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Abstract 

Hormones are key drivers of cancer development, and alteration of the intratumoral 
concentration of thyroid hormone (TH) is a common feature of many human neoplasias. 
Besides the systemic control of TH levels, the expression and activity of deiodinases con-
stitute a major mechanism for the cell-autonomous, prereceptoral control of TH action. 
The action of deiodinases ensures tight control of TH availability at intracellular level in a 
time- and tissue-specific manner, and alterations in deiodinase expression are frequent 
in tumors. Research over the past decades has shown that in cancer cells, a complex and 
dynamic expression of deiodinases is orchestrated by a network of growth factors, onco-
genic proteins, and miRNA. It has become increasingly evident that this fine regulation 
exposes cancer cells to a dynamic concentration of TH that is functional to stimulate or 
inhibit various cellular functions. This review summarizes recent advances in the identi-
fication of the complex interplay between deiodinases and cancer and how this family 
of enzymes is relevant in cancer progression. We also discuss whether deiodinase ex-
pression could represent a diagnostic tool with which to define tumor staging in cancer 
treatment or even a therapeutic tool against cancer.
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Thyroid hormones (THs) are implicated in the control 
of a variety of biological events including proliferation, 
apoptosis, differentiation, and metabolism in vertebrates 
(1, 2). Upon binding with its nuclear receptors (TRs), ca-
nonical action of active TH (triiodothyronine [T3]) deter-
mines enhancement or inhibition of the expression of target 
genes. The thyroid gland produces a large excess of the in-
active hormone, thyroxine (T4), compared with the active 

hormone, T3. Thus, most of the circulating T3 and of the 
T3 intracellular availability derive from the action of 3 en-
zymes, the iodothyronine deiodinases D1, D2, and D3, that 
are expressed in a tissue-specific manner in fetal and adult 
life (3) and selectively catalyze the activation or inactiva-
tion of TH. D1 is an integral plasma membrane protein 
and is mainly expressed in the liver, thyroid, and kidney 
(4-6). It converts T4 to T3 primarily to provide T3 for the 
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circulation and it also works as a scavenger enzyme that 
recycles iodine to replenish the thyroid’s iodine reservoir 
(3, 6). D2 is an endoplasmic reticulum resident protein 
expressed in many tissues including muscle, brain, heart, 
bone, and brown adipose tissue (4, 6, 7). Differently from 
D1, the main function of D2 is thought to be providing T3 
to the nucleus to meet intracellular needs, which is a con-
cept consistent with its subcellular localization (3). D3 is 
the major TH inactivating enzyme; in fact, it converts T4 
and T3 into respectively rT3 and T2, which are inactive at 
nuclear level. D3 is widely expressed in fetal tissues and 
placenta, and protects developing tissues from excessive 
TH levels present in the maternal circulation (8). In adult 
life, D3 expression declines and persists essentially in skin, 
brain, and pregnant uterus (9, 10).

It is well established that intracellular regulation of TH 
concentration is important in cancer, and that this pro-
cess occurs independently from the systemic control of TH 
plasma concentration (11). Importantly, different studies 
suggested that TH plays a crucial role in the neoplastic pro-
cess. In fact, it has been shown to affect the various phases 
of tumor formation, growth, and metastasis both in experi-
mental animal models and in humans (12, 13). The first 
studies to demonstrate a correlation between TH action 
and cancer date back to the 1980s, and report that TRs 
are the cellular homologs of v-erbA, which is a viral onco-
gene product involved in avian erythroblastosis (14, 15). 
V-erbA is a mutated TRα1 protein that is unable to bind T3 
and acts as a dominant negative mutant on the wild-type 
receptor, thereby attenuating TH signaling. This mutated 

protein increases its oncogenic potential by cooperating 
with various oncoproteins to induce tumorigenesis (16).

Subsequently, deregulation of deiodinase expression was 
identified in diverse tumor contexts. Initial studies, in the 
late 1980s, showed that immortalized rat pituitary tumor 
cells (GH4C1) express elevated levels of the D3 enzyme 
(17). Since then, many in vitro and in vivo studies dem-
onstrated that TH levels vary during the various steps of 
tumorigenesis, namely tumor formation, growth, migra-
tion, and invasiveness, and that the magnitude and spe-
cificity of such regulation is tissue and tumor dependent 
(18-20).

In this review, we focus on the role of deiodinases in the 
control of TH signaling in cancer. We also discuss the pos-
sibility that deiodinases may have diagnostic/therapeutical 
potential in the cancer field.

D3 and Cancer

Although its expression is barely detectable in adult tis-
sues, the D3 enzyme has been found reactivated in several 
physiopathological conditions in which cell proliferation 
is enhanced, as in the case of chronic inflammation, myo-
cardial infarction, tissue repair and critical illness (Fig. 1).  
In these conditions, D3 expression is increased in order 
to enable cell function and, in many cases, cell prolifer-
ation (21-23). This was demonstrated, in skin and skel-
etal muscle, to be the consequence of induced proliferation 
to ensure correct tissue turnover (24). Tissue-specific D3 
knockout studies in these models indicate that D3 action 
is crucial in these conditions (24, 25). Indeed, D3 depletion 
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Figure 1. The balance of deiodinase expression under normal conditions, in normal proliferative states and in cancer. Schematic illustration of D2 
and D3 expression under various physiopathological conditions. The image shows the most common trend of Dio expression and how it is modified 
by various stimuli and in various contexts.

D
ow

nloaded from
 https://academ

ic.oup.com
/endo/article/162/4/bqab016/6128798 by guest on 27 February 2021



Endocrinology, 2021, Vol. 162, No. 4 3

in keratinocytes and in myoblasts resulted in drastic de-
creased cell proliferation and enhanced cell differentiation 
in keratinocytes (26) and in massive apoptosis of muscle 
stem cells (24). The mechanisms by which loss of D3 re-
duce cell proliferation were in both cases due to increased 
nuclear activity of TH and induction of prodifferentiation 
and proapoptotic gene expression.

Interestingly, in adult life, D3 is also re-expressed in 
cancer. D3 was initially identified in various immortalized 
cell lines derived from adenocarcinoma (HCT116, Caco2, 
and SW280 cells), breast cancer (MCF-7 cells), endomet-
rium carcinoma (ECC-1), neuroblastoma (SH-SY5Y cells) 
basal cell carcinoma (BCC), ovarian cancer (HGSO cells), 
and colon (23, 27-29). Accordingly, D3 is upregulated 
in many murine and human tumors tissues including 
the vascular tumors infantile hemangiomas and hep-
atic hemangioendothelioma (27, 30) as well as in various 
brain tumors, among which, gliosarcoma and glioblastoma 
multiforme (31-34). Conversely, D3 was found to be lower 
in all cases of astrocytoma, irrespective of their grade, than 
in the normal brain counterpart (31-34). Furthermore, D3 
has been detected in pituitary tumors, especially those pro-
ducing adrenocorticotropic hormone, thyroid-stimulating 
hormone, or growth hormone, as well as in nonfunctional 
hormones (35).

Various hormones and other factors, such as estrogens, 
progesterone, and epidermal and fibroblast growth factors, 
that promote cell proliferation are potent D3 inducers in 
a wide variety of cell types. Furthermore, D3 expression 
in diverse tumoral contexts has been associated to rele-
vant oncogenic pathways namely Shh-Gli2, Wnt/β-catenin, 

tumor growth factor β (TGF-β) and hypoxia-inducible 
factor-1α) (11) (Table 1).

Relevant to the understanding of the interplay between 
deiodinases and cancer is BCC. It is the most common 
skin cancer and accounts for approximately 80% of all 
nonmelanoma skin cancers (43, 44). Although its inci-
dence is elevated, it has a low mortality rate (43, 44). The 
Sonic hedgehog (Shh) pathway is frequently involved and 
activated in many human tumors including BCC (45). We 
demonstrated that this pathway affects TH metabolism by 
a dual convergent mechanism that involves D2 and D3 ac-
tivity differently. Indeed, we found that Shh induces D3 
expression via the binding of Gli2 transcription factor (1 
of the Shh effector proteins), to the human DIO3 promoter 
(21, 46). Furthermore, another Hedgehog family member, 
Ihh, degrades D2 by inducing WSB-1, which is an E3 ubi-
quitin ligase adaptor that accelerates D2 degradation (47). 
These effects exerted on D2 and D3 significantly reduce 
intracellular T3 concentration. The resulting local cel-
lular hypothyroidism leads to an increase in Cyclin-D1, 
which in turn results in a sustained proliferative rate (48). 
Conversely, D3 depletion significantly reduced Cyclin-D1 
and proliferation; vice versa when a functional D3 gene is 
reintroduced in D3-depleted cells, this leads to reincreased 
Cyclin-D1 levels and cell proliferation. Accordingly, T3 
treatment or D3 depletion, in vivo, interferes with tumori-
genesis, reducing tumor growth and survival of BCC xeno-
grafts in nude mice (21).

MiR21 is an oncomiR that promotes tumor develop-
ment by inhibiting several tumor suppressor genes and 
plays a key role in promoting various human and murine 

Table 1. Intracellular pathways and main factors that regulate D2 and D3 expression and/or activity in the cancer context

D3 regulators Reference

EGF ↑ upregulated Hernandez A, Endocrinology (1995) (36)
Estrogen ↑ upregulated Bates JM, Endocrinology (1999) (9)
FGF ↑ upregulated Hernandez A, Endocrinology (1995) (36)
GRHL3 ↓ downregulated Di Girolamo D, J Clin Invest (2016) (37)
Hypoxia-inducible factor-1α ↑ upregulated Simonides WS, J Clin Invest (2008) (38)
microRNA-21 (miR21) ↑ upregulated Di Girolamo D, J Clin Invest (2016) (37)
Phorbol compounds ↑ upregulated Courtin F, J Neurochem (1991) (39)
Progesteron ↑ upregulated Bates JM, Endocrinology (1999) (9)
Serum ↑ upregulated Courtin F, J Neurochem (1991) (39)
Shh-Gli2 ↑ upregulated Dentice M, Proc Natl Acad Sci U S A (2007) 

(21)
TGF-β ↑ upregulated Huang SA, Thyroid (2005) (10)
Wnt/β-catenin ↑ upregulated Dentice M, Gastroenterology (2012) (23)

D2 regulators Reference

cAMP ↑ upregulated Wang YY, Cardiovasc Res (2010) (40)
NANOG ↑ upregulated Nappi A, Cancers (2020) (41)
NF-κB ↑ upregulated Zeold A, Endocrinology (2006) (42)
Wnt/β-catenin ↓ downregulated Dentice M, Gastroenterology (2012) (23)
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tumors including BCC. We recently identified that TH and 
miR21 reciprocally regulate each other (37). In fact, while 
TH suppresses miR21 expression, it regulates TH metab-
olism by indirectly inducing D3 expression in BCC. MiR21 
downregulates a tumor suppressor, GRHL3, which is an in-
hibitor of D3. The novel described functional axis in BCCs, 
namely the miR21–GRHL3–D3 axis, leads to reduced T3 
concentrations in tumor microenvironments thereby fa-
voring tumor growth (37). Conversely, D3 depletion was 
found to attenuate BCC cell proliferation and in vivo xeno-
graft carcinogenesis, whereas miR21 overexpression en-
hances the oncogenic potential of BCC cells (46).

D3 overexpression has been detected in early tumori-
genesis and its action has been correlated with tumor cell 
proliferation in colon cancer and in BCC (49). In the in-
testine, D3 expression has been found to be significantly 
higher in both adenomas and colon carcinomas than in 
normal tissues (23). Interestingly, its expression in colon 
carcinomas is negatively associated with advanced lesion 
grade. In fact, its expression was found to decrease from 
G1 to G3, which suggests that D3 is a marker of the early 
stages of tumorigenesis (23). This finding, which initially 
appeared counterintuitive and difficult to explain, was sub-
sequently clarified by studies in skin cancer wherein D3 ex-
pression declines with cancer progression, and in the more 
metastatic lesions (see ‘D2 and Cancer’).

Deiodinases are also involved in the crosstalk between 
TH and the Wnt/β-catenin pathways (23). Indeed, the 
Wnt/β-catenin/T-cell factor (TCF) axis transcriptionally 
induces D3 overexpression and simultaneously represses 
D2 expression thereby leading to reduced TH signaling in 
tumors. In the opposite direction, β-catenin knockdown 
decreases D3 expression while simultaneously increasing 
D2 expression. Thus, increment of β-catenin signaling 
leads to D3 upregulation thereby decreasing the intracel-
lular T3 level, and hence its growth-inhibitory effects. Vice 
versa, active TH can suppress Wnt signaling by inhibiting 
the β-catenin-TCF4 complex-mediated transcription of 
Cyclin-D1 in colon cancer (50). In addition, it can regu-
late the target genes of Wnt signaling by inducing the 
direct binding of TRs to β-catenin (51). Besides via the 
Shh and the Wnt pathways, D3 expression is transcription-
ally stimulated by TGF-β in hemangioma and glioma cells 
(52). The local hypothyroidism induced by TGF-β could 
favor the expression of oncofetal genes and suppress the 
differentiative effects of TH or promote cell survival in 
such pathological conditions as cancer (53).

In some cancer cases, very high D3 activity affects plasma 
TH levels and cause a rare form of hypothyroidism, called 
“consumptive hypothyroidism” (27). This condition results 
from the accelerated rate of TH plasmatic degradation, 

which cannot be compensated for by the production of TH 
by the thyroid gland.

Overall, the studies available indicate that local attenu-
ation of intracellular T3 occurs in many human tumors, 
and that this may be advantageous for cell proliferation 
and tumor growth. An understanding of the molecular 
basis of upregulated D3 might suggest avenues of research 
that might lead to new strategies to treat cancer.

D2 and Cancer

D2 expression has rarely been associated with neoplastic 
transformation. It has been found upregulated in benign 
hyperfunctioning thyroid nodules and in thyroid tumors 
including follicular thyroid carcinoma, anaplastic and 
medullary thyroid cancer (54, 55), whereas its expression 
was lower in papillary thyroid carcinoma than in normal 
thyroid tissues (56). This expression pattern is consistent 
with D2 being a cAMP-responsive gene whose expression 
increases in those tumoral contexts (thyroid adenoma and 
follicular carcinoma) in which there is a corresponding 
overstimulation of the cAMP pathway (Table 1).

At least 2 studies (57, 58) found that functional D2 ac-
tivity is present in human anterior pituitary tissues, both in 
adenomas with different secretory activities and in normal 
tissues. Moreover, Tannahill et  al. (35) reported that D2 
expression is 2.6-fold higher in pituitary tumors than in 
normal pituitary tissues, and that the highest D2 expression 
(3.6-fold) occurred in nonfunctioning pituitary tumors.

Although neurons are thought to be a major target of 
THs in the brain, the TH-activating enzyme D2, rather than 
being expressed in the neurons themselves, is expressed in 
astrocytes and in adjacent glial cells that provide T3 avail-
ability in neurons (59). In most brain tumors, D2 expression 
is remarkably heterogeneous depending on the histological 
type of the tumor tissue. In fact, D2 expression is lower 
in astrocytomas and glioblastomas than in the normal 
counterpart (34) and it is higher in oligodendrogliomas, 
gliosarcomas, and glioblastoma multiforme (32). Bunevicius 
et al. (60) evaluated DIO polymorphisms in human brain tu-
mors of various histological origin. They identified 5 single 
nucleotide polymorphisms in the DIO2 gene (rs225011, 
rs2267873, rs225015, rs225014, and rs12885300) that 
commonly occur in glioblastoma patients; however, only 
the genetic rs12885300 polymorphism was significantly as-
sociated with glioblastoma in all samples analyzed. In fact, 
rs12885300 had a prognostic significance and was associ-
ated with an increased mortality risk and 2-year survival.

D2 and D3 are both expressed in normal skin (61-63), 
suggesting that both activating and inactivating TH en-
zymes are required to ensure a balanced intracellular level 
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of TH in the different epithelial skin compartment (64). 
While the role of D3 has been investigated in the growth 
and differentiation of keratinocytes (21, 26, 65), both in 
a pathological and skin cancer context (11, 21, 37, 46, 
66), the role of D2 has only recently been partially clari-
fied. Although BCC has been proposed as a paradigm of 
D3-overexpressing tumor (21, 37, 46), BCC cells and tu-
mors also express D2 (48). Notably, while D2 depletion 
enhances the proliferative potential of cancer cells, D3 de-
pletion attenuates it. (48).

The role of D2 in skin cancer was further clarified in 
squamous cell carcinoma (SCC), which, similar to BCC, 
is a cutaneous cancer caused by keratinocyte transform-
ation (67-69). Unlike BCC, SCC can be invasive and is 
associated with a substantial risk of metastasis and death 
(70). During the progression of SCC, D3 and D2 expres-
sion are coupled to the various phases of tumorigenesis. 
Indeed, while D3 is expressed and critical in the early 
phases of carcinogenesis up to the formation of benign 
papillomas, D2 is expressed in the late stages of neo-
plastic transformation, up to the formation of poorly 
differentiated and invasive SCC. The dynamic expression 
of D3 and D2 led to the concept that TH attenuation 
promotes tumor formation and amplification while high 
T3 levels are later required to ensure the invasiveness 
and metastatic propensity of cutaneous SCC (20) (Fig. 
2). Notably, we reported that the D3 to D2 shift coin-
cides with the EMT transition of SCC cells. Moreover, in 
the same context, D2 upregulation and the consequent 
increase in intracellular T3 induced the expression of 
the pro-EMT gene Zeb-1 and of its downstream targets 
Vimentin and N-Cadherin, while reducing the expres-
sion of the epithelial markers E-Cadherin and K14 (20) 
(Fig. 2), thus revealing that D2 is a prognostic marker 
in cutaneous SCC. Indeed, an analysis of databases de-
posited in the GEO DataSet Suite, GSE686 (71) and 
GSE10300 (72), showed that D2 expression is associated 

with a worse SCC prognosis and correlated with both 
postsurgical relapse and a shorter disease-free survival. 
Finally, in SCC and BCC, D2 expression is under the con-
trol of the transcriptional factor NANOG (Table 1) (41) 
which is a marker of stemness and also a pro-oncogenic 
gene in various epithelial tumors, including SCC (70).

Does D1 Play a Role in Cancer?

D1 expression is often altered in cancer tissues (31). 
However, the role of D1 in cancer remains largely unex-
plored, and the studies that are available are in part dis-
cordant. In tissues normally expressing D1, such as the 
thyroid gland, D1 activity has been reported to be either 
up- or downmodulated in a tumoral context depending on 
the histological subtype (31, 56).

Meta-analyses of gene expression profiles in human 
thyroid neoplasia revealed that the DIO1 gene is 
underexpressed in both benign and malignant thyroid tu-
mors versus normal tissue (56, 73). Notably, D1 levels were 
found to be decreased in some histological subtypes of 
thyroid neoplasms, including papillary thyroid carcinoma 
and anaplastic thyroid carcinoma, both at various clinical 
stages (74). By contrast, normal or increased D1 levels were 
found in follicular thyroid adenoma, follicular thyroid car-
cinoma, and Hurthle cell cancer versus adjacent normal 
thyroid tissues (73, 75).

D1 expression was altered also in nonthyroidal cancers 
(76). Baur et al. (57) provided the first evidence that D1 is 
expressed in the normal human pituitary gland and in pitu-
itary adenomas, where D1 activity was found to be higher 
in about 50% of tumors analyzed than in normal pitu-
itary samples (35). In studies on the clinical significance of 
DIO1 gene polymorphisms in patients affected by a brain 
tumor, no D1 activity was found in tumors of the central 
nervous system (60). Bunevicius et  al. (60) demonstrated 
that a common variant in the C-allele of the DIO1 gene 

Figure 2. The deiodinase expression profile in cancer cell progression and the mechanism induced by thyroid hormone (TH) to promote the epithelial-
to-mesenchymal transition (EMT). Illustration showing the progression of epithelial cancer toward a more aggressive stage and its correlation with 
an adaptive response of the intracellular TH concentration. The molecular mechanisms by which TH support the EMT are also depicted (right).
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(rs2235544) reflects increased D1 activity and has a prog-
nostic significance in glioblastoma patients where it is asso-
ciated with overall survival.

Similar evidence of altered D1 expression has been found 
in clear cell renal adenocarcinoma (77), liver adenocarcinoma 
(78), squamous cell lung carcinoma (79), and prostate cancer 
(80) in which a remarkable reduction (versus normal tissue) 
or even no D1 activity was found (77, 81). In renal cancer 
cells loss of D1 seems to contribute to the carcinogenic process 
since restoration of D1 activity by ectopically DIO1 induc-
tion strongly inhibits the expression of genes and proteins in-
volved in proliferation, migration and tumor progression (82, 
83). Piekielko et al. identified various DIO1 splicing transcript 
variants that are specific to cancerous renal tissue and may 
thus serve as prognostic markers of kidney carcinogenesis 
(84). DIO1 is also regulated through a post-transcriptional 
mechanism by miR-224 and miR-383 (85). Downregulation 
of endogenous DIO1 expression due to overexpression of 
both miR-224 and miR-383 in clear cell renal cell carcinoma 
results in decreased intratumoral T3 concentration, which 
suggests that hypothyroidism may influence and, in particular 
promote, tumor growth (85).

Low D1 levels were also detected in gastric cancer in 
which mechanistic studies found that reduced DIO expres-
sion was related to selenium deficiency (86, 87). The impair-
ment of DIO1 gene expression in gastric cancer suggests this 

selenoprotein plays a role in specific subgroups of gastric 
cancer in humans (88). D1 overexpression has been detected 
in mammary gland carcinoma (89), at levels at least 2 or-
ders higher than that of intact mammary gland. Moreover, in 
mammary carcinoma, D1 expression was higher in the early 
phases than in the late phase of tumorigenesis. In mammary 
carcinoma, D1 was differentially expressed during tumor 
progression. In fact, D1 expression was higher in the early 
phases than in late phases of tumorigenesis (89-91). These 
results suggest that a progressive loss of D1 activity occurs 
during tumor progression, and also highlights that D1 ex-
pression could be associated with the loss of epithelial dif-
ferentiation in breast cancer cells (92). Taken together, these 
studies show that D1 expression is highly heterogeneous in 
cancer (Table 2). Overall, in multiple tumoral contexts D1 
acts like a typical differentiation marker in various tissues (eg, 
liver, kidney, brain) the expression of which is altered upon 
neoplastic transformation. Whether those variations are 
functionally relevant for tumors remains to be investigated.

Conclusions

Research over the past 3 decades has challenged the con-
cept that the central regulation of TH action is the prin-
cipal cue determining TH availability in target cells. Not 
only do deiodinases allow tissue-specific modulation of 

Table 2. Variable D1 activity and expression in various cancer settings

Tissue Type of cancer D1 activity Reference

Thyroid Follicular thyroid adenoma ↑ increased Schrek R, J Clin Endocrinol Metab 1994 (75);  
Arnaldi LAT, Thyroid 2005 (56); 
de Souza Meyer EL 2005 (73)

Follicular thyroid carcinoma ↑ increased Souza Meyer EL, Clin Endocrinol 2005 (73)  
Arnaldi LAT, Thyroid 2005 (56)

Hurthle cell cancer ↑ increased Souza Meyer EL, Clin Endocrinol 2005 (73)
Papillary thyroid carcinoma ↓ decreased Murakami M, J Clin Endocrinol Metab 2000 

(34) 
Souza Meyer EL, Clin Endocrinol 2005 (73) 
Arnaldi LAT, Thyroid 2005 (56)

Anaplastic thyroid carcinoma ↑ increased Casula S, Front Endocrinol 2012 (31)
Pituitary gland Pituitary adenoma ↑ increased Tannahill LA, Clin Endocrinol 2002 (35) 

Baur A, Eur J Endocrinol 2002 (57)
Brain Glioma not detected —

Astrocytoma not detected —
Glioblastoma not detected —
Oligodendroglioma not detected —
Astrocytoma not detected —
Gliosarcoma not detected —
Glioblastoma multiforme not detected —

Kidney Clear cell renal adenocarcinoma ↓ decreased Pachucki J, J Endocrinol Invest 2001 (77)
Liver Liver adenocarcinoma ↓ decreased Sabatino L, Life Sci 2000 (78)
Lung Squamous cell lung carcinoma ↓ decreased Wawrzynska L, Monaldi Arch Chest Dis 2003 

(79)
Prostate Prostate cancer ↓ decreased Dutkiewicz S, Int Urol Nephrol 1995 (80)
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TH intracellular signaling, but they are also dynamically 
exploited by target cells to achieve the optimal time- and 
spatiospecific TH concentration at intracellular level. 
This is true in physiological contexts as well as during 
embryonic development and tissue regeneration, and 
also in such pathological states as tumorigenesis (Fig. 1). 
Cancer cells are an example of cells that can finely tune 
TH concentration during the various stages of cancer 
progression. In skin models, early-stage tumorigenesis 
requires a high degree of proliferation and is sensitive 
to TH-mediated cell cycle arrest. To overcome this, cells 
have devised a strategy enabling attenuation of the TH 
signal mediated by the D3 enzyme that enables cells to 
proliferate. Conversely, progression to the invasive and 
prometastatic stages occurs through upregulation of the 
TH signal that is induced by the catalytic activity of D2. 
Why this occurs remains to the established. We have 
yet to define the events that determine the switch in the 
D3-D2 deiodinase expression during tumor progression 
in some cancers. Furthermore, is the switch of deiodinase 
expression a marker of mutated grading of a tumor? 
In other words, could the deiodinase profile serve as a 
marker of tumor staging/grading? This is still an open 
issue, although the correlations arising from the analysis 
of large in silico data sets between D2 expression and 
poor prognosis in skin cancer and reduced D3 expression 
and lower survival rates in breast cancer support this pos-
sibility (93).

Another important issue is the crosstalk between cancer 
cells and cells that constitute their microenvironment. While 
the role and significance of deiodinases in cancer cells is 
starting to be elucidated, the role of the tumor microenvir-
onment in the control of “local” TH concentration is far 
from being established. It is reasonable that the regulation 
of intracellular TH concentration in the cells surrounding 
the tumor will also affect cancer growth and progression.

In this scenario, the finding that deiodinase manipula-
tion in animal models potently affects tumor formation and 
progression opens the way to the therapeutic application of 
deiodinase modulators in cancer. Although the druggable 
control of specific deiodinase action in specific cells remains 
a mirage, the requirement of deiodinases to allow tumor 
maintenance may be an Achilles heel for tumor growth. 
Should this be the case, it may open new avenues of trans-
lational research at the crossroads between TH and cancer 
research fields.
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