1148 0.1186

5. Classification
5.1. Results

In the following, the results are discussed taking into account the
accuracy of the models achieved on training and testing datasets, and on
the training epochs on the validation set (samples left out from training
in the corresponding epoch).

Full dataset training without FL. Table 12 reports the results on the
full dataset without FL. The difference in precision, accuracy, and F1
between training and testing datasets is more pronounced compared to
the difference in the MSE and Multi-Class Entropy (MCE).

Fig. 9 shows that during the first five epochs, a notable decline oc-
curs in precision for both the training and validation datasets, amount-
ing to a 12% reduction. It can be attributed to the model’s adjustment to
the data. Then, a different trend emerges. The training precision shows
consistent improvement, while validation shows a less straightforward
path. There are spikes, indicative of temporal improvements, and there
is no overall enhancement. This could mean that while the model learns
and improves during training, it struggles to generalize information
improvements on the validation set.

FL without transfer learning. Fig. 10 shows that the accuracy across all
nodes is similar for training and validation, and it indicates there are
consistent patterns in the learning process.

As for precision, Fig. 11 shows that nodes exhibit different behaviors,
highlighting variability in the final result. Node 1 and Node 3 experi-
ence a sharp drop in the initial 10 epochs with a reduction of ~21%.
Both nodes have small improvements in accuracy in the next epochs.
This may indicate there are challenges in improving the model. Unlike
Nodes 1 and 3, Node 2 shows a more linear trend in precision during
training, without relevant spikes. However, several variations can be
noticed in validation, with precision oscillating ~21%.

As for F1, MSE, and MCE, nodes show similar results in the training
and validation phases. Across all metrics, the Node 2 model has more
stability and minimal divergence between validation and training; this
may indicate the training dataset captures better data patterns. As
expected, training shows promising results, but the use of FL reveals
a substantial decline in performance (last column of Table 13).

FL with transfer learning. Table 14 shows that the pre-trained model
used for the TL phase achieved accuracy and precision scores similar to
those obtained in Nodes 1, 2, and 3. However, the nodes gained MCE
and MSE scores approximately 30%-40% lower than the pre-trained
model. Unlike the previous scenarios without TL, as in Fig. 12 where
accuracy is always greater than 0.84 after the 10th epoch, when using
TL, the model is consistent across all the training epochs for all the
metrics (accuracy, precision, F1, MCE, and MSE). As expected, the use
of TL has resulted in marginally improved performances compared to
the method without TL. With TL, FL exhibits enhanced performance in
all metrics.

FedAvg without transfer learning. The results in Table 15 show the
benefits of the FedAvg algorithm compared to the method “FL without
TL” in Table 13. FedAvg shows to yield consistent metric trends across

M. Ficco et al.

Accuracy - Node 1

tram

Accuracy - Node 2

Information Fusion 104 (2024) 102189

Accuracy - Node 3

— train o
vakdation o~

wpach

epoch

- Federated learning without transfer learning:

Accuracy.

Fig. 10. Classification (ECG)

Precision -

Node 1

0875

0.850

— wam

validation

0825

0.800

precision

Precision - Node 2

Precision - Node 3

— tan
validation |

1/ v

AN A

| — van

validation

!

>

o 0 20 E «© 50 0 u 0 0 “© 50 J 10 20 E “ 0
epoch epoch epoch
Fig. 11. Classification (ECG) - Federated learning without transfer learning: Precision.
Table 13
Classification (ECG) - FL without transfer learning.
Metric Node 1 Node 2 Node 3 Federated
Training Testing Training Testing Training Testing Testing
Accuracy 88.05% 84.99% 88.23% 85.20% 87.93% 84.96% 55.24%
Precision 80.78% 73.79% 84.52% 77.61% 82.10% 72.90% 75.44%
F1 0.7295 0.6814 0.7615 0.6815 0.6828 0.6221 0.3183
MSE 0.0268 0.0292 0.0252 0.0266 0.0221 0.0245 0.3043
MCE 0.1268 0.1332 0.1300 0.1340 0.1208 0.1270 0.8126
Table 14
Classification (ECG) - FL with transfer learning.
Metric Pre-trained Node 1 Node 2 Node 3 Federated
Training Testing Training Testing Training Testing Training Testing Testing
Accuracy 88.01% 85.59% 88.80% 85.86% 87.96% 85.16% 89.13% 85.66% 86.48%
Precision 78.55% 72.34% 82.81% 76.34% 84.89% 77.55% 84.07% 75.89% 77.41%
F1 0.7552 0.6996 0.7664 0.7019 0.7247 0.6363 0.7610 0.6800 0.7055
MSE 0.0349 0.0382 0.0191 0.0214 0.0156 0.0157 0.0121 0.0151 0.0117
MCE 0.1608 0.1696 0.0987 0.1052 0.0762 0.0765 0.0758 0.0848 0.0709
Table 15
Classification (ECG) - FedAvg without transfer learning.
Metric Node 1 Node 2 Node 3 FedAvg
Training Testing Training Testing Training Testing Testing
Accuracy 87.45% 86.06% 87.20% 85.19% 87.24% 85.57% 85.94%
Precision 79.63% 77.06% 83.24% 79.22% 82.41% 76.16% 77.53%
F1 0.7152 0.6910 0.7187 0.6591 0.6675 0.6342 0.6793
MSE 0.0255 0.0280 0.0286 0.0301 0.0197 0.0221 0.0225
MCE 0.1402 0.1443 0.1493 0.1533 0.1150 0.1215 0.1302

all nodes during training epochs. The final model does not show any
drops in accuracy; the MSE and MCE values are substantially lower
demonstrating greater stability. However, the precision graph in Fig. 13
shows fluctuations and frequent spikes, ranging from 10% to 30% in
most of the epochs before reaching the optimal value.

FedAvg learning with transfer learning. The results in Table 16 indicate a
slightly superior performance compared to the FedAvg method without
TL. This could indicate that the TL technique is not strictly necessary,
but helps to achieve better results during the FL phase. Consistently

with the previous method, there is remarkable stability and consistency
in the metrics, as shown in Fig. 14 for accuracy. The metrics maintain
a uniform trend in the training and validation phase. Additionally, the
spikes in the metrics are less frequent and confined only to the initial
epochs of the training phase, highlighting the ability of the model to
converge faster to the optimal value.

Table 17 compares all the results obtained, giving a summary
overview of the above results. As expected, FL without TL has the worst
performance. FedAvg and FL with TL have similar performance.

10

M. Ficco et al.

Information Fusion 104 (2024) 102189

Table 16

Classification (ECG) - FedAvg with transfer learning.
Metric Pre-trained Node 1 Node 2 Node 3 FedAvg

Training Testing Training Testing Training Testing Training Testing Testing

Accuracy 87.43% 84.81% 86.78% 85.97% 86.80% 85.99% 87.35% 85.74% 86.31%
Precision 74.72% 68.67% 76.89% 74.80% 83.40% 78.93% 83.61% 76.16% 78.71%
F1 0.7431 0.6846 0.7065 0.6826 0.7089 0.6495 0.6707 0.6396 0.6830
MSE 0.0591 0.0656 0.0286 0.0302 0.0352 0.0366 0.0142 0.0155 0.0208
MCE 0.2404 0.2564 0.1444 0.1489 0.1736 0.1769 0.0965 0.0999 0.1252

Table 17

Classification (ECG) — Results comparison.

0860

Metric Full dataset — No FL without transfer FL with transfer FedAvg without FedAvg with
federated learning learning learning transfer learning transfer learning
Accuracy 85.65% 53.72% 86.49% 86.18% 86.31%
Precision 77.17% 76.48% 79.78% 81.59% 78.71%
F1 0.6617 0.2361 0.7066 0.6958 0.6830
MSE 0.0210 0.1219 0.0126 0.0193 0.0208
MCE 0.1186 0.3983 0.0683 0.1066 0.1252
Table 18
Classification (ECG) — Devices comparison.
Metric Arduino WiFi Rev2 ESP8266 ESP32 Arduino MKR1010 Raspberry Pi Zero W Raspberry Pi3 B+ PC
Time to train (epoch) FAILED 419 s 321 s FAILED 22's 8s 21s
Time to test FAILED 198 s 384 s FAILED 109 s 3.7s 12s
Energy consumption FAILED 0.07 A 0.0 A FAILED 0.13 A 0.75 A 21 A/42 W
Accuracy - Pre-trained Accuracy - Node 1 Table 19
™ wa A | - L 1 Classification (ECG) - Integration of new devices - Time and energy consumption.
A Vi) .| i
. s f\w\f\/’ﬂv V \\“W Metric ESP8266 ESP32
N /) ! I T w/ Time to download model weights 636 s 637 s
§ one /) I g Energy consumption 0.05 A 0.04 A
! [oo Energy consumption (IDLE) 0.05 A 0.04 A
I

0855

0850

: M 2 @ % : © B} % ® %
apoch epoch
Accuracy - Node 2 Accuracy - Node 3
— v = -
| '™ r
vaidation A A M vaidation A
oss / \ \ A NN
NYA ViV il
NV \/
A \
087 A /\/ Y A /\//\/V !
3 /\‘ \/ V Zos7 v}
%o i
™
oss
ons
ase
5 o B3 P % 5 M % P %

Fig. 12. Classification (ECG) - Federated learning with transfer learning - Accuracy.

5.2. Devices comparison

The two Arduino boards cannot train the model because they do not
have enough memory to allocate the NN and the required libraries. As
displayed in Table 18, the ESP32 microcontroller is the device with the
lowest power consumption (only 0.06 A), which was less demanding
compared to the other devices. However, it was slightly slower in
training the model than the ESP8266. This discrepancy in speed could
be due to a known bug in the ESP32 library, resulting in a longer time to
read a file from the SD card. On the other hand, traditional computing
devices showed the best results in terms of training speed, at the cost
of higher energy consumption: the PC consumed approximately 350%
more energy than microcontrollers. The Raspberry Pi Zero W has a good
balance between energy consumption and training times, but it is closer
to a PC than a microcontroller.

11

5.3. Integration of a new device into an existing architecture

When a new device joins an already deployed FL architecture, it can
benefit from the fully trained model without the need to retrain one.
Table 19 shows the time and energy consumption for microcontrollers
to download the model. The comparison with Table 18 reveals the ben-
efit in the time required for the new device to be in operation. ESP8266
and the ESP32 devices took more than 8 and 9 h to complete training
of a new model. The two Arduino boards were excluded because unable
to run the network. The two Raspberry Pi were also excluded (as the
PC) because of their computer-like architecture and performance. In
contrast, downloading only the model weights took approximately 63 s
with equivalent power consumption. Table 19 also illustrates how, once
the boards acquire the weights, the idle power consumption decreases.
The ESP32 consumes 0.04 A, while the ESP8266 0.05 A.

5.4. Unbalanced datasets

The previous tests have been conducted using balanced datasets
where all the nodes are trained on datasets with the same class distri-
bution, shown in Table 20. However, in a real-world scenario, it may
happen that not all nodes see in operation data similar to those for
which they all have been trained. We therefore analyze the case when
nodes are trained on unbalanced datasets. Not only global metrics, but
also inter-class metrics will be computed to assess if the final model
benefits from models with more knowledge of specific classes.

Table 21 illustrates the four datasets prepared for the test with their
class distribution. The validation dataset and the one used for TL have
the same distribution for all classes.

Information Fusion 104 (2024) 102189

Precision - Node 2 Precision - Node 3

Fig. 13. Classification (ECG) - FedAvg without transfer learning - Precision graph.

Accuracy - Node 1

T SN

0.4

|

accuracy

0 10 20 0 40 50
epoch

Accuracy - Node 3

accuracy

0.82

081
o 10 20 30 40 50
epoch

Fig. 14. Classification (ECG) - FedAvg with transfer learning - Accuracy graph.

M. Ficco et al.
Precision - Node 1
e —
881 d 08
o i 0.850
84 4 1 |
v 08 \
o8 I \ ‘
| [
| [
| — “““ A
78 | A f\/
A V
W 1\ W
\ /Y
074
0) % P 5 10
woch
Accuracy - Pre-trained
train
0.87 validation oy / /\\/ \/\/
0.8
2084
g
g
X o83
0.82
081
0.80
079 1 ; s v : v
o 10 20 0 4 50
epoch
Accuracy - Node 2
train
validation \/ A~ \/ \/\A ﬁ M
ose //\ /\ (
- 084]
g
2
§ :
08,
0.80
0 10 20 % © 50
epoch
Table 20
Classification (ECG) - Class distribution in the dataset.
Classes N S \% F Q

Examples (%) 71 4 11 2 12

Table 22 shows high accuracy results in the training phase, but
comparing the training results with the testing ones in Table 22, the
accuracy is approximately 10% lower. The model trained using the
simplified FL has worse accuracy and MSE. This is caused by the use
of a small-sized dataset for TL. On the other hand, the FedAvg model
shows better performance compared to the models trained on single
datasets.

In Table 23, it can be observed that the simplified version of FL
exhibits strongly degraded performance in the N and Q classes. The
model trained with FedAvg has better or comparable performance
across all classes and it proves to be the best training methodology in
contexts with highly unbalanced datasets.

6. Regression

6.1. Results

Full dataset training without federated learning. Table 24 reports the
results in the case of no FL being used. The results for training and

testing are very close to each other, denoting that the model well
generalizes the knowledge acquired during the training.

As shown in Fig. 15, the training and validation lines match for most
of the training phase. This may suggest that the data present in the
training dataset is similar to the validation dataset. Also in this case, the
alignment between training and validation results indicates the model
can well generalize the knowledge acquired during the training.

Federated learning without transfer learning. As Fig. 16 shows, the train-
ing and validation curves are closely aligned also in this case. The
dataset for the FL test is smaller than the one for the full dataset training
test. The model reached its optimal values at approximately 60-70
epochs. This pattern is consistent across all nodes, and there is no spike.
Node 3 compiled the model with the best performance, followed by
Node 1 and Node 2.

The results in Table 25 have a similar pattern as the ones in the clas-
sification training task without TL. The final model compiled with FL
has notably poorer performances than the models trained individually
on each node. This result suggests that alternative training approaches
may be more suitable.

Federated learning with transfer learning. Table 26 reports the results
when using a pre-trained model for the TL phase. Despite the use
of a smaller dataset, the performance in Table 26 was not signifi-
cantly different from the nodes. All the three nodes demonstrate higher
performance than the previous case and are similar across all the
nodes. Fig. 17 reports the accuracy computed on the validation set for
each training epoch. The pre-trained model reaches a relatively high
accuracy of around 90% after 70 epochs (first plot of Fig. 17). The three

12

M. Ficco et al.

accuracy

Information Fusion 104 (2024) 102189

Table 21
Classification (ECG) - Unbalanced class distribution in the split dataset.
Classes Dataset #1 Dataset #2 Dataset #3 Validation Transfer learning
Class N 5% 53% 11% 20% 20%
Class S 20% 0.6% 0.3% 20% 20%
Class V 3% 1.2% 76.7% 20% 20%
Class F 62% 0.6% 2% 20% 20%
Class Q 10% 44.6% 10% 20% 20%
Number of elements 3210 8170 7040 4000 1600
Table 22
Classification (ECG) - Unbalanced dataset - Training results.
Metric Dataset #1 Dataset #2 Dataset #3 Federated FedAvg
Training Testing Training Testing Training Testing Testing Testing
Accuracy 83.83% 73.95% 84.73% 73.48% 85.23% 74.61% 63.27% 79.34%
MSE 0.0500 0.1912 0.0183 0.1502 0.0381 0.1679 0.2508 0.1431
Accuracy - Full dataset MSE - Full dataset
— train e 0,035 { = train
09 validation rm— validation
’/ 0.030
o8
0.025
» 07
§’ [o 0020
g e E 0.015
(
05
0.010
04 0.005 i
A — ——
03 :
0 10 20 0 40 50 60 0 0 10 20 0 40 50 60 70
epoch epoch
Fig. 15. Regression (Car trips) - Full dataset training without federated learning - Accuracy and MSE.
Accuracy - Node 1 Accuracy - Node 2 Accuracy - Node 3
091 — wvain s — train N 09 vain B
validation M validation validation w o
08 y J 08 - / o8 /
P
07) 4 07 / 4 o
~ 7 }. Bais
0.6 H 3
; for A Vs
05 0s 04 /
/
04 [V 03
04 r
0.2
03 - v + - - -
0 10 20 30 40 50 60 0 0 10 20 30 40 50 60 70 0 10 20 30 “0 50 60 70
epoch epoch epoch

Fig. 16. Regression (Car trips) - FL without transfer learning - Accuracy graph.

Table 23

Classification (ECG) - Unbalanced datasets - Intra-class validation accuracy.
Accuracy Dataset #1 Dataset #2 Dataset #3 Federated FedAvg

learning

Class N 65.42% 53.88% 67.04% 24.75% 67.98%
Class S 64.54% 75.02% 76.67% 68.35% 78.35%
Class V 75.39% 69.69% 57.66% 67.81% 79.03%
Class F 82.31% 89.00% 88.90% 89.11% 88.69%
Class Q 82.11% 79.83% 82.79% 66.30% 82.65%

Table 24

Regression (Car trips) - Full dataset training without FL.
Metric Training Testing
Accuracy 94.74% 94.74%
MAE 0.0206 0.0201
MSE 0.0017 0.0017
RMSE 0.0417 0.0415

13

nodes exhibit a gradual improvement ranging between 2—-4 percentage
points and reaching the plateau around the 20 epochs (around 95%).
The final model results in a marginally superior performance compared
to the individual nodes. This suggests that the final model has likely
reached its maximum performance.

FedAvg without transfer learning. Table 27 reports the results when
using FEdAvg without transfer learning. In contrast to the classification
task, the outcome for regression is different. There are no substantial
performance improvements observed in the classification task and the
final model did not exhibit a similar level of improvement. In the Fe-
dAvg algorithm, each node benefits from the collective knowledge of all
nodes during the training phase. However, the final model performance
is slightly worse than the most-performing node 27. As shown in Fig. 18
for accuracy, similarly to the previous case, the training and validation
curves largely matched for most of the training phase.

FedAvg with transfer learning. Table 28 reports the results when using
FedAvg with TL. In contrast to the same training methodology applied
in the classification task, in which the use of TL had a minimal impact
on the final model’s performance, this test demonstrated a higher

M. Ficco et al.

accuracy

07

°
°

05

Information Fusion 104 (2024) 102189

Table 25
Regression (Car trips) - Federated learning without transfer learning.
Metric Node 1 Node 2 Node 3 Federated
Training Testing Training Testing Training Testing Testing
Accuracy 89.39% 89.47% 86.97% 86.51% 91.54% 91.32% 15.79%
MAE 0.0388 0.0378 0.0511 0.0532 0.0377 0.0384 0.2605
MSE 0.0037 0.0036 0.0047 0.0050 0.0035 0.0036 0.0886
RMSE 0.0606 0.0602 0.0687 0.0705 0.0591 0.0597 0.2976
Table 26
Regression (Car trips) - FL with transfer learning.
Metric Pre-trained Node 1 Node 2 Node 3 Federated
Training Testing Training Testing Training Testing Training Testing Testing
Accuracy 90.31% 91.05% 94.74% 94.74% 94.74% 94.74% 94.74% 94.74% 94.74%
MAE 0.0388 0.0387 0.0188 0.0191 0. 0243 0.0249 0.0200 0.0203 0.0201
MSE 0.0033 0.0033 0.0017 0.0017 0.0019 0.0019 0.0017 0.0017 0.0017
RMSE 0.0572 0.0574 0.0411 0.0412 0.0435 0.0439 0.0413 0.0414 0.0415
Accuracy - Pre-trained Accuracy - Node 1
09{ — tam e — tam
validstion o 0945 validation
~ |
os |
/-‘ 0940 |
o7 /l
» 7 0935 }
§ 06 /\ 2
i N_/\/ ¥ass
os
092s
04
[/
sl / as20{ [
o 0 20 o ey 0 0 n ° 0 20 0 “ 0 60 ”
epoch epoch
Accuracy - Node 2 o Accuracy - Node 3
— tan — tan
0945 walidation | vahdaton
} 094 |
0940 /
§ 0930 1 5: . /
; 0925 ‘ ;
\ J o9
0920
0915 VRJ 090 ”
090 ’
0 0 20 0 “© 0 L) n o 0 20 0 « by L n
epoch eoch

Fig. 17. Regression (Car trips) - FL with transfer learning - Accuracy graph.

Table 27
Regression (Car trips) - FedAvg without transfer learning.
Metric Node 1 Node 2 Node 3 FedAvg
Training Testing Training Testing Training Testing Testing
Accuracy 85.26% 85.53% 87.32% 87.57% 86.84% 86.84% 86.84%
MAE 0.0430 0.0422 0.0508 0.0521 0.0407 0.0412 0.0413
MSE 0.0041 0.0041 0.0050 0.0052 0.0040 0.0041 0.0041
RMSE 0.0642 0.0641 0.0704 0.0718 0.0630 0.0638 0.0637
Accuracy - Node 1 Accuracy - Node 2 Accuracy - Node 3
— train - o — train i - o — tain /7
validation —’ validation g validation
/ 08 f td : /J—/
J/ ” /
r/ 07 /
07
~ g
,./ g 206 J
5 06 /" &
p M % / %05 |
0s \/" 04 A /N
/’\/ / ~N\/
[sl M\ 1V 034 |
| N\J |
\J | \‘]
02
0 10 20 30 40 50 60 0 o 10 20 k) 20 50 60 0 L] 10 20 30 40 50 60 70
epoch epoch epoch

Fig. 18. Regression (Car trips) - FedAvg without transfer learning - Accuracy graph.

14

M. Ficco et al. Information Fusion 104 (2024) 102189

Table 28
Regression (Car trips) - FedAvg with transfer learning.
Metric Pre-trained Node 1 Node 2 Node 3 FedAvg
Training Testing Training Testing Training Testing Training Testing Testing
Accuracy 91.96% 92.11% 94.74% 94.74% 94.74% 94.74% 94.74% 94.74% 94.74%
MAE 0.0380 0.0389 0.0215 0.0220 0.0278 0.0286 0.0224 0.0231 0.0230
MSE 0.0032 0.0033 0.0018 0.0018 0.0021 0.0021 0.0018 0.0018 0.0018
RMSE 0.0568 0.0575 0.0422 0.0425 0.0453 0.0457 0.0426 0.0429 0.0428
Accuracy - Pre-trained Accuracy - Node 1
09| — train S — train
validation &= — 0.945 validation
08 i / 0.940 y’/
F |
0,935 |
0.7 |
]
3 / Toso] |
Y 5
¥ / ¥ 0925 ,/
~ 09201 |
AtV |
04 0.915 |
|
03d{ / 0.910 ‘
0 0 20 % 4 s 6 0 0 20 % 4 s e 70
epoch epoch
Accuracy - Node 2 Accuracy - Node 3
train train
0.948 validation | o848 validation
| J
| [
0940 | 0.940 /
J /
g 0,93 / § 003 |
g [5 /
% 0.930 / ¥ f
0930 /
[|
0925 | |
|
/ 0.925 /
0.920 /
0.920
0 10 20 30 0 0 60 70 0 10 20 30 0 50 60 70
epoch epoch
Fig. 19. Regression (Car trips) - FedAvg with transfer learning - Accuracy graph.
Table 29
Regression (Car trips) — Results comparison.
Metric Full dataset — No FL without FL with FedAvg without FedAvg with
federated learning transfer learning transfer learning transfer learning transfer learning
MAE 0.0206 0.2605 0.0201 0.0413 0.0230
MSE 0.0017 0.0886 0.0017 0.0041 0.0018
RMSE 0.0415 0.2976 0.0415 0.0637 0.0428

benefit. All the nodes exhibited in Table 28 improved and strictly
similar performance compared to the non-transfer learning training
approach. Each node obtained the same level of accuracy and nearly
identical MAE, MSE, and RMSE values.

Despite the use of TL, the final model reached the same level
of accuracy, with only slight negative variation in MAE, MSE, and
RMSE values, differing by just a few decimal points. The use of TL
confirmed the benefit: accuracy during training (Fig. 19) starts at the
value of 91%, the value reached by the pre-trained network after 70
epochs (first plot of Fig. 19), and reaches the plateau after around 10
epochs, maintaining the same level (around 95%) throughout the entire
training. MSE, MAE, and RMSE values continue to decrease.

Table 29 provides the summary overview. The training methods
exhibit similar results as for the classification task (Table 17). The FL
task without TL shows lower results. Instead, FedAvg and FL with TL

demonstrate similar performance.

6.2. Devices comparison

Table 30 compares performance on the devices. The Arduino WiFi
Rev2 board could not train the model because it lacks the required
memory to allocate the NN and the required libraries. The ESP8266,

despite being a single-core microcontroller, shows slightly higher power
consumption compared to the dual-core ESP32 and achieves faster
training and testing times. As reported before, this difference in per-
formance may be attributed to a known issue with the ESP32’s SD card
library. The Arduino MKR1010, due to its limited memory, had the
lookup table reduced from the size of 4096 to 1024. It is the device
that consumed the least amount of energy, only 0.02 A, which was more
than three times less than the ESP8266. However, it took more time to
complete the training process, approximately five times more. On the
other hand, the PC proved to be the fastest device for compiling the
model but was also the least energy-efficient among the devices tested.

6.3. Integration of a new device into a trained model architecture

Hereafter, we analyze the scenario when a new device joins an FL
architecture with a fully trained model. The time to train the models for
the ESP8266, ESP32, and Arduino MKR1010, was, respectively, 9, 15,
and 43 min. The model weights download required 32.1, 33.3, and 3.2 s
(Table 31). Examining the power consumption, the ESP8266 and the
ESP32 have lower values, 0.05 A and 0.02 A. The Arduino MKR1010
has a higher power consumption of 0.07 A, possibly caused by the
accelerated message queue processing.

15

M. Ficco et al.

Table 30
Regression (Car trips) — Devices comparison.

Information Fusion 104 (2024) 102189

Metric Arduino WiFi Rev2 ESP8266 ESP32 Arduino MKR1010 Raspberry Pi Zero W Raspberry Pi3 B+ PC

Time to train (epoch) FAILED 54s 75 s 28.1 s 08 s 0.3 s 0.0036 s
Time to test FAILED 24s 49 s 0.18 s 0.065 s 0.015 s
Energy consumption FAILED 0.07 A 0.06 A 0.02 A 0.15 A 0.7 A 20 A740 W

Table 31
Regression (Car trips) — Integration of new devices - Time and energy consumption.

Metric ESP8266 ESP32 Arduino MKR1010

Time to download model weights 32.1s 333 s 32s
Energy consumption 0.05 A 0.02 A 0.07 A
Energy consumption (IDLE) 0.05 A 0.04 A 0.07 A

Once the devices acquire the weights, there is a slight increase
in idle power consumption, as shown in Table 31. The ESP32 device
registers 0.04 A and the ESP8266 0.05 A. The Arduino MKR1010
energy consumption is consistent.

6.4. Experiments with unbalanced training datasets

We explore the case of unbalanced training datasets. In previous
tests, nodes were trained on balanced datasets containing the same
portion of data from each session but captured at different times,
with approximately each dataset having 2.6% of each session. To add
variability, 98% of each dataset consists of data extracted from 13
sessions, with each session contributing with the ~7.5% of the data.
The selection of the 13 sessions varies for each node. The remaining
2% is drawn from all remaining sessions, approximately 0.08% of each
session. Each training dataset contains 11,922 entries. Table 32 shows
a sample configuration. The testing dataset contains 38,000 entries,
equally distributed. The TL model is trained on 1900 entries, 50 per
session.

Table 33 shows extremely high accuracy in the training phase, but
the first and third models lose around 30% of accuracy with the test
dataset, due to overfitting. This indicates the created datasets have a
high level of unbalance. The newly generated models exhibit higher
performance than the three models trained on individual datasets. The
“simplified federated learning” model has a comparable but slightly
worse performance than FedAvg.

7. Comparative analysis

We now assess whether the proposed technique performs similarly
to traditional pre-compiled models, by comparing it to models trained
with TensorFlow Lite for Microcontrollers [12]. The same net-
works configurations used in previous experiments are replicated in
these tests, and the models are trained on the entire dataset.

7.1. TensorFlow Lite for Microcontrollers
TensorFlow Lite for Microcontrollers is a widely used ML framework

for resource-limited devices. As it does not support on-board training,
the steps to run a model are:

1. Train the model on a PC or a server using Tensorflow.

2. Convert the trained model into a plain C array, e.g., using the
TinyML gen library.

3. Deploy and run the converted model on the microcontroller.

One limitation of this approach is the lack of compatibility with
most of the boards. Among the boards previously tested, the ESP32 is
the only device compatible. All subsequent experiments are performed
on this device.

7.2. Classification task comparison

The model is trained on the entire ECG dataset for 50 epochs.
In Table 34, the FedAvg and FL with transfer learning show slightly
better accuracy than the TensorFlow Lite model, but worse precision.
The accuracy graph in Fig. 20 shows the same trends as the graph of
the model generated from the proposed technique, trained on the full
dataset.

7.3. Regression task comparison

The model is trained on the entire Car trips data log for 70 epochs.
In Table 35, the FedAvg and FL with TL perform overall better than
the TensorFlow Lite model trained on the entire dataset. As in the
previous case, the graphs in Fig. 21 show no significant differences from
the ones obtained with the proposed architecture.

7.4. Considerations

The non-significant difference between the local models and the
ones trained with Tensorflow Lite is attributable mainly to the
datasets. The main advantage of remote training is to fine-tune the
models without constraints on resources, number of features, and train-
ing dataset size. This advantage is very limited in our experiments,
due to the nature of the dataset. Local training allows the chosen
model to reach a good level of accuracy, close to the one obtained
with Tensorflow Lite. Different results can be obtained on more
complex models or datasets, on which training with Tensorflow
Lite may be more effective.

8. Post deployment continuous model improvement

Once a model has been deployed on IoT devices, sensors may ac-
quire new (unlabeled) data which may be misclassified. It is important
to continue improving the model using previously unseen data, so
that the system can keep learning and minimize future mispredictions.
Inspection of predictions by domain specialists may spot and report

Table 32

Regression (Car trips) - Unbalanced class distribution in the split dataset.
Session 1 2 3 13 14 15 38
Class distribution (%) ~7.5% ~7.5% ~7.5% ~7.5% 0.08% 0.08% 0.08%

Table 33

Regression (Car trips) - Unbalanced dataset.
Metric Dataset #1 Dataset #2 Dataset #3 Federated FedAvg

Training Testing Training Testing Training Testing Testing Testing

Accuracy 97.61% 67.46% 98.34% 82.37% 97.49% 66.93% 85.53% 86.68%
MSE 0.0014 0.0141 0.0016 0.0098 0.0017 0.0169 0.0082 0.0053

M. Ficco et al.

Table 34

Classification (ECG dataset) - Comparison to TensorFlow Lite.

Information Fusion 104 (2024) 102189

Metric Full dataset — FL with FedAvg with TensorFlow Lite
No federated learning transfer learning transfer learning Full dataset
Accuracy 85.65% 86.49% 86.31% 85.77%
Precision 77.17% 79.78% 78.71% 86.39%
F1 0.6617 0.7066 0.6830 0.6920
MSE 0.0210 0.0126 0.0208 0.0478
Accuracy Precision
0875 ¢
— vain PR — vain B —
sssod validation _— — 0.86 4 validation _— g
/‘/ z /
- 084
0.825 4 . 7
/ : 2
0.800 4 f e //
o / § /
g 4 % 080 /
S 07754 M
¥ & (
078
0.750 4
| 0.76
07251 |
| 074
0.700 4 |
072
0 10 20 30 40 50 0 10 0 30 40 50
epoch epoch
Fig. 20. Classification (ECG dataset) - Comparison to TensorFlow Lite (graphs).
Table 35

Regression (Car trips dataset) - Comparison to TensorFlow Lite.

Metric Full dataset — FL with FedAvg with TensorFlow Lite
No federated learning transfer learning transfer learning Full dataset
Accuracy 94.74% 94.74% 94.74% 94.50%
MAE 0.0206 0.0201 0.0230 0.0276
MSE 0.0017 0.0017 0.0018 0.0022
RMSE 0.0415 0.0415 0.0428 0.0476
Accuracy MSE
— train e e 01754 — train
09 validation 7 validation
. A o 0.150
/"\/
o / 0125
g 06 7 o 0100
5 g
¥ 0.075
0.5
- 0.050
03 [\/ 0.025
02 0.000 “
0 10 20 £ %0 50 60 70 0 10 20 0 % 50 60 70
epoch epoch

Fig. 21. Regression (Car trips dataset) - Comparison to TensorFlow Lite (graphs).

incorrect operational results. As final contribution, we present the
results of experiments for continuous improvement of ML models after
deployment, based on the DeepEST technique [27].

DeepEST (Deep neural networks Enhanced Sampler for operational
Testing) is a technique for DNN assessment and improvement over
delivery cycles. It selects from operational inputs samples with high
probability of being misclassified. After their labeling (e.g., by domain
experts), it provides an estimate of the ML model accuracy in operation.
The selected examples are then used to improve the model accuracy
before next deployment.

In the experiment, we consider the 45,500 unused samples from the
classification dataset as inputs collected in operation, pretending the
actual labels are provided by medical professionals. These samples are
split into 13 batches of 3500 samples each. The dataset for DeepEST
requires as input features: (1) ID - as row number; (2) Outcome - a
binary outcome indicating whether the network prediction is correct or

17

not; (3) SUT (System Under Test) - label generated by the network; and
(4) Confidence - the confidence level of the prediction, obtained from
the output layer nodes. For each batch, DeepEST is configured to select
500 predictions with the worst results. Then, the selected samples are
added to the training set to improve the network and to the test dataset
used to evaluate the performance.

During each cycle, the following data is recorded to monitor im-
provements: (a) Accuracy of the base model on the test set; (b) Accuracy
of the fine-tuned model on the test set; (c) Delta, the difference in
accuracy between the fine-tuned model and the base model; and (d)
Accuracy estimated by DeepEST. Evaluations have been conducted
using the following configurations:

» Two training configurations for the initial model. Both trained
using FedAvg, one trained for 25 epochs and another for 50
epochs. The 25 epoch configuration is included to ensure the
model was not overfitting during the initial training phase.

M. Ficco et al.

Table 36

Information Fusion 104 (2024) 102189

Classification (ECG): tuning with a model trained for 50 epochs and fine-tuned for 10 epochs.

Cycle Failures Accuracy Accuracy of Delta DeepEST
base model retrained model estimated accuracy
1 97 0.843333 0.829238 —0.014095 0.865048
2 124 0.832182 0.834091 0.001909 0.820258
3 114 0.836696 0.842174 0.005478 0.844781
4 110 0.844583 0.852917 0.008334 0.845922
5 110 0.854240 0.853360 —0.000880 0.837340
6 129 0.854231 0.852231 —0.002000 0.806063
7 112 0.854296 0.861407 0.007111 0.860654
8 102 0.862643 0.852643 —0.010000 0.856618
9 108 0.854552 0.860345 0.005793 0.825758
10 123 0.861067 0.860200 —0.000867 0.853910
11 130 0.860645 0.858903 —0.001742 0.818480
12 135 0.860563 0.861812 0.001249 0.809783
13 89 0.862242 0.859333 —0.002909 0.867330

+ Three fine-tuning configurations, with 5, 10 and 20 epochs.

Table 36 shows the results. The best performance has been achieved
with an initial model trained for 50 epochs and fine-tuned for 10
epochs. In 5 epochs the model does not learn enough from the new
data, while in 20 epochs it overfits. These results show that by applying
continuous learning techniques it is possible to improve the model
knowledge: in the experiments, the overall accuracy of the network
increased from 84.3% to 86.22%.

9. Conclusions

We presented the design and experimentation of a technique for
enabling a network of heterogeneous IoT devices with a variety of
hardware constraints to collaboratively train machine learning appli-
cations directly on board of devices. The proposal uses Federated
Learning, possibly combined with Transfer Learning. The experiments
with devices such as Arduino WiFi Rev2, ESP8266, ESP32, Raspberry
Pi, and a PC, evaluating the model performance in classification and
regression tasks.

FL combined with TL has been proven to be a valid starting point
for enabling microcontrollers to do training and inference on the board.
We have also evaluated scenarios with unbalanced datasets, with the
integration of new nodes, and, for classification tasks, with a mech-
anism to enable continuous (re)training. The results of FL and TL,
in different configurations, have also been compared to traditional
TinyML models trained using TensorFlow Lite for Microcontrollers,
and the performance of the created federated system turned out to be
similar or even better, without sacrificing data privacy.

We plan to conduct additional tests in specific scenarios, in order to
experiment the proposed technique on a wider variety of configurations
and conditions. We are especially interested in continuous training
scenarios, to deal with the frequent case of operational data drifting
from training data, a phenomenon which is known to potentially cause
severe performance drops. In future work, we will: (i) extend the
neural network library with additional activation functions, so it can
be applied in more fields, (ii) evaluate more secure model aggregation
approaches and increase privacy during the training process; (iii) apply
the proposed technique in real-world scenarios to evaluate how it
performs in various domains.

CRediT authorship contribution statement

M. Ficco: Supervision, Conceptualization, Methodology, Experi-
mentals, Software Supervision, Writing — reviewing. A. Guerriero: In-
vestigation, Methodology, Writing — original draft. E. Milite: Software,
Development, Experimentation. F. Palmieri: Supervision, Conceptual-
ization, Methodology, Writing — reviewing. R. Pietrantuono: Investiga-
tion, Conceptualization, Methodology, Experimentals, Software, Super-
vision, Writing — reviewing. S. Russo: Supervision, Conceptualization,
Methodology, Writing — reviewing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

The work by S. Russo was supported by the Sustainable Mobility
National Research Center (MOST), Italy under Piano Nazionale di
Ripresa e Resilienza (PNRR) — Missione 4 Componente 2, Investimento
1.4 - D.D. 1033 17/06/2022, CN00000023. The work by M. Ficco and
F. Palmieri was partially supported by project SERICS (PE00000014)
under the NRRP MUR program funded by the EU - NGEU. The work by
M. Ficco is also part of the research activity realized within the project
Federated Learning for Generative Emulation of Advanced Persistent
Threats (FLEGREA), Bando PRIN 2022. All authors have read and
agreed to the published version of the manuscript.

References

[1]1 L.S. Vailshery, Number of IoT connected devices worldwide 2019-2021, with
forecasts to 2030, 2022.

[2] S.F. Ahmed, M.S.B. Alam, S. Afrin, S.J. Rafa, N. Rafa, A.H. Gandomi, Insights
into Internet of Medical Things (IoMT): Data fusion, security issues and potential
solutions, Inf. Fusion 102 (2024).

[3] R. Sanchez-Iborra, A.F. Skarmeta, TinyML-enabled frugal smart objects:
Challenges and opportunities, IEEE Circuits Syst. Mag. 20 (3) (2020) 4-18.

[4] P.P. Ray, A review on TinyML: State-of-the-art and prospects, J. King Saud Univ.
- Comput. Inf. Sci. 34 (4) (2022) 1595-1623.

[5] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, X. Liu, B. He, A survey on federated
learning systems: Vision, hype and reality for data privacy and protection, IEEE
Trans. Knowl. Data Eng. 35 (2023) 3347-3366.

[6] M. Kachuee, S. Fazeli, M. Sarrafzadeh, ECG heartbeat classification: A deep
transferable representation, in: IEEE International Conference on Healthcare
Informatics, IEEE, 2018, pp. 443-444.

[71 R.F. Vitor, Car trips data log, 2017, https://www.kaggle.com/datasets/vitorrf/
cartripsdatamining.

[8] V. Tsoukas, E. Boumpa, G. Giannakas, A. Kakarountas, A review of machine
learning and TinyML in healthcare, in: PCI ’21: 25th Pan-Hellenic
Conference on Informatics, ACM, 2022, pp. 69-73.

[9] S.K. Lo, CW. Q. Lu, H.-Y. Paik, L. Zhu, A systematic literature review on
federated machine learning: From a software engineering perspective, ACM
Comput. Surv. 54 (5) (2021) 1-39.

[10] H. Ren, D. Anicic, T. Runkler, TinyOL: TinyML with online-learning on microcon-
trollers, in: International Joint Conference on Neural Networks (IJCNN), IEEE,
2021, pp. 1-8.

[11] C.R. Banbury, V.J. Reddi, M. Lam, et al.,, Benchmarking tinyml systems:
Challenges and direction, 2020, arXiv:2003.04821.

[12] R. David, J. Duke, A. Jain, et al., TensorFlow lite micro: Embedded machine
learning on TinyML systems, in: Proceedings of the 4th Machine Learning and
Systems (MLSys 2021), 2021.

Proc.

18

M. Ficco et al.

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

L. Lai, N. Suda, V. Chandra, CMSIS-NN: Efficient neural network kernels for arm
Cortex-M CPUs, 2018, arXiv preprint arXiv:1801.06601.

Apache TVM Project, 2021, https://tvm.apache.org/ Accessed: Nov. 9, 2023.

L. Ravaglia, M. Rusci, D. Nadalini, A. Capotondi, F. Conti, L. Benini, A tinyml
platform for on-device continual learning with quantized latent replays, IEEE J.
Emerg. Sel. Top. Circuits Syst. 11 (4) (2021) 789-802.

J. Lin, W.-M. Chen, Y. Lin, J. Cohn, C. Gan, S. Han, Mcunet: Tiny deep learning
on iot devices, Adv. Neural Inf. Process. Syst. 33 (2020) 11711-11722.

J. Montiel, M. Halford, S.M. Mastelini, G. Bolmier, R. Sourty, R. Vaysse, A.
Zouitine, H.M. Gomes, J. Read, T. Abdessalem, A. Bifet, River: machine learning
for streaming data in Python, 2020, arXiv:2012.04740.

K. Kopparapu, E. Lin, J.G. Breslin, B. Sudharsan, TinyFedTL: Federated transfer
learning on ubiquitous tiny IoT devices, in: IEEE Int. Conf. on Pervasive
Computing and Communications Workshops and Other Affiliated Events, IEEE,
2022, pp. 79-81.

M.M. Grau, R.P. Centelles, F. Freitag, On-device training of machine learning
models on microcontrollers with a look at federated learning, in: Conf. on
Information Technology for Social Good, 2021, pp. 198-203.

Y.D. Kwon, R. Li, S.I. Venieris, J. Chauhan, N.D. Lane, C. Mascolo, TinyTrain:
Deep neural network training at the extreme edge, 2023, arXiv:2307.09988.

19

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Information Fusion 104 (2024) 102189

H. Ren, D. Anicic, A. Thomas, TinyReptile: TinyML with federated meta-learning,
in: Int. Joint Conf. on Neural Networks (IJCNN), 2023.

A. Nichol, J. Achiam, J. Schulman, On first-order meta-learning algorithms, 2018,
arXiv:1803.02999.

N. Xiong, S. Punnekkat, Tiny federated learning with Bayesian classifiers, in:
IEEE 32nd Int. Symp. on Industrial Electronics (ISIE), 2023.

H.B. McMahan, E. Moore, D. Ramage, B.A. y Arcas, Communication-efficient
learning of deep networks from decentralized data, 2016, CoRR abs/1602.05629,
arXiv:1602.05629.

C.R. Banbury, V.J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman, X. Huang, R.
Hurtado, D. Kanter, A. Lokhmotov, D.A. Patterson, D. Pau, J. Seo, J. Sieracki,
U. Thakker, M. Verhelst, P. Yadav, Benchmarking TinyML systems: Challenges
and direction, 2020, CoRR abs/2003.04821.

D. Nadalini, M. Rusci, L. Benini, F. Conti, Reduced precision floating-point
optimization for deep neural network on-device learning on MicroControllers,
2023, arXiv:2305.19167.

A. Guerriero, R. Pietrantuono, S. Russo, Operation is the hardest teacher:
estimating DNN accuracy looking for mispredictions, in: 43rd International
Conference on Software Engineering, IEEE, 2021, pp. 348-358.

