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A THEORY OF THERMOELASTIC MATERIALS WITH VOIDS
WITHOUT ENERGY DISSIPATION

S. De Cicco and M. Diaco
Dipartimento di Scienza delle Costruzioni
Napoli, Italy

This article is concerned with the theory of thermoelastic materials with voids based on
the concept of volume fraction [Goodman and Cowin, Arch. Rational Mech. Anal.,
vol. 44, pp. 249-266, 1972; Nunziato and Cowin, Arch. Rational Mech. Anal., vol. 72,
pp. 175-201, 1979]. We use the results of Green and Naghdi [ Proc. Roy Soc. London
A, vol. 432, pp. 171194, 1991, J. Elasticity, vol. 31, pp. 189-209, 1993] on thermo-
mechanics of continua to derive a linear theory of thermoelastic materials with voids
that does not sustain energy dissipation and permits the transmission of heat as thermal
waves ai finite speed. Then we establish a unigqueness result and the continious
dependence of solutions upon the initial data and body loads.

The concept of a distributed body introduced by Goodman and Cowin [1] in the
context of granular and porous materials asserts that the mass density has the
decomposition yv, where y is the density of the matrix material and v is the volume
fraction field. This representation introduces an additional degree of kinematic
freedom and was employed by Nunziato and Cowin [2] to establish a nonlinear
theory of elastic materials with voids. Capriz [3] showed that the theory of elastic
materials with voids is a special case of the theory of affinely structured continua.
The linear theory of elastic materials with voids was established by Cowin and
Nunziato [4].

In contrast to the conventional thermoelasticity, nonclassical theories came into
existence during the last two decades. These theories, referred to as generalized
thermoelasticity, were introduced in the literature in an attempt to eliminate the
shortcomings of the classical dynamical thermoelasticity. A survey article of repre-
sentative theories in the range of generalized thermoelasticity is due to Hetnarski and
Ignaczak [5].

In [6-8], Green and Naghdi presented a treatment of the thermomechanical
theory of deformable media that differs from the usual one and, in particular, makes
an entropy balance. Moreover, in comparison to the classical theory, the Fourier law
is replaced by a heat flux rate-temperature gradient relation. A theory of
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thermoelastic bodies based on the new procedure was presented in [7}. The linearized
theory of thermoelasticity established in [7] does not sustain energy dissipation and
permits the transmission of heat as thermal waves at finite speed. Moreover, the heat
flux vector is determined by the same potential function that determines the stress.

In this article we use the results of Green and Naghdi [6, 7] on the thermo-
mechanics of continua to establish a linear theory of thermoelastic materials with
voids without energy dissipation. The theory admits the possibility of “second
sound” and leads to the result that the conduction tensor is symmetric. We find that,
in contrast with the theory developed in [7], the field equations cannot be expressed
in terms of mechanical variables and the temperature. We prove a uniqueness the-
orem, and we establish the continuous dependence of solutions upon the initial data
and body loads.

THERMOELASTICITY

We consider a body that at time 7y occupies the region B of Euclidean three-
dimensional space and is bounded by the piecewise smooth surface 8B. The motion
of the body is referred to the reference configuration B and the fixed system of
rectangular Cartesian axes Ox; (k = 1,2,3). We shall employ the usual summation
and differentiation conventions.

Green and Naghdi [6-8] presented a theory of thermomechanics of continua that
uses the entropy balance

/Vpor'[ dV:/VpO(s+é) dV+/aVGdA (1)

for every part ¥ of B and every time. Here, p, is the density in the reference con-
figuration, 5 is the entropy per unit mass and unit time, s is the external rate of
supply of entropy per unit mass, ¢ is the internal rate of production of entropy per
unit mass, and G is the internal flux of entropy per unit mass. Following [6], from
Eq. (1) we get

G=0qn (2)

where @; is the entropy flux vector and »; is the outward unit normal at 9V, In view
of Eq. (2) the balance of entropy reduces to the local equation

poll = pols + &) + @, (3)

Let Q be an arbitrary material volume in the continuum, bounded by a surface
9Q, at time 1. We suppose that V is the corresponding region in the reference con-
figuration B, bounded by a surface V. Let ¢ be the heat flux across the surface 9Q
measured per unit area of V. We denote by ¢, the flux of heat associated with
surfaces in the deformed body that were originally coordinate planes perpendicular
to the x;-axes through the point x. Then




THERMOELASTIC MATERIALS WITH VOIDS 495
g=0G  q=00; q=gqmn; (4)

where 6 is the absolute temperature. With the help of Eq. (4), Eq. (3) can be written
in the form

pob = pa0(s + &) + (0@;) ; — .0, (5)

In the procedure of Green and Naghdi [8], the reduced energy equation is re-
garded as an identity for all thermodynamical processes and will place restrictions on
the functional dependence of the constitutive equations.

Following [2, 6] we postulate an energy balance in the form

v

= / po(Fitti + L + s0) dV + / (titk; + ho + GO) dA (6)
V

av

for all regions V" of B and every time. In Eq. (6) we used the notation: u is the dis-
placement vector, v is the volume fraction field, F is the external body force per unit
mass, L is the external equilibrated body force, t is the stress vector, & is the equi-
librated stress,  is the equilibrated inertia, and e is the internal energy per unit
mass. Using invariance requirements under superposed rigid body motions [9], from
Eq. (6) we get

/poii dV:/pOF dV+/ t dA (7
v v av

for every part ¥ of B and every time. From Eq. (7) we obtain
t = (8)
where 7; is the stress tensor. The field equation for momentum balance is
Lij + poFi = poii; 9)

Taking into account Egs. (4), (8), and (9), from Eq. (6) we obtain
/(p0é+ 7)) dV
v

= /[tj,-d,-‘,' + poLV + post + (00;) ] dV+/ hv dA (10)
14 oV

for all regions ¥ of B and any time. With an argument similar to that used in ob-
taining Eq. (8), from Eq. (10) we find that

hzh,-n,» (11)
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where £; is the equilibrated stress associated with surfaces in the deformed body that
were originally coordinate planes perpendicular to the x;-axes, measured per unit
area of these planes. Using Eq. (11) and the divergence theorem, from Eq. ( 10) we
obtain the local form of energy balance

poé = [j,'l.l,':/‘ -+ /2,'\"_1' — g\-' -+ pOSG + (H(D,) (12)

where
&=V —hi;i—poL (13)
We now consider a motion of the continua that differs from the given motion only by
a superposed uniform rigid body angular velocity. Using the procedure presented in
[9], from Eq. (12) we obtain
ly =1 (14)

If we introduce the Helmholtz energy A by

A=e-—yb (15)

and take into account the relations (5) and (14), then Eq. (12) becomes

oA = tyéy + hiv; — gi + ponf — py0¢ + iy (16)
where

1

¢ =3 (i + z4) (17)

Following Green and Naghdi [6, 7], we introduce the thermal displacement « by
@ = 0. We require constitutive equations for A, t;, h;, g, n, ®,, and & and assume that
these are functions of the variables (e, visv,0,0;) =T1. As in [7], for simplicity, we
regard the material to be homogeneous. Introduction of constitutive equations of the
form

A:AYI‘I) t(,':f(/(ﬂ) sy Cf:;:(ﬂ)

into the reduced energy equation (16) yields

A or(2V_, o CURAYY
o0 Poll aeij i | €ij (9\/‘,- i J

ou . ou . _
+(-8-;+g)»+(%;—®f)0.f+poﬁ’f—0 (18)
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where U = pO/f . We find that the necessary and sufficient relations for Eq. (18) to be
satisfied under these constitutive assumptions are

[..—?E [1—-@. ——_?E
"o, Mo, T T
o, U oL, (19)

To, M
As in [1], we assume that there exists the reference time to such that

O(X. I()) =Ty and OC(X, l‘o) == Qg X E€B (20)

where Ty and o are constants. If we denote
H
T=0-T, 11/:/ T dt (21)
19

then
o= + To(f - T()) -+ Clg o= lxb,i l,(/ =T (22)
We introduce the notation
Q=v—y (23)
where vy is the volume fraction for the reference configuration. We assume that v, is
a given constant.
In the linear theory we have
u = @ = ¢¢’ T=eT’ (24)
where ¢ is a constant small enough for squares and higher powers to be neglected and
v, ¢, and T’ are independent of ¢. For a linearized theory we assume that U is a

quadratic function of the variables e, ¢, ¢, T, and ;. Thus, for a body with a
center of symmetry, we have

1 1
U= 3 Cijrseiers + Agejp — ByeyT + 5 Bijp 0, + Mo b ;
1 1 1 -
+ igqﬂ —dTep ~ Ea7"2 + 5k (25)
where the constitutive coefficients have the symmetries

Cips = Crsij = Cjirs By =B;  ky=kj (26)

In view of Eq. (19), we obtain
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tiy = Cjirsers + Ajjop — B;T
hi = Byjg ; + My ;
&= —Adyey — Lo +dT (27)
pott = Bye; +do + aT
; = ]Wjiﬁﬂ,_/ + kij‘//‘_i
where T = l//
In the case of homogeneous and isotropic solids, the constitutive equations

reduce to

iy = Aeyd; + 2ue; +ypdy; — /5‘&5,,

hi = b ; + my
g=—vey — Lo+ dlﬁ (28)
poNl = Peyy + do + ays
¢, = mo; + ky ;

where 4,1, 8,7,b,m,{.d,a,m, and k are constitutive coefficients.
The equation of entropy (3) reduces to

Poll = @;; + pys (29)
The equation (13) can be written in the form
hij+ g+ poL = xip (30)

where y is a given constant.

Thus, the basic equations of the theory consist of the equations of motion 9)
and (30), the equation of entropy (29), the constitutive equations (27), and the
geometrical equations (17). To these equations we adjoin boundary conditions and
initial conditions. In the case of the mixed boundary value problem the boundary
conditions are

up=1d; onS xI @=¢ onS;x/ W=y on Ssx/

inj=1; on S;xIhn,=h on Sax1 Q=@ onSexI (31)

where S, (r =1,2,...,6) are subsets of &8 such that SUS, = S3U S, =85US8s =
OB, $iNS, =8NS =585NS8s = 0, I=(0,00), and ii;, @, 7,7, h, and ® are pre-
scribed functions. The initial conditions are

w(x,0) =u(x)  w(x,0)=1(x)  ¢(x,0) = ¢*x)
o0 ="(x) Y0 =y’x) Y0 =4(x) xeB (32)

where u®, v%, % 10 y° and 4 are given.
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The field equations can be expressed in terms of the functions u;, @, and . In the
case of homogeneous and isotropic bodies these equations are

pAu+ (44 u) grad divu + ygrad ¢ — fgrad ¢ + poF = pyid
bA@ + mAY — ydivu — Lo+ dy + pyL = yp (33)
kAY + mAg — pdiv it — dp — afy = —pys

on B x I
Remark. In contrast to the theory developed in [7], in our case the field equations
cannot be expressed in terms of mechanical variables and the temperature 7. The

differentiation with respect to the time of field equations (e.g., Eq. (33),) leads to
some complications.

UNIQUENESS THEOREM

In this section we establish a uniqueness theorem in the linear theory of thermo-
elastic materials with voids. We introduce the notation

2W = Cisejers + 245050 + By 10 ; + 2Myp b ; + Lo* + kyr )

1 )
V:E/(poil2+x<b2+aT‘+2W) dy (34)
B

Theorem 1. Assume rhat

i. py, X, and a are strictly positive;
ii. W is a positive semi-definite quadratic form.

Then the boundary initial value problem of the linear theory has at most one
solution.

Proof. With the help of Eq. (27) we obtain

) . . . 10
i + i, — gp + poh T+ O;T; = 55 QW +aT? + kih 2 ;) (35)

On the other hand, from Egs. (9), (29), (30), and (17) we find that

ti€j + hig; — g¢ + poin T+ O;T;
= (tythi + hjp + O;T) ; + poFitti + po L + posT — pyiisti; — 3¢ (36)

By the divergence theorem and Egs. (35) and (36) we find that

V= / (lj,‘)’ljil,’ + hii'l,‘(-p -+ (D,'n,'T) da + / po(ﬂd,- + L(p + Sl//) dv (37)
/OB B
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Suppose that there are two solutions {u\”, ® ™} (¢ = 1,2). Then their difference

E={uj, 0" ¥}, ur = uf.l) - ufz), o =) — @ y* =y —y® corresponds to

null data. If V* is the function associated with = and defined by Eq. (34), then from

Eq. (37) we obtain V* =0 on /. The initial conditions imply ¥*(0) = 0, and we

conclude that V* = 0 on /. With the help of the hypotheses of the theorem we find

that 0" =0, ¢* = 0, and y* = 0 on B x 1. But u*, @*, " vanish initially, so u* = 0,
" =0, and Y* = 0 on B x I. The proof is complete.

A CONTINUOUS DEPENDENCE RESULT

In what follows we study the continuous dependence of solutions upon initial data
and body loads. We assume that the potential W is a positive definite quadratic
form. In the case of isotropic bodies this fact implies that

3i4+2u>0 u>0 b>0 (>0 k>0 (38)
As in the preceding section we assume that
po >0 x>0 a>0 (39)

We restrict our attention to isotropic bodies and introduce the dimensionless
variables

l .
xf.:7x,- l’:fllt u;:—ill[
/ ’ Cy
=9 Y= (40
[Ty )

where / is a standard length and ¢ = [(4 + 2u)/p,]"/*. Introducing Eq. (38) into Eq.
(33) and suppressing primes, we obtain

TAu; + (1 — T)u,-__,, +ayp; — azt/)_, + H; =i
dAQ + b AY — ajup; — by + by + P = rip (41)
oAy + biAp — ariiy ; — by —p{p' = -0

where
t=(e/al o =(u/py)'? ar=y/(pd)
@ = fTo/(pyci) o =b/lpoFe}) by =mTo/(pylc])
by = {/(pyc}) by =dTo/(pyct)  r=1/(Pc}) 2
o =k/(poel)  p=aT}/(ppd)  Hi= ‘ITF :
P=hr 0 =Ty
H

Throughout this section we study the behavior of the continuum on the finite
time interval [0, ¢]. To Eqgs. (41) we adjoin the initial conditions
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u(x,0) =up(x)  a(x,0)=vo(x)  @(x,0) = @y(x)
P(x,0) =vo(x)  Y(x,0) =p(x)  ¥(x,0) = yo(x) xeB (43)

and the boundary conditions

@ =@ lﬁzlﬁ on 9B x [0, ] (44)

o

U=

We assume that: (i) the prescgibed functions ug, vy, Po» Vo, Wy %o are continuous
on B; (i) the functions i, @, and ¥ are continuous on 98 x [0, 2,]; and (iii) H, P, and
Q are continuous on B x [0, 1,].

Let (uV, oM ™M) and (®, 0@ ) be solutions corresponding to the ex-
ternal data systems o = H<:;)P(])(’WTQ(I()ZSUS{)*VS)% wél), vé’),w&),xé”:ﬁ“% ANV
and /@ = (H® p2), Q(Z’,uo“),v0 0y Vg ,wo“’?x(()“),ﬁ‘”, @M WY respectively. If
we define u = u") —u o = oV — @ Y =y _ @ they (u, ¢, ¥) is a solution
of the boundary initial value problem corresponding to the external data system
1= {H, P,Q,u9, %, ). v, g, %,0,0,0}, where H=H®" —H®, p= ph _ pi2
0=00_0W y,= u(()[) - u(()z), vy = v(()” - v(gz), Py = cp(()]) - (péz), Vo = vé” - v(()z),
o =g — ¥y, and 75 = 78" — 4. We denote this problem by (4) and define the
“distance™ between the solutions (u"), (D ")} and U o 2y by

1 > i 9
I= 5/(2E + i + repT -+ p) dv (45)
<J8

where

2E = (1 -~ 21)e, 055 + 2te ey + 2age, ¢ + ap @+ 2byo i ;
+ o W+ bro? (46)
20,:,' = Uij+ Uy

It follows from the positive definiteness assumption on W that E is a positive definite
quadratic form in the variables ¢ @, and . Thus, there exist the positive
constants k; and k, such that

kileye+ @0+ @+ ap,) <E< ka(ejes + @ 0+ @+ ) (47)
Lemma 1. Let (u, ¢, /) be a solution of the problem (A4). Then

I = / (Hili + P + Q) dv (48)
B

Proof. 1f we denote
my = (1 = 2t)e, 0y + 2tey + a1 pdy; — azlj/(jg,'
Si=ap,;+ by, 0 = —aje, — by + by (49)
f=aze, + byp + pyr gi=ay;+ b,
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then Egs. (41) can be written in the form
Wi+ Hi =il SiitQ+P=rp  f=g,+ ) (50)

From Egs. (49) and (46) we obtain

L 1,
T+ 810 — Qo+ fih + g, = a1 <E+ EP'V) (51)

In view of Egs. (50) we get
Wiy + Sip; ~ Q¢ + fih + g, = (mytt; + 50 + gjl‘#),j
. 19, ., .
+ Hut; + P + QY — za(u‘ +rp?)  (52)
If we integrate Eq. (52) over B and use the divergence theorem, the boundary

conditions, and Eq. (51), then we obtain the desired result.
We introduce the functions y and A on [0,4] by

1/2
y= {/(eiiezy +o’+ i+ W+ i+ @+ ) dv}
B

172
A= {/B(H2 + P+ Qz)dv} (53)

The next result establishes the continuous dependence of solutions upon initial data
and body loads.

Theorem 2. Let (u, ¢, ) be a solution of the problem (A). Then there exist the positive
constants M and N such that

1
¥(t) < My(0) + N/ A(s) ds 1€ 0,4] (54)
Jo
Proof. Lemma 1 and the Schwarz inequality imply that
_ 1/2
I _<_A{/(u2+¢2+¢3)du} (55)
B

From Egs. (53) and (55) we get
r < Ay

SO

(1) <T(0) + /IA(s)y(s) ds  1e€(0,4) (56)
0
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In view of Egs. (45) and (47) we obtain

L(1) >my*(f) and T(0) <mpp?(0)  1€[0,1] (57)
where
1. 1
my = imm{l, 2ky,rp} my = Emax{l, 2ky,r,p} (58)
It follows from Egs. (56) and (57) that

V(1) < MPy2(0) + 2N/f/\(s)y(s) ds t€0,4] (59)
0

where

M = (my/my)"/? N=1/2my)

The relation (59) and the Gronwall inequality imply the desired result.

Theorem 2 can be extended for anisotropic bodies and other kinds of boundary

conditions.

The classical theory of thermoelastic materials with voids was presented in [10].
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