
Test Smells Learning by a Gamification Approach

Anna Rita Fasolino
University of Naples Federico II

Naples, Italy
fasolino@unina.it

Por�rio Tramontana
University of Naples Federico II

Naples, Italy
ptramont@unina.it

Abstract

The presence of test smells related to low-quality test cases is a

known factor contributing to problems in maintaining both test

suites and production code. The need to avoid and �x test smells

is becoming more and more popular in the scienti�c community,

as well as the importance of knowing how to detect and refactor

existing test cases. However, these practices are very little con-

sidered in academic testing courses, due also to the di�culty of

making them attractive to students. This position paper presents an

approach for teaching test smells based on gami�cation. It exploits

a tool, TSGame, that provides a serious game where students can

familiarize with test smells by practicing with their detection and

removal from JUnit test code. TSGame has been implemented as

a Web-based application that allows a teacher to assign students

test smell detection and refactoring tasks that they have to accom-

plish in game sessions. Upon completion of the tasks they have the

possibility to gain rewards. A preliminary version of the tool has

been validated in the context of a Software Testing course at Master

degree level, with 37 students that showed the tool e�ectiveness

and usefulness for test smell learning.

CCS Concepts

• Applied computing→ Interactive learning environments.

Keywords

Software Testing Education, Test Smells, Refactoring, Gami�cation

of Learning Activities

ACM Reference Format:

Anna Rita Fasolino and Por�rio Tramontana. 2024. Test Smells Learning by

a Gami�cation Approach. In Proceedings of the 3rd ACM International Work-

shop on Gami�cation in Software Development, Veri�cation, and Validation

(Gamify ’24), September 17, 2024, Vienna, Austria. ACM, New York, NY, USA,

4 pages. https://doi.org/10.1145/3678869.3685687

1 Introduction

Test smells are poorly designed tests and negatively a�ect the qual-

ity of test suites and production code [5]. Already in 2006 Van

Rompaey et al. observed that their presence may worse the main-

tainability of test suites and production code, or even a�ect their

functionality [5]. This result was recently con�rmed by Panichella

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Gamify ’24, September 17, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1113-8/24/09
https://doi.org/10.1145/3678869.3685687

et al. [11] which found that test smells are capable to capture design

issues in test code that reduces its maintainability.

The problem of test smells was formalized for Java test cases im-

plemented in JUnit in 2001 by van Deursen et al. [15], who proposed

a canonical catalog consisting of 11 smell types with the associated

recommended refactoring. This catalogue was frequently discussed,

both in literature and by practitioners taking into account the evo-

lution of testing practices and technologies: hundreds of other

possible smells were proposed over time [5, 6].

Most of the work in literature are related to the automatic de-

tection of test smells. Aljedaani et al. [1] have recently catalogued

22 detection tools developed since 2006 (but most of them were

realized since 2019). These tools are able to �nd 85 di�erent types

of test smells in 4 di�erent programming languages, but most of

the tools are related to Java and JUnit, e.g. TeCReVis [9], PraDeT

[4], DARTS [10], JNose Test [16], and tsDetect [12].

Jones in 2001 pointed out that, “there is a basic set of testing

skills that every undergraduate should acquire” [8]. The practice of

software testing, such as unit testing, is suggested to be integrated

into the Computer Science and Software Engineering curricula as

part of the educational experience. On the other hand, test smells

do not represent a frequent topic in software testing courses. In

a recent analysis of the syllabi of 22 software testing courses and

other 95 courses including testing topics taught in universities in

Belgium, Italy, Spain and Portugal, no references to test smells

teaching were found [14]. The unique experience of teaching test

smells found in literature appears to be the one of Aniche et al. [2],

for which a Learning Goal of their course is to write maintainable

test code by avoiding well-known test code smells.

To �ll in this gap, we decided to develop a tool that supports

Test Smells learning by exploiting a gami�cation approach. Gami�-

cation is a well-know and e�ective approach for aiding educational

processes and it has been used with success in software testing ed-

ucation [7]. Our tool, named TSGame (Test Smells learning Game),

has been designed to provide a serious game that allows students

to learn di�erent types of test smells, to recognize them in existing

JUnit test code, and to remove them by refactoring techniques.

A preliminary case study has been carried out to validate the

learning approach supported by the tool. The study has been per-

formed in the context of a Software Testing course o�ered in a

Master Degree in Computer Engineering at the University Federico

II of Naples in the autumn of 2023. Its results were encouraging

and showed the e�ectiveness of TSGame in improving the student

performance in test smells learning.

The remainder of this position paper is organized as follows.

Section 2 presents the TSGame features and Section 3 illustrates how

we implemented it. Section 4 describes the case study we executed,

while Section 5 reports �nal conclusions and future works.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

30

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7116-019X
https://orcid.org/0000-0003-3264-185X
https://doi.org/10.1145/3678869.3685687
https://doi.org/10.1145/3678869.3685687


Gamify ’24, September 17, 2024, Vienna, Austria Anna Rita Fasolino and Porfirio Tramontana

2 TSGame Features

The TSGame tool has been designed to provide a serious game that

allows students to learn di�erent types of test smells, to recognize

them in existing test code, and to remove them by refactoring

techniques. Using the game, the students can be engaged in game

sessions where they can:

• practice test smells detection;

• practice test smell refactoring;

• share with other students the experiences made in refactor-

ing existing test smells and receive their comments on the

proposed solutions.

The game sessions may have growing levels of di�culty de-

pending on the type of assigned task, on the complexity of the test

classes and on the amount of test smells they include.

In a �rst type of task the app provides the student with several

exercises where test cases containing test smells are proposed. The

player is invited to detect and classify the observed smell types, by

answering a set of questions. After answering the questions, the

student is provided a feedback showing how many test smells were

correctly detected and classi�ed and possibly receives a reward,

when all the test smells have been detected. In addition, a ranking

of the better achieved scores (in terms of correctly detected smells)

is maintained by the system. Figure 1 shows the Web page o�ering

the Detection game session.

Figure 1: Detection Game Web page

The second type of task to be performed during a Game Session

is an advanced one, where students are encouraged to do practice

of test smells refactoring. The game provides the student with a

set of JUnit test cases including test smells. The player is informed

about the number and type of test smells which are present in each

test method and is invited to detect all of them and to refactor

the test code in order to remove the smells. When he �nishes, the

application automatically analyses the refactored code and provides

the player with a feedback consisting in the number of test smells

that have been successfully removed, along with the number of the

ones which were not detected and removed. The app provides a

reward when all the smells have been correctly removed from the

code. In order to discourage the students to remove the test smell

just by removing the smelly test case or by oversimplifying it, the

system evaluates code coverage and possibly signals the loss of code

coverage of refactored test cases as a warning on the user interface.

Figure 2 reports the Web page shown to the student during the

execution of this learning task.

Figure 2: Refactoring Game Web page

As the students complete the assigned game sessions, they accu-

mulates rewards and a leaderboard of players is compiled based on

the achieved results.

The game has been also designed to allow the students to share

their refactoring solutions and learn from their peer work, by

analysing and comparing concrete di�erent solutions. In partic-

ular, the player can browse a catalog containing existing solutions

of test smells refactoring made by other students and can rate/

comment/ try to improve them.

3 TSGame Implementation

The TSGame learning environment has been developed as a Web

application usable from a Web browser. Its architecture is modular,

designed to be easily deployed, and includes the following main

components:

• The Front-End, providing the presentation logic of the game.

It exploits an open source component (CodeMirror1) o�ering

many code editing features;

• The Compiler Service, that is responsible for the building

and the execution of the test class, the evaluation of the

achieved code coverage (by exploiting the JaCoCo library)

and the automatic detection of the test smells by means of

the tsDetect tool2;

• The User Service, providing authentication functionality and

including a H2 database of registered users;

• The Exercise Service, providing access to a list of exercises,

including smelly test classes and quizzes;

• The Leaderboard Service, that maintains a list of all the sub-

mitted solutions and of the comments related to each of

them.

The teacher can con�gure the application by creating quizzes and

smelly test classes to be refactored by means of json �les. The test

classes can be uploaded directly on the Exercise Service container

or by linking it to github resources.

1Code Mirror, available at https://codemirror.net/
2tsDetect, available at https://testsmells.org

31

https://codemirror.net/
https://testsmells.org


Test Smells Learning by a Gamification Approach Gamify ’24, September 17, 2024, Vienna, Austria

Table 1: List of Test Smells Automatically Detected by TS-

Game exploiting tsDetect

Assertion Roulette Empty Test Print Statement

Conditional Test Logic Exception Catching Throwing Redundant Assertion

Constructor Initialization General Fixture Resource Optimism

Default Test Ignored Test Sensitive Equality

Dependent Test Lazy Test Sleepy Test

Duplicate Assert Magic Number Test Unknown Test

Eager Test Mystery Guest Verbose Test

The application can be deployed in two di�erent con�gurations.

In the �rst one, a Thin-Client solution, all the components are de-

ployed on the Server Side in the context of Docker containers. The

Front-End component is an Angular application deployed on a Web

server, thus the student can access it via aWeb browser in a straight-

forward way. This con�guration is illustrated in Figure 3. In the

latter solution, the Front-End and the components of the Compiler

Service are deployed in an Electron executable that can be installed

and executed locally by the students, whereas the User Service, the

Exercise Service and the LeaderBoard Service remain deployed in

Docker Containers available via http. This solution implements

more features on the client side with respect to the former one, thus

it can run faster and is more scalable due to the decentralization of

the building operations that may be computationally expensive.

Figure 3: Architecture of the TSGame Learning Environment

Table 1 shows the list of test smells that the environment is able

to detect, exploiting the tsDetect tool capabilities.

4 Validation

In this section we present a case study we performed to evaluate

the e�ectiveness of TSGame in aiding the students in test smells

learning and to gather the students’ perception about usefulness

and usability of the tool in the learning experience.

In particular, we wanted to answer the following questions:

RQ1 What is the e�ectiveness of test smells learning with the

support of TSGame?

RQ2 What is the student perception about usability, usefulness,

and satisfaction about TSGame, in test smells learning?

4.1 Experimental Procedure

The experimental procedure included the following steps:

• the students were provided a 2-hours traditional lecture

presenting test smells basics, a taxonomy of test smells3,

and examples of how to remove them by refactoring;

• the students were presented the TSGame app in a practical

1-hour lecture, where they learned how to use the TSGame

features;

• the students were assigned a Game Session homework re-

quiring to solve a realistic test smell refactoring problem

on a Java class using TSGame. There was no speci�c time

constraints except that the exercise had to be completed in

two weeks;

• after playing the game, the students answered a post- ques-

tionnaire designed to collect their perception about the use-

fulness and the usability of TSGame for learning test smells

and to con�rm the refactoring results achieved and the actual

e�ort dedicated to complete the task.

4.2 Subjects And Objects

The subjects involved in the study were 37 students of a Software

Testing course o�ered in a Master Degree in Computer Engineer-

ing at the University Federico II of Naples. During the course the

students had the opportunity to learn several test case design tech-

niques and how to implement test cases with JUnit. The 20 Java

classes under test used in the study belong to the SF110 repository

originally proposed in [3], whereas the corresponding test classes

were produced as part of an experiment carried out to validate the

student capability of writing e�ective test case with Code Defend-

ers [13]. The test classes have a size between 345 and 750 LOCs,

with an average of 520 LOCs. The test classes contain a number

of test methods ranging between 11 and 83 (38 in average) and a

number of smells between 34 and 225 (119 in average). The number

of di�erent types of smells in each test class vary between 4 and 8

(6 in average).

4.3 Results

To answer our research questions, we used a questionnaire struc-

tured in �ve sections. In the former one, the students were asked to

con�rm the values measured by the tool regarding the number of

detected and removed test smells, the number of remaining smells,

the actual time spent to accomplish the task, and the LOC coverage

of the refactored test suite. Three sections of the questionnaire

addressed three di�erent attributes, including perceived Usabil-

ity, Usefulness, and Satisfaction of the students in the learning

experience they made by TSGame. For each question, the students

provided a level of agreement according to a �ve-value Likert scale

(Strongly agree = 5. Agree =4, Neutral =3, Disagree=2, Strongly

Disagree = 1). In the latter section the students could provide com-

ments, suggestions or encountered issues.

As regards RQ1, we observed that 28 out of 37 students (76%)

were able to �x all the test smells, while 4 students �xed all the

smells except one or two of them, and the 4 remaining students

missed to refactor more than two smells. On the other hand, the

3https://testsmells.org/pages/testsmellexamples.html

32

https://testsmells.org/pages/testsmellexamples.html


Gamify ’24, September 17, 2024, Vienna, Austria Anna Rita Fasolino and Porfirio Tramontana

refactoring activities carried out by 28 out of 37 students did not

cause reductions in the achieved coverage, whereas in the other 8

cases the achieved code coverage reduced of amounts between 2%

and 26%. In general 22 out of 37 students (59%) were able to �x all the

test smells without losses in coverage. To accomplish the assigned

tasks, the students spent a time ranging between 30 minutes and

12 hours, with an average of about 3.4 hours, depending on the size

of the assigned class, the amount of smells to be refactored and

the student’s motivation. On the basis of the reported data about

the refactoring activity, we could answer RQ1 by concluding that

more than half of the students (about 60%) e�ectively accomplished

the test smell refactoring activity, showing the validity of the learning

experience supported by the TSGame tool.

To answer RQ2, we analysed the questionnaire answers. The

results to the 31 posed questions and the number of answers for

each of the Likert scale values between 1 (strongly disagree) and 5

(strongly agree) are online available4. As to the Usability of the tool,

most students agreed that the tool was easy to use, understandable,

and with a clear UI and interaction mechanisms. They appreciated

the user interface and the experience of interacting with it. As to

the Usefulness, most of the students agreed in considering the tool

useful for the learning experience. As regards the User Satisfaction,

the students were mostly satis�ed about the tool, in particular with

the feedback and the challenging and stimulating experience it

provides. The main issues declared by the students were related to

the need for more background knowledge on test smells and the

teacher support for starting learning with the tool. Another issue

regarded the tediousness of the learning experience requiring repet-

itive refactoring of the same type of test smells, which emerged by

the student comments. Some students also declared some incon-

sistencies in the tsDetect smell detection techniques (particularly

for the detection of Magic Number, Exception Catching Throwing

and Unknown Test smells). These issues were generally due to the

heuristics used by tsDetect which uses tolerance thresholds to re-

duce false positives. We concluded these thresholds should be better

tuned. On the other hand, several students declared di�culties in

refactoring the Eager Test smells (8 out of 37 students), since their

removal often required a complete restructuring of the test cases.

5 Conclusions And Future Works

In this paper we presented an approach for supporting test smells

learning by gami�cation. We proposed a tool that provides a seri-

ous game allowing students to learn di�erent types of test smells,

to recognize them in existing test code, and to remove them by

refactoring techniques. At the moment, the gami�cation features

implemented in the tool are preliminary, but the case study we

performed showed that the idea to use a serious game for engag-

ing students doing practice of test smell detection and refactoring

can be useful in a learning process. The case study results also

showed us insights about how to improve the tool and the teaching

supporting materials.

In future work, we want to add further gami�cation features

to the tool, such as badges, reward mechanisms, challenges with

growing levels of complexity, etc., in order to further engage and

stimulate the learners in doing practice of test smells. In addition,

4Frequencies of answers to the 31 questions, https://zenodo.org/records/13125996

we intend to design and carry out further evaluations of the bene�ts

of using TSGame in learning contexts, and want to make available

our tool and the supporting teaching materials to foster its adoption

by other teachers in other Software Testing courses. Finally, we

aim to assess whether professionals will value our approach.

Acknowledgments

This work has been partially funded by ENACTEST (European

innovation alliance for testing education), ERASMUS+ Project num-

ber 101055874, 2022-2025 and by GATT (GAmi�cation in Testing

Teaching), funded by the University of Naples Federico II Research

Funding Program (FRA).

References
[1] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi, Mo-

hamed Wiem Mkaouer, Ali Ouni, Christian D. Newman, Abdullatif Ghallab,
and Stephanie Ludi. 2021. Test smell detection tools: A systematic mapping
study. In ACM International Conference Proceeding Series. 170 – 180. https:
//doi.org/10.1145/3463274.3463335

[2] Maurício Aniche, Felienne Hermans, and Arie van Deursen. 2019. Pragmatic
Software Testing Education. In Proc. of the ACMTechnical Symposium on Computer
Science Education. ACM, 414–420. https://doi.org/10.1145/3287324.3287461

[3] Gordon Fraser and Andrea Arcuri. 2014. A Large-Scale Evaluation of Automated
Unit Test Generation Using EvoSuite. ACM Trans. Softw. Eng. Methodol. 24, 2,
Article 8 (dec 2014), 42 pages. https://doi.org/10.1145/2685612

[4] Alessio Gambi, Jonathan Bell, and Andreas Zeller. 2018. Practical Test Depen-
dency Detection. In 2018 IEEE 11th International Conference on Software Testing,
Veri�cation and Validation (ICST). 1–11. https://doi.org/10.1109/ICST.2018.00011

[5] Vahid Garousi, Baris Kucuk, and Michael Felderer. 2019. What we know about
smells in software test code. IEEE Software 36, 3 (2019), 61 – 73. https://doi.org/
10.1109/MS.2018.2875843

[6] Vahid Garousi and Barış Küçük. 2018. Smells in software test code: A survey of
knowledge in industry and academia. Journal of Systems and Software 138 (2018),
52 – 81. https://doi.org/10.1016/j.jss.2017.12.013

[7] Vahid Garousi, Austen Rainer, Per Lauvås, and Andrea Arcuri. 2020. Software-
testing education: A systematic literature mapping. Journal of Systems and
Software 165 (2020), 110570. https://doi.org/10.1016/j.jss.2020.110570

[8] E.L. Jones. 2001. An experiential approach to incorporating software testing
into the computer science curriculum. In 31st Annual Frontiers in Education
Conference. Impact on Engineering and Science Education, Vol. 2. F3D–7. https:
//doi.org/10.1109/FIE.2001.963741

[9] Negar Koochakzadeh and Vahid Garousi. 2010. TeCReVis: A Tool for Test Cov-
erage and Test Redundancy Visualization. In Testing – Practice and Research
Techniques. Springer. https://doi.org/10.1007/978-3-642-15585-7_12

[10] Stefano Lambiase, Andrea Cupito, Fabiano Pecorelli, Andrea De Lucia, and Fabio
Palomba. 2020. Just-in-time test smell detection and refactoring: The DARTS
project. In IEEE International Conference on Program Comprehension. 441 – 445.
https://doi.org/10.1145/3387904.3389296

[11] A. Panichella, S. Panichella, G. Fraser, A. A. Sawant, and V. J. Hellendoorn. 2022.
Test smells 20 years later: detectability, validity, and reliability. Empirical Software
Engineering 27, 7 (2022). https://doi.org/10.1007/s10664-022-10207-5

[12] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. 2020. TsDetect: An open source test
smells detection tool. In - Proceedings of ESEC/FSE 2020. 1650 – 1654. https:
//doi.org/10.1145/3368089.3417921

[13] Jose Miguel Rojas, Thomas D. White, Benjamin S. Clegg, and Gordon Fraser.
2017. Code Defenders: Crowdsourcing E�ective Tests and Subtle Mutants with a
Mutation Testing Game. In Proceedings of ICSE 2017. 677 – 688. https://doi.org/
10.1109/ICSE.2017.68

[14] Por�rio Tramontana, BeatrizMarín, Ana C. R. Paiva, AlexandraMendes, Tanja E. J.
Vos, Domenico Amal�tano, Felix Cammaerts, Monique Snoeck, and Anna Rita Fa-
solino. 2024. State of the Practice in Software Testing Teaching in Four European
Countries. In 17th IEEE International Conference on Software Testing, Veri�cation
and Validation (ICST) 2024. https://doi.org/10.1109/ICST60714.2024.00015

[15] Arie van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok. 2001.
Refactoring test code. In Proc. Int’l Conf. eXtreme Programming and Flexible
Processes in Software Engineering (XP).

[16] Tássio Virgínio, Luana Martins, Larissa Rocha, Railana Santana, Adriana Cruz,
Heitor Costa, and Ivan Machado. 2020. JNose: Java Test Smell Detector (SBES
’20). ACM, 564–569. https://doi.org/10.1145/3422392.3422499

Received 2024-07-03; accepted 2024-07-24

33

https://zenodo.org/records/13125996
https://doi.org/10.1145/3463274.3463335
https://doi.org/10.1145/3463274.3463335
https://doi.org/10.1145/3287324.3287461
https://doi.org/10.1145/2685612
https://doi.org/10.1109/ICST.2018.00011
https://doi.org/10.1109/MS.2018.2875843
https://doi.org/10.1109/MS.2018.2875843
https://doi.org/10.1016/j.jss.2017.12.013
https://doi.org/10.1016/j.jss.2020.110570
https://doi.org/10.1109/FIE.2001.963741
https://doi.org/10.1109/FIE.2001.963741
https://doi.org/10.1007/978-3-642-15585-7_12
https://doi.org/10.1145/3387904.3389296
https://doi.org/10.1007/s10664-022-10207-5
https://doi.org/10.1145/3368089.3417921
https://doi.org/10.1145/3368089.3417921
https://doi.org/10.1109/ICSE.2017.68
https://doi.org/10.1109/ICSE.2017.68
https://doi.org/10.1109/ICST60714.2024.00015
https://doi.org/10.1145/3422392.3422499

	Abstract
	1 Introduction
	2 TSGame Features
	3 TSGame Implementation
	4 Validation
	4.1 Experimental Procedure
	4.2 Subjects And Objects
	4.3 Results

	5 Conclusions And Future Works
	Acknowledgments
	References

