
1.  Introduction
The World Climate Research Program (WCRP) Coupled Model Intercomparison Projects (CMIP) global climate 
models (GCMs) are used for interpreting and forecasting climate change (IPCC, 2007, 2013, 2021). The latest 
CMIP6 GCMs are still very different from each other since their equilibrium climate sensitivity (ECS)—the 
equilibrium warming induced by doubling the atmospheric CO2 concentration from 280 to 560 ppm—ranges 
between 1.83°C and 5.67°C (IPCC, 2021). Consequently, they predict that the global surface temperature could 
warm between 1.0°C and 3.3°C above the pre-industrial period (1850–1900) even if the anthropocentric emis-
sions stopped today (Huntingford et al., 2020).

The large ECS uncertainty is due to the poor physical understanding of various feedback mechanisms such 
as water vapor and cloudiness (IPCC,  2021; Knutti et  al.,  2017; Möller,  1963). Some studies suggested that 
high-ECS values are not supported by the observations (Jiménez-de-la Cuesta & Mauritsen,  2019; Nijsse 
et  al.,  2020; Zelinka et  al.,  2020; Zhu et  al.,  2020); other studies supported only low ECS values, for exam-
ple, 0.5–2.5°C (Bates, 2016; Christy & McNider, 2017; Lewis & Curry, 2018; Lindzen & Choi, 2011; Kluft 
et al., 2019; McKitrick & Christy, 2020; Monckton et al., 2015; Smirnov & Zhilyaev, 2021; Stefani, 2021; van 
Wijngaarden & Happer, 2020). Indeed, decadal and millennial climatic oscillations (Alley, 2004; Christiansen 
& Ljungqvist, 2012; Esper et al., 2012; Kutschera et al., 2017; Ljungqvist, 2010; Matskovsky & Helama, 2014; 
Moberg et al., 2005; Scafetta, 2014, 2020a) and additional solar/astronomical forcings are still debated (Connolly 
et  al.,  2021; Scafetta,  2012,  2013,  2021a; Scafetta et  al.,  2004,  2020; Scafetta & West,  2006; Svensmark 
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et al., 2017). Most GCMs overestimate the surface warming observed since 1980 (Scafetta, 2013, 2021a, 2021c; 
Tokarska et al., 2020; Wang et al., 2021) as well as that observed in the global (McKitrick & Christy, 2020) and 
tropical troposphere (Mitchell et al., 2020) and, in particular, at its top (200–300 hPa) where they predict an unob-
served hot-spot (McKitrick & Christy, 2018). The above uncertainties prevent an accurate evaluation of the ECS.

Given the large ECS range and subsequent wide predictions of the GCMs, having information as to which models 
may be given more credibility would be of enormous value for policy. Furthermore, identifying the regions where 
the models most disagree from the data is important for improving them or correcting the data.

Scafetta (2021a) tested several CMIP6 GCMs against some temperature records and found that the data-model 
agreement improves for the models with lower ECS. Herein, we provide a complementary and more robust 
statistical approach by grouping the same models into three sub-ensembles according to their ECS: low-ECS, 
1.8–3.0°C; medium-ECS, 3.01–4.50°C; and high-ECS, 4.51–6.0°C. We also adopt spatial Student t-statistics, 
which can optimally empathize regional dynamical divergences between observations and a specific ensemble 
of model predictions. Thus, the discrepancies being discussed cannot be interpreted simply as model noise, but 
should represent a significant model category failure covering the Earth's surface or specific regions over the 
historical period. Furthermore, we briefly discuss the implication of the findings regarding the reliability of the 
21st-century predictions according to various emission scenarios.

2.  Data and Method
The monthly reanalysis fields ERA5 Near-Surface Air Temperature (T2m) record (Huang et  al.,  2017) from 
1980 to June 2021 and the surface air temperature (tas) records from 1850 to 2100 by 38 different CMIP6 GCMs 
(Table 1) were downloaded from the Koninklijk Nederlands Meteorologisch Instituut (KNMI) Climate Explorer 
(van Oldenborgh, 2020).

The ERA5-T2m record was preferred to other options (e.g., HadCRUT, GISTEM, and NOAA surface temper-
ature records) because it covers the entire world surface and can be more properly used to test the simulations 
over the globe. The condition of spatial completeness is necessary because the global surface average temper-
ature records will be also tested; this operation requires that both observed and modeled records are obtained 
by integrating over the same areas. The alternative temperature records poorly cover the polar, great forest, and 
desert regions for the lack of instrumental data (cf. Scafetta, 2021c). Their adoption would require specific model 
integrations over the same areas covered by the data but this exercise is left to a future work.

The satellite lower tropospheric temperature (TLT) measurements by Microwave Sounding Units (MSUs) (Mears 
& Wentz, 2016; Spencer et al., 2017) were not considered because their trends should be slightly scaled down 
to simulate the surface temperature (Christy et  al.,  2018; McKitrick & Christy,  2020; Mitchell et  al.,  2020). 
However, land-use and urban-changes impact the observed T2m records and, consequently, the actual global 
and local climatic warming trends may be significantly lower than those given by ERA5-T2m (cf.: Connolly 
et al., 2021; McKitrick & Tole, 2012; Scafetta, 2021b; Scafetta & Ouyang, 2019).

Simulations using historical forcings (1850–2014) and four shared socioeconomic pathway (SSP) scenarios 
(2015–2100) are available: SSP126 (low greenhouse gas emissions), SSP245 (intermediate emissions), SSP370 
(high emissions), and SSP585 (very high emissions). The SSP curves are compatible with each other up to 
2021. GCM tas levels from January 2011 to June 2021 were calculated by averaging the periods 2011–2020 and 
2011–2021.

For each grid cell j = 1, …, M, and for an ensemble of models i = 1, …, N, we obtained the observed 𝐴𝐴
(

Δ𝑇𝑇 𝑜𝑜
𝑗𝑗

)

 and 
modeled 𝐴𝐴

(

Δ𝑇𝑇 𝑚𝑚
𝑖𝑖𝑖𝑖𝑖

)

 temperature changes by comparing the 2011–2021 to the 1980–1990 means. Within each grid 
cell, the differences of the means between the models and observations are computed as:

Δ𝑇𝑇𝑗𝑗 =
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

Δ𝑇𝑇 𝑚𝑚
𝑖𝑖𝑖𝑖𝑖 − Δ𝑇𝑇 𝑜𝑜

𝑗𝑗 ;� (1)

and tested using the spatial t-statistics
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CMIP6 GCM ECS (°C) Used SSP

2011–2021 versus 1980–1990 2040–2060 versus 1850–1900 2080–2100 versus 1850–1900

SSP245 SSP370 SSP585 SSP245 SSP370 SSP585 SSP245 SSP370 SSP585

CIESM 5.67 585 0.74 0.71 2.72 3.07 3.66 6.28

CanESM5 p1 5.62 370 1.19 1.20 1.22 3.15 3.51 3.74 4.23 5.97 7.01

CanESM5 p2 5.62 370 1.22 1.22 1.22 3.17 3.56 3.79 4.27 6.04 7.07

CanESM5-CanOE p2 5.62 370 1.16 1.16 1.15 3.2 3.57 3.79 4.22 6.01 7.06

HadGEM3-GC31-LL f3 5.55 585 1.25 1.08 2.61 3.07 3.81 6.12

HadGEM3-GC31-MM-f3 5.42 585 0.86 3.01 5.99

UKESM1-0-LL f2 5.34 370 1.11 1.09 1.11 2.76 2.99 3.22 3.97 5.48 6.45

CESM2 5.16 370 0.75 0.76 0.80 2.2 2.28 2.77 3.22 4.17 5.52

CNRM-CM6-1 f2 4.83 370 0.65 0.66 0.68 2.12 2.24 2.54 3.28 4.41 5.65

CNRM-ESM2-1 f2 4.76 370 0.62 0.62 0.65 1.97 2.05 2.32 3.10 4.14 5.01

CESM2-WACCM 4.75 370 0.91 0.88 0.93 2.32 2.40 2.78 3.30 4.25 5.56

ACCESS-CM2 4.72 370 0.82 0.87 0.86 2.35 2.44 2.63 3.41 4.43 5.44

NESM3 4.72 585 0.95 1.02 2.13 2.75 2.88 4.98

IPSL-CM6A-LR 4.56 370 0.76 0.76 0.76 2.55 2.74 2.97 3.58 4.91 5.97

Average 5.17 0.93 0.92 0.93 2.56 2.78 3.03 3.61 4.98 6.01

Std. Dev. 0.42 0.23 0.23 0.20 0.42 0.59 0.47 0.46 0.81 0.71

KACE-1-0-G 4.48 370 0.95 0.93 0.96 3.01 3.13 3.34 3.74 4.85 5.67

EC-Earth3-Veg 4.31 370 0.86 0.84 0.87 2.44 2.52 2.80 3.44 4.56 5.42

EC-Earth3 4.3 370 0.76 0.89 0.88 2.34 2.53 2.73 3.39 4.50 5.44

CNRM-CM6-1-HR f2 4.28 370 0.71 0.71 0.73 2.62 2.68 2.96 3.82 4.71 5.76

GFDL-ESM4 3.9 370 0.73 0.67 0.66 1.65 1.75 1.90 2.28 3.24 3.70

ACCESS-ESM1-5 3.87 370 0.83 0.85 0.82 2.09 2.17 2.46 2.99 3.92 4.64

MCM-UA-1-0 3.65 370 0.83 0.79 0.90 2.08 2.20 2.63 2.96 3.89 4.68

CMCC-CM2-SR5 3.52 370 0.61 0.68 0.68 2.45 2.52 2.89 3.62 4.17 5.28

AWI-CM-1-1-MR 3.16 370 0.79 0.76 0.78 2.3 2.45 2.52 2.93 3.98 4.69

MRI-ESM2-0 3.15 370 0.71 0.63 0.80 2.04 2.13 2.41 2.70 3.53 4.31

BCC-CSM2-MR 3.04 370 0.64 0.65 0.66 1.87 2.14 2.32 2.45 3.64 3.95

Average 3.79 0.76 0.76 0.79 2.26 2.38 2.63 3.12 4.09 4.87

Std. Dev. 0.52 0.10 0.10 0.10 0.37 0.36 0.38 0.52 0.52 0.70

FGOALS-f3-L 3 370 0.68 0.70 0.69 2.24 2.44 2.58 2.83 3.89 4.62

MPI-ESM1-2-LR 3 370 0.57 0.57 0.55 1.82 2.00 2.10 2.40 3.38 3.98

MPI-ESM1-2-HR 2.98 370 0.57 0.59 0.57 1.8 2.00 2.07 2.44 3.38 3.92

FGOALS-g3 2.88 370 0.61 0.59 0.60 1.82 2.11 2.16 2.24 3.30 3.62

GISS-E2-1-G p1 2.72 370 0.70 2.12 3.39

GISS-E2-1-G p3 2.72 370 0.58 0.40 0.45 1.97 2.10 2.33 2.58 3.46 4.10

MIROC-ES2L f2 2.68 370 0.59 0.56 0.56 1.75 1.86 2.15 2.42 3.20 3.97

MIROC6 2.61 370 0.48 0.47 0.51 1.57 1.70 1.93 2.16 2.96 3.75

NorESM2-LM 2.54 370 0.62 0.76 0.71 1.35 1.48 1.76 1.96 2.86 3.69

NorESM2-MM 2.5 370 0.77 0.67 0.71 1.56 1.61 1.86 2.12 3.00 3.77

CAMS-CSM1-0 2.29 370 0.42 0.38 0.41 1.43 1.59 1.64 1.98 2.69 3.11

INM-CM5-0 1.92 370 0.59 0.65 0.60 1.66 1.94 2.15 2.27 3.20 3.59

Table 1 
(c1) The Adopted CMIP6 GCMs; (c2) Their ECS; (c3) SSP Simulation Analyzed in Section 3; (c3–c5) 2011–2021 Global Surface Warming (°C, 1980–1990 
Anomalies); (c6–c8) 2040–2060 and (c9–11) 2080–2100 Global Surface Warming (°C, 1850–1900 Anomalies)
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𝑡𝑡𝑗𝑗 =
|Δ𝑇𝑇𝑗𝑗|

𝜎𝜎𝑗𝑗∕

√

𝑁𝑁

,� (2)

where σj is the standard deviation in the cell j among the N local values 𝐴𝐴 Δ𝑇𝑇 𝑚𝑚
𝑖𝑖𝑖𝑖𝑖

 . A data-model agreement is rejected 
(at the two-sided confidence level of 5%) when t > t0, where t0 (the 2.5% critical value) depends on the degree 
of freedom (N − 1). In our cases, t0 is slightly larger than 2. The proposed statistics optimally emphasizes the 
regional differences between observations and a set of simulations.

3.  Results
This section analyzes 38 CMIP6 simulations referring to the SSP scenario listed in Table 1-c3, one for each 
model.

Figure 1 shows the 38 synthetic global surface temperature records (1980–1990 anomalies, red curves) against 
ERA5-T2m (blue). Three panels depict separately the records from 13 low-ECS, 11 medium-ECS, and 14 high-
ECS GCMs. The right panels compare the 2011–2021 mean temperatures of the models (red dots) against the 
data (blue dots) and show that only the low-ECS GCMs are consistent with the observed warming, while both the 
medium and high-ECS GCMs definitely exceed it.

Figure 2 shows the world distributions of the 2011–2021 warming (1980–1990 anomalies) of the GCM ensemble 
mean (top panel) and the ERA5-T2m record (bottom panel), and the relative latitudinal temperature profiles (left 
panels) for the land (brown), ocean (blue) and land + ocean (black) regions. The simulation predicts a worldwide 
diffused warming. The high latitudes (60–90°N) and the continents generally warmed more than other regions 
because of albedo changes related to sea-ice melting and the lower heat capacity of land versus ocean. ERA5-T2m 
too shows a diffused warming, however, contrary to the simulation, it also presents vast cooling regions (blue) 
around Antarctica, over the tropical Pacific and North Atlantic oceans, and over some land regions between the 
USA and Canada and in North-West Australia.

Figure 3 shows the temperature maps produced by the high, medium and low-ECS GCMs, the latitudinal profiles 
of the single GCMs (blue curves), and their distribution (black, mean curve; blue, ±σ range) versus the ERA5-
T2m latitudinal temperature profile (red). The figure also shows the correspondent means of the t-test values 
(Equation 2) calculated from both the latitudinal profiles using the mean and a latitudinal-cosine weighted mean, 
and the correspondent threshold value t0 (black). A statistical model-data agreement is not found (at the confi-
dence level of 5%) although the low-ECS GCMs get the closest to the data (t = 2.54 > t0 = 2.18).

Figure 4 (bottom) shows the spatial t-value distribution. The statistics rejects the simulations over 81% of the 
Earth's surface. Statistical compatibility occurs in the cyan areas (t < t0); yellow-red areas indicate incompatibil-
ity (t > t0). Several interesting patterns are observed. For example, a better agreement appears in the Northern 
Hemisphere and on the continents, although this might be coincidental because land regions are likely affected 
by non-climatic warming biases (cf.: Connolly et al., 2021; McKitrick & Tole, 2012; Scafetta, 2021b; Scafetta & 
Ouyang, 2019). The spatial t-statistics also emphasizes a large divergence over the oceanic main current gyres, in 
particular in the inter-tropical Pacific and Atlantic, and in the Antarctic Circumpolar region. The result comple-
ments Scafetta (2021c) where single model simulations and less robust ensemble statistics were adopted.

Figure 5 (left panels) shows the differences between the high, medium and low-ECS GCMs and ERA5-T2m, and 
their relative latitudinal temperature profiles. The high-ECS GCMs overestimate the warming over most of the 

Table 1 
Continued

CMIP6 GCM ECS (°C) Used SSP

2011–2021 versus 1980–1990 2040–2060 versus 1850–1900 2080–2100 versus 1850–1900

SSP245 SSP370 SSP585 SSP245 SSP370 SSP585 SSP245 SSP370 SSP585

INM-CM4-8 1.83 370 0.54 0.54 0.59 1.81 1.92 2.17 2.25 3.23 3.74

Average 2.59 0.58 0.59 0.58 1.73 1.91 2.07 2.31 3.23 3.82

Std. Dev. 0.38 0.09 0.12 0.09 0.24 0.26 0.25 0.25 0.30 0.36
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globe (cf. Figure 1). The situation slightly improves with the medium-ECS GCMs. Yet, it remains unsatisfactory 
also using the low-ECS GCMs because, for example, the ocean warming generally appears overestimated while 
the land one underestimated. Figure  5 (right panels) shows the spatial t-statistics between the high, medium 
and low-ECS GCMs versus ERA5-T2m with their relative latitudinal temperature profiles. The t-test rejects the 
agreement over 60% (using the low-ECS GCMs) to 81% (using the high-ECS GCMs) of the Earth's surface.

Figure 1.  Left: Global surface temperature simulations (red) against ERA5-T2m (blue). Right: modeled (M, red) and observed (D, blue, ΔT ≈ 0.56°C) mean global 
surface warming 2011–2021 (1980–1990 anomalies).
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4.  Discussion and Implication for Policy
It has previously been shown that the model trends of the last decades are too steep both at the surface and in the 
troposphere (e.g.: McKitrick & Christy, 2018, 2020; Mitchell et al., 2020; Scafetta, 2013, 2021a, 2021c; Tokarska 
et al., 2020; Wang et al., 2021). This analysis focuses on the 1980–2021 period at the surface level and shows 
that, while no model group succeeds in reproducing the observed surface warming patterns, the high ECS models 
systematically do worse. Figure 1 compares the surface temperature changes for stratified ECS values and shows 

Figure 2.  Warming patterns from 1980 to 1990 to 2011–2021 predicted by the global circulation models tas ensemble average record (top) and ERA5-T2m (bottom). 
Left-sides: latitudinal temperature profiles for land, ocean and land + ocean regions.
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that medium and high ECS GCMs exceed the observed warming. Figures 2–5 suggest where, on the globe, the 
problems may be greatest. However, the model-data agreement between CMIP6 GCMs and ERA5-T2m is in 
general very poor both locally and globally, suggesting that the global trend alignment with the low-ECS GCMs 
(Figure 1) may be coincidental because it is not supported by the regional analysis (Figure 5).

Accurately reproducing regional temperature differences over the past 40+  years is beyond the capability of 
climate model simulations, and even fails for major ocean basins and continents. The result suggests the existence 
of major issues with all models and/or with the ERA5-T2m record, which may also be affected by uncorrected 

Figure 3.  Spatial warming patterns from 1980 to 1990 to 2011–2021 produced by high, medium and low-equilibrium climate sensitivity (ECS) global circulation 
models. Left-panels: latitudinal temperature profiles for each model (blue curves); their statistical distribution against the ERA5-T2m (red) profiles; the correspondent 
simple and weighted mean Student's t values and threshold limit t0 (Equation 2).
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local non-climatic biases (e.g., over land: Connolly et  al.,  2021; McKitrick & Tole,  2012; Scafetta,  2021b; 
Scafetta & Ouyang, 2019)

The evidence here presented indicates that the CMIP6 GCMs do not reproduce well both the global and regional 
(i.e., country-size) responses to enhanced greenhouse gases over the past 40+ years, which calls into question 
model-based attribution of climate responses to anthropogenic forcing.

Figure 4.  (Top) Differences between the global circulation models ensemble average tsa and ERA5-T2m (Equation 1). (Bottom) Spatial t-statistics between the 38 
models and ERA5-T2m (Equation 2). Model-data compatibility (at the confidence level of 5%) occurs in the cyan color areas (t < t0 = 2.03) while yellow-red areas 
indicate statistical incompatibility (t > t0 = 2.03). Left-panels: relative latitudinal profiles.
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The fact that the low-ECS models perform relatively better while representing post-1980 surface temperature 
responses has important social and political implications. Policy plans are based on projections like those in 
Figure 6, which compares all available CMIP6 GCM simulations for each available SSP relative to the pre-indus-
trial era (1850–1900) up to 2100. The curves are differently colored according to the GCM ECS value: low-ECS 
(blue), medium-ECS (green) and high-ECS (red). The right panels show the correspondent warming levels in 
2040–2060 and 2080–2100. The GCM predicted warming increases with ECS.

The prospect of experiencing a high level of warming associated with high ECS models has led to costly interna-
tional efforts to reduce net greenhouse gas emissions to zero on a rapid timetable. However, the low-ECS GCMs 
predict average warming by 2040–2060 close to or lower than 2°C even for the SSP585 scenario (Table 1), which 
is considered highly unlikely (IPCC, 2021). The fact that the high and medium-ECS GCMs do not appear to 
be consistent with the observations over the past 40+ years imply that their projections should not be used as 
a basis for policy. The low-ECS GCMs are the closest to the data but they are unalarming because they predict 

Figure 5.  (Left) Differences between the high, medium and low-equilibrium climate sensitivity (ECS) global circulation models (GCM) ensemble average tsa and 
ERA5-T2m (Equation 1). (Right) Spatial t-statistics between high, medium and low-ECS GCMs and ERA5-T2m (Equation 2). Left-panels: relative latitudinal profiles. 
Model-data compatibility (at the confidence level of 5%) occurs in the cyan color areas (t < t0) while yellow-red areas indicate statistical incompatibility (t > t0).
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moderate warming (ΔTpreindustrial→2050 ≲ 2°C). Thus, inexpensive adaptation policies should be preferred because 
they should be sufficient to address most hazards related to future climate changes.

5.  Conclusions
The large ECS range (between 1.8°C and 5.7°C) of the CMIP6 GCMs indicates that these models are intrinsically 
very different from each other. To constrain it, we grouped the models into three different classes (low-ECS, 
1.80–3.00°C; medium-ECS, 3.01–4.50°C; and high-ECS, 4.51–6.00°C) and tested their predicted temperature 

Figure 6.  All available Coupled Model Intercomparison Projects global circulation models (GCM) simulations for different 
SSP: low-equilibrium climate sensitivity (ECS) (blue), medium-ECS (green) and high-ECS (red) GCMs. Right-panels: model 
mean warming levels in 2040–2060 and 2080–2100. See Table 1.
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changes from the 1980–1990 to 2011–2021 periods against ERA5-T2m. The proposed methodology compares 
single GCM runs and specific ensemble averages versus the observations using both the temperature changes 
(Equation 1) and spatial t-statistics (Equation 2) maps. This technique optimally highlights both the global and 
local discrepancies between the observations and GCM ensemble predictions. Figures 4 and 5 show applications 
of the proposed methodology and provide much information regarding the performance of the CMIP6 GCMs in 
simulating the data.

High and medium-ECS GCMs overestimate the observed warming. The low-ECS GCMs appear to agree with 
the observations better on average (Figure 1), but they still perform poorly when synoptic temperature patterns 
are analyzed (Figure 5). In general, spatial t-statistics demonstrated that over more than 60% of the world surface 
the CMIP6 GCM predictions are incompatible with the temperature records (at the confidence level of 5%). 
Various Northern-Southern hemispheric and land-ocean asymmetries, and important dynamical patterns—such 
as those related to the main oceanic currents of the Pacific, the Atlantic and around the Antarctic Circumpolar 
region—are observed. The results suggest poor modeling of heat transfer, ocean and atmospheric circulation, 
and Arctic and Antarctic sea-ice processes. Furthermore, over land, ERA5-T2m is likely affected by numerous 
non-climatic biases that could have stressed local warming trends (McKitrick & Tole, 2012; Scafetta, 2021b; 
Scafetta & Ouyang, 2019).

The result has important implications for policy as well because the medium and high-ECS GCMs are not suffi-
ciently reliable at the largest scale (global average) and all GCMs fail to provide confident forecasts of regional 
responses to enhanced greenhouse gases so that also the impacts of policy options on the regional climate are 
highly uncertain. The models that best match the post-1980 observations imply that by 2050 the global surface 
warming should remain moderate (ΔT ≲ 2°C) compared to preindustrial temperatures even under an extremely 
high emissions growth scenario with no mitigation effort.
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