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A B S T R A C T   

Thioredoxins (Trxs) belong to a family of multifunctional redox proteins that is critical for maintaining and 
regulating the cellular redox environment during plant cell growth. Also, they are important for the development 
of plant’s response to biotic and abiotic stress; however, the specific biological functions of h-type thioredoxins 
(Trxhs) in plants have not been fully elucidated. Herein, we investigated the role of LmTrxh2, a specific member 
of the Trxh family, in response to various biotic stress simulants, including mechanical wounding, exposure to 
jasmonic acid (JA), picolinic acid (PA), salicylic acid (SA), ethephon (ETP), and hydrogen peroxide (H2O2). We 
observed that LmTrxh2 transcripts were significantly upregulated upon exposure to these stress simulants. The 
characterization of enzymatic activity revealed that the recombinant LmTrxh2 protein functions as a disulfide 
reductase. While the role of Trx proteins in redox regulation is well known, their involvement in antimicrobial 
activity is still unexplored. Therefore, we assessed the antimicrobial effect of LmTrxh2 towards various micro
organisms and observed a concentration-dependent inhibition of microbial growth. The minimum inhibitory and 
minimum bactericidal concentrations and the diameters of the inhibition zones were 40–1250 μg/mL, 40–1250 
μg/mL, and 12.5–32.5 mm, respectively. In addition, we used previously developed LmTrxh2-transgenic tobacco 
lines and found that they showed enhanced resistance to fungal infections triggered by Fusarium graminearum and 
Aspergillus niger. This resistance was associated with an upregulation of known defense-related genes. Overall, 
our findings suggest that LmTrxh2 is responsive to multiple biotic stress simulants and plays a critical role in the 
basal resistance of plants to pathogen infections. These results highlight the potential of LmTrxh2 in the devel
opment of strategies to protect crops from various stress factors and emphasize its importance in the adaptation 
of plants to different stress conditions.   

1. Introduction 

Being sessile from their nature, plants are vulnerable to several 
environmental stress factors that affect their growth, development, and 
survival. However, plants use various defense mechanisms to protect 

themselves from stress agent and increase their resistance. Generally, 
pathogenic infections cause cellular and apoplectic accumulation of 
reactive oxygen and nitrogen species (ROS and RNS), such as nitric 
oxide (NO), superoxide (O2

− ) and its specific dismutation product, 
namely hydrogen peroxide (H2O2) [1]. Despite the key role of these 
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molecules in cell signaling, their accumulation lead to nitro-oxidative 
stress, which in turn leads to the formation of undesirable oxidative 
thiol modifications [2–5]. Specifically, at the cellular level, thiol 
oxidation is a complex chemical process that affects many essential 
biological processes. Cellular thiol oxidation is known to interact and 
interfere with important mechanisms, such as epigenetic regulation, 
signaling processes, oxidative stress, cell growth and development [6]. 
Therefore, to protect the cellular equilibrium, a balance between the 
production and degradation of ROS must be tightly regulated. To 
maintain the growth, metabolism, and general development of the plant, 
it is necessary to intercept ROS and control the damage caused by ROS 
molecules [7,8]. 

Unfavorable cellular conditions lead to the activation of various 
antioxidant and protective mechanisms, mainly consisting of the pro
duction of different antioxidant enzymes, such as catalase, ascorbate or 
glutathione peroxidases (APX and GPX, respectively), mono
dehydroascorbate reductases (MDAR), dehydroascorbate reductases 
(DHAR), or peroxiredoxins (PRX), all of which act as H2O2 scavengers 
and deactivators [4–9]. Specifically, the activity of defense enzymes 
could be inhibited by high levels of oxidative stress. In particular, thiol 
oxidation of antioxidant enzymes is an important component of redox 
regulation in cells and is essential for many physiological processes. 
Thus, oxidation of the thiol groups of antioxidant enzymes, including 
glutathione and enzymatic thiols, can lead to their inactivation, thus 
altering cell signaling pathways and contributing to oxidative damage. 
The oxidation of thiols is also essential for the control of several different 
enzymatic activities and changes in protein structure. In this regard, it 
has been reported that the oxidation of protein thiol groups modifies 
their structure and conformation and can even alter the affinity of the 
protein for its substrate, leading to a change in physiological activity 
[10]. Trx is an important enzymatic component of the ROS machinery 
[8]. In this context, increasing evidence suggests that thioredoxins 
(Trxs), a peculiar class of enzymes, are able to protect the antioxidant 
enzymes from inactivation caused by thiol oxidation. Specifically, 
several in vitro proteomic studies have identified antioxidant enzymes as 
potential substrates for the cytosolic and mitochondrial Trx family 
members from various terrestrial plants and green algae [11–17]. 

Trx proteins are ubiquitous acidic tiny proteins [18] that are iden
tified in organelles and eukaryotes [19–21]. The components of this 
class of proteins share the same highly conserved amino acid sequence of 
the active site. There are six types (f, m, x, y, h, and o) of plant Trx 
proteins that differ in their amino acid sequences and cellular distribu
tion [22,23]. Members of each family are thought to regulate different 
biological processes for numerous proteins [24–30]. 

Plants respond to microbial infections by activating several defense 
responses. One of the most important plant defense mechanisms is the 
activation of the R gene-mediated response. This process refers to the 
activation of defense mechanisms in plants triggered by the recognition 
of microbe-derived molecules by their corresponding resistance (R) 
gene. This recognition leads to a cascade of signal transduction, 
including protein phosphorylation, ion flux, reactive oxygen species 
(ROS) production, and the intracellular accumulation of salicylic acid 
(SA). SA plays an important modulatory role in the upregulation of 
proteins related to pathogenesis (PR) production [31]. In addition, it 
was also reported that JA and ethylene are two important hormones 
involved in plant defense responses. In particular, JA is involved in the 
activation and regulation of defense responses to both necrotrophic and 
herbivorous pathogens, whereas ethylene is involved in the defense 
responses to necrotrophic pathogens, herbivory, and abiotic stresses 
[32,33]. These plant hormones also regulate early signaling processes in 
the defense cascade, leading to the generation of pathogenesis-related 
compounds and stimulation of the plant’s immune system [34]. 

Lobularia maritima, commonly called sweet alyssum, is an annual 
herbaceous flowering plant widely distributed in temperate regions 
around the world [35]. This plant has been demonstrated to have 
notable health benefits due to the presence of several bioactive 

compounds, such as flavonoids, polyphenols, anthocyanins, and iso
thiocyanates [36]. This plant is known to alleviate various diseases and 
contributes to maintain healthy cholesterol and blood sugar levels. 

In light of this latter consideration, the main goal of the present work 
is to investigate the effects of the treatment performed using several 
biotic stress factors, including wounding, jasmonic acid (JA), picolinic 
acid (PA), salicylic acid (SA), ethephon (ETP), and hydrogen peroxide 
(H2O2), on the expression of the LmTrxh2 gene, a specific member of the 
Trxh family. 

Previously, Ben Saad et al. [37] had identified the first Trxh2 gene of 
the halophyte plant L. maritima and named it LmTrxh2. The LmTrxh2 
gene was found to be regulated by several stress factors, and its 
expression increased the tolerance of genetically engineered tobacco 
lines to the previously mentioned stress factors [37–39]. Therefore, the 
antimicrobial potential of LmTrxh2 was also evaluated by calculating 
the inhibition zone (IZ), minimum inhibitory concentration (MIC) and 
minimum bactericidal concentration (MCB). LmTrxh2-overexpressing 
transgenes showed increased basal resistance to pathogen infection in 
tobacco leaves, which was associated with constitutively increased 
expression of known defense-related genes. Our data show for the first 
time that LmTrxh2 is involved in modulating defense responses to biotic 
stress, in addition to its previously demonstrated role in abiotic stress 
responses. 

2. Materials and methods 

2.1. Plant materials and biotic stress experiments 

The saline marshes near the Chebba region, Mahdia in Tunisia, were 
the source of the seeds of L. maritima. Seed sterilization and germination 
were prepared as detailed earlier by Ben Romdhane et al. [40]. Then, 
seedlings were left to grow in a nutrient solution for four weeks, as re
ported by Ben Saad et al. [41], and were subjected to different biotic 
stress treatments. The middle part of the leaf was wounded by creating 
an incision using a scalpel blade. Chemical treatment was performed by 
leaf treatment with PA (10 mM), JA (100 μM), and SA (100 μM). Then, 
the leaves that were detached from L. maritima were placed for 1 h in 
dionized water in beakers (to remove any probable influence of wound 
stress) and then treated with 100 μM ETP. H2O2 was added at a dose of 
10 mM by dipping the roots of the seedlings in the H2O2 solution. 
Control seedlings were maintained under normal conditions without any 
stress. Fully developed leaves were collected and directly frozen in LN2. 

2.2. Transcriptomic analyses 

The total RNA was extracted from L. maritima plants subjected to 
various stress treatments by TRIzol reagent (Invitrogen, USA) following 
the manufacturer’s protocol. The synthesis of the cDNA first-strand was 
induced from 2 μg of total RNA using the M-MLV reverse transcriptase 
enzyme (Invitrogen) and then diluted five times before the qPCR 
amplification. The cDNA was amplified using the Light Cycler 480 
(Roche, Basel, Switzerland) with thermal cycling detailed by Ben 
Romdhane et al. [42]. Then, at the end of the experimental cycle, the 
melting curve was measured and analyzed to assure that it was a single 
amplification. Finally, thresholds of the cycles (CT) of the triplicate PCRs 
were averaged and used to quantify the transcripts. The primer pairs 
were designed using Primer 3 software [43] to ensure that the amplifi
cation was specific for the LmTrxh2 gene and the housekeeping gene 
ubiquitin 10 mRNA (UBQ10: At4g05320) [37,38]. The relative expres
sion ratio of the LmTrxh2 gene was calculated using the 2− ΔΔCt method 
[44]. Each RT-qPCR that corresponded to each sample was performed 
three times, and for the experimental conditions, three biological rep
etitions were conducted. The expression analysis of a set of tobacco 
stress-related genes ((NtPR1a, X12485.1), (NtPR2, M60460.1), (NtHIN1, 
Y07563), (NtLOX1, X84040.1), (NtACS6, AF392978), and (NtNPR1, 
DQ837218.1)) in NT and transgenic tobacco plants was conducted as 
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mentioned previously. The expression levels of the genes were normal
ized compared to the tobacco house-keeping gene Actin (NtACT: 
XM_016633661) [38,39] (Table S1). 

2.3. LmTrxh2 expression and purification of recombinant protein in 
E. coli 

The LmTrxh2 protein isolated from L. maritima was identified by Ben 
Saad et al. [35]. PfuTurbo DNA polymerase (Stratagene, La Jolla, CA) 
was used to amplify the full-length open reading frame of LmTrxh2 
(ORF) with primers that correspond to the 5′ and 3′ ends and EcoRI re
striction sites. The LmTrxh2 ORF was cloned into the pET28a vector and 
transformed into E. coli BL21 cells. Then, proteins that were recombi
nant were induced with 1 mM IPTG at 30 ◦C for 6 h and purified with 
HisLink™ Protein Purification Resin according to the manufacturer’s 
instructions (Promega). The quantification of proteins was performed by 
the Bradford [45] assay; the standard that was used was bovine serum 
albumin. SDS-PAGE was applied to check the purity and correct the size 
of the recombinant proteins. 

2.4. LmTrxh2 activity assay 

Trx activity was studied with a purified recombinant LmTrxh2 pro
tein, in an insulin reduction assay as reported by Holmgren [46]. For this 
purpose, purified LmTrxh2 protein was mixed and then incubated with 
0, 2.5, 5, or 10 μM of purified LmTrxh2 protein. Each measurement of 
LmTrxh2 activity at 650 nm was repeated three times. 

2.5. Acquisition of test microorganisms and cell culture 

Purified and authentic bacterial and fungal cultures were purchased 
from the American Type Cell Culture (ATCC) and a local culture 
collection of the Centre of Biotechnology of Sfax, Tunisia, including 
gram-positive and gram-negative bacteria. Bacterial strains (Entero
coccus faecalis ATCC 29212, Bacillus cereus ATCC 14579, Micrococcus 
luteus ATCC 1880, Staphylococcus aureus ATCC 25923, Listeria mono
cytogenes ATCC 1911, Escherichia coli ATCC 25922, Pseudomonas aeru
ginosa ATCC 9027, and Salmonella enterica ATCC 43972) were cultured 
as previously mentioned by Ben Hsouna et al. [47–50]. 

2.6. Agar diffusion method 

The assays for the determination of antibacterial effects were con
ducted using the method previously mentioned by Ben Hsouna et al. 
[50]. LmTrxh2 was dissolved in di-methyl sulfoxide/water (1/1) and 
sterile water to obtain a final dose of 10 mg/mL. Then, 50 μl of this 
solution was added to each well, and the plates were incubated at 37 ◦C 
for 24 h. Carboxyline (10 μg/well) and DMSO served as positive and 
negative controls, respectively. To measure the strength of the antimi
crobial activity, the diameter of the circular zones of inhibition around 
the well was evaluated. Each test was repeated three times. 

2.7. Determination of MIC and MBC 

The minimum inhibitory concentration (MIC) of LmTrxh2 was 
evaluated as previously reported by Ben Hsouna et al. [47,51]. Sterile 
96-well microplates were used to conduct the assays. As a positive 
growth control, wells consisting of the test microorganisms that were 
incubated in the growth medium were prepared. On the other hand, the 
negative control contained di-methyl sulfoxide/water (1/9) mixture. 
Then, sterile cover plates were placed on the plates. Plates, therefore, 
were incubated for 24 h at 37 ◦C. 

To indicate the microorganisms’ growth, 25 μl of the indicator so
lution of thiazolyl blue tetrazolium bromide (MTT) (0.5 mg/mL) dis
solved in sterile water was added to the wells and incubated at 37 ◦C for 
30 min. This compound tetrazolium salt is colourless and has a key role 

as an electron acceptor, and biologically active microorganisms act by 
reducing it to a red-coloured formazan product. Once there was an in
hibition of microbial growth, the solution in the well remained clear 
after incubation with MTT. DMSO and water were used as negative 
controls. The minimum bactericidal concentration (MBC) was defined as 
the lowest concentration of LmTrxh2 needed to kill the test microor
ganisms. Each experiment for the measurement of MIC and MBC was 
repeated in triplicate. 

2.8. Pathogenicity tests 

Potato dextrose agar (PDA) plates were used to grow Fusarium gra
minearum and the Aspergillus niger strain (CTM 10099). For each de
tached leaf, 5 μL of spore suspension (107 spores/mL in 0.001 % (v/v) of 
Silwet L77 solution) was placed in the center of the leaves. As controls, 
leaves were inoculated with Silwet L-77 solution. At five days post 
inoculation (dpi), the leaves were photographed. The infected leaf area 
was quantified using ImageJ software (https://imagej.nih.gov/ij///i 
ndex.html). Each experiment was repeated three times. 

2.9. Data analysis 

Statistical SPSS Windows (V. 12) software was used to analyze the 
obtained data. Data are represented as the mean ± s. e.m. of three in
dependent replicates. To compare differences in the means’ value be
tween the groups, one-way analysis of variance (ANOVA) was employed 
followed by Tukey’s test. 

3. Results 

3.1. Expression of the LmTrxh2 gene in response to biotic stress simulators 

To explore the role of LmTrxh2 in host defense responses, the level of 
expression facing wounding, pathogen elicitor-PA- and signaling mole
cules -SA, JA, H2O2 and ETP- in the leaves of L. maritima exposed or not 
to these stresses for 1, 3, 12, 24 and 48 h was examined by qRT-PCR. 
LmTrxh2 showed the highest induction up to approximately 4-fold 3 h 
after wounding, and then the transcript level rapidly decreased and 
became insignificant (Fig. 1). PA was used as an elicitor known to 
stimulate the defense response in plants [52]. Interestingly, we observed 
earlier expression of the LmTrxh2 gene within 3 h after treatment with 
PA, which persisted up to 24 h, followed by a reduction after 48 h 
(Fig. 1). 

The LmTrxh2 gene was induced by phytohormones, particularly by 
the SA, JA, and ETP (Fig. 1), which are crucial signal modulators in the 
responses of plants to pathogens [53]. Since SA has a crucial role in 
systemic acquired resistance (SAR) in plants, the level of expression of 
LmTrxh2 showed an enhancement (3-7-fold) followed by a decline. 
Jasmonates are signaling molecules that are important for the initiation 
and maintenance of defense responses in different plants. The highest 
LmTRxh2 transcript accumulation was recorded at 24-h after treatment, 
which was three-fold higher than that of the control treatment and 
maintained at a high level. Remarkably, LmTrxh2 transcript levels were 
rapidly enhanced 1 h after treatment with ETP and remained at a high 
level, increasing 5-fold, followed by a decrease (Fig. 1). H2O2 has an 
important role in triggering the defense response in different stress sit
uations in plants. The LmTrxh2 gene was induced by the H2O2 treatment 
after 1 h and maintained its high levels for up to 24 h, followed by a 
steady reduction (Fig. 1). Hence, the present results suggest that 
LmTRxh2 reacts to biotic stress simulants and enhances tolerance to 
pathogens in plants. 

3.2. Overexpression, purification of recombinant LmTrxh2 protein and 
Trx activity 

The nucleotide sequence of LmTrxh2 was amplified with gene- 
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specific primers, and then the coding LmTrxh2 sequence was inserted 
into pET28a (+) and expressed in E. coli. SDS-PAGE analysis showed that 
the induced cells had a notable band with a molecular weight of ~15 
kDa compared to the non-induced cells (Fig. 2a). The recombinant 
LmTrxh2 protein was purified, and the His tag was cleaved and 
removed. The particular property of Trx proteins has been shown to 
have a disulfide reductase function [46,54]. Using DTT as a reducing 
agent, the disulfide bonds that connect the insulin A and B chains could 
be reduced by Trx. Through the increase in the absorbance to 650 nm, 
the formation of insoluble B chain precipitates could be detected 
photometrically [46]. A significant increase in turbidity at 650 nm was 
recorded immediately after the addition of recombinant LmTrxh2 pro
tein compared to the negative control (DTT alone) (Fig. 2b), which in
dicates a decrease in insulin as previously described by Holmgren [46]. 
Trx activity increased in the reaction mixture as the concentration of 

recombinant LmTrxh2 protein was increased from 2.5, 5, and 10 μM 
(Fig. 2b). 

3.3. Antibacterial activity 

The antibacterial activity of LmTrxh2 was tested by measuring the 
diameter of the inhibition zone (IZ) (Fig. 3) and then, the calculation of 
the MBC and MIC values. As presented in Table 1, LmTrxh2 displayed 
different levels of antibacterial capacity toward all evaluated strains. 
The recorded IZs ranged from 32 to 12 mm. Of all tested gram-positive 
bacteria, the largest IZ was measured against Listeria monocytogenes 
(32.5 mm), followed by Bacillus cereus (32 mm) and Enterococcus faecalis 
(32 mm). Among the gram-negative bacteria, the largest inhibition zone 
was measured against Pseudomonas aeruginosa (32 mm). The diameter of 
the inhibition zone showed by the positive control prepared with 

Fig. 1. Analysis of the expression profiles of LmTrxh2 gene in leaves of treated L. maritima plants. The UBQ10 gene was used as an internal control. Different letters 
indicate significant differences (P < 0.05). 

Fig. 2. Purification of LmTrxh2 recombinant protein and thioredoxin activity assay. (a) SDS-PAGE of LmTrxh2 recombinant protein: Crude extract of Pet28a- 
LmTrxh2 recombinant E. coli before (Lane 1) and after IPTG induction (Lane 2). Purified recombinant protein LmTrxh2 (Lanes 3). Molecular weight markers (M) 
are shown in kilodaltons in the left pane. (b) The activity of the LmTRxh2 protein determined by insulin disulfide reduction assay: precipitation of insulin upon 
reduction was monitored as a turbidity increase at 650 nm. 
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carboxyline (10 μg/well) ranged from 29 to 13 mm; as assumed, no 
inhibitory effect toward the tested bacteria was recorded for the nega
tive control. An important antibacterial capacity toward the eight 
evaluated bacteria was recorded for LmTrxh2 (Fig. 4), with MIC values 
between 1250 and 40 μg/mL (Table 2). Furthermore, LmTrxh2 strongly 
inhibited the development of Listeria monocytogenes and Pseudomonas 
aeruginosa with MICs of 40 μg/mL. It is known that these bacteria have a 
high level of virulence, and their infection is difficult to treat with 
conventional antibiotics, especially the multidrug resistant ones. 

In the present investigation, the growth of Listeria monocytogenes was 
significantly inhibited by LmTrxh2. The MBC values of most strains 
tested correspond to the MICs, so the MIC/MIC ratio was equal to 1. 
Thus, our sample acts in the same way on gram-positive and gram- 
negative bacteria through bactericidal power. 

3.4. LmTrxh2-tobacco plants displayed improved tolerance to diseases 

Owing to the high level of LmTrxh2 transcripts revealed in response 
to all the evaluated treatments in the present study, we investigated the 
potential of LmTrxh2 on plant biotic stress tolerance in transgenic to
bacco. Constitutive expression of LmTrxh2 in transgenic tobacco lines 
was previously functionally linked to abiotic stress tolerance [37–39]. 
Two homozygous LmTrxh2 transgenic lines (Tr1 and Tr2) have 

Fig. 3. Growth inhibition zones of LmTrxh2 in different bacterial strains: Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus, and Enterococcus faecalis. (1): 
LmTrxh2 (2.5 mg/well); (2):1/2 diluted LmTrxh2 (1.25 mg/well); (3):1/4 diluted LmTrxh2 (0.41 mg/well); (4): reference antibiotic carboxyline; (5): Nega
tive control. 

Table 1 
Antibacterial capacity of LmTrxh2.  

Bacterial strains Inhibition zones diameter (mm)  

LmTrxh2 1/2 1/4 Carboxyline 

Gram-positive 
B. cereus (ATCC 14579) 32 ± 0.14 28 ±

0.14 
27.5 ±
0.35 

23 ± 0.5 

S. aureus (ATCC 25923) 18 ± 0.28 15 ±
0.42 

12.5 ±
0.21 

13 ± 0.1 

E. faecalis (ATCC 29212) 32 ± 0.28 29 ±
0.14 

28 ±
0.42 

28 ± 1.2 

M. luteus (ATCC 1880) 26 ± 0.3 27.5 ±
0.35 

21.5 ±
0.35 

19 ± 0.2 

L. monocytogenes (ATCC 
1911) 

32.5 ±
0.21 

29 ±
0.14 

27.5 ±
0.35 

21 ± 0.3 

Gram-negative 
P. aeruginosa (ATCC 9027) 32.5 ±

0.21 
28.5 ±
0.7 

28 ± 0.6 22 ± 0.6 

E. coli (ATCC 25922) 31 ± 0.14 28.5 ±
0.21 

28 ±
0.42 

29 ± 1.1 

S. enterica (ATCC 43972) 32 ± 0.14 29 ±
0.14 

28 ±
0.42 

21 ± 0.7 

Values are given as mean ± S.D. of triplicate experiments. 
Diameter of inhibition zones of including diameter of disc 6 mm. 
LmTrxh2 (2.5 mg/well). 

R. Ben Saad et al.                                                                                                                                                                                                                              



Physiological and Molecular Plant Pathology 129 (2024) 102206

6

moderate and high levels of LmTrxh2 protein, respectively [37]. To this 
end, fungal experiments were performed on detached leaves with the 
necrotrophic pathogens Fusarium graminearum and Aspergillus niger. 
Symptom development was assessed after 5 dpi, and the infected leaf 
area was analyzed. One-month-old transgenic plants Tr1, Tr2, and NT 
were infected with the two fungi. Fig. 5a and b shows that fungal ne
crosis was the highest in the detached leaves of the line NT. However, in 
the transgenic lines (Tr1 and Tr2), the disease progression was slower, 
and lesions were confined to a smaller area in the detached leaves 
compared to the plants of NT. Our results revealed that transgenic to
bacco overexpressing LmTrxh2 have enhanced basal resistance to viru
lent pathogens such as Fusarium and Aspergillus. 

To have a better idea about the mechanism of action of LmTrxh2 in 
response to biotic stress, we investigated the expression profiles of six 

biotic stress-responsive genes: PR1a (marker gene for SA signaling), PR2 
(marker gene for MeJA signaling), NPR1 and HIN1 (marker genes for 
plant defense), LOX1 (marker for wound response), and ACS6 in NT and 
transgenic tobacco lines by qPCR before and after 3 dpi Fusarium and 
Aspergillus infections. As shown in Fig. 6, the gene transcript profile 
showed no difference between NT and the two transgenic lines before 
infection. However, the expression levels of all related genes, except 
ACS6, which is involved in ethylene biosynthesis, were significantly 
higher in the transgenic plants than in the plants from the NT plants after 
3 dpi of infection. Therefore, these results suggest that LmTrxh2 may 
have induced the activation of the expression of pathogenesis-related 
genes in transgenic tobacco through the downregulated expression of 
SA or JA signaling genes and the upregulation of genes involved in the 
JA signaling pathway, resulting in an enhanced resistance to phyto
pathogens, which could be related to the crosstalk of the SA, MeJA, and 
ET signaling pathways. 

4. Discussion 

Thioredoxin is a critical factor that has a key role in conferring host 
resistance and in the activation of various other plant regulators. Trx is 
an important regulatory component of plant defense responses and is 
crucial for the modulation of the redox status of the molecules involved 
in plant defense pathway [55]. Although its function is well studied in 
several plant species [56], both the main mechanism of LmTrxh2 gene 
action and its role in the plant defense pathways against biotic stress are 
still ambiguous. In the present study, we aimed to study the possible role 
of LmTrxh2 from L. maritima in stress tolerance. Our results suggest that 
the LmTrxh2 gene is modulated by biotic stress stimulators and plays an 
important role in the regulation of signaling pathways that are impli
cated in the defense response and enhance the basal resistance. The 
novel role of LmTrxh2 that we discovered here deepens our under
standing of plant responses to various environmental stresses. In our 
study, the level of LmTrxh2 was upregulated toward biotic stress simu
lators such as wounding, pathogenic elicitors (PA), and signaling 

Fig. 4. Determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in LmTrxh2. (a) The determination of the 
MIC. From (A) to (H): the different bacterial strains. From (1) to (11): Negative control and decreased concentrations (2500 to 2 μg/mL). The determination of BMC 
determination against Salmonella enterica (b) and Staphylococcus aureus (c) by the streak method. 

Table 2 
Minimum inhibitory concentrations (MIC) and minimum bactericidal concen
trations (MBC) of LmTrxh2.  

Bacterial Strains CMI (μg/ 
mL) 

CMB (μg/ 
mL) 

CMB/ 
CMI 

Interpretation 

Gram-positive 
B. cereus (ATCC 14579) 55 ± 0.06 55 ± 0.06 1 Bactericidal 
S. aureus (ATCC 25923) 1250 ±

0.0 
1250 ±
0.0 

1 Bactericidal 

E. faecalis (ATCC 29212) 154 ±
0.25 

304 ±
0.41 

2 Bactericidal 

M. luteus (ATCC 1880) 1250 ±
0.0 

1250 ±
0.00 

1 Bactericidal 

L. monocytogenes (ATCC 
1911) 

40 ± 0.04 40 ± 0.04 1 Bactericidal 

Gram-negative 
P. aeruginosa (ATCC 

9027) 
40 ± 0.04 40 ± 0.04 1 Bactericidal 

E. coli (ATCC 25922) 300 ± 0.0 300 ±
0.19 

1 Bactericidal 

S. enterica (ATCC 43972) 65 ± 0.04 65 ± 0.04 1 Bactericidal  
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molecules (JA and ETP). Most Trxs that are located in chloroplasts are 
implicated in the process of photosynthesis and in the response to stress 
and hormone signaling [57]. MeJA is an inducer of the antioxidant 
system in plants when there is a danger ROS production level [58]. 
Along with Trxs, MeJA may be very important in the regulation of ROS 
homeostasis during pathogen attack. Similar to previous findings, the 
Trxh5 gene was strongly activated in response to pathogenic attacks as 
well as wounding, abscission, and ABA treatments [24,59]. Recent 
studies prove that the TaTrxh1 gene expression is significantly induced 
in response to P. striiformis f. sp. tritici infection, whereas the over
expression of TaTrxh1 leads to cell death [60]. 

Antimicrobials-resistant bacteria constitute an important global 
problem these days. This occurrence entails the necessity of increased 
costs in treatment, which is troublesome. Also, higher mortality and 
morbidity rates among the affected ones are reported, which is detri
mental to the economy and health care system [61,62]. LmTrxh2 ap
pears to be an effective bactericidal agent against the eight foodborne 
pathogenic strains tested, with very interesting characteristics that can 
be used in different areas of the resistant bacteria treatment. These 

findings were similar to those reported for Triticum durum-derived pro
tein including annexin 12 (TdAnn12) and lipid-transfer protein 
(TdLTP4) [50,51]. The bactericidal and bacteriostatic effects were 
equally dependent on whether the strains tested were gram-negative or 
gram-positive, which is directly related to the differences in the archi
tecture and molecular components of the peripheral wall [63]. In 
agreement with LmTrxh2 antibacterial activity, TdLTP4 and TdAnn12 
show the highest inhibitory activity against gram-negative bacteria. 

ROXY18/GRXS13 genes transcription was triggered by pathogens, 
including Botrytis cinerea, as previously shown [64]. Trxh8 and Trxh5 
genes are upregulated in response to biotic and abiotic stresses [4]. Out 
of the eight members of the Trxh-h group, only Trxh5 was upregulated 
under stress conditions [24,59,65]. Thus, thioredoxin Trxh5 promoted 
the SA-induced gene expression dependently to the conformational state 
of NPR1 (Non-Expresser of PR gene 1) [66]. NPR1 in the oligomeric form 
with disulfide cross-linking between conserved cysteine residues re
mains in the cytoplasm. Under the salicylic acid signaling response, the 
pathogen-inducible Trxh5 and Trxh3, which are constitutively expressed 
enzymes, help to reduce the disulfide bonds of NPR1. The monomeric 

Fig. 5. Resistance of transgenic of tobacco leaves expressing LmTrxh2 gene. (a) Detached leaf from NT and LmTrxh2 transgenic tobacco plants after 5 dpi. (b) 
Determination of infected leaf area of detached NT and transgenic tobacco leaves. Values are means of three replicates of one expanded leaf per plant. Different 
letters indicate significant differences (P < 0.05). 

Fig. 6. Heatmap of defense-related genes (NtPR1a, NtPR2, NtHIN1, NtLOX1, NtACS6, and NtNPR1) expression profile in transgenic tobacco lines (Tr1 and Tr2) and 
NT plants before and after fungus infection. Values in each cell are mean ± SEM (n = 3). 
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NPR1 activates the SA-inducible defense-related genes [65], whereas 
thioredoxin Trxh5 reduces the protein-SNO molecule of the S-nitro
sylated NPR1 [28]. 

Additionally, the LmTrxh2 transcript is highly induced by PA, a 
potent mammalian macrophage-mediated agent that induces tumor cell 
apoptosis [67] to protect plant cells from PA-induced cell death. It is 
very common that ETP- and PA-responsive LmTrxh2 was highly 
expressed very early following treatment. This finding suggests that 
LmTrxh2 has a putative role in improving plant resistance to fungal 
pathogens. The identification of the enzymatic activity of the recombi
nant LmTrxh2 protein has shown that it has a disulfide reductase 
function that acts by reducing intermolecular disulfide bonds [46,54]. 
Previous reports have shown that recombinant AtTrx-h5 protein has an 
inhibitory effect on the growth of conidia germination in 7 filamentous 
fungal cells and proliferation in 3 pathogenic yeast cells [68]. Song et al. 
[69] reported that the antioxidant response via Trx-1 in Salmonella 
occurred independently of canonical thiol disulfide oxidoreductase 
enzyme activity and acted through the induction of intracellular SPI2 
(Salmonella pathogenicity island 2) gene transcription independently of 
thiol-disulfide exchange. This gene transcription activation is crucial for 
the resistance of Salmonella to both ROS generated by NADPH phagocyte 
oxidase and oxygen-independent lysosomal host defense. 

In addition, the overexpression of LmTrxh2 in the transgenic lines 
showed an enhanced tolerance to the pathogenic fungi Fusarium gra
menarium and Aspergillus niger compared to the NT lines. Other in
vestigations have emphasized the implication of Trx proteins in the 
defense against biotic stress. Trx-h3 is very important in defending 
plants against oxidative stress [70,71]. Trx-h5 is implicated in the 
plant’s defense response and the modulation of the NPR1 gene struc
turally and functionally [65,72]. Recently, the induction of the AtTrxh5 
gene was reported to occur when plants are attacked by different viral 
infections [73]. In fact, the level of AtTrxh5 is upregulated after path
ogen attack, and its expression is linked to the generation of a hyper
sensitive reaction (HR) during an incompatible interaction. 
Nevertheless, the upregulation of AtTrxh5 is not specific to a virulent 
strain since it is also observed following infection with a virulent path
ogen at a later time point that corresponds to disease onset [74]. In fact, 
when overexpressed, several Trx genes improve tolerance to tobacco/
cucumber mosaic virus, e.g., NtTrxh3 [75]. OsTrxm, a protein found in 
rice, was characterized as exhibiting antifungal action that can be 
generated by the substitution of amino acids at crucial locations [76]. 

Plant hormones, such as SA, JA, and ET, and their interplay are also 
very important in conferring resistance to biotrophic and necrotrophic 
pathogens [77]. Herein, we revealed that LmTrxh2 enhanced the 
expression of the NtPR1a (Pathogenesis-related protein 1) and NtNPR1 
genes in transgenic tobacco lines, where PR1a is implicated in systemic 
resistance [78]. Similarly, AtTrxh5 was found to enhance the SA-induced 
expression of immune genes by modulating the conformational struc
tures of the SA-responsive co-activator NPR1 [28]. Since SA and JA are 
known to function as key signaling molecules in the defense response of 
plants to pathogens and insects, it is possible that LmTrxh2 acts by 
enhancing the expression of JAZ-encoding genes in tobacco (i.e., LOX1). 

In addition, the downregulation of ACS6, an important gene for ET 
signal transduction, was recorded in the transgenic lines compared to 
the NT plants. The overexpression of ACS2, an enzyme of ET biosyn
thesis, in rice enhanced the tolerance to necrotrophic (Rhizoctonia solani) 
as well as biotrophic (M. oryzae) fungi [79]. It has been shown previ
ously that ERF TF expression, which is involved in the biosynthesis of 
ET, increases the plant’s tolerance to necrosis inducing fungi, such as 
Botrytis cinerea and Plectosphaerella cucumerina in transgenic Arabidopsis 
[80]. The interplay of the SA and JA/ET signaling pathways could confer 
resistance to Fusarium gramenarium and Aspergillus niger, with associated 
marker genes expressed at low or high levels in transgenic plants after 
infection. 

The molecular mechanism of stress-related gene expression and 
signal transduction is very complex and is the result of a synergy among 

multiple genes and multiple pathways. Therefore, we hypothesized that 
LmTrxh2 might be involved in a complex regulatory network that affects 
both the gene expression and stress tolerance in plants. In Arabidopsis 
thaliana, AtTrxs are pathogen-inducible and contribute to plant defense 
via the expression of defense responsive PR genes. In addition, the two 
reactive cysteine residues are found in the conserved motif of Trxs, 
which play post-translational regulatory roles in a number of cellular 
processes, such as oxidative stresses and plant pathogen interactions. In 
a recent in silico prediction study of the LmTrxh2 structure conducted by 
Ben Saad et al. [37], it was reported that the catalytic Trx motif en
compasses two catalytic cysteine residues (59 and 62). NPR1 is an 
important molecule that is SA-responsive and undergoes conformational 
changes upon oxidative modifications under conformational signaling, 
during the plant defense. When a pathogen attacks, the SA level in
creases, NPR1 disulfide bonds are quickly reduced, and NPR1 monomers 
are translocated to the nucleus, thereby activating SA-responsive genes 
of the defense response [66,81]. The NPR1 protein interacts with TGA 
transcription factors, and TGA1 and TGA4 contain conserved cysteine 
residues, which play a crucial role under oxidative stress generated by 
plant pathogen interactions. These findings allow us to conclude the 
correlation between redox-based cysteine modifications and help in the 
expression of genes involved in plant disease resistance. 

5. Conclusions 

In this study, we functionally analyzed the role of L. maritima 
LmTrxh2 in plants under various biotic stresses. Our results suggest that 
LmTrxh2 positively regulates the biotic stress response. The purified 
protein is effective when directly used against pathogens. This may have 
potential as a lead compound for the development of antimicrobial ag
rochemicals or a potent therapeutic agent. Additionally, the over
expression of LmTrxh2 in transgenic tobacco increased the resistance to 
Fusarium graminarium and Aspergillus niger infections via the activation 
of PR genes and stress-responsive genes. Our results imply that LmTrxh2 
may enhance biotic stress tolerance in tobacco and could be exploited 
for engineering stress-tolerant crops. 

Funding 

The authors extend their appreciation to the Deanship of Scientific 
Research at King Khalid University for funding this work through the 
large research Groups projects to Narjes Baazaoui (Project under grant 
number (RGP. 2/73/44)). This research was partially funded by the 
Tunisian Ministry of Higher Education and Scientific Research (Program 
contract 2023–2027). 

CRediT authorship contribution statement 

Rania Ben Saad: Writing – original draft, Methodology, Investiga
tion, Conceptualization. Walid Ben Romdhane: Writing – review & 
editing, Validation, Software, Formal analysis. Wirginia Kukula-Koch: 
Writing – review & editing, Validation. Bouthaina Ben Akacha: 
Writing – original draft, Investigation, Formal analysis, Data curation. 
Narjes Baazaoui: Writing – review & editing, Funding acquisition. 
Mohamed Taieb Bouteraa: Methodology, Data curation. Yosra 
Chouaibi: Data curation. Anis Ben Hsouna: Writing – original draft, 
Methodology, Investigation, Formal analysis, Data curation, Conceptu
alization. Maria Maisto: Writing – review & editing, Validation. Mir
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