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A B S T R A C T

The introduction of Cyber–Physical Systems, the implementation of machine learning, and the proposal
of other technologies are some of the main features of Industry 4.0, which aims to change the way of
production by introducing more flexibility and more autonomous decision-making by machines. The presence
of centralized and decentralized systems and the continuous change in the market scenario has led to a
transition of production systems from highly centralized or decentralized processes to a hybrid architecture that
incorporated advantages of the production control approaches. The analysis of the production performances of
recent semi-heterarchical architectures encourage to assess these architectures by introducing new scheduling
approach that overcome the risk to take a myopic perspective: the long-sighted approach. To this aim, two
new dispatching rules are proposed, both evaluated with different variability. This is significant because it
allows the measurement of the performance of the production system, as well as the definition of the reactive
and proactive capacity of semi-heterarchical architectures in an increasingly competitive market.
1. Introduction

The manufacturing industry is a crucial sector that transforms raw
materials into finished products, driving economic growth and innova-
tion.

In today’s globalized and fast-paced business environment, organi-
zations in this sector must continuously evolve and adapt to remain
competitive. One of the latest technological advances in this field
is Industry 4.0 (I4.0), which integrates digital technologies and a
global perspective to create a more connected and automated manu-
facturing industry. This paradigm shift is expected to bring numerous
benefits, including increased efficiency, cost reduction, and improved
quality (Castelo-Branco et al., 2019; Popolo et al., 2021). However,
the adoption of I4.0 technologies and practices requires significant
investments and changes to existing production systems, which can be
a daunting task for many organizations.

To overcome the challenges of the current industrial context, or-
ganizations must have the ability to allocate resources quickly and
effectively, continually assessing their management strategies and pro-
duction systems (Zimmermann et al., 2021). A key element in achieving
these goals is the use of Manufacturing Planning and Control (MPC)
systems. MPC systems play a central role in optimizing production pro-
cesses by efficiently utilizing resources, maximizing service levels for
customers, and improving production speed, flexibility, and adherence
to delivery plans (Hazır et al., 2015).
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In the literature, different MPC approaches have been investigated,
and new ones are being developed with the emergence of I4.0 technolo-
gies (Bendul & Blunck, 2019). The two main approaches are centralized
and decentralized systems. Centralized systems are known for their lack
of flexibility to change, whereas decentralized systems offer greater
flexibility, but also pose a risk of achieving a local optimum rather than
a global one (Guizzi et al., 2017). As a result, researchers started to
explore alternative hybrid MPC architecture structures, able to combine
the advantages of both approaches (Brennan & Norrie, 2001; Vespoli
et al., 2019). Several hybrid architectures have been proposed in lit-
erature, such as the Dynamic Hybrid Control Architecture (D-HCA)
proposed by Jimenez et al., the Agent-based Semi-heterarchical control
proposed by Sallez et al. and the Semi-heterarchical proposed by Grassi
et al.

Specifically, the D-HCA consists of three functional layers: (i) the
Global Decisional Entity (GDE), (ii) the Resource Decisional Entity
(RDE), and (iii) the Local Decisional Entity (LDE). The GDE is responsi-
ble for global layer coordination, while the RDE and the LDE represent
the operational layer in terms of the local production system (jobs)
and resources (Jimenez et al., 2017). Similarly, the Agent-based semi-
heterarchical control architecture proposed by Sallez et al. consists
of three functional components: (i) the Enterprise Resource Planning
(ERP), (ii) the Dynamic Allocation Processes (DAP), and (iii) the Dy-
namic Routing Processes (DRP) (Sallez et al., 2010). This architecture
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has a similar structure of the Semi-heterarchical presented by Grassi
et al. also consisting of three functional levels: (i) the Knowledge-based
Enterprise Resource Planning (KERP), (ii) the High Level Controller
(HLC), and (iii) the Low Level Controller (LLC) (Grassi et al., 2020a).
It is worth noting that both the architecture proposed by Sallez et al.
and by Grassi et al. include a managerial control level at the top of the
architecture (the ERP for the Sallez et al.’s architecture and the KERP
for the Grassi et al. one), as well as lower control levels with clearly
defined separate decision-making quotas. With regard to the last two
architectures presented, both of them have a control level in direct
contact with the production system, whose main functionality and
responsibility is to schedule the entry of jobs. To achieve this objective,
this level uses a dispatching rule that, by observing the production
system and the job order queue to be produced, establishes which is
the best job to admit into production.

Dispatching rules play a crucial role in manufacturing planning
and control systems, determining the sequence in which jobs are pro-
cessed and allocated to resources like machines (Sai Sandeep et al.,
2022). Efficient dispatching is critical for on-time delivery, minimizing
overdue and inventory costs, and adapting to dynamic and stochastic
environments (Zheng et al., 2020). Different dispatching control meth-
ods, including pull rules and composite dispatching rules, have been
proposed to optimize performance and enhance collaboration between
equipment units. These rules employ simple heuristics like First In,
First Out (FIFO), Shortest Processing Time (SPT), or more advanced
ones. Additionally, researchers have explored Reinforcement Learning
(RL) and fuzzy rule knowledge-based systems to improve dispatching
in manufacturing systems (Attajer et al., 2022; Chen & Wu, 2008).

However, despite the advanced state of RL, no RL algorithm pro-
posed in the literature exhibits generally adaptable performance. Each
algorithm relies on specific factors such as the reward function, state
definition, training, and the data available for training whose acquisi-
tion can be expensive in a real production scenario. On the other side,
dispatching rules represent a dynamic approach that easily adapts and
flexible in various production contexts and their changes.

To this extent, Panzer et al., in their work built on the architecture
of Sallez et al., and Grassi et al., introduce a hyper-heuristics control
model within a semi-heterarchical production system. Notably, a key
limitation identified is the training of the network itself (Panzer et al.,
2023). Researchers have also applied RL for the selection of the dis-
patching rule within the production system, rather than as a substitute
for the dispatching rules themselves (Marchesano et al., 2021; Min &
Yih, 2003; Panzer et al., 2023). Therefore, further study of these rules
is valuable both as a scheduling element for MPC systems and as a
supporting element for new RL approaches in selecting dispatching for
job sequencing (Gavgani et al., 2017).

Several studies have explored the impact of dispatching rules on
MPC. Marchesano et al. proposed a Performance-Based Decentral-
ized Dispatching Rule (PDDR) for flow shop production lines, con-
sidering machine condition and performance. This rule proved to be
more flexible and practical than traditional ones (Marchesano et al.,
2021). Lee et al. devises new dispatching rules for improved produc-
tion scheduling in a printed circuit board manufacturing system (Lee
et al., 2003). Grassi et al. propose a throughput control algorithm
for a production system managed by a semi-heterarchical architec-
ture and propose a decentralized dispatching approach for production
scheduling. The algorithm focuses on achieving a specific throughput
target by considering Work-In-Process (WIP) as the primary control
lever (Grassi et al., 2020b). Guizzi et al., Salatiello et al. instead propose
a dynamic dispatching rule that aims to improve the performance of a
production system compliant Industry 4.0 architectures (Guizzi et al.,
2017; Salatiello et al., 2022).

However, these rules come with a limitation. To identify the next
job for admission into production, they scrutinize one job at a time,
determining which one optimally enhances the production system per-
2

formance. In practice, individual job evaluations occur in isolation,
overlooking synergies or potential trade-offs emerging when multiple
jobs closely interact within the production system. This constrained ap-
proach aims to pick the most suitable job in a specific scenario, result-
ing in a short-sighted approach and potentially suboptimal sequencing,
leading to a reduction in production system performance.

To overcome this limitation, the present work aims to propose two
novel dispatching rules used in hybrid MPC architectures by looking
for more jobs. In particular, the Closed Loop Dispatch Control and
the Dynamic-NEH. These rules, in deciding which job to admit into
the production system, evaluate not only individual jobs but also their
potential combinations, dynamically choosing multiple jobs to admit
into the production system at each iteration. As a result, they have
dual objectives: (i) mitigating the risk of local optimization and (ii)
enhancing the system’s predictability. The first rule, the Couple Loop,
aims to minimize the deviation of processing times, pursuing a well-
balanced production system. Line balancing is indeed one of the crucial
steps in this decision-making process (Boysen et al., 2022; Dolgui & Bat-
taı, 2013). By ensuring a fair distribution of workload and optimizing
resource utilization, this rule is expected to enhance overall efficiency
and system performance. The second rule, the Dynamic-Neh, on the
other hand, focuses on minimizing the makespan (i.e., the total time
required to complete a set of jobs). The effectiveness of these rules will
undergo comprehensive scrutiny across various scenarios, subjecting
them to rigorous evaluation to assess their performance and test their
adaptability to diverse conditions.

In conclusion, this study introduces innovative dispatching rules de-
signed to address prevalent limitations identified in existing literature,
particularly focusing on overcoming the issue of myopic decision-
making processes in hybrid Manufacturing Process Control (MPC) sys-
tems. Specifically, the research contributes to the field by:

• Developing novel dispatching rules by considering the dynamic
selection of job combinations, specifically targeting the mitigation
of short-sightedness;

• Adopting a scenario-based approach that diverges from conven-
tional steady-state analysis by considering a fixed and finite set
of jobs. This approach facilitates a more nuanced understanding
of batch processing and work shift performance through transient
state data analysis;

The remainder of the paper is organized as follows: Section 2
provides an overview of the problem being considered; Section 3
introduces the proposed dispatching rules within a semi-heterarchical
context; Section 4 describes the experimental methodology used to
evaluate the proposed dispatching rule while Section 5 presents and
discuss the results obtained from the considered scenarios. Finally
Section 6 summarizes the main contribution of the paper and discusses
potential future research directions.

2. Problem statement

Central to this study is the semi-heterarchical architecture, a hy-
brid MPC architecture proposed by Grassi et al., which offers a novel
approach to dynamic production control (Grassi et al., 2020a) (Fig. 1).

The above-mentioned semi-heterarchical architecture by
Grassi et al. comprises three distinct functional levels:

• The Knowledge-based Enterprise Resource Planning (KERP) at the
managerial level, orchestrating production orders and delineating
objectives.

• The High-Level Controller (HLC), tasked with optimizing through-
put and cycle time across the production line.

• The Low-Level Control (LLC), the physical heartbeat of the sys-
tem, overseeing real-time status, job allocation, and dynamic

order re-sequencing.
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Fig. 1. The semi-heterarchical architecture inspired by Grassi et al. (2020a).
At the LLC level, the Job Ready Queue (JRQ), the ‘‘Dispatcher’’ and
the production system are found. The JRQ operates as a controlled
queue, holding orders accepted by managerial levels but not yet re-
leased for production. Regarding the production system, without losing
generality, this study strategically adopts a flow-shop manufacturing
system to align with existing literature, thereby facilitating a com-
parative analysis and a solid foundation for the assessment of novel
dispatching rules. Among the various production control mechanisms
developed in recent years by the literature, a CONstant-Work-In-Process
(CONWIP) control system based on direct WIP control over the system
has been chosen for the considered problem.

The Dispatcher, conversely, serves as the logical entity housing
dispatching rules, responsible for selecting dynamically the next job
from the JRQ to be admitted into the production system. In a more
complex manufacturing system, there exist multiple HLC and LLC
levels. However, for this paper, a scenario with a single HLC and a
single LLC is considered.

In this context, Grassi et al. have proposed two dispatching rules at
the LLC level, namely the Open Loop Control and Closed Loop Control
dispatching rules, assessing their performance against a simple First-In-
First-Out (FIFO) approach (Grassi et al., 2020c; Vespoli et al., 2019).
Conversely, this study introduces two novel, long-sighted dispatching
rules that operate within the same context, assessing them in a more
comprehensive examination against these established rules under var-
ied manufacturing scenarios. To this end, two primary control knobs
are identified for the design of experimental scenarios: the distribution
of the job processing times on machines and the type of feeding of the
production system.

Specifically, the job processing times will be modelled using two
different distributions:

• Exponential distribution, aligning with the Practical Worst Case
scenario as identified by Hopp and Spearman in Hopp and Spear-
man (2011). This distribution reflects the variable nature of job
processing times in a CONWIP system, offering insights into the
system’s behaviour and making it possible to compare against a
well-known mathematical representation of the CONWIP system;
3

• Uniform distribution (refereed in the following as Taillard), as
outlined by Taillard (1993), where job processing times at each
station follow a uniform distribution 𝑈 [1..99]. This scenario pro-
vides a contrasting benchmark, with the Nawaz–Enscore–Ham
(NEH) algorithm serving as an additional performance yardstick
for the proposed rules in this setting (Nawaz et al., 1983). To
clarify, it is noteworthy that NEH algorithm is one of the best-
performing rules for the considered problem in such a hypothesis;
this rule, although not having a dynamic approach, will be used as
an additional benchmark in this scenario to test the performance
of the proposed rules (Framinan et al., 2001; Katragjini et al.,
2013; Ruiz & Stützle, 2007).

Regarding the feeding of the production system, the study will
explore two distinct scenarios:

• Infinite Feeding, inspired by the work of Grassi et al. in Grassi
et al. (2021), to assess the steady-state performance of the sys-
tem. This scenario is instrumental in understanding the steady-
state performances of the production process under continuous
operation.

• Fixed Job Quantity, focusing on a finite number of jobs, to evaluate
the system’s performance during the transient-state. This scenario,
simulating the processing of a specific number of jobs (e.g., 100
jobs), is critical for assessing the system’s responsiveness and
adaptability to a defined workload, resembling real-world produc-
tion shifts or batch processing.

Key performance indicators for the evaluation of the proposed
rules include throughput (TH) — the rate at which jobs are produced
—, Cycle Time (CT) — the average duration from the initiation to
the completion of a job — and Work-in-Process (WIP) — representing
the products in mid-production. In this context, the study aims to
provide a comprehensive assessment of the dispatching rules within
these varied manufacturing conditions, offering valuable insights into
the scalability and flexibility of the semi-heterarchical architecture
under both steady-state and transient operational states.
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3. Proposed approaches

A hybrid Manufacturing Planning Control (MPC) system facilitates
dynamic and adaptable operational decisions by assessing solutions
that yield the most significant outcomes at each iteration. In this
context, improving predictive capability would enhance performance
compared to more narrowly focused rules, such as the Open Loop Dis-
patch Control and the Closed Loop Dispatch Control proposed by Grassi
et al. in Grassi et al. (2020c), which rely on scheduling individual jobs.

For this reason, in this paper, two novel dispatching rules are
proposed: Couple Loop Dispatch Control and Dynamic-NEH. The main
aim is to overcome this limitation by adopting an approach that focuses
on scheduling a larger number of jobs, aiming to provide a more
’long-sighted’ perspective compared to Open Loop Dispatch Control and
Closed Loop Dispatch Control (Grassi et al., 2020c). Both rules are
implemented in a manufacturing context with a queue where jobs await
entry into the production line, commonly known as a backlog. Since
our work is related to the semi-heterarchical architecture where the
production system is situated in the Lower Level Control, the backlog
is represented by the logical entity Job Ready Queue (JRQ) (Fig. 1).

3.1. The couple loop dispatch control

Algorithm 1: The Couple Loop Dispatch Control
Data: The index of 𝑗 jobs in the JRQ,the number of machines

𝑚 the processing times of the jobs in the JRQ for each
machine (𝑡𝑗,𝑚).

Result: The jobs scheduling with the Couple Loop Dispatch
Control

/* Constructing a matrix [𝑖] × [𝑚], with 𝑖 equals to
the size of the JRQ */

for Each row 𝑗(1 ≤ 𝑗 ≤ 𝑖) do
for Each 𝑘(1 ≤ 𝑘 ≤ 𝑚) do

Take the processing time of job 𝑗 in the machine 𝑘, 𝑡𝑗,𝑘
end
for Each column 𝑘 do

Evaluate the sum of processing time for each machine,
𝑇𝑘

end
for each element of the matrix, [𝑖] × [𝑚], 𝑡𝑗,𝑘 do

Subtract 𝑇𝑘
end

end
for Each row 𝑗 do

pick out 𝐷𝑖
end
for Each couple of element of vector D do

Evaluate 𝑃𝑀(𝐽𝑖, 𝐽𝑦)
end
for Each 𝑃𝑀(𝐽𝑖, 𝐽𝑦) do

Choose the job with 𝑚𝑖𝑛(𝑃𝑀(𝐽𝑖, 𝐽𝑦) − 𝑃𝑀(𝐿𝐶))2

end
𝐽𝑖, 𝐽𝑦 are the jobs that best balance the workload along the
machines.

As previously said, the main aim of this dispatching rule is to be
ong-sighted by minimizing the processing time deviation and by balanc-
ng the production line. The Couple Loop Dispatch Control specifically
dentifies, within the Job Ready Queue (JRQ) of size 𝑖, the 𝑗 jobs (𝑖 ∈
1,… , 𝑖)) that better balance the production line workload compared
o the last 𝑖 jobs that entered the production line. This rule, in some
spects, extends the Open Loop Dispatch Control proposed by Grassi
t al. (2020a). Although our discussion focuses on two jobs for practical
4

easons, it can be extended to involve more jobs.
To balance the workload in the production system, the aim is to se-
ect a couple of jobs in the JRQ that better balance the workload on the
achine concerning the last couple of jobs entered into the production

ystem. The algorithmic procedure is presented in Algorithm 1. The first
tep involves computing the mean Processing Time 𝑇𝑘 for each machine
(𝑘 ∈ (1,… , 𝑚)) in the production system under consideration.

The notation is the following:

• 𝑖: the JRQ size
• 𝑗: the index of the jobs within the JRQ 𝑗 ∈ (1,… , 𝑖)

• the mean Processing Time 𝑇𝑘 =
(
∑𝑖

𝑗=1)𝑡𝑗𝑘
𝑖

The computation of 𝑇𝑘 requires building a matrix of dimensions
𝑖] × [𝑚] in which each element represents the processing time of job
on machine 𝑘: 𝑡𝑗𝑘. The second step involves calculating the deviation
𝑗𝑘, which is the difference between 𝑡𝑗𝑘 and 𝑇𝑘.

𝑗𝑘 = 𝑡𝑗𝑘 − 𝑇𝑘

A new [𝑖] × [𝑚] matrix is obtained, where each element is the
orresponding 𝑑𝑗𝑘. A vector 𝐷𝑗 for the 𝑗th job is identified for each row
f the matrix, with elements representing points in an 𝑚-dimensional
artesian space.

𝑗 = (𝑑𝑗,1, 𝑑𝑗,2,… , 𝑑𝑗,𝑚)

The choice of the couple of jobs is facilitated by calculating the
idpoint vector 𝑃𝑀(𝐽𝑖, 𝐽𝑦) for each couple of jobs within the JRQ.

𝑀(𝐽𝑖, 𝐽𝑦) = [
𝑑𝑖,1 − 𝑑𝑦,1

2
,… ,

𝑑𝑖,𝑚 − 𝑑𝑦,𝑚
2

]

At each iteration, the element of the midpoint vector 𝑃𝑀(𝐿𝐶) of
the last couple of jobs entered into the system is subtracted from each
element of the current midpoint vector 𝑃𝑀(𝐽𝑖, 𝐽𝑦). The couple of jobs
associated with the minimum value of this difference is then selected,
and the chosen jobs are assigned a priority equal to 1.

The application example illustrated in Fig. 2 demonstrates the algo-
rithm with a JRQ size of 3 and a production line with two machines.
The algorithm analyses two jobs at each iteration. From the deviations,
points in the Cartesian space (𝑎, 𝑏 and 𝑐 in Fig. 2) for the three jobs
are obtained. The midpoint vector 𝑃𝑀 is calculated for each, and
𝑃𝑀(𝐿𝐶) represents the midpoint vector of the last pair of jobs to enter
production. It is recalled that the objective is to balance the workload
between the machines with a long-sighted approach. In the provided
example, the optimum point is 𝑃𝑀(∗), and the algorithm selects the
two jobs whose midpoint is the shortest distance from 𝑃𝑀(∗). The
distances are visualized in yellow, blue, and green, with the result that
the pair 𝑎, 𝑐 is identified as the one that best balances the workload.

The distances shown:

[𝑃𝑀(𝑎, 𝑏) − 𝑃𝑀(∗)]2 in yellow

[𝑃𝑀(𝑎, 𝑐) − 𝑃𝑀(∗)]2 in blue

[𝑃𝑀(𝑏, 𝑐) − 𝑃𝑀(∗)]2 in green

3.2. The Dynamic-NEH

The logic of the Dynamic-NEH algorithm can be described in three
main steps, inherited from the NEH algorithm, with the ultimate goal
of defining the best schedule that minimizes the makespan. The steps
are
1. Adding up the processing times of each job for all machines.
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Fig. 2. The couple loop dispatch control.
Fig. 3. Processing times sums matrix.

2. Sort the jobs according to the sum of their decreasing processing
times.

3. Choose jobs from the previously formed sorted sequence and
arrange them in a way that minimizes makespan.

The algorithmic procedure is shown in Algorithm 2.
The difference between classic NEH and Dynamic-NEH is that the

former schedules all jobs in the backlog at once, sending them to the
production line in a predefined and deterministic sequence. In contrast,
the proposed Dynamic-NEH optimizes the sequence each time a job
leaves the backlog (the JRQ) and a new job enters the JRQ. This process
involves evaluating the placement of multiple jobs in the JRQ with a
dynamic and long-sighted approach

According to the steps, first, the job processing time 𝑡𝑗,𝑚 of job 𝑗 on
each machine 𝑚 is added up, as shown in Fig. 3.

𝑇𝑗 =
𝑚
∑

𝑖=1
𝑡𝑗𝑖

with (1 ≤ 𝑖 ≤)𝑚

with where 𝑇𝑗 is the total processing time of the job 𝑗.
The calculation of 𝑇𝑗 is possible by creating a matrix [𝑗] × [𝑚] with

𝑗 equal to the JRQ size and 𝑚 representing the size of the machines
configured in the production system.

Hence, the sums 𝑇𝑗 will be ordered successively in descending order
in a vector [1] × [𝑗].
5

Fig. 4. Partial makespan.

By constructing the vector, the initial scheduling of jobs 𝑗 is defined.
The next step of the algorithm involves scheduling the jobs 𝑗 to achieve
sequencing that minimizes the makespan.

To obtain the optimal sequence, it is necessary to calculate the
partial makespan, which involves determining the makespan of possible
sequences each time a new job is added to the schedule set in the
previous step.

To facilitate the calculation of the partial makespan, when con-
structing the matrix, it is important to place the new job in the diagonal
of the matrix [𝑗] × [𝑗], and in the rest of the matrix elements, the jobs
are inserted in the order in which they were previously scheduled, as
shown in Fig. 4.

The choice of the partial schedule is determined by finding the
minimum among 𝑀1,𝑀2,𝑀3. For instance, if 𝑀1 is the minimum, the
sequence will be fixed in the order of Sequence 2 in Fig. 4; 𝐽1, 𝐽2, 𝐽3.

For the calculation of the partial makespan, a square matrix is con-
structed. The choice of the square matrix is dictated by the condition
that each row corresponds to the various partial schedules on which
the makespan is to be calculated. The matrix will have a dimension of
[𝑖] × [𝑖], where 1 ≤ 𝑖 ≤ 𝑗, representing the number of jobs in the JRQ.
It is constructed each time considering the order of the jobs already
scheduled at that moment and adding the new job to the diagonal. This
choice allows the matrix to be compiled quickly and neatly, and the
makespan is calculated for each row 𝑗. The makespan calculation must
take into account the processing time 𝑡 , where 1 ≤ 𝑖 ≤ 𝑚.
𝑗𝑖
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Fig. 5. The Dynamic-NEH: the job enter into the production line.
Algorithm 2: The Dynamic-NEH Algorithm
Data: The number of 𝑗 jobs in the JRQ, the number of

machines 𝑚, the processing times of the jobs in the JRQ
for each machine (𝑡𝑗,𝑚).

Result: The jobs scheduling in the Dynamic-NEH Algorithm
for Each row 𝑗 do

for Each 𝑖 machine do
Insert the 𝑡𝑗,𝑚

end
Evaluate the sum of the processing time 𝑇𝑗 =

∑𝑚
𝑖=1 𝑡𝑗,𝑚

end
for Each 𝑘(0 ≤ 𝑘 ≤ 𝑗) do

Select 𝑚𝑎𝑥(𝑇𝑘)
end
Sort 𝑇𝑗 in descending order
for Each row 𝑗 do

for Each 𝑥(0 ≤ 𝑥 ≤ 𝑗) do
for Each 𝑦(0 ≤ 𝑦 ≤ 𝑗) do

if 𝑥 = 𝑦 then
Insert new job

else
Insert the jobs according to the previously set
schedule while maintaining the order

end
end

end
• Evaluate makespan
• Select the Sequence j with the minimum makespan 𝑆 ∗

end
𝑆 ∗ is the final scheduling of the Dynamic-NEH Algorithm.
/* when a job enters into the production line and

a new job enters in the JRQ the algorithm is
re-applied */

for Each 𝑘(0 ≤ 𝑘 ≤ 𝑗) do

• Assign priorities
• Check the Timeout

end

Once the minimum makespan is selected, the sequence of corre-
sponding jobs is inserted into a vector of size 𝑖 with 1 ≤ 𝑖 ≤ 𝑚. The
vector increases in size each time a new job is inserted and a sequence
is chosen. When the vector reaches a dimension of 𝑗, it is representative
of the final Dynamic-NEH scheduling.

Figs. 5, 6 illustrate an application of Dynamic NEH at the 𝑖th
iteration.

Initially, the JRQ contains the jobs ℎ, 𝑔, and 𝑖. Upon entering the
production system, job 𝑖 is added to the JRQ, and the Dynamic-NEH
algorithm selects the job schedule with the shortest makespan by cal-
culating the various partial makespans associated with the schedules.
6

4. Experimental methodology

An in-depth analysis and evaluation of the proposed dispatching
rules, namely Couple Loop Dispatch Control and Dynamic-NEH, has
been conducted with a preliminary assessment and examination. To
this end, a multi-method approach based on Discrete Event Simula-
tion (DES) and Multi-Agent Systems (MAS) was used to develop the
simulation model, using Anylogic 8.8.1 as simulation software (see
Fig. 7).

In this, four types of agents were considered:

• The Main Agent : represents the development environment in
which the HLC and JOBS population are generated;

• The HLC Agent is generated at the beginning of the simulation,
according to the chosen workstation parameter which reproduces
the second level of the Semi-Heterarchical structure

- The Machine Agent : it resides in the HLC and reproduced the
production line of the system

• The Job Agent : are generated by a static distribution; the jobs
represent the items realized by the production system.

More specifically, the Production System (PS) starts production
upon receiving an order, contingent upon the current number of orders
being processed remaining below the permissible WIP limit. Subse-
quently, each instance a product (named as ‘Job’) exits the PS, a
selection is made from the JRQ, and the chosen order is integrated
into the PS. Concurrently, the ‘source’ block creates a new job when-
ever one is retrieved from the JRQ. Within this framework, machines
are delineated as the entities tasked with the product’s processing.
Jobs, in this context, refer to the items that are subjected to ma-
chining processes, which ultimately culminate in their transformation
into finished products after the technological cycle. The model is
distinguished by its high degree of parameterization, enabling the
utilization of the tool to simulate scenarios with varying degrees of
processing time variability by merely adjusting a select number of
parameters. Additionally, it incorporates parameters that facilitate the
simulation of production processes across a spectrum of job processing
numbers and machine quantities. The agent-based modelling approach
further enhances its versatility, rendering it eminently extendable for
future research endeavours aimed at exploring a variety of operational
dynamics.

Following the construction of the simulation model, it became
important to ensure its emulation of a real system’s performance with
consistency. Moreover, to guarantee reliable results, we conducted a
validation phase against the previously mentioned PWC. During this
evaluative stage, both the High-Level Control (HLC) control action and
Dispatcher logic were temporarily suspended, thereby narrowing our
focus exclusively to the throughput value (𝑇𝐻), expressed in jobs per
hour, as stipulated by the PWC assumptions.

Following the evaluation of 𝑇𝐻 for various fixed WIP values, a
t -Student test was employed to validate the simulator results. The
simulation tool, through statistical analysis, demonstrated its capability
to yield comparable mean values for both 𝑇𝐻 and 𝐶𝑇 as calculated
by the PWC law proposed by Hopp and Spearman (2011) over a two-
year simulation time run, with a confidence level of 95%. Importantly,
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Fig. 6. The Dynamic-NEH: the job is scheduled.
Fig. 7. Main agent of the simulation tool.
the Student’s t-test, conducted to determine whether the means of
the simulation data were significantly different from the theoretical
one, failed to reject the null hypothesis at a 95% significance level.
This confirms that the 𝑇𝐻 values obtained with the simulation tool
align with the theoretical values, ensuring the adaptability to diverse
conditions of our simulation results.

As outlined in the problem statement, the primary hypotheses fo-
cus on the processing time distributions for jobs on each machine.
Specifically, the Exponential distribution with a mean value of 10 and a
Uniform distribution 𝑈 [1…99] with a mean value of 50, following the
Taillard approach, have been considered. The second major assumption
pertains to two production system feeding scenarios: the first, Infinite
Feeding, and the second, Fixed Job Quantity. For each of these combina-
tions, and to assess the performance of the dispatching rule, different
parameters have been varied, including the number of machines, WIP
size, and JRQ size, as well as the different dispatching rules activated
by the dispatcher.

The outcomes of these analyses will be interpreted within the con-
text of a complete factorial plan, considering the parameters outlined
for the Infinite Feeding in Table 1 and for the Fixed Job Quantity in
Table 2.

• The Infinite Feeding main goal is to assess the production system
performance under steady-state conditions. In each experiment,
40 replications have been carried out. The experimental cam-
paigns for Infinite Feeding covered a time horizon of 4 years, with
performance measurements logged every 4 h, representing each
half-shift. (refer to Table 1).

• The Fixed Job Quantity scenario is for assessing the performance
the dispatching rules and its production system during the tran-
sient state, which represents a specific number of jobs or a simu-
lation equivalent to a single work shift. In each experiment, 200
replications have been carried out. All experimental campaigns
within the Fixed Job Quantity scenario were executed until all
generated jobs were processed. Performances have been measured
every 4 h, corresponding to each half-shift (refer to Table 2).
7

It is crucial to note that in the Fixed Job Quantity scenario, when
the number of jobs is set at 100 and the JRQ has a size of 100, the
proposed Dynamic NEH, operates identically to the NEH one, especially
noticeable with the makespan. This specific configuration allows for
establishing a ‘‘deterministic’’ benchmark, to which the novel rules can
be compared.

The analysis covers different performance indicators to comprehen-
sively evaluate the effectiveness of dispatching rules. Specifically, the
focus is on assessing throughput, as outlined in the 2, and the examina-
tion of coefficient variation of crossing time. For the Fixed Job Quantity
scenario, additional analysis is applied to makespan. The choice of
analysing the coefficient of variation is driven by the intention to assess
the predictability of the proposed long-sighted dispatching rules in
comparison to the short-sighted ones under examination. Crossing time
is defined as the total waiting time of a job within the JRQ and the
cycle time of the job within the production system and its coefficient
of variation is computed as the ratio between the deviation and the
mean (1).

𝑐𝑣 = 𝜎
𝜇

(1)

A dispatching rule that produces a lower coefficient of variation of
crossing time generates a more predictive production system than one
leading to a higher coefficient of variation. Pointing up the applied
methodology, it is important to emphasize that each performance indi-
cator will be analysed through its average value over a large number of
experiment replications to ensure the adaptability to diverse conditions
and validity of the obtained results.

5. Results and discussion

To thoroughly assess the performance of the production system
across diverse simulated operating conditions, a series of experimental
campaigns were conducted, according to the experimental methodol-
ogy discussed above.
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Table 1
Infinite feeding factorial plan.
Infinite feeding

Processing time distribution Exponential Uniform (Taillard)
Mean processing time 10 [min] 50 [min]
JRQ size 5,10,15
Machine number 5 10 15
System WIP 5 ÷ 15 in step 5 10 ÷ 50 in step 10 15 ÷ 60 in step 15
Dispatching rule FIFO, Open, Closed, Couple, D-NEH
Number of replication 40
Table 2
Fixed job quantity factorial plan.

Fixed Job Quantity

Processing time distribution Exponential Uniform (Taillard)
Mean processing time 10 [min] 50 [min]
Machine number 5,10,15
JRQ size 10 ÷ 100 in step 10
System WIP 10 ÷ 100 in step 10
Dispatching rule FIFO, Open, Closed, Couple, D-NEH
Job quantity 100 [jobs]
Number of replication 200

5.1. The infinite feeding

5.1.1. The throughput analysis
To compare the results of the dispatching rules, the initial analysis

focused on throughput performance. Several experimental campaigns
were carried out based on the configurations outlined in Table 1.
However, for practical presentation, Fig. 8 illustrates the throughput
results horizontally, showcasing a production system with 15 machines
and JRQ sizes of 5, 10, and 15. The WIP levels of 15, 30, 45, and 60
are arranged vertically. Simulations were replicated using both Expo-
nential and Uniform distributions for generating processing times. It is
important to note that the subsequent considerations are proportionally
applicable to all the combinations listed in Table 1.

Fig. 8 illustrates that both proposed dispatching rules, the Couple
and the Dynamic-NEH, outperform the other analysed dispatching rules
across all given combinations. It highlights that the Couple rule, in a
steady state, emerges as the most efficient rule, exhibiting a perfor-
mance increase of approximately 5% with an Exponential Distribution
and 2% with the Uniform Distribution compared to the other analysed
dispatching rules. Meanwhile, the Dynamic-NEH shows a performance
increase of 1% with an Exponential distribution.

These findings underscore how a long-sighted approach can lead
to higher throughput performance, and the Couple Loop, by striving
to balance jobs within the production system at each iteration, yields
particularly promising results.

5.1.2. The crossing time analysis
The coefficient of variation for crossing time in a 15-machine man-

ufacturing system is presented in Fig. 9. On the horizontal axis, WIP
levels (15, 30, 45, 60) are depicted, while the values of JRQ size (5,
10, 15) are displayed upward in Fig. 9. The vertical axis represents the
results in terms of 𝑐𝑣, with data generated using both Exponential and
Uniform processing time distributions. In this scenario, Fig. 9 indicates
that both proposed dispatching rules, particularly the Couple, yield the
best outcomes. This trend becomes even more pronounced as the level
of WIP increases for each JRQ size.

5.2. Fixed job quantity

Following the assessment of dispatching performance in the steady-
state within the Infinite Feeding scenario, the analysis now shift to
the Fixed Job Quantity scenario. This scenario enables the evaluation
8

of performance during the transient state by simulating the execution
of a small batch of jobs or a defined work shift. Specifically, the
performance indicators analysed in the Infinite Feeding scenario will be
replicated, with the addition of the makespan, which can be determined
based on the defined quantity of finished jobs (100 in this work).

To accomplish this, several experimental campaigns were conducted
following the parameters outlined in Table 2. For practical reasons,
graphs related to selected combinations are presented; however, it is
important to note that the considerations can be extended propor-
tionally to all possible combinations of JRQ, WIP, dispatching, and
processing time distribution.

5.2.1. The throughput analysis
The initial analysis of this scenario is presented in Fig. 10, illustrat-

ing the throughput performances of a 15-machine production system
under various dispatching rules. The JRQ sizes are set at 10, 20, 60,
and 100, and different WIP levels are configured to be 20, 60, and 100.

Once again, in this scenario, the proposed dispatching rules outper-
form the others, as shown in Fig. 10. Notably, in this transient state,
the Dynamic-NEH exhibits the best performance, with a throughput
improvement of around 25% over the short-sighted dispatching rules
and approximately 20% over the Couple Loop in the Exponential Dis-
tribution. In the Uniform Distribution, it shows a performance increase
of around 13%. Furthermore, a distinctive peak is observed when the
JRQ size matches the lot size (i.e., 100 in this paper). In these scenarios,
the Dynamic-NEH is comparable to the classic NEH algorithm, which
requires complete knowledge of the jobs for scheduling.

As shown in Figs. 8 and 10, the proposed dispatching rules exhibit
different trends depending on whether the system is in a steady state
or transient state. This difference can be attributed to their ability to
balance the production system. As previously mentioned, the Couple
rule aims to minimize processing time deviations by balancing the
production system at each iteration, leading to optimal performance
values. However, it may struggle to achieve such optimization in the
transient state, which requires a longer time interval to settle down,
as illustrated in Fig. 11. This graph demonstrates that, except for
the Dynamic-NEH, it is challenging to identify a consistent trend for
various dispatching rules that clearly require a longer settling time. The
configurations used in Fig. 10 are the same JRQ and WIP combinations.

On the other hand, the Dynamic-NEH, by minimizing the makespan
at each iteration, can schedule jobs effectively during the transient
state. This minimizes machine idle periods, thereby balancing the
production system and optimizing throughput performance.

5.2.2. The crossing time analysis
The coefficient of variation for crossing time is the second in-

dex considered in both the Infinite Feeding and Fixed Job Quantity
scenarios. In this case, the graph in Fig. 12 is presented, displaying
results (on the vertical axis) from a production system consisting of
15 machines with a WIP level of 20, 60, and 100, and a JRQ size of
10, 20, 60, and 100. The different crossing time coefficients (𝑐𝑣) for all
possible combinations of WIP and JRQ defined earlier are represented
on the horizontal axis. As can be seen, none of the dispatching rules
exhibits a consistent trend; this is to be expected given the low quantity
of jobs performed, which precludes noteworthy results in terms of
predictability, while the dispatchings are in the transit state.
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Fig. 8. The throughput in infinite feeding scenario.

Fig. 9. The crossing time coefficient variation in infinite feeding scenario.
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Fig. 10. The throughput in fixed job quantity scenario.
5.2.3. The makespan analysis
The makespan analysis for different dispatching rules has been

performed by launching predefined job packages, each consisting of
100 jobs. With respect to various experimental campaigns related to the
fixed amount of jobs outlined in Table 2, Fig. 13 presents the makespan
values (on the vertical axis) for the production of 100 jobs in a 15-
machine production system. The WIP and JRQ levels (on the horizontal
axis) are set to 20, 60, 100, and 10, 20, 60, 100, respectively.

The dispatching rule that achieves significantly better results is
Dynamic-NEH, it is indeed confirmed that the rule’s dynamic operating
logic effectively minimizes the makespan. This graph is particularly
relevant as makes it possible a comparison of results obtained by differ-
ent rules with a ‘‘deterministic’’ solution, which consistently performs
better than the dynamic solutions mentioned in the other cases.

It is worth noting that with a JRQ size of 100, Dynamic-NEH is
comparable to the NEH heuristic. In particular, the Table 3 shows
the makespan values corresponding to the NEH algorithm for WIP of
20,60,100, each associated with its standard deviation. The standard
deviations exhibit concentrated values relative to the mean, indicating
stability in the results and an extended experimental campaign. Con-
sidering the case with WIP equals to 100, the ‘‘deterministic’’ solution
resulting in 15% and 29% better, respectively, than the more dynamic
solution at the same instance (i.e. 15 machines, WIP size 100, JRQ size
10) as showed in Fig. 13. These conditions, reflecting a scenario with
a fixed order portfolio of 100 jobs and high rigidity, are, however, not
always suitable for real production systems. Therefore, the adoption
of a dynamic approach is crucial for adapting to current production
contexts, even if it provides less performance value.
10
Table 3
Deviation standard of makespan.

JRQ size WIP size Makespan [min]

Exponential Uniform

100

20

Mean
1602 6800

Deviation
62,4 121,4

60

Mean
1285 6181

Deviation
49,9 109,9

100

Mean
1293 6180

Deviation
50,3 120,6

5.3. Synthesis of results

To summarize, the Couple Loop demonstrates a superior average
throughput value in the steady state compared to the other analysed
rules, whilst the Dynamic-NEH achieves the highest average through-
put in the transient state. This can be attributed to the fact that,
in the Infinite Feeding scenario, the Couple Loop reaches its peak
functionality in the steady state. Conversely, this is not the case for the
Fixed Job Quantity scenario, as the Couple cannot stabilize due to the
limited intervention interval. In contrast, the Dynamic-NEH evaluates
all jobs in the Job Release Queue (JRQ) from the initial iteration,
yielding better results even during the transient state. It is consequently
assumed that by repeating the experiment with a number of jobs greater
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Fig. 11. The throughput in fixed job quantity scenario without the Dynamic-NEH.
Fig. 12. The crossing time coefficient in fixed job quantity.
than 100 in the Fixed Job Quantity scenario, the Couple could obtain
progressively better results.

Another vital performance indicator is the coefficient of variation of
the crossing time. To better contextualize these findings, it is essential
11
to recall that the crossing time constitutes the cumulative waiting
time of jobs in the JRQ and the cycle time of jobs in the system.
Relative to other rules, the FIFO consistently exhibits the lowest co-
efficient of variation. This rule prioritizes jobs based on their arrival
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Fig. 13. The makespan.
order, enhancing predictability; owing to its simplicity, the impact
of job waiting time in the JRQ is minimal. However, this variability
is transferred to the production system, causing FIFO to demonstrate
lower performance metrics (i.e., throughput) than other rules. Con-
versely, with the other dynamic control rules analysed (i.e., Open,
Closed, Couple, and Dynamic-NEH), variability is shifted to the JRQ,
wherein the next job for production is iteratively determined. This
approach offers better throughput performance but a higher coefficient
of variation of the crossing time compared to FIFO. Notably, the Cou-
ple Loop and Dynamic-NEH exhibit lower coefficient values, thereby
establishing a more predictable production system against the classi-
cal FIFO approach, whilst concurrently achieving superior throughput
performance compared to the best rules available in the literature.

Regarding the makespan in the Fixed Job Quantity scenario, a
progressive improvement in the performance of the Dynamic-NEH is
observed as the size of the Job Release Queue (JRQ) increases. Notably,
in the limit case where both the number of jobs generated and the
JRQ size are equal to 100, the Dynamic-NEH operates identically to
the classical NEH rule, which represents the deterministic benchmark
in this context. Additionally, when the JRQ size is less than 100, the
performance of the Dynamic-NEH, though inferior to the deterministic
NEH case, does not significantly deviate. This relative closeness in per-
formance is noteworthy, suggesting that the Dynamic-NEH approach
remains a compelling alternative to the classical NEH, particularly con-
sidering its benefits in terms of scheduling flexibility and computational
efficiency. The enhanced flexibility allows for greater responsiveness
to the arrival of new orders, while the reduced computational demand
makes the approach more feasible and practical for extensive applica-
tion. This balance between performance and operational agility renders
the Dynamic-NEH an attractive option, even in scenarios where the
deterministic NEH could theoretically provide superior results.
12
6. Conclusions

In conclusion, this paper has addressed the critical need for devel-
oping skills and capabilities to effectively allocate production resources
in an increasingly dynamic manufacturing environment. This work
centred on a hybrid semi-heterarchical architecture, tailor-made for
decentralized production control. We have evaluated current dispatch-
ing rules for a Flow-Shop Production System with CONWIP logic,
drawing upon the technological innovations spurred by the Fourth
Industrial Revolution. Consequently, we proposed two new dispatching
rules – the Couple Loop Dispatch Control and Dynamic NEH – which
utilize dynamically required system information to define a production
schedule, optimizing overall system performance.

Our analysis has been conducted on two levels. Initially, we eval-
uated the architecture’s steady-state performance using the available
dispatching rule from the literature in an extended test scenario. Subse-
quently, we assessed the transient-state performance of both proposed
and known dispatching rules in a new scenario, derived from the
assumptions of the Taillard dataset. For this purpose, we employed
AnyLogic, a highly parametrizable multi-agent simulation tool, which
enabled us to conduct various experimental campaigns.

Examining the performance of the proposed rules and the most
advanced in the literature within the production system, it has emerged
that in the steady-state, dynamic environment where jobs dynamically
arise in the production system, the Couple Loop, in particular, out-
performs traditional scheduling methods such as FIFO and rule-based
control methods like Open Loop and Closed. Both new rules, Couple
Loop and Dynamic-NEH, have consistently outperformed existing ones,
aligning with their goal of optimizing performance and balancing the
production system. On the other hand, in the transient state, Dynamic-
NEH has demonstrated a more efficient evaluation of performances,
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in line with its objective of minimizing makespan at each iteration.
This behaviour increases until the scheduling of static problems is
represented when the JRQ and job quantity have the same size (100 in
this study), where Dynamic-NEH becomes comparable with the classic
NEH algorithm.

Examining the performance of different rules within the production
system, it emerges that in scenario where jobs dynamically arrive in the
production system, the Couple Loop outperforms traditional scheduling
methods such as the FIFO and rule-based control methods available
in the literature. On the other hand, in the transient state, Dynamic-
NEH has demonstrated a more efficient evaluation of performances,
in line with its objective of minimizing makespan at each iteration.
This behaviour increases until the scheduling of static problems is
represented when the JRQ and job quantity have the same size (100 in
this study), where Dynamic-NEH becomes comparable with the classic
NEH algorithm.

For future research, it would be valuable to delve into performance
evaluations while incorporating disruption events, including aspects
such as machine failure, within the context of Flow-Shop configuration.
Additionally, there is room for further exploration into the development
of a dispatching rule featuring a long-term strategy, specifically in
a Hybrid Flow-Shop and Job-Shop configuration. In conclusion, this
paper has made noteworthy progress in augmenting the efficiency of
manufacturing systems. As result, based on the outcomes of the pro-
posed rules, consideration is being given to implementing a system with
multiple Low-Level Controllers (LLCs) operating concurrently, coupled
with cooperative interactions among multiple KERP entities.
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