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Probabilistic tsunami forecasting for early warning
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Tsunami warning centres face the challenging task of rapidly forecasting tsunami threat
immediately after an earthquake, when there is high uncertainty due to data deficiency. Here
we introduce Probabilistic Tsunami Forecasting (PTF) for tsunami early warning. PTF expli-
citly treats data- and forecast-uncertainties, enabling alert level definitions according to any
predefined level of conservatism, which is connected to the average balance of missed-vs-
false-alarms. Impact forecasts and resulting recommendations become progressively less
uncertain as new data become available. Here we report an implementation for near-source
early warning and test it systematically by hindcasting the great 2010 M8.8 Maule (Chile)
and the well-studied 2003 M6.8 Zemmouri-Boumerdes (Algeria) tsunamis, as well as all the
Mediterranean earthquakes that triggered alert messages at the lItalian Tsunami Warning
Centre since its inception in 2015, demonstrating forecasting accuracy over a wide range of
magnitudes and earthquake types.
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sunamis may strike a coastal population close to the

earthquake location within minutes after its origin time.

Tsunami Early Warning Systems (TEWS) must forecast
the tsunami threat rapidly following any potentially tsunamigenic
earthquake. Tsunami impact prediction immediately after the
event is subject to large uncertainty stemming mainly from the
unknown details of the earthquake source, which implies large
variability in the estimated tsunami inundation!. The uncertainty
is amplified by the necessity to act rapidly to maximize the eva-
cuation lead time. Given the available information, a vast number
of different forecast outcomes are possible. The forecasts should
assign a probability to each of these outcomes (like in, for
example, weather forecasting®3). Present-day tsunami forecasts
are non-probabilistic, producing single-outcome forecasts. The
uncertainty is often accommodated only implicitly through
conservative choices (e.g. safety factors) to minimize missed
alarms, at the cost of increasing the rate of false alarms*. Sup-
plementary Table 1 summarizes all the symbols and acronyms
used.

For sufficiently distant earthquakes, tsunami forecasts can be
constrained with moment tensors®, yet these forecasts are still
characterized by significant uncertainty. Deep-sea sensors, where
available, can further help constraining the tsunami through
inversion and data assimilation techniques®*®-10. However,
locally, the tsunami may inundate after minutes!! and initial
tsunami forecast must be performed solely from basic earthquake
parameters. Innovative rapid source estimation techniques are
steadily progressing!>-1%, and next-generation sensors and

methods could bring dramatic improvements to reduce
uncertainties’?0-23,  Yet, some uncertainty sources are
intrinsic242, and the earthquake and tsunami characteristics may

be surprising and remain elusive even years after the event20-28,
Therefore, uncertainty quantification and reduction efforts must
be synergistically undertaken.

The need to deal with uncertainty in early warnings has been
long recognized?%-30 and recently emphasized also for TEWS31:32,
Following the 2004 Indian Ocean tsunami, the cost of “insist(ing)
on certainty” was highlighted®3. Despite subsequent attempts to
define methods to quantify tsunami forecast uncertainty34-38,
operational tsunami forecasting in TEWSs is still non-
probabilistic  (http://www.ioc-tsunami.org/). Specifically, Tsu-
nami Service Providers (TSPs) worldwide adopt Decision
Matrices (DMs, look-up tables linking earthquake parameters
with alert levels) or Envelopes (ENVs, selecting a local maximum
over a selection of scenarios), or consider one or a few Best-
Matching Scenarios (BMSs, scenarios matching the seismic and/
or tsunami data available at the time of the estimation) to define
initial alert levels!6-3239-45 Specific strategies (e.g. maximum
credible magnitude, safety factors, etc.), usually rooted in the
analysis of past events, are sometimes adopted to implicitly
replace uncertainty quantification!®32, but TSPs do not yet apply
any formal probabilistic method. For example, a proxy of existing
uncertainty is sometimes derived from the statistics of the sce-
narios selected with ENV methods [e.g. 44) or of the along-coast
variability of the forecast [e.g. 4°). However, in this way, the
tsunami forecast cannot be tested quantitatively against obser-
vations and consequently the procedure cannot be calibrated%47.
In addition, the commonly adopted safety measures generally
tend to overestimate the forecasts, although underestimations
may still occur®3.

The use of a single estimation of the tsunami intensity to define
alert levels, typical of non-probabilistic forecasts, also mixes to
some extent scientific tsunami forecasts with political decision
making. For example, a safety factor introduces a positive bias in
the forecast to reduce the missed alarms rate: this is not done to
improve the accuracy of the forecast, but to reduce potential

societal consequences, which is a typical decision-making task.
The decision-making process requires competences beyond the
field of tsunami science. It is therefore considered fundamental to
have effective and transparent uncertainty communication from
scientists to decision makers*®=>! to make the process more
traceable and to optimize the risk-reduction management33-51-36,
For fast evolving phenomena like tsunamis, this can be realized
adopting pre-defined rules, to be used automatically during an
emergency.

An effective and transparent communication of uncertainty
may be realized through Probabilistic Tsunami Forecasting
(PTF). The PTF workflow should allow for a full propagation of
uncertainty, from the earthquake hypocentre and magnitude
estimation to alert-level definition, accounting for all the available
information at the time of the estimate. This also clarifies the
separation between scientific components (uncertain tsunami
forecast through hazard curves) and political duties (alert-level
definition for risk mitigation), following the hazard-risk separa-
tion principle>”->8. This strategy is similar to the one used for
seismic risk reduction: scientists determine the probability of
different shaking intensities in the target area in a given time
window (e.g. 50 years), and decision makers define seismic
building codes selecting a design exceedance probability>®.
Similarly, the rule of conversion from PTF to alert levels can be
defined by the authorities-in-charge by selecting a target prob-
ability value (e.g. one particular percentile), corresponding to a
pre-defined level of conservatism for risk-reduction actions. This
separation, enabled by the uncertainty quantification, is becoming
a standard also for long-term coastal planning against
tsunamis®%-03 and tsunami building code definition®4.

In this work, PTF is introduced and applied to a wide range of
past events to discuss the feasibility of its real-time application
and to test it against observations. To illustrate its potentiality for
tsunami warning, we define alert levels from PTF based on dif-
ferent probability thresholds corresponding to different levels of
conservatism, and we compare the results with the alert levels that
would have been obtained applying a range of current-practice
non-probabilistic methods. We demonstrate that PTF is statisti-
cally accurate in its forecasts for a wide range of events, from
relatively small crustal events to large magnitude subduction zone
earthquakes. We show that PTF can be timely produced also for
near-field tsunami warning and that, adopting real-time conver-
sion rules established in advance, probabilistic forecasts
accounting for real-time uncertainty can be transparently trans-
formed into alert levels, allowing to implement any desired level
of conservatism based on all the available information at the time
of the estimation.

Results

The PTF workflow. The procedure introduced here, coined
Probabilistic Tsunami Forecasting (PTF), explicitly quantifies the
uncertainty in real-time forecasts and enables uncertainty-
informed alert-level definition in operational tsunami early
warning (Fig. 1). PTF can provide the probability distribution of a
Tsunami Intensity Measure (TIM, e.g. maximum run-up or near-
coast wave amplitude) at multiple forecast points almost imme-
diately, as soon as an earthquake location and magnitude esti-
mates are available, typically few minutes after origin time
(Fig. 1a). The method rigorously embeds uncertainty in tsunami
forecast at the time of the estimate by quantifying the probability
distribution for one (or more) TIM at each forecast point
(Fig. 1¢). The quantification is managed through an ensemble of
tsunami scenarios defined by a set of sources weighted by the
probability of being consistent with available real-time observa-
tions (Fig. la; e.g. seismic, geodetic, tsunami), as well as with local
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Fig. 1 PTF concept. a Timeline for tsunami warning: real-time information from an earthquake that just occurred and from the ongoing tsunami gradually
integrates b local long-term hazard information, ¢ progressively increasing the precision of the probabilistic forecasts (hazard curves) produced by the
Probabilistic Tsunami Forecasting (PTF). d At any time, PTF can be transformed into alert levels (here represented as traffic lights) useful for decision
making. In the current study, implementation refers to the time t;, when only earthquake magnitude and hypocentre estimates are available from real-time

observations.

earthquake and tsunami hazard information (Fig. 1b; e.g., pre-
computed tsunami scenarios, long-term frequencies) derived
from hazard and/or other long-term forecast models. PTF can be
refined continuously with updated information (i.e., seismic
moment tensor, tsunami data, Fig. 1a) to reduce the uncertainty
in the forecasts (Fig. 1c). The evolving probability distributions
can be used to define at any time, according to pre-defined rules,
alert levels for specific points/areas (Fig. 1d), which in turn cor-
respond to actions for risk reduction (for example, evacuation).

We implement PTF for near-field tsunami warning, that is, for
sites proximal to the earthquake epicentre. This is a challenging
task for TEWS!®. To define the needs for near-field tsunami
warning, we take as reference tsunami warning in the
Mediterranean Sea. Here, seismically induced tsunamis always
originate relatively close to some coastline, and tsunami
inundation often occurs minutes after the earthquake. To
maximize lead times, TSPs in the NEAMTWS (North-eastern
Atlantic, the Mediterranean and connected seas Tsunami
Warning System) currently adopt Decision Matrices (DMs, e.g.,
http://www.ioc-tsunami.org/), with a target delivery time of
10-15 min after earthquake occurrence (Fig. 1a). With this tight
temporal constraint, while the seismic hypocentre and magnitude
probabilities can be computed from real-time earthquake data to
input PTF, faulting geometry and mechanism probabilities are
not yet available. However, this missing information can be
derived from long-term seismo-tectonic constraints. Considering
that hypocentre and magnitude solutions are typically available in
3-8 min*2, the target delivery time of alert-levels can be matched
by PTF with computational times on the order of a few minutes
(e.g. <2 min, Fig. 1a).

For the Mediterranean Sea, long-term source information is
derived from the regional hazard database NEAMTHM186°-¢7,
which assumed that earthquakes may occur in principle every-
where in the Earth’s crust. Thus, NEAMTHMI8 provides a
database of sources covering the entire Mediterranean Sea with
any potential mechanism. For any given target event, an ensemble

of sources and corresponding probability consistent with both
real-time and past observations (as expressed by NEAMTHM18
focal mechanism probability®®98) can be defined starting from
real-time information. Using the NEAMTHMI18 pre-computed
database of tsunami simulations, the sources in the ensemble are
propagated to the forecast points (Supplementary Fig. 1) through
numerical tsunami simulations. The hazard is quantified
combining source probabilities and tsunami propagation, includ-
ing an additional basic treatment of tsunami modelling
uncertainty accounting for approximations in source, propaga-
tion, and inundation3. Maximum wave amplitude extrapolated
at 1 m depth (hereinafter near-coast wave amplitude) is selected
as the TIM. The PTF computational time correlates with the
ensemble size, which can be controlled by adopting cut-offs on
source probabilities. Testing four different cut-offs, we found that
a cut-off of 2 standard deviations offered a good compromise
between stability of the results and computational time
(<2 minutes, see Supplementary Table 4), matching the target
response time for the warning (Fig. 1a). So, while computation
times can be lowered further by code optimization, PTF can be
applied in its present configuration to any possible source in the
Mediterranean Sea, satisfying response-time demands for its
operational use for NEAMTWS.

This PTF implementation can be extended to any other source
area by (i) defining a database of potential sources covering the
selected target area adopting the same strategy used in
NEAMTHM18 for the Mediterranean, and (ii) using a workflow
for high-performance computing® to produce all the simulations
required in the ensemble of sources. The details of the PTF
implementation can be found in Methods.

PTF for the 2003 Mw 6.8 Zemmouri-Boumerdes earthquake.
To illustrate the PTF workflow, we first consider the 2003 Mw 6.8
Zemmouri-Boumerdes earthquake (Fig. 2) that occurred on the
Tell-Atlas fold-and-thrust belt (likely on a south-dipping fault),
triggering a tsunami causing damage at several harbours in the
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Fig. 2 PTF workflow: example for the 2003 Zemmouri-Boumerdes tsunami. a PTF source model: marginal distributions for earthquake magnitude and
depth (left), location (centre), and fault parameters (right) for the ensemble describing source variability. Several revised moment tensor solutions are
plotted as vertical lines for comparison. Distributions are consistent with seismic observations. For example, the ~30° southern-dipping realistic fault plane
is strongly emphasized in the PTF source ensemble. b PTF results: tsunami intensity measure distribution (hazard curve) at four selected coastal locations
in the western Mediterranean compared with observations (dashed vertical lines), and hazard maps involving all forecast points derived from different
PTF's statistics (mean, 5-95th percentiles), showing uncertainty and spatial pattern of the tsunami forecast. ¢ NEAMTWS Alert levels assigned from
observations40, decision matrix (DM), best-matching-scenario (BMS), envelope (ENV), and PTF mean, and 85, 95, and 99th percentiles; dashed lines
indicate local and regional areas, as defined in the DM (Supplementary Table 8). NEAMTWS considers three alert levels (Information, Advisory, and
Watch), each corresponding to off-coast tsunami wave amplitudes intervals: alert levels are assigned comparing tsunami near-coast wave amplitude with

alert-level intervals.

western Mediterranean®’0-72, PTF is implemented in hindcasting
mode, retrospectively simulating a real-time application. Real-
time data (hypocentre and magnitude; Supplementary Table 2)
are reconstructed using standard CAT-INGV operating
procedures?? on archived data (details in Supplementary Note 1).
The resulting discrete joint distributions (Fig. 2a) for hypocentre,
faulting geometry and mechanism are consistent with the most
recent moment tensor estimations (Supplementary Table 3,

4

refs. »1973-75), Marginal distributions for strike, dip, and rake
angles emphasize the expected geometry and mechanism for an
event at that location, based on the local seismotectonics derived
from the long-term hazard model®0-98. The fault plane ambiguity
is correctly resolved with the south-dipping reverse fault more
probable than the conjugate plane.

For this event, the ensemble of sources is composed of
approximately 15,000 scenarios (Supplementary Table 4). The
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results are visualized through probability density functions for the
selected TIM at each forecast point (Fig. 2b). TIMs and relative
uncertainties are visualized through conditional hazard maps,
whereby the mean or percentiles of the probability distributions
are mapped. Despite combining a large number of scenarios, the
forecast impact pattern is largely controlled by the dominant
source orientation and by the tsunami propagation and generally
agrees with observations. The specific observations can be
compared with PTF distributions summarizing the expectations
at each specific point. For the four locations reported Fig. 2b, all
observations fall inside the PTF distributions. The tsunami
observed in the Balearic Islands was relatively larger than
expected and thus is in the right tail of the PTF distribution.

Alert levels are then assigned directly from PTF distributions
(Fig. 2c). Different methods can be defined based on PTF
statistics and/or on evaluating the probability of pre-defined TIM
intervals (see Supplementary Note 2). In the NEAMTWS, three
alert levels (Information, Advisory, and Watch) are defined
corresponding to near-coast tsunami wave amplitudes that are
negligible (we here assume <10 cm), 10-50 cm, >50 cm respec-
tively (or twice these values for maximum run-up). Alert levels
for each location are here assigned by comparing a TIM derived
from the PTF with the relevant amplitude intervals. Different
statistics of the PTF (e.g. the mean or a given percentile) can be
used to extract this value, leading to alternative definitions of alert
levels. Overall, we adopt the simplest method for illustrative
purposes: mapping PTF statistics into alert levels’ reference
intensity intervals, which is equivalent to the definition of
probability thresholds for long-term hazard (see Supplementary
Note 2)00-64,

To discuss PTF alert-level assignments, we take as reference
three methods representative of standard non-probabilistic
operational procedures to define alert levels. As reference for
conservative methods, we consider (i) the Decision Matrix (DM)
adopted by the Italian tsunami warning centre CAT-INGV
(representative for the NEAMTWS operational procedures, see
Supplementary Note 3), and (ii) an envelope (ENV) method
resembling the one described in Catalan et al.#4, in which the
maximum tsunami wave amplitude is selected at each coastal site
from a set of scenarios compatible with the ongoing event. We
consider all scenarios within half fault length (derived from?%77)
from the epicentre and with magnitude best approximating the
available magnitude incremented by 0.5. As reference for single
simulation methods (current practice in many TSPs
worldwide32-39-41), we consider a single Best-Matching Scenario
(BMS) selected as the most likely source in the PTF ensemble,
whose simulation results are used to define alert levels.

For 2003 Zemmouri-Boumerdes, DM and ENV-based alert
levels tend to be more conservative than those based on the PTF
mean or on the BMS (Fig. 2c). DMs associate alert levels with
forecast points depending on earthquake location and magnitude
through a discontinuous, decreasing function of the distance from
the epicentre (see Supplementary Note 3). Thus, DMs do not
consider that both source orientation and bathymetry control the
tsunami propagation pattern and features, which is evident also
for this event’071, ENV, BMS, and PTF-based alert levels on the
other hand embed the tsunami propagation footprint through
numerical simulations. BMS results are comparable to PTF
central values (e.g. the mean, Fig. 2c), ENV results to the high
percentiles of the PTF. All non-probabilistic methods produce
specific alert-levels, while PTF allows specification of a desired
level of caution through choosing higher or lower percentiles,
corresponding to TIMs with a high or low probability of
exceedance. Consequently, the overall spatial extent of and the
number of high alert levels (i.e. advisory/watch) is controlled by
the selected percentile (the higher the percentile, the larger the

affected area), with high percentiles including less likely larger
TIMs from the tail of PTF distributions. Figure 2c shows that
several observations correlate better with conservative simulation-
based methods like ENV and high-percentile PTF alert levels (e.g.
95th percentile): the reason is that this event challenged
numerical modellers due to basin and harbour-related amplifica-
tions that occurred for instance in the Balearic Islands harbours”!.
Either higher resolution tsunami modelling is introduced, or only
a conservative definition of alert levels can then include these
values.

To examine more closely the reliability of PTF TIM forecasts,
we compare PTF distributions directly with all the available
observations (Fig. 3). Direct observations for this tsunami include
data from several coastal sea-level stations (hereinafter, tide-gauge
data) in the western Mediterranean’%-72, The time-series are,
however, few and coarsely sampled**-42. To enrich the
comparison, we also consider other indirect observations and
hind-casted models. Several moment tensors and finite-fault
model estimates are available in the literature (Supplementary
Table 3). A spatially homogeneous tsunami dataset for the test
can be obtained simulating the tsunami from such available
finite-fault models”8-84, retrieved by separate or joint seismic and
geodetic data inversion (details in Supplementary Note 4). These
data collectively sample our best assessment of the epistemic
uncertainty of the source process almost two decades after the
earthquake. The numerical simulations map this source uncer-
tainty onto a synthetic tsunami dataset.

The maximum near-coast wave amplitude simulated from
finite-faults models (red lines) generally falls within PTF’s inner
confidence intervals (defined through the 5-95th percentile
interval), and the means (red and black solid lines) are highly
clustered (we note that PTF distributions are not necessarily
Gaussians and percentiles are here used to define confidence
intervals). This agreement indicates that, while our PTF
implementation simplifies the source representation (since
NEAMTHM18 scenarios use uniform slip for crustal faults), the
source variability in the PTF ensemble and the log-normal
distribution we use to quantify the uncertainty embed the
tsunami source uncertainty, as quantified by the range of available
finite-fault models6-78-84,

Conversely, observations at the tide-gauges are more scattered
(yellow squares in Fig. 3). Several observations from Eastern
Spain, the Balearic Islands, and western Italy fall into the tails of
the PTF distributions. The misfits of some local maxima of the
observations are present for both the PTF’s central values and
numerical simulations from best-fit source models. These misfits
are probably due to the above-mentioned basin and harbour-
related amplifications that likely occurred in several areas’!, and
that cannot be reproduced without high-resolution tsunami
numerical modelling. As they fall inside the upper tail of the PTF
distributions, only the alert level corresponding to conservative
choices (high percentiles of the PTF) include such maxima,
resulting in a better correlation with the observations noted above
(Fig. 2¢). This demonstrates that even the relatively simple
uncertainty model implemented to manage uncertainty in
tsunami generation and propagation (see “Quantification of
PTF’s propagation factor” in Methods) can deal to some extent
with these hard-to-predict amplifications, leading to forecasts that
can encompass observations within uncertainty bounds. In the
future, forecast precision may be improved through more
advanced techniques to better quantify local amplifications and
related uncertainty®385-91, Notably, also other potential sources
of local deviations exist, for example, the contribution of
seismically induced landslides. While significant efforts in these
directions are ongoing, research is still required to fully
implement such methods in near-field real-time forecasts?>93,
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northwest Africa, ¢ southwest Europe, and d the main islands.

PTF for the 2010 Maule Mw 8.8 earthquake. To illustrate PTF
behaviour for larger magnitudes, we implement the PTF also to
the NEAMWavel7 ICG/NEAMTWS exercise scenario, a syn-
thetic Mw 8.5 earthquake on the Hellenic Arc in southwestern
Greece (see Supplementary Note 6), and to the 2010 Maule, Chile,
Mw 8.8 earthquake® (Fig. 4). The latter required the extension of
PTF implementation to cover the Chilean subduction zone (see
Methods)®®. For such large magnitudes, the source model
includes in the ensemble only subduction earthquakes (Supple-
mentary Table 4) with heterogeneous slip distributions also fea-
turing shallow slip amplification®>-67:959, mimicking to some
extent tsunami earthquakes (events generating a tsunami larger
than expected from seismic magnitude®®%7).

The 2010 Maule event provides the opportunity to compare
PTF results with a larger and higher-quality dataset of tsunami
observations, including coastal and deep-sea tsunami sensors
(DART and tide-gauges) and run-up data®®? (Fig. 4). To
compare with tsunami amplitude at the coast, run-up data are
halved (100 and reference therein). The results for this event show
that PTF inner confidence intervals (15-85th percentiles)
encompass all the observations, including run-ups (Fig. 4e,f),
despite their possibly relatively large measurement errors. This
result is coherent with the results of Catalan et al.44, who show
that the scenario envelope includes observations. The prediction
at tide-gauges (Fig. 4c,d) shows a slight tendency towards
overestimation, which remains within the uncertainty bounds.
For the much smaller Mw 6.8 Zemmouri-Boumerdes event in the
Mediterranean, we observed an opposite tendency towards
underestimation. A possible reason is that, for smaller earth-
quakes on steeper faults like this, local resonances and
amplification play a more important relative role due poorly
modelled smaller tsunami wavelengths; for the Mw 8.8 Maule
event, shelf and basin resonances occur also at longer periods!?],
but they are well-captured on a 30 arc-sec grid (see Methods).

6

Moreover, the scenarios in the PTF ensemble of large magnitudes
(Mw > 8.1%0) are modelled on the 3D subduction geometry and
with randomly sampled slip distributions (see Methods; the
smaller crustal scenarios discussed above are instead modelled
with simplified planar-fault uniform-slip sources). Consequently,
the tsunami modelling uncertainty (accounting for tsunami
generation, propagation, and inundation simplifications!02103)
might be slightly overestimated in this case, as source
representation is more advanced for such magnitudes, then
compensating some underestimation due to local tsunami effects.
This possible slight overestimation is also present when focussing
on DART, even if may be less pronounced due to the larger
source-target distance (Fig. 4a,b). Notably, a systematic extension
to more case studies with extended high-quality observations may
allow, in the future, a finer tuning of the adopted uncertainty
modelling in each of the PTF factors, for example, using the large
set of tsunami observations that is available in the Pacific
Ocean?*647.

Testing PTF. To quantitatively test PTF performance for
operational use in TEWS, we should define an unbiased set of
events for which a tsunami warning issuance is required,
regardless of whether a detectable tsunami was actually generated
or not (the Gutenberg-Richter distribution of earthquake mag-
nitudes implies that most of tsunami warnings will be issued close
to this condition). To this end, we built a testing dataset (Fig. 5a)
composed of all Mediterranean earthquakes that triggered alert
messages from the CAT-INGV TSP, without any filter or selec-
tion. This includes all the twelve seismic events with initial
magnitude estimate Mw > 6.0 that occurred since CAT-INGV
became operational in 2015. We added the 2003 Zemmouri-
Boumerdes event, to enrich the set of events in the western
Mediterranean, reaching a total of thirteen events (Fig. 5a).

NATURE COMMUNICATIONS | (2021)12:5677 | https://doi.org/10.1038/s41467-021-25815-w | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25815-w

ARTICLE

Maximum Wave Amplitude (m)

Maximum near-coast wave amplitude (m)
0.01 0.1 1 10

0.01 0.1 1 10
1 P . - —

b]a

A Observations: DART
——Mean PTF
10 --=- Median PTF
C.I. PTF (1-99p)
C.I. PTF ( 5-95p)
N C.I. PTF (15-85p)

/[D51425

20

°

spnneq
5

FE e

© /\[D51426

S

G
3

| |D54401

40 -

50 —

Maximum near-coast wave amplitude (m)
0.1 1 10

apmnel

'ALCAHUANO

——Mean PTF
—-=-Median PTF

RALR

-40

om C.I. PTF (1-99p)
C.I. PTF (5-95p)
I C.I. PTF (15-85p)

............... -12

-16

................ . -20

................ 24

................. 28

apninel

»»»»»»»»»» 32

............ 36

...................... -40

A Observations: tide-gauge - -44
@ Observations: run-up

-48
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comparison between deep-sea observations and PTF forecasts (black lines and grey areas). ¢ Epicentre (star), average of the slip distributions used in the
ensemble, and location of coastal observations (tide-gauges and run-up as blue triangles and green circles, respectively; run-up is halved to compare with
wave amplitude, see Supplementary Note 6). d Graphical comparison between coastal observations and PTF forecasts (black lines and grey areas). e, f

Same as b, ¢ zoomed over the area with run-up measures.

Observations for the tests include rapid and revised moment
tensor estimates, and tsunami observations from the available
tide-gauges and from run-up surveys, when available (more
details in Supplementary Note 6).

PTF accuracy is evaluated through formal hypothesis testing to
assess the consistency between forecasts and available data and, if
need be, to reject the PTF uncertainty model (see Methods). Both
intermediate (source mechanism) and final (tsunami intensity)
forecasts are tested. Results indicate that overall focal mechanism
forecasts are accurate, such that the PTF source model is never
rejected (results in Supplementary Table 7). Tsunami data and
forecasts are compared simultaneously at all forecast points with
observations, and spatial correlations are accounted for (see
Methods). Although tsunami observations in many cases are
limited, and sometimes with a poor signal-to-noise ratio due to the
small event sizes, statistical tests confirm PTF accuracy also
regarding tsunami forecasts, both for the events generating an
observable tsunami (e.g. the October 30, 2020 Mw 7.0 Samos-Izmir
event, Fig. 5b; results for all the six events of this type in
Supplementary Fig. 4) and the ones for which a tsunami has not
been observed (e.g. the 2017 Mw 6.5 Lesbos event, Fig. 5¢; the
results for all the seven events of this type in Supplementary Fig. 5).
The tsunami generated by the Mw 7.0 Samos-Izmir earthquake
(maximum run-up ~3.8 m1%4), as well as by the May 2, 2020 Mw
6.7 lerapetra event, offered us a unique opportunity to perform a
blind test for PTF, since the complete evaluation system was in
place before the events occurred. The same test can be applied to
the 2010 Maule tsunami, using both deep-sea and coastal
observations as well as near-field and far-field observations; the
results confirm the overall accuracy of PTF also for large
magnitude event (Supplementary Fig. 4). On the other hand, for

all the events that did not generate any measurable tsunami, PTF
consistently forecasts an essentially negligible tsunami (<0.10 m) at
all the observation points (Supplementary Fig. 5). While specific
events may tend toward over/underestimation, altogether they pass
the statistical test (accuracy level of 0.05). More details in testing
results are discussed in Supplementary Note 7.

PTF and alert levels. Using the same testing dataset, we finally
compare the PTF alert levels with those produced by the reference
non-probabilistic methods (DM and BMS, Fig. 6). The comparison
with data (Fig. 6a) is limited to the forecast points where obser-
vations are available. Comparisons are grouped in three categories
as:  correct-assignment  (assigned = observed); false-alarm
(assigned > observed); and missed-alarm (assigned < observed).

The three non-probabilistic methods give significantly different
results (Fig. 6a and Supplementary Table 9). DM and ENV
produces relatively few missed alarms (about 3%) but generates
many false alarms (about 55%). This high percentage is in line
with other conservative methods worldwide*. Conversely, BMS
optimizes the correct assignments (about 86%), minimizing false
alarms but increasing the missed alarms (11%). This reflects the
fact that DM and ENV are worst case oriented to reduce missed
alarms. On the contrary, the aim of BMS is to stay as close as
possible to the actual event.

The alert levels computed from PTF shows a large variability,
which depends on the selected percentile. High percentiles of PTF
compare with conservative non-probabilistic methods (DM and
ENV). The highest PTF percentiles (e.g. the 99th) are even more
conservative than DM and ENV, further reducing missed alarms
at the cost of further increasing false alarms. Decreasing the PTF
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percentile, the number of correct assignments progressively
increases: most false alarms are suppressed, while missed alarms
increase. The increase of correct assignments (green bars in
Fig. 6a) and the decrease of false alarms (orange bars) are due to a
reduction of the overall number of alerted (advisory or watch)
forecast points (Fig. 6b), observed at all forecast points
independently from the position and number of observations.
PTF median and mean match with a best-match method like
BMS. The BMS and the PTF median produces a similar
percentage of correct alarms (85% vs 86%), while the PTF mean
produce a slightly larger percentage of correct alarms, fewer

missed alarms, but more false alarms and alerted forecast points
(Fig. 6a, b).

Overall, PTF percentiles encompass and go beyond the range
of behaviours and associated level of conservatism of DM, ENV,
and BMS. The percentage of missed alarms can be strongly
reduced with conservative choices (PTF high percentiles), that is
from 14% to <1% passing from the median to the 99th percentile,
at the cost of an increase in the percentage of false alarms, from
<1 to 53%. Intermediate-high PTF percentiles (80th or 85th) are
somehow between such extrema, progressively modulating the
rates of missed/correct/false alarms.

NATURE COMMUNICATIONS | (2021)12:5677 | https://doi.org/10.1038/s41467-021-25815-w | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25815-w

ARTICLE

a i T T T T \ I
0.9 H
S
2 . |
g o8 [—
L07H H
]
<
3 0.6 H | |
)
8 0.5 H H
5 0. | — |
S
3
203
8
$ 0.2 H |
o [/ Correct assignment
Qo1 H . Missed alarm H
[ False alarm
0 | | 1 | I 1 | I 1 L I I il B I
& ) ) © o © S Q o > IS 9
§ & g g g g g A 8 £ ¢ &
N £ & & & & & & & & & &
S & [ Q ) ] Q Q ] & & K
& S
N
&
=
xa
b 180 |
<
£ -
Y]
=
5 _
o
2 _
3
< _
£
£ i
@
o
o -
F*
X @ S o S el S Q S > & xe)
§ o g & 2 & g 8 $ £ & §
N 3 & & & & & & & & 3 $
Q\é‘ & ) Q ) < < Q < g & Q(;o
QQ’Q (;06
( o
[ 5
Conservatism

more alerted forecast points
more false-alarms
less missed-alarms

less alerted forecast poﬁrts
less false-alarms
more missed-alarms
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statistics for the 13 events in the testing dataset considered in this paper (Fig. 5a). a Average percentage of correct- (green), false- (yellow) and missed
alarms (red) at forecast points with observations. b Average total number of forecast points with advisory and watch levels at all forecast points. Note that
CAT-INGV DM is less conservative than the original NEAMTWS DM. The different PTF statistics allow covering the full range of conservative choices,
encompassing the range defined by existing non-probabilistic methods. The selection of a specific PTF percentile can be explicitly linked to a pre-defined

level of conservatism, quantifying the expected rate of false/missed alarms.

Hence, PTF allows better interpretation of the role of
conservatism in present-day non-probabilistic methods, for an
explicit and systematic selection of the desired level of
conservatism.

Finally, we note that PTF helps overcoming the potential
instabilities of DMs with events close to the defined magnitude
thresholds. This instability can be well illustrated through the
recent 2020 Samos-Izmir event. In the first minutes after
the event, real-time magnitude estimations oscillated just around
the DM threshold of Mw = 7 (with uncertainty bounds ~6.8-7.2,
see Supplementary Table 2). As a consequence, small oscillations
in the central magnitude could determine a significant change in
the alert levels; for example, using the reference DM of CAT-
INGYV, all regional forecast points (<400 km) would pass from
advisory to watch, and regional forecast points (>400 km) from
information to advisory (see Supplementary Fig. 6), with a
number of alerted forecast points passing from 297 (29 watch) to
1107 (297 watch). On the contrary, PTF solutions are not based
on any threshold and they account for estimation uncertainty,
then they are stable with respect to such oscillations.

Discussion

We present an approach dealing with uncertainty in real-time
tsunami forecasting and linking alert-level definition for tsunami
early warning to such uncertainty, coined Probabilistic Tsunami
Forecasting (PTF). Current practices do not quantify uncertainty
in tsunami forecasting and define alert levels deterministically. To
reduce missed alarms, they typically adopt safety factors that
increase the number of false alarms. PTF addresses this issue
through explicit uncertainty quantification, linking alert levels to
the desired level of conservatism.

This approach has been implemented for near-field tsunami
warning and tested against all available data in the Mediterra-
nean, including two blind tests (the recent 2020 Mw 6.7 Ierapetra
and Mw 7.0 Samos-Izmir earthquakes), as well as for the 2010
Mw 8.8 Maule earthquake and tsunami, one of the largest events
ever recorded. The results show that PTF is statistically accurate
in its forecasts, ranging from relatively small crustal earthquakes
to large magnitude subduction zone events.

We have shown that uncertainty forecasts can be quantitatively
and transparently transformed into alert levels, using real-time
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conversion rules established in advance. Current practice bases
this transformation on some generic rules defined in agreement
with authorities, fusing the scientific and political aspects of
defining alert levels!®32:39-45 Ag quantitative information about
how certain is a forecast is not available, is not based on the
effective real-time uncertainty on observations, and is not com-
municated, it is not possible to be sure regarding the degree of
conservatism that is being applied. The formal quantification of
uncertainty of PTF allows instead accounting for real-time
uncertainty, covering explicitly the full range of possible choi-
ces, from conservative methods minimizing missed alarms to
best-guess methods maximizing correct alarms. In this way, the
desired average performance can be explicitly selected, allowing
optimizing choices for each risk-reduction action. Choosing such
rules requires competences outside tsunami science, as they
depend on decision-makers needs, on acceptable risks, tolerated
false/missed alarms rates, and other contextual factors. In any
case, not only missed alarms but also false alarms may generate
significant economical and societal consequences®19>. Consider-
ing that both missed and false alarms are due to uncertainty in
the forecast, and both exist in current-practice methods, a
transparent management of uncertainty is preferable$->1, for
example quantifying the potential socio-economical con-
sequences of alternative choices, as evaluated from the expected
long-run rate (over multiple events) of false/missed
alarms33:51-56,106-111  Rea]-time uncertainty forecasts could also
be exploited in the future by decision makers to define new
strategies for risk management. Indeed, a range of different risk-
mitigation actions (also beyond evacuation, such as the activation
of mitigation procedures in industrial plants or automatic stops in
lifelines) can lead to different choices for different targets and/or
different actions with different tolerances to missed and false
alarms®2->4, This possibility is prevented in present-day common
practice, but is made possible by an explicit quantification of
uncertainty in real-time. This approach to tsunami warning
would also complement the ongoing efforts towards uncertainty
reduction through enhanced real-time tsunami monitoring cap-
ability (GNSS, DART, SMART cables®2!) and increase of real-
time computational capability?3. These elements have been
already emphasized by the United Nation Decade of Ocean Sci-
ence for Sustainable Development (2021-2030, https:/
www.oceandecade.org/).

More extensive testing against tsunami data worldwide will
allow a thorough calibration of the uncertainty quantification
framework, eventually introducing strategies to reduce uncer-
tainty without losing accuracy. Here, by implementing a PTF
applicable worldwide, we have set the scene for both hindcasting
and blind tests of PTF performance against events of any mag-
nitude, similarly to other testing experiments (http://
cseptesting.org/). Further exploiting high-performance comput-
ing infrastructures, we can extend quantitative testing of tsunami
forecasts and their underlying science worldwide to a larger set of
tsunami events*®. Moreover, several important specific issues are
still only partially dealt with, like, for example, tsunami
earthquakes”” or more complex coastal dynamics. Testing and
calibration must include these specific aspects to make PTF
operational and fully suitable for science-informed decision

making.

Methods

Probabilistic Tsunami Forecasting (PTF) evaluation. The uncertainty existing at
the time ¢>t; on the potential tsunami generated by the event E occurring at the
time 5 is summarized through a probability distribution conditional upon E. The
corresponding survivor function hg(x,p,t) = P(X>x| E; p, t) describes a hazard
curve for a given Tsunami Intensity Measure (TIM) x in the target forecast point p,
corresponding to the probability density function dhg(x, p, t). The function

hg(x, p,t) can be estimated from the uncertain knowledge about E at time t based

on an ensemble of tsunami simulations corresponding to tsunami sources com-
patible with the information about E available at the time t. The available infor-
mation is constituted by the estimates of the source parameter values (e.g.
earthquake location and magnitude) as derived from available seismic, geodetic
and/or tsunami records (Fig. 1); different techniques may be applied to obtain this
information, ranging from source inversion to data assimilation. The quantity and
the quality of the information available may increase through time, eventually
reducing uncertainty. Applying the total probability theorem, hy(x, p,t) reads:

b o) = POX > xlE:put) = [ POC> s plglEs s
N
~ 2P(X > xls;; p)P(s; | Es t)

(&)

where P(X > x|s; p) (propagation factor) is the probability that the earthquake
scenario s produces a tsunami exceeding the TIM value x at the location p; g(s| E; t)
(source factor) is the probability that each scenario s can be considered as a good
approximation of E based on the uncertainty on the source parameters at the time
t; the set S includes all the possible scenarios s in the area.

In the right-hand side of Eq. 1, we approximate the infinite set S with a discrete
set {s;}, defining a finite ensemble of source scenarios resembling E. This
discretization is possible if the databank {s;} is built to represent all the possible
earthquakes in the area, reasonably covering all the natural variability. The
probabilities P(s; | E; t) can be interpreted as weighting factors for each source
within the ensemble. To speed up the evaluation of Az (x, p, t), the databank {s;} and
corresponding propagation factors {P(X > x|s;; p)} can be prepared in advance. As
time passes, {s;} and {P(X > x|s;; p)} can be refined accounting for the incoming
information about the source and about the tsunami, eventually including data
assimilation’~10. In addition, {s;} can be enhanced with new and possibly more
accurate scenarios better resembling the observations (Fig. 1a). The forecast
(Fig. 1c) and the alert level (Fig. 1d) can be updated accordingly.

The best candidate databank {s;} is the source model of a time-independent
long-term PTHA (Probabilistic Tsunami Hazard Analysis!?2) for three main
reasons. First, PTHA source models, by construction, should guarantee or
approximate well enough the source completeness. Second, one of the ingredients
of the PTHA is the databank of {P(X > x|s;; p)} used for tsunami propagation.
Third, PTHA provides long-term source frequency and conditional probability for
all scenarios, which makes it a suitable backup for not yet available real-time
information. It may then provide all the elements depicted in Fig. 1b.

Given that {P(X > x|s;; p)} may be pre-calculated and used as a look-up table in
real-time, the computational time is dominated by the quantification of P(s; | E; t),
the retrieval of {P(X > x|s;; p)} from the databank and the aggregation procedure.
Being the quantification of P(s; | E; t) and the aggregation computationally
inexpensive, the main time-consuming step is the retrieval of the scenarios from
the databank, which is a problem quite common in informatics that can be further
optimized by code engineering with respect to present implementation. Time can
be saved by reducing the number of scenarios (the ensemble size), for example, by
discarding scenarios with negligible P(s; | E; t) through pre-defined cut-offs, whose
practical implementation is discussed in the following section. Probabilities must
be re-normalized accordingly to avoid biases. The larger the reduction, the larger
the loss of accuracy in the tails of dhg(x, p,t). We stress that by coupling
appropriate cut-off and specific code engineering, computational time can be
probably reduced to a few seconds.

The presented formulation is in principle valid also for non-seismic tsunami
sources. However, source parameters are more difficult to obtain in real-time for
non-seismic sources and source variability is less constrained. For the same reason,
also the creation of scenario databases is more challenging. As a result, present-day
PTHA studies are primarily focused on earthquakes?>!02. Since TEWSs are
nowadays mostly devoted to seismic sources only, as a starting point we will also
focus our attention to seismic sources.

Quantification of PTF's source factor. The source factor of Eq. 1 deals with the
real-time uncertainty on the source of the event E, quantifying the proximity
between the scenarios {s;} and E, based on information available at time >tz In
principle, P(s;|E; t) can be estimated using any type of real-time observations,
including seismic and geodetic data, as well as tsunami records.

To deal with local tsunamis, delivery time for alert levels should be shorter than,
say, 10 min (Fig. 1). For ¢t — t; < 10', no direct measurements of the sea level
anomaly associated with the ongoing tsunami are typically available, thus P(s;|E; t)
should be estimated based on source parameters. Each scenario s; can be
parameterized as 0; = 0,(My, ¢;, 0,,), where M, is the magnitude, ¢; the geometrical
centre of fault, and o,, a vector with all of the other rupture parameters (e.g. strike,
dip, rake, slip, other kinematic rupture parameters). Consequently, P(s;|E; t) can be
factorized as a chain of conditional probabilities:

P(s;(My, ¢, 0,))|E, t) = P(0,,]¢;; My; E, 1)P(¢;|My; E, t)P(My |E, ) (2)

where P(M,|E, t) is the probability of the magnitude bin corresponding to M,
P(c;IMy; E, t) is the probability of the 3D volume bin (lon, lat, z) corresponding to
¢; and depending on My, and P(o,,|c;, M; E, t) describes the dependence of all the
other unknown earthquake parameters on position and magnitude.

For t — t; < 10’, not even a complete seismic source characterization is usually
available. Real-time information typically includes only hypocentre and magnitude
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estimation, while robust estimates of the other parameters o,, are available only at
later times, such as a moment tensor solution. Nevertheless, given an earthquake of
a given magnitude at a given location, the possible values of all other seismic
parameters o,, are not all equally probable. They depend on the local long-term
seismo-tectonic behaviour, and their likelihood can be retrieved from long-term
PTHA, conditional to the magnitude and hypocentre real-time estimates.
Therefore, P(s;(My, ¢;, 0,,)|E, t) turns out to be a mixture of real-time (RT) and
long-term (LT) estimations:

P(s(My, ¢1,0,)IE, t — to < 10') = P(0,,]c;, M) P(c;|My; E, )" P(M, |E, )"
®)
where:

® the magnitude probability P(M|E, t)*" corresponding to the early
automatic estimation uncertainty. We assume a normal distribution and
integrate it over the magnitude bins corresponding to M,. The normal
distribution is set with the method of moments by setting the mean to the
best-guess estimation and the standard deviations as the semi difference
between 84 and 16th percentiles, as estimated from the adopted magnitude
inversion method (see Supplementary Note 1 and Supplementary Table 2).

®  the probability that ¢; is the centre of the causative fault can be evaluated as
follows. The position of the nucleation { can be seen as the (vector) sum of
the spatial position of the centre of the fault ¢; and the relative position of
the nucleation within the fault, y, that is { = ¢; + y, and thus ¢, = —y.
Consequently, P(¢;|M,; E, HRT can be computed as the convolution
between one distribution representing the uncertain position of { (from
real-time information) and another distribution representing the uncer-
tainty on the position of { within the fault. The latter depends on M;: the
larger the magnitude, the higher the probability that a relatively distant ¢;
can be associated with {. We assume a 3D normal distribution for both the
uncertainty on ¢ and ¢; — {. The former originates from the hypocentre
estimation (see Supplementary Note 1 and Supplementary Table 2), while
the latter is set centred in 0 ,with a covariance matrix with diagonal
o =0,=(/ 27, 02, = % (for an average dip of 45 degrees), and
0,, = 0y, = 0,, = 0. In other words, this distribution, which describes the
uncertainty in the position of nucleation within the fault, is obtained by
multiplying three independent Gaussians with a horizontal standard
deviation equal to L/2, and a vertical standard deviation
(W/2)sin(rr/4) = W/(24/2). The fault dimensions W and L are evaluated
using empirical scaling relations’®”7 for crustal and subduction interface
earthquakes, respectively. Note that Murotani et al.”” is selected to be more
conservative since it provides larger expected areas than other empirical
scaling laws available for subduction earthquakes. The convolution of these
distributions (again a 3D normal distribution) is integrated over 3D
volume bins corresponding to c;.

® the probability P(o,,]c, My)*" of the other earthquake parameters o, is
taken from long-term hazard estimations. Most earthquake parameters
(e.g. faulting type or rupture details) mainly depend on the tectonic regime
around the fault location (as evaluated from seismic catalogues) and on the
characteristics of the source zone. For example, ¢; may lie on a subduction
interface, which has a dominantly reverse slip mechanism, whose exact
direction may, in turn, depend on the specific location over the slab
interface; or ¢; may instead lie on the neighbouring outer-rise, with a higher
probability for a normal mechanism. Other parameters (e.g. slip
distribution) may depend on both position and magnitude. If this
information is not available from previous long-term studies (at the
global, regional or local scale), maximum ignorance can be modelled using
uniform distributions until real-time information (e.g. focal mechanism
and/or moment tensor estimations) become available.

To reduce the computational effort and save time, we implemented cut-off
thresholds in the real-time estimations of Eq. 2, that is, the real-time quantification
of the uncertainty in magnitude and hypocentral location. Scenarios with marginal
probabilities smaller than the cut-off are neglected. For simplicity, the threshold in
the hypocentral location has been implemented in 2D that is marginalizing in depth.
We implemented thresholds corresponding to 1.5, 2, 2.5, and 3 standard deviations
(Supplementary Table 4). On average, passing from 2 to 3 standard deviations
increases the number of scenarios by one order of magnitude (from 103-10* to
10%-10°), significantly expanding the computational cost. Percentiles 5th-95th of the
PTF remain stable for standard deviations =2, and computational times are within
2’ (the longest being ~ 100”), which can be considered an acceptable upper-limit for
a non-engineered real-time serial application. Hence, the two standard deviations
cut-off is taken as a reference for all examples and tests discussed.

In our prototype implementation for the Mediterranean Sea, the real-time
earthquake parameter estimations are computed by the Early-Est software (see
Supplementary Note 1). The long-term information is instead based on the
NEAMTHM18 tsunami hazard model (http://www.tsumaps-neam.eu/%>-67).
NEAMTHMI18 includes millions of scenarios completely covering the
Mediterranean sea, considering two seismicity types for dealing selectively with
epistemic uncertainty: predominant seismicity (PS), constrained to happen inside
geometrically well-constrained subduction interfaces, and background seismicity

(BS), diffused everywhere within the crust. PS includes the Calabrian, Hellenic, and
Cyprus Arcs, while BS covers all the Mediterranean with a regular grid, including
the relatively less-constrained seismicity potentially occurring on unmapped
offshore faults and the surroundings of subduction zones (e.g. in the outer-rise).

Outside the Mediterranean, the discretization strategy defined by
NEAMTHMIS is still used, but PS sources are the subduction zones defined in
SLAB2 model!!? and BS sources are modelled over a regular grid with size
~0.2 x 0.2 degree corrected to define approximately equal size cells!!3. Real-time
earthquake parameter estimates are taken from the literature (for the Maule case
study’!4) and the forecast of focal mechanisms for crustal faults from!13,

Seismic fault parameters are considered less uncertain for PS than for BS. In the
BS branch, all fault parameters are set as free parameters, except for few physical
constraints: an upper bound is set for magnitude (M < 8.1), and depth is limited
by the crustal thickness. Faults are planar with uniform slip and fault size
determined from empirical scaling relations’®. For the PS branch instead, only
magnitude, position on the slab, and slip distribution are parametrized, as the
geometry is specified by the 3D subduction interface, and the rake is forced to
comply with the dominant one on the subduction segment. For M, 2 8.0,
heterogeneous slip is imparted using stochastic models suitable for 3D faults®®. The
magnitude is extended up to the magnitude the interfaces may host. Several
alternative strategies are considered to model epistemic uncertainty associated with
subduction earthquakes, such as different seismogenic depth ranges, scaling
relations, rigidity properties, and stochastic shallow slip amplification®6-%.

The separation between PS and BS is implemented by splitting P(s; | E, t) of
Egs. 1 and 3 in two terms, that is:

P(s,[E, 1) = P(s,[E, t, P)P(PS|{, M) + P(5,|E. t, BS)(1 — P(PSI{, M)  (4)

where P(PS| {, M,) is the probability that the nucleation started at the point { on
one of the three subduction interfaces considered in the Mediterranean Sea (the
Calabrian, Hellenic and Cyprian Arcs). This is computed from the uncertainty on {
from the real-time estimation, considering a seismogenic volume corresponding to
each interface with a buffer of 10 km. For M; > 8.1, earthquakes are assumed to
belong to PS, so P(PS|{,M,) = 1. P(s;|E, t, PS) and P(s;| E, t, BS) are both
evaluated as in Eq. 2, using the same magnitude distribution. Both the long-term
factors (focal mechanism for BS, slip distributions for PS) are taken from
NEAMTHM18 (mean of the epistemic uncertainty) for the Mediterranean case
studies and, when alternative scenarios were present in NEAMTHMI18, they were
all included in the databank {s;}, weighted by their epistemic credibility. For the
Chilean subduction zone, slip distributions were produced, following the same
strategy adopted in the NEAMTHM18%%%,

Quantification of PTF's propagation factor. For each source s;, the propagation
factor in Eq. 1 is based on the results of one numerical tsunami simulation, often
obtained as a linear combination of synthetic tsunamis produced by elementary sources.

The NEAMTHM18 propagation database®®¢7 is based on dislocations in a
homogeneous elastic medium. Seafloor deformations were processed with a low-pass
wavenumber filter (modelled as 1/cosh(kH) following Kajiura approach!!®, where k
is the wavenumber and H is the average sea depth nearby the fault) to obtain the
tsunami initial condition, reconstructed as a combination of Gaussian-shaped
elementary sea-level elevations. Tsunami simulations are saved at the 50 m isobaths
and, in this regime, nonlinear effects are negligible!!°. Gaussian sources were
modelled with the benchmarked GPU-based nonlinear shallow water Tsunami-
HySEA code (https:/edanya.uma.es/hysea)!17, with eight hours of propagation on a
regular grid including the whole Mediterranean Sea, using the 30 arc-sec bathymetric
model SRTM30+ (http://topex.ucsd.edu/ WWW_html/srtm30_plus.html). The
results are obtained at the 50 meters isobath almost evenly spaced at ~20 km from
each other along the coasts of the Mediterranean Sea (Supplementary Fig. 1 and
Supplementary Dataset 1). The time step is computed using the usual CFL stability
condition, that for a 2D, 2-step numerical scheme writes as At =1/4 x CFL x min
(AX/Amao AY/Amax)> Where A is the maximum eigenvalue of the matrix associated
with the hyperbolic system to be approximated!!8. The CFL number retained is 0.95
(must be <1), and the resulting time steps depend on the scenario simulated (mesh
size and maximum propagation depth).

The NEAMTHMI18 propagation database does not cover scenarios outside the
NEAM region. For the scenarios within the Chilean subduction zone, we exploit
modern high-performance computing infrastructures®, performing all the
individual simulations required to complete the source ensemble. For the Maule
case study, the simulation environment has been set as the fault is modelled with a
mesh of triangular elements preserving the variable strike and dip of the Nazca
subduction zone as in the SLAB2 model. The numerical simulations have been
performed using Tsunami-HySEA code with a bathymetric grid for the Pacific
Ocean with a spatial resolution of 30 arc-sec”.

Wave amplitudes in front of the coast are estimated from the offshore
simulation results with the basic version of Green’s law!1%: x,,, = xs,,,+/50. Unlike
in NEAMTHMI3, the uncertainty related to tsunami generation, propagation, and
inundation simplifications!%103 is here modelled as a log-normal distribution,
with median equal to the modelled tsunami near-coast wave amplitude, plus an
unknown bias and a standard deviation that may be estimated by comparing
modelled tsunamis against observations!92103, This uncertainty includes
unmodeled source variability (realistic earthquakes are usually more variable than
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the scenarios in {s;}), local topo-bathymetric features, as well as to the variability of
the tsunami along the coastline among different forecast points®2192, For
simplicity, we neglect the bias, and set

P(X > xls;;p) = 1 — ®([log(x) — log(&(s;; p)1/1) ©)

where @(x) is a standard cumulative normal distribution, and &(s;, p) is the value of
the selected TIM (here, near-coast wave amplitude) evaluated at the forecast point
p due to the scenario ;. Bearing in mind the variability set by other authors8>%,
the variance is here set to 1.

Testing source geometry and focal mechanisms forecasts. To test the
Zemmouri-Boumerdes forecast, we considered a total of 12 solutions as reported in
Supplementary Table 3, five of them based on seismic moment tensor inversion,
and the other seven obtained from geodetic finite-fault inversions (see Supple-
mentary Note 4). The null hypothesis HO is that the estimations can be considered
a sample of our forecast model. To test HO, we randomly sampled groups of 12
focal mechanisms from the distribution P(o,,|c;, My; E, t) of Eq. 3, marginalized for
all the parameters except the angles strike, dip, and rake. Then, we computed the
log-likelihood of each group, assuming independence, and we compared the
obtained distribution with the log-likelihood of the observations. Under HO, the
rank of observations should be larger than a pre-defined conventional confidence
level (one-tailed test).

The same test is performed for all the 12 events in the testing dataset of Fig. 5a,
both collectively (all the events together) and individually (all events taken
separately). We tested both preferred fault and double-couple planes, and HO is
evaluated at standard confidence levels. Even if the dependence of a single CMT
solution is weak, we repeated the same tests restricting to the nine events that
occurred after the production of the method® (in September 2016).

All the results are discussed in the Main Text and in Supplementary Note 7.

Testing tsunami forecasts. The test of PTF against tsunami observations is
performed simultaneously at all the locations with available data. Considering that
they are correlated to each other, we adopted a two-step strategy. First, we sampled
scenarios from the source model P(s;|E, t = t") of Eq. 1 and considered the spa-
tially correlated results. Second, we stacked the comparisons at all forecast points
by taking the difference between the observations and the expected value (the
mean) of P(X > x|s;; p) (the propagation factor) for the sampled scenarios, allowing
us to compare all locations simultaneously. In this way, the uncertainty on the
source is fully sampled, while the uncertainty on the propagation is averaged.
Under the null hypothesis that PTF source and propagation factors are not sig-
nificantly and systematically biased (in the sense of a large systematic over/
underestimation), we expect that the distribution of the differences will contain the
value 0. Where multiple observations associated with the same forecast point are
available, the difference is computed against the maximum observation to guar-
antee a balanced and robust forecast evaluation. We verified that 0 is not in the tails
of the distribution, but it is contained between the percentiles 2.5-97.5 for

a = 0.05. An example of this test is reported in Fig. 5b.

Whenever the available observations are all equal to 0, a bias would be found by
the previous test, since PTF always forecasts >0. This occurs for seven events
(see Supplementary Notes 6 and 7). In this case, the test described above is
modified by verifying that 0.10 m (minimum threshold of Advisory AL) is unlikely
at all the locations where observations are available. Adopting as above o = 0.05,
we tested that 0.10 m falls at percentiles larger than 95th, respectively (one-tailed
test). An example of this test is reported in Fig. 5c.

Data availability

All data generated or analysed during this study are included in this published article, in
its supplementary information files, and in the referenced datasets (e.g., NEAMTHMI18:
http://www.tsumaps-neam.eu, IRIS Data Services and Data Management Center: https://
ds.iris.edu/ds, Orpheus EIDA data services: https://www.orfeus-eu.org/data, VLIZ-IOC/
UNESCO repository: http://www.ioc-sealevelmonitoring.org, Earthquake Sourve Model
Database: http://equake-rc.info/SRCMOD).

Code availability
The PTF Matlab code used for this paper is available on Github at https://github.com/
INGV/matPTF.
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