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Abstract. We consider a free-fermion chain undergoing dephasing, described by two different random-
measurement protocols (unravelings): a quantum-state-diffusion and a quantum-jump one. Both protocols
keep the state in a Slater-determinant form, allowing to address quite large system sizes. We find a bifurca-
tion in the distribution of the measurement operators along the quantum trajectories, that’s to say, there is
a point where the shape of this distribution changes from unimodal to bimodal. The value of the measure-
ment strength where this phenomenon occurs is similar for the two unravelings, but the distributions and
the transition have different properties reflecting the symmetries of the two measurement protocols. We
also consider the scaling with the system size of the inverse participation ratio of the Slater-determinant
components and find a power-law scaling that marks a multifractal behaviour, in both unravelings and for
any nonvanishing measurement strength.

1 Introduction

Entanglement [1,2] plays an important role in the
unitary dynamics of many-body quantum systems in
many different contexts: It marks quantum phase tran-
sitions [3]; It behaves differently in the dynamics of
thermalizing, integrable and many-body localized quan-
tum systems [4–6]; It even allows to detect the existence
of topological boundary modes [7–10]. Recently, atten-
tion has been moved also to the behaviour of entangle-
ment in situations beyond the unitary dynamics, where
the evolution of monitored systems is considered. The
interplay between the intrinsic dynamics of the system
and that induced by the quantum measurement process
can lead to a variety of scaling regimes for the asymp-
totic entanglement entropy, giving rise to the so called
entanglement transitions.

In this framework, an extensive number of works has
been focusing on local measurements (either discrete or
continuous in time) performed in monitored quantum
circuits [11–30], as well as in non-interacting [17,31–48]
and interacting [49–55] Hamiltonian systems. Moreover,
there exists a deep connection between measurement-
induced phases and the encoding/decoding properties
of a quantum channel [56–66]. Situations where the
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dynamics is only induced by random measurements of
non-local string operators (measurement-only dynam-
ics) have been also considered, finding different scaling
regimes of the entanglement entropy, according to the
statistics of the randomly measured operators, and the
range and the nature of the strings [67,68].

Among the various theoretical models of monitored
quantum systems, considerable coverage has been ded-
icated to the dynamics of fermionic Gaussian states, in
the presence of quadratic Hamiltonians and Gaussian-
preserving measurement processes (see, e.g., Refs. [31,
34,36,39–48,69–72]), as they are amenable to an accu-
rate numerical treatment up to relatively large sizes. In
this framework, for short-range Hamiltonians and local
measurements, area-law (saturation to a finite value)
or logarithmic scaling of the asymptotic entanglement
entropy with the system size have been reported.

In this paper we consider a free-fermion chain under-
going a dephasing Lindbladian, and describe it as an
average over random quantum trajectories in two dif-
ferent ways (unravelings). Specifically, we employ either
a quantum-state-diffusion (QSD) unraveling [31] or a
quantum-jump (QJ) unraveling. Both unravelings are
chosen in such a way that the state is kept in a Gaussian
form (a Slater determinant), thus a numerical analysis
of systems with up to L = O(102) sites is easily afford-
able.

For this model, the behaviour of the asymptotic
entanglement entropy averaged over the quantum
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trajectories has been carefully scrutinized and is still
under debate. After the pioneering work in Ref. [31],
where a saturation of the entanglement entropy with
the system size (area-law) was predicted, Refs. [39,73]
claimed the presence of a transition from a logarith-
mic increase to an area-law behaviour. More recently,
Ref. [36] challenged this result, suggesting that there is
only area law and the transition is actually a crossover,
due to the exponential growth with the inverse mea-
surement strength of the size where the entanglement
entropy saturates.

Here we focus instead on the distribution of the
expectations of the measured operators along the quan-
tum trajectories. Properties of similar distributions
have already been studied in [45,74,75]. In general,
the properties of this distribution are not related to
the entanglement properties, although with an excep-
tion [74]. Comparing the behaviour of this distribution
in the two unravelings, we observe differences as well
as similarities. In the QSD unraveling this distribution
is symmetric around n = 1/2, while in the QJ one
this symmetry is absent. This reflects the fact that,
while QSD is invariant under particle-hole symmetry,
QJ is not. In both unravelings the distribution displays
a bifurcation, moving from unimodal to bimodal shape.
One can see this phenomenon already at finite size,
being related to the frequent local measurements forc-
ing the state to be locally similar to an eigenstate of the
measurement operators, in analogy with the quantum
Zeno effect [76–79]. In the case of QSD, where the bifur-
cation occurs for a measurement strength γ�

QSD ≈ 0.2,
the two maxima in the bimodal phase are symmetric
and stem continuously at the transition point, in a way
formally reminiscent of the Landau picture of second-
order phase transitions. At the bifurcation point, the
single maximum bifurcates into two maxima, with a
discontinuity in the derivative analogous to the pitch-
fork bifurcation in classical dynamical systems [80–82].
In the QJ case, the bifurcation occurs at γ�

QSD ≈ 0.23.
In contrast with the QSD case, here the maxima are
not symmetric, and the smaller one appears discontin-
uously at the bifurcation point, in a way formally rem-
iniscent of the mean-field analysis of first-order phase
transitions.

The bifurcation originates from the interplay between
the unitary dynamics and the measurement operations.
In particular, when the measurement strength is large,
the second prevail and the state is expected to be sim-
ilar to a product state. Consistently with that, in both
cases, for large measurement strength, the distributions
show strong maxima near n = 0 and n = 1, mark-
ing that the state is near to a separable one. This also
agrees with what is known for the asymptotic entan-
glement entropy [31,36,39,73], that for QSD tends to 0
for large measurement strengths.

Finally we study the localization of the state, to
probe whether the bifurcation corresponds to a delocal-
ization-localization transition or not.1 To do that, we

1 Localization in monitored systems has also been consid-
ered in Refs. [47,83,84].

first note that, for both unravelings, the state is a
Slater determinant. We consider the components of this
determinant and evaluate the inverse participation ratio
(IPR) of these components in the space basis. This is
a standard probe for localization, used for instance in
studies of Anderson localization [85]. We find no sharp
transition, but we see that the IPR scales with the sys-
tem size L as a power law ∼ L−α with 0 < α < 1. For
both unravelings, α depends smoothly on γ similarly to
what happens in the two-dimensional case [47]. This is
a mark of multifractal behaviour of the components of
the Slater determinant [86,87]: The system is anoma-
lously delocalized and never achieves perfect localiza-
tion, as confirmed by results on the conductivity [83].
Such multifractal behaviour also occurs at the transi-
tion between extended and Anderson-localized phases,
so we can say that our model is always in a critical
Anderson regime.

The paper is organized as follows. In Sect. 2 we
present the model Hamiltonian, its diagonalization and
its symmetries. In Sect. 3 we describe the two unrav-
eling protocols that, on average, give rise to the same
Lindblad equation. In Sect. 4 we show that for both
unravelings the state along a trajectory is always in
a Slater determinant form. In Sect. 5 we compare the
two unravelings and show that, although the asymp-
totic entanglement entropy behaves similarly, the dis-
tributions of the expectations of the measurement oper-
ators have different symmetries, but show both a bifur-
cation (Sect. 5.1); we also discuss the scaling of the IPR
averaged over disorder and its multifractal behaviour
(Sect. 5.2). Finally, in Sect. 6 we draw our conclusions.

2 Model Hamiltonian

We consider a model of spinless free fermions on a
one-dimensional lattice with L sites, described by the
Hamiltonian

Ĥ =
λ

2

∑

j

(
ĉ†
j ĉj+1 + ĉ†

j+1ĉj

)
, (1)

where ĉ
(†)
j are anticommuting fermionic operators act-

ing on the j-th site.2 After defining the vector
Ψ̂ ≡ (ĉ1, . . . , ĉL)T , the Hamiltonian (1) can be written
as

Ĥ = Ψ̂†
HΨ̂, (2)

where we introduced the L × L matrix H such that

Hi,j =
λ

2
(δi+1,j + δi−1,j) . (3)

2 In what follows, unless specified, summations run from 1
to L and we assume periodic boundary conditions. We also
fix λ = 1 as the energy scale of the system and work in units
of � = 1.
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A generic fermionic quadratic model as the one in
Eq. (2) can be cast in a more transparent form by defin-
ing the fermionic operators

γ̂k =
∑

j

Ukj ĉj , (4)

such that
Φ̂ ≡ (γ̂1, . . . , γ̂L)T = UΨ̂, (5)

where U denotes the unitary transformation which diag-
onalizes this matrix H:

U
†
H U = diag (ωk) , (k = 1, . . . , L). (6)

Thus, we finally get:

Ĥ =
∑

k

ωkγ̂†
kγ̂k , (7)

which represents a model of free γ̂k-fermionic particles
with dispersion relation ωk ≥ 0.

The eigenstates of Ĥ can be put in a simple Gaus-
sian form (Slater determinants) and are fully character-
ized by the two-point correlation matrix of ĉ-fermions,
Cij = 〈ĉ†

i ĉj〉 (see Sect. 4). This makes such kind
of quadratic fermionic systems particularly suited to
numerical computations up to large sizes L ∼ O(103).
It is also worth noticing that Gaussianity of states
is preserved by the application of any operator that
can be written as the exponential of another operator
that is quadratic in the fermionic operators (see, e.g.,
Refs. [31,88–90]).

We finally remark that the Hamiltonian in Eq. (1)
conserves the total fermion number N̂ =

∑
j ĉ†

j ĉj and
is invariant under the particle-hole transformation, the
one that exchanges every ĉ†

j with the corresponding ĉj ,
and thus exchanges every n̂j with 1̂ − n̂j .

3 Monitored dynamics

To characterize the effects of measurements on the
unitary quantum dynamics generated by the Hamil-
tonian in Eq. (1), we construct a suitable stochastic
Schrödinger equation, whose exact form depends on the
kind of measurement protocol (unraveling) one wants to
study [91,92]. The measurements provide noise and on
each stochastic realization of the noise the state evolves
along a so-called quantum trajectory. In what follows,
we focus on two distinct unravelings that give rise to
the same master equation for the mean density matrix
of the system, once averaged over the stochastic real-
izations.

3.1 Quantum state diffusion

In the first measurement protocol, we assume the num-
ber 〈n̂j〉t of fermions on the j-th site (with n̂j = ĉ†

j ĉj)

to be continuously measured with a rate γ. This gen-
erates a QSD dynamics, that is, a collection of Wiener
processes. For small time evolution steps δt, it can be
cast in the following form [31]:

|ψ(t + δt)〉∝e
∑

j[δW j
t +(2〈n̂j〉t−1)γδt]n̂je−iĤδt |ψ(t)〉, (8)

neglecting normalization constants and assuming
〈·〉t ≡ 〈ψ(t)| · |ψ(t)〉. The δW i

t variables are normally
distributed with zero mean and variance γ δt.

We emphasize that this unraveling is invariant under
the particle-hole transformation. Indeed, by exchang-
ing n̂j ↔ 1̂ − n̂j in Eq. (8), one gets back to the same
equation with an immaterial multiplying factor in front
of the state and the sign of δW j

t changed. This dif-
ferent sign is immaterial, since the δW j

t are Gaussian
variables with zero mean, and all the moments of any
distribution over the randomness are left unchanged by
the transformation.

3.2 Quantum jumps

Secondly, we consider an unraveling based on occa-
sional yet abrupt measurements of the local operators
m̂� = 1̂+ n̂�, where 1̂ denotes the identity operator. We
assume that these measurements can occur on any site �
with a probability p� ∈ [0, 1] that we define below. This
kind of measurements are modeled by a QJ dynamics
that describes the evolution of the system for discrete
time steps δt. At each step one of the following opera-
tions on the state can randomly occur:

1. With probability p� = γ〈m̂2
�〉tδt = γ(1 + 3〈n̂�〉t)δt,

where γ denotes the measurement rate, we project
the system state with one of the L measurement
operators:3

|ψ(t + δt)〉 =
m̂�|ψ(t)〉

||m̂�|ψ(t)〉|| ; (9)

2. With probability p̄ = 1 − ∑
j pj we evolve with a

non-Hermitian effective Hamiltonian Ĥeff

|ψ(t + δt)〉 = e−iĤeffδt|ψ(t)〉, (10)

where Ĥeff = Ĥ − 3
2 iγ

∑
j n̂j .

Since for spinless fermions 1̂+ n̂j = en̂j ln 2 (at most one
fermion per site is allowed), it is immediate to see that
this kind of dynamics can be implemented by preserving
Gaussianity [43,44]. Moreover, as one can easily check,
it is not invariant under particle-hole transformation.

3 To maintain convergence of the QJ protocol, one should
ensure the condition

∑
j pj = γ δt

∑
j〈m̂2

j 〉t � 1.
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3.3 Average over trajectories

When averaged over the stochastic realizations, in the
limit δt → 0, both QSD and QJ unravelings lead to the
same Lindblad master equation for the mean density
matrix ρt = |ψ(t)〉〈ψ(t)|, where the overline indicates
the ensemble average [93],

∂tρt = −i
[
Ĥ, ρt

]
+ γ

∑

j

(
m̂j ρt m̂j − 1

2{m̂j , ρt}
)
. (11)

In this equation, m̂j denote the (Hermitian) measure-
ment operators and γ quantifies the strength of the cou-
pling between the system and the measurement appa-
ratus. Note that in the QSD protocol (Sect. 3.1) we set
m̂j ≡ n̂j , while in the QJ protocol (Sect. 3.2) we set
m̂j = 1̂ + n̂j . In fact, substituting m̂j → 1̂ + n̂j , one
recovers the same Lindblad equation for the measure-
ment operator n̂j .

In other words, the two stochastic dynamical proto-
cols above are unravelings of the same Lindblad mas-
ter equation (11) [43,44]. As a consequence, any linear
function of the density matrix ρt must be independent
of the chosen unraveling. We mention, for example, the
expectation value of a generic observable Ô,

〈Ô〉t = Tr
[
Ôρt

]
. (12)

Finally we point out that, independently of γ, the
dynamics described above preserves the total number of
fermions N̂ =

∑
j n̂j . As a consequence, one can work in

a subspace of the full Hilbert space with a fixed filling.
In what follows we work in the half-filling subspace and
fix N ≡ 〈N̂〉 = L/2.

4 Methods

To reduce the numerical complexity of the problem, we
exploit the conservation of the number N of fermions,
as stated above. We choose as initial condition the Néel
state with N = L/2 particles:

|ψ(0)〉 =
L/2∏

j=1

ĉ†
2j |Ω〉, (13)

where |Ω〉 is the vacuum of ĉ-fermions, such that
ĉj |Ω〉 = 0, ∀j = 1, . . . , L. Then, we let it evolve accord-
ing to one of the two measurement protocols described
before, up to time t. The time evolved state |ψ(t)〉 can
be cast in the form of a generic Gaussian state. The
full information of such state is contained in a L × N
matrix Ut, defined by

|ψ(t)〉 :=
N∏

k=1

⎡

⎣
L∑

j=1

[Ut]jk ĉ†
j

⎤

⎦ |Ω〉, (14)

such that U†
t Ut = IN×N and Ut U†

t = C(t), being
C(t) the two-point correlation matrix with elements
Cij(t) = 〈ĉ†

i ĉj〉t. The state Eq. (14) is in a Slater-
determinant form [94].

As explained in Ref. [31], for the QSD protocol, the
dynamics can be split in two steps accounting for the
unitary and the dissipative one. Note that, in general,
the operators generating these steps do not commute,
therefore this approach is based on a Trotterization of
the full dynamics in the limit of small time steps δt.
The dynamical step thus reads

Vt+δt = Me−iH δtUt, (15)

with
Mjk = δjkeδW j

t +(2〈n̂j〉t−1)γδt. (16)

Since the whole dynamics does not preserve the norm of
the state, to restore the unitarity, at the end of the step
in Eq. (15) we have to perform a QR-decomposition

Vt+δt = [Q1 Q2]
[
R1

0

]
= Q1R1, (17)

where R1 is a N × N upper triangular matrix, Q1 is
L × N and Q2 is L × (L − N). The time evolved state
is then characterized by Ut+δt ≡ Q1.

For the QJ protocol, we exploit a similar procedure.
The matrix after the projective step Eq. (9) on the �-th
site is obtained from Vt+δt = TUt with

Tij = 2δij δi� δj�, (18)

while the state after the non-Hermitian step Eq. (10) is
obtained by applying Vt+δt = e−iHeff δtUt,

H
eff
ij = Hij − 3

2 iγδij . (19)

Even in this case, at the end of each step, we have
to restore the unitarity of Vt+δt by performing a QR-
decomposition [see the above Eq. (17) and the related
discussion].

5 Comparison of the two unravelings

In this section we discuss the differences in the dynam-
ical behaviour of the system, under the action of the
two unravelings described in Sect. 3. In particular we
focus on: (i) the distribution of the expectation values
of the local number operator, once this is measured in
time over the various trajectories (Sect. 5.1); (ii) the
localization properties of the states averaged along the
trajectories (Sec. 5.2). In all the following we are going
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to perform evolutions up to a time tf = 103, and choose
δt = 0.05 for QSD and δt = 0.16/L for QJ, to ensure
convergence.

5.1 Distribution of 〈n̂j〉t
We first consider the statistics of the expectation values
〈n̂j〉t ≡ 〈ψt|n̂j |ψt〉 detected along the quantum trajec-
tories in the different unravelings. Because of transla-
tion invariance of the average dynamics, in the long-
time limit the statistics of this expectation value does
not depend on the site j, therefore we can drop the
explicit dependence. To further simplify the notation,
hereafter we also drop the time dependence and pose
n ≡ 〈n̂j〉t. As discussed in Sect. 3.3, because of the
linearity of the trace operation, the ensemble average
over the two stochastic processes (QSD and QJ) should
coincide [see Eq. (12)]. We checked this numerically and
indeed we found that n = 1/2, independently of the
unraveling: This agrees with the fact that we work in
the half-filling subspace.

Let us start showing some examples of 〈n̂j〉t versus t
along single trajectories, for a single noise realization.
Examples of such trajectories are plotted in Fig. 1 for
(a) γ = 0.1 and (b) γ = 1.0. The colors refer to the two
stochastic processes, QSD (orange) and QJ (blue). For

Fig. 1 Temporal behaviour of n ≡ 〈n̂j〉t for the two unrav-
elings (orange and blue curves for QSD and QJ, respec-
tively) for γ = 0.1 (a) and γ = 1.0 (b). In both cases,
curves oscillate around the mean value n = 0.5. However, for
small measurement rates they remain concentrated around
the mean value, while for large γ they shift close to the
extremes

Fig. 2 Distributions of n along a time trajectory, averaged
over Nr = 80 noise realizations for QSD (panel a) and QJ
(panel b) protocols. The various colors refer to different val-
ues of γ. These plots have been obtained for L = 128, but
the curves are almost independent of the system size (see
Fig. 3)

both unravelings, the trajectories fluctuate around the
ensemble average value n = 1/2, however the nature of
these oscillations depends on γ. In fact, while for small
measurement rates they stay close around 0.5 (panel a),
for larger γ values they shift and spend more time near
the extremal values 0 and 1 (panel b).

This can be better appreciated in Fig. 2, where we
show the probability distribution P (n) along a time tra-
jectory for different values of γ and for both QSD (panel
a) and QJ (panel b) unraveling protocols. We evaluate
this distribution as the histogram of 〈ψt|n̂j |ψt〉 along
the trajectory, averaging over sites j and noise realiza-
tions, to get smoother curves. Furthermore, we evalu-
ate each distribution over a set of trajectories lasting a
time tf , large enough that all transients have vanished.
The main emerging feature is that, for increasing γ,
the distribution crosses from a unimodal to a bimodal
character, reflecting the differences in the trajectories
discussed in Fig. 1. We refer to this behaviour as a
“quantum bifurcation” [75].

Looking at the shape of P (n), we can see some dif-
ferences between the two unravelings. In fact, because
of the particle-hole symmetry (see Sect. 3.1), in the
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Fig. 3 Distributions of n along a time trajectory, averaged
over Nr = 80 noise realizations for QSD (top panels) and
QJ (bottom panels) protocols, for γ = 0.1 (left column) and
γ = 0.4 (right column). The various colors refer to different
system sizes

QSD dynamics the distribution is symmetric around
the ensemble average value n = 1/2. This behaviour is
reminiscent of the minima of the free energy in the Lan-
dau model. In contrast, for the QJ protocol we do not
observe the same symmetry, consistently with the fact
that such unraveling breaks the particle-hole symmetry
(see Sect. 3.2), but we can still identify a crossover from
a unimodal asymmetric distribution to a bimodal asym-
metric one, where a second local maximum appears. In
any case, we carefully checked that, even in this latter
case, the average value n = 1/2 is consistent with the
half-filling assumption and the conservation of particle
number.

We should also emphasize that the numerical data
reported in Fig. 2 are for a system with L = 128
sites. However they are almost independent of the sys-
tem size, as explicitly shown in Fig. 3, in analogy with
the quantum Zeno effect [76–79]. As expected, a more
evident dependence on L emerges for smaller values
of γ (left panels, γ = 0.1), while for larger measure-
ment strengths (right panels, γ = 0.4) differences in
the curves from L = 16 to L = 128 become hardly
visible on the scale of the figure.

To gain further insight on the properties of the bifur-
cation, in Fig. 4 we show the position of the two local
maxima of the distribution, nmax

− and nmax
+ , defined

such that P (nmax
+ ) ≥ P (nmax

− ). In Fig. 4a we consider
the case of the QSD protocol: We see that, at the bifur-
cation point γ�

QSD ≈ 0.2, the two maxima stem sym-
metrically (i.e., nmax

+ − n = |nmax
− − n|) and continu-

ously from the single maximum, and the derivative with
respect to γ is discontinuous at the bifurcation. This
behaviour is formally similar to the mean-field anal-
ysis of a second-order phase transition (the maxima
here correspond to minima of the free energy there),
or a pitchfork bifurcation in classical dynamical sys-
tems [80–82]. In Fig. 4b we consider the case of the

Fig. 4 Position of the local maxima of P
(
n
)

vs γ for QSD
(panel a) and QJ (panel b) protocols. For QSD the two max-
ima stem continuously and symmetrically at the bifurcation
point γ�

QSD ≈ 0.2, with a discontinuity in the derivative with
respect to γ. For QJ the maxima are asymmetric: the sec-
ondary one appears discontinuously at γ�

QJ ≈ 0.23, while the
global and the secondary one swap each other at γ ≈ 0.35.
Numerical parameters: L = 128, Nr ≥ 48

QJ protocol: The maxima are not symmetric, and we
call the one corresponding to the smaller value as “sec-
ondary maximum”. Here the bifurcation occurs in a
different way compared to the QSD case, because at
the bifurcation point γ�

QJ ≈ 0.23 the secondary maxi-
mum appears discontinuously. For γ̃ ≈ 0.35 the global
and the secondary maxima swap with each other. This
behaviour is formally similar to what happens in a first-
order phase transition, with the maxima of our distri-
bution corresponding to the minima of the free energy
in that case.

We notice that, for both unravelings, at γ ≈ 0.4 the
position of the global maximum approaches the value
nmax

+ = 1. This is consistent with the fact that, for large
values of γ, the measurement prevails and the state
of the system is close to a product one, as the results
on the asymptotic entanglement entropy for the QSD
unraveling confirm [31,36,39,73]. We have checked that
the entanglement entropy behaves similarly also for the
QJ case (such kind of similarity in the entanglement
behaviour for different unravelings of the same Lindblad
dynamics contrasts with what has been observed with
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Fig. 5 The factors αQSD (orange dots) and αQJ (blue
squares) vs γ, as obtained by a numerical fit of the IPR
data with a power-law as a function of L, cf. Equation (22)
(see the inset in log-log scale, for the QSD protocol)

the additional presence of nearest-neighbour coherent
pairing terms, which modify the symmetry properties
of the Hamiltonian [43,44]). Nevertheless we stress that
the entanglement transition and the bifurcation are dif-
ferent and unrelated phenomena [75], thus the above
analysis of the probability distributions is not expected
to provide information on the entanglement behaviour.

5.2 Inverse participation ratio

A related question is whether the qualitative change
in the behaviour of the distributions of 〈n̂j〉t could be
related with some change in the space-delocalization
properties of the state. To this purpose, we study the
time averaged IPR of the components of the Slater
determinant, defined as

IPR =
1
tf

∫ tf

0

2
L

N∑

μ=1

IPRμ(t)dt, (20)

with

IPRμ(t) =
L∑

j=1

|Ujμ(t)|4 . (21)

In general, the IPR is such that 1/L ≤ ∑
μ IPRμ ≤ 1,

where the two bounds refer to a perfectly delocalized
and a localized state, respectively.

Let us first focus on the QSD unraveling. To charac-
terize the localization properties when varying the mea-
surement strength, we numerically evaluate the IPR as
a function of the system size and for different values of
γ, as shown in the inset of Fig. 5. Different lines refer
to various values of γ, from γ = 0.04 to γ = 1, with
steps of δγ = 0.04. Qualitatively similar results have
been obtained for the QJ protocol (for this reason, we
decided to show only data for the QSD protocol). We
then fitted the data with a power law

IPR ∼ L−α(γ). (22)

and found that both unravelings exhibit a similar scal-
ing with L, but with a power-law exponent α(γ) that
depends on the considered measurement protocol (main
frame of Fig. 5, where the orange dots refers to QSD,
while the blue squares to QJ). In both cases, the single-
particle states are perfectly delocalized (α = 1) only in
the γ → 0 limit. For γ > 0, the scaling exponents devi-
ate from 1 and differ from each other. This behaviour is
typical of anomalous delocalization of states with mul-
tifractal properties [86,87]. The fact that we do not
observe discontinuities for α as a function of γ, seems
to indicate that delocalization properties are insensitive
to the possible presence of an entanglement transition.
In particular, α continuously decreases with increasing
γ, marking that the system becomes less and less delo-
calized, but never attains localization. This result fits
with the findings of [83], where the authors see that the
conductivity decreases as a power law with γ but never
vanishes.

6 Conclusions

In conclusion we studied the dynamics of a free-fermion
chain under dephasing, considering two protocols of
random measurements that, once averaged over the
quantum trajectories, provide the same Lindbladian:
From one side we considered the QSD unraveling that
preserves the particle-hole symmetry, and from the
other side a QJ unraveling that breaks such symmetry.
In both protocols the state of the system can be always
cast as a Slater determinant, allowing us to analyze
quite large sizes.

We focused on the expectations of the measured
operators along the trajectories and studied the prop-
erties of their distributions. When the measurement
strength γ lies below a certain threshold, the distri-
butions are unimodal, while above this threshold they
become bimodal, giving rise to a bifurcation transition.
This bifurcation threshold is located at γ�

QSD ≈ 0.2
for QSD and at γ�

QJ ≈ 0.23 for QJ, and QSD pre-
serves particle-hole symmetry providing distributions
symmetric around n = 1/2, while QJ breaks this sym-
metry and gives rise to asymmetric distributions. For
QSD, two symmetric maxima appear at the bifurcation,
in formal analogy with second-order phase transitions.
The two maxima stem from the single one continuously,
with a discontinuity in the derivative in γ, as occur-
ring for the pitchfork bifurcation in classical dynamical
systems. On the other hand, in the QJ case the two
maxima are asymmetric and the secondary one appears
discontinuously, as occurring in first-order phase tran-
sitions. Quite curiously, the distributions display a very
weak dependence on the system size.

Finally we analyzed the behaviour of the IPR of the
components of the Slater determinant, averaged over
time and randomness. We considered the scaling of
this quantity with the system size L, to understand
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the space localization properties of the state, in anal-
ogy with what is done in Anderson-localization prob-
lems. We always find a power-law scaling of the form
∼ L−α, where the exponent α equals 1 for γ → 0,
marking perfect delocalization. For γ > 0, we find that
α depends continuously on γ and for both unravel-
ings 0 < α < 1, marking a multifractal behaviour
of the Slater-determinant components. This is what
happens at the localization-delocalization transition in
Anderson-localization problems, so we can say that our
model is always in an Anderson critical phase.

Perspectives of future work focus on the study of
properties of the measurement-operator distributions
and of the IPR in nonintegrable monitored models [51,
95,96], to understand the possible existence of quantum
bifurcations or localization transitions in these cases.
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25. P. Sierant, M. Schirò, M. Lewenstein, X. Turkeshi,
Measurement-induced phase transitions in (d + 1)-
dimensional stabilizer circuits. Phys. Rev. B 106,
214316 (2022). https://doi.org/10.1103/PhysRevB.106.
214316

26. A. Nahum, S. Roy, B. Skinner, J. Ruhman, Measure-
ment and entanglement phase transitions in all-to-all
quantum circuits, on quantum trees, and in Landau-
Ginsburg theory. PRX Quantum 2, 010352 (2021).
https://doi.org/10.1103/PRXQuantum.2.010352

27. A. Zabalo, M.J. Gullans, J.H. Wilson, S. Gopalakr-
ishnan, D.A. Huse, J.H. Pixley, Critical properties of
the measurement-induced transition in random quan-
tum circuits. Phys. Rev. B 101, 060301 (2020). https://
doi.org/10.1103/PhysRevB.101.060301

28. P. Sierant, X. Turkeshi, Universal behavior beyond mul-
tifractality of wave functions at measurement-induced
phase transitions. Phys. Rev. Lett. 128, 130605 (2022).
https://doi.org/10.1103/PhysRevLett.128.130605
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