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1. Introduction

Ovarian cancer (OC) is most often diagnosed when it has already
reached a metastatic stage, resulting in low five-year relative

survival rate (41–50%).[1] Screening
protocols capable of detecting early disease,
while tumor mass is still confined to the
ovary, could significantly improve this
inauspicious outcome. Although available
data are heterogeneous in terms of experi-
mental design and methodologies applied,
it has been shown that CTCs are a promis-
ing biomarker for predicting OC survival
and chemotherapy response during patient
follow-up,[2–5] whose current protocols
include transvaginal ultrasound, computer-
ized tomography (CT), and positron-
emitting tomography (PET), together with
the measurement of CA125 blood levels.
However, the latter provides only indirect
information on disease progression and
imaging is not always capable to detect met-
astatic lesions until they reach a sufficient
size, issues that might be resolved by

CTC-based liquid biopsy. Nonetheless, the transfer readiness
level of using OC CTCs as clinical markers is still relatively
low, mainly due to methodological drawbacks related to their
detection.[6]
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Liquid biopsy, intended as the detection of circulating tumor cells (CTCs) in hematic
specimens, is an emerging tool for both early cancer detection and estimation of
prognosis. Herein, the strength of quantitative phase imaging (QPI) is investigated
to achieve effective distinction of ovarian cancer (OC) from other blood cell pop-
ulations based on label-free morphological biomarkers rather than conventional
fluorescent imaging or other molecular parameters. At this purpose, QPI is
implemented in high-throughput flow cytometrymode and combined with machine
learning (ML), reliable and accurate OC cell phenotyping is achieved by developing
ad-hoc multi-level ML classification architectures driven by a priori clinical infor-
mation. It is shown that the latter allows increasing the overall classification
accuracy when compared to noninformed ML classification systems. Thanks to its
simplicity, the proposed intelligent system is compatible with various clinical
applications, particularly in the context of CTC-based liquid biopsy during patient
follow-up, when cancer subtype and other clinical information are already known.
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Recently, increasing attention has been drawn on label-free
techniques for the detection and isolation of CTCs,[7–13]

including intelligent lab-on-a-chip platforms in a microfluidic
environment.[14] Instead of relying on a molecular marker, these
technologies distinguish CTCs from blood cells by exploiting
their biophysical properties, such as size, deformability, and den-
sity.[15] In this context, microfluidic flow cytometry coupled to
quantitative phase imaging (QPI) may be envisioned as a valid
label-free method for CTC-based liquid biopsy. Indeed, it would
offer simultaneous identification and quantification of cancer
cells, as well as the high-throughput feature required by routine
clinical protocols. QPI measures the complete morphological
information of cell shape, as well as intracellular organelle
organization, by detecting an intrinsic endogenous marker rep-
resented by the refractive index (RI), thus bypassing canonical
molecular analyses or chemical staining processes.[16–19]

However, while the morphology of most peripheral blood cells
is substantially different from CTCs, the latter share a similar
biophysical signature with monocytes. Correct distinction
between these two entities, CTCs and monocytes, is one of
the main challenges in the context of oncologic label-free liquid
biopsy. A remarkable solution has been demonstrated by com-
bining microscopy imaging with the framework of image-based
classification through artificial intelligence (AI).[20–22] Indeed,
concurrent with single-cell technologies, machine learning
(ML) has redefined the capability to analyze large-scale data by
using sophisticated classification methods. The power of ML
has recently been demonstrated in several areas of single-cell
analysis field.[23–26] In the context of liquid biopsy, intelligent
decision makers have been developed, which are able to effi-
ciently identify CTCs among the background of white blood cells
in a fluorescence-based imaging flow cytometry apparatus.[27,28]

Recently, we have investigated the use of an ML-powered QPI
flow cytometry (QPI-FC) technique to classify tumor cells and
monocytes[29,30] and phenotype neuroblastoma.[31] Both
approaches addressed the issue of the identification of CTCs with
respect to monocytes in early cancer detection, thus demonstrat-
ing the effective potential of QPI-FC as candidate technological
solution for label-free liquid biopsy.

Following the path opened by recent works on AI applications
in OC,[32–34] in this article we propose a generalized version of
the ML-powered QPI-FC to remarkably increase reliability in the
identification of OC CTCs when patient follow-up stage is con-
sidered. The core of the method proposed consists in designing a
three-level hierarchical structure of the classifier that is informed
by a priori available diagnostic data about the OC phenotypes to
be identified, in order to improve its classification accuracy.
At the first classification level, the OC CTCs identification with
respect to the background of white blood cells is performed, as in
the scenario of early cancer detection. Here, we introduce addi-
tional phenotypic information about the cancer cell subtypes to
design multiple alternatives for the second classification level
able to distinguish OC cell lines based on, for example, cancer
cell origin, histological type or molecular marker signature.
In the proposed ML-powered approach, the prediction of the
OC phenotypes is performed at the third level of classification.
The performance of the presented strategy is compared with
two-level hierarchical decision-maker where the second level is
created by distinguishing the tumor cell phenotypes without

using a priori information. Such two-level hierarchical decision-
maker is considered as the baseline. We focus our investigation
on five OC phenotypes for modelling different cancer subtypes
and we demonstrate that our phenotypically informed hierarchi-
cal decision structuring increases the performance of cancer cell
prediction up to 18.3% if compared to the accuracy of the base-
line approach. Our results allow to efficiently select and exploit
this approach driven by prior clinical information to increase the
identification rate of the expected OC CTC phenotype. This
outcome could be of particular interest during the patients’
follow-up stage, thus opening new perspectives in label-free liq-
uid biopsy.

2. Experimental Section

2.1. Cell Lines

Human OC A2780 cell line was purchased from Sigma Aldrich-
MERCK (#93112519) while SKOV3 (#ATCC-HTB-77), OVCAR3
(#ATCC-HTB-161) and CAOV3 (#ATCC-HTB-75) from ATCC.
OC314, THP-1 monocyte cell line and Jurkat peripheral blood-
derived human T-cell leukemia cell line were supplied by a third
part. All cells were authenticated by AmpFlSTR Identifiler
PCR Amplification kit (Applied Biosystems #4322288), using
Peak Scanner software 2 (Applied Biosystems) to determine
microsatellite alleles. Cellosaurus tool was used for similarity
comparison,[35] computing the score by selecting Tanabe algo-
rithm and “non-empty marker” mode. Our models (Query)
shared 85–100% microsatellite similarity with expected cell lines
(Figure S1, Supporting Information). Cell line TP53 mutation
status was confirmed by Sanger Sequencing as previously
described.[36] All cells were cultured at 37 °C in an incubator with
5% CO2. OC cell lines were grown as a monolayer and cultured
in RPMI 1640 Medium (Life technologies #31870-025) supple-
mented with 10% FBS (Life Technologies #10270), 1%
Penicillin/Streptomycin (Life Technologies #15070-063) and
2mM L Glutamine (Lonza BE #17-605E). THP-1 and Jurkat cell
lines were cultured in suspension in vertically positioned tissue-
culture flasks (Corning, #353018), grown in RPMI 1640 Medium
(Life Technologies, #31870-025), supplemented with 10% FBS
(Life Technologies #10270), 2 mM L-Glutamine (Lonza, Cat
#BE17-605E) and 1% Penicillin/Streptomycin (Lonza, Cat
#DE17-602E), and maintained at 37 °C in a humidified
atmosphere with 5% CO2. All cells were regularly tested for
mycoplasma contamination upon thawing and prior to the
experiments. EVOS M5000 Imaging System (ThermoFisher
Scientific #AMF5000) was used to obtain 2D images of the
OC cells.

To obtain cell suspensions for the experiments, THP-1 and
Jurkat cells were harvested from the cell culture flask, centri-
fuged for 5min at 1500 rpm and resuspended in PBS solution
containing 10% FBS (10mL). The OC cells were detached follow-
ing standard protocols. In detail, the cells were seeded in a flask
(Corning, #353018) to reach 70–90% confluency. On the day of
the experiment the medium was removed, the cells were washed
twice with PBS (10mL for each wash) and then incubated for
5min at 37 °C with Trypsin-EDTA solution (2 mL, Sigma,
#T4049). Subsequently, PBS containing 10% FBS (8mL) was
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added to block trypsin activity. For all cell lines, prior to the exper-
iment the viability was assessed using Trypan Blue dye (Sigma
#T8154) following manufacturer’s instructions. In detail, the cell
suspension (0.05mL) was diluted 1:2 with Trypan Blue dye and
0.01mL was loaded in the Burker counting chamber to count
dead (blue) and live (transparent) cells. Only live cells were
considered for experimental cell suspension preparations of
4� 105 cells mL�1 in PBS solution containing 10% FBS and
300 μL were injected into the microfluidic channel.

2.2. QPI-FC Recording System and Numerical Processing

A digital holography (DH) microscope based on an off-axis
Mach–Zehnder optical interferometer was employed for imaging
experiments, as sketched in Figure 1A.[37] A polarizing beam
splitter (PBS) divides the light beam generated by a solid-state
continuous wave laser source (Laser Quantum Torus 532 -
λ ¼ 532 nm) into a reference and an object beam. Two half-wave
plates (HWPs) located in front of and behind the PBS adjust the
splitting ratio of the two beams. The object beam, after illumi-
nating the biological sample, is collected by a microscope objec-
tive (MO1) and sent to a tube lens (TL1). Then, it interferes with
the reference beam (in turn collected by a MO2 and a TL2) within
a beam splitter cube (BS). The resulting interference pattern
propagates up to the CMOS recording camera (Genie Nano-
CXP Camera, 5120� 5120 pixels, Δx ¼ Δy ¼ 4.5 μm pixel size),
which records the digital hologram (see Figure 1B). The recorded
field of view (FOV) measures 640 � 640 μm2. The biological
sample is made of single cells flowing and rotating in suspension

along a commercial microfluidic channel (Microfluidic -
ChipShop 10000107, 200 μm� 1000 μm cross-section) thanks
to the laminar flow produced by a low-pressure pump module
(Cetoni NEMESYS 290 N) pushing at 75 nL s�1. According to
the reference system sketched in Figure 1B, cells flow along
to the y-axis, rotate around the x-axis, and are recorded along
the optical z-axis.

For each flowing and rotating cell, hundreds of holograms are
recorded. Within each hologram, a region of interest (ROI) was
selected around each cell (see Figure 1B), in order to reconstruct
the corresponding QPM.[37] At this aim, the holographic ROI was
demodulated by exploiting the DH off-axis configuration, which
allows filtering the real diffraction order in the Fourier
spectrum.[38] As cells are recorded out-of-focus in any position
along the optical z-axis, a numerical refocusing method (based
on the Tamura Coefficient) was applied to compute their in-focus
distances.[39] Then, the angular spectrum formula was
implemented to compute the in-focus complex field.[38] Residual
aberrations were removed from its argument by subtracting a
reference hologram, and the resulting phase-contrast map was
denoised and unwrapped,[37] thus obtaining the final QPM.
In Figure 1C, a QPM for each of the cell lines herein analyzed
is shown as example.

2.3. Feature Extraction

For each QPM, 44 features were measured. Among them, 11 fea-
tures were related to the cell phase values, 9 features were related
to the cell morphology, and 24 features were related to the

Figure 1. QPI-FC imaging based on DH microscopy. A) Sketch of the opto-fluidic recording system. HWP – Half-wave plate; PBS – Polarizing beam
splitter; L1, L2 – Lens; M – Mirror; MO – Microscope objective; MC – Microfluidic channel; TL – Tube lens; BS – Beam splitter; CMOS – Camera.
B) Example of a recorded digital hologram, with highlighted in red a holographic ROI, in which the cell’s diffraction is visible. C) Example of
QPMs for each analyzed cell line.
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Gray-Level Co-Occurrence Matrix (GLCM).[40] The 11 phase fea-
tures were the average value, the standard deviation, the median,
the mode, the maximum value, the skewness, the entropy, the
kurtosis, the 0.25 quantile and the 0.75 quantile of the QPM,
and the dry mass. In particular, dry mass is the amount of
non-aqueous material contained inside the cell and is considered
one of the most relevant features accessed by QPI.[16] The 9 mor-
phological features were the cell area, extent, solidity, circularity,
eccentricity, maximum and minimum Feret diameters, major
axis length, and normalized centroids distance, computed
through the regionprops MATLAB function. In particular, given
A and P as the area and the perimeter of the cell, respectively,
circularity was computed as 4A=P2, with 1 being the value of
a perfect circle. Having considered an ellipse with the same
normalized second central moments as the cell, the major axis
length was considered, whereas the eccentricity was the ratio of
the distance between the ellipse’s foci and its major axis length.
The maximum and minimum distances between any two bound-
ary points on the antipodal vertices of the cell convex hull corre-
sponded to the maximum and minimum Feret diameters.
Finally, the normalized centroids distance was the distance
between the centroid and the weighted centroid (computed with
respect to the phase spatial distribution) of the cell, normalized to
the radius of a circle having the same area as the cell (i.e., the
equivalent radius). With respect to the GLCM, it described
how the grey levels are combined among them within an image.
In particular, the GLCM Gði, j, θ, dÞ measured the number of
times a i-pixel occurs at distance d to a j-pixel along the
direction θ. We computed 12 GLCM features by averaging the
12 Haralick features (i.e., energy, entropy, correlation, contrast,
variance, sum average, inertia, cluster shade, cluster tendency,
homogeneity, maximum probability, and inverse variance) at
the 0°, 45°, 90°, and 135° directions by fixing a distance
d ¼ 0.5 μm, while the other 12 GLCM features were computed
in the same way but by fixing a distance 2d ¼ 1 μm.[41]

3. Results

3.1. QPI-FC ML-Aided Analysis Efficiently Discriminates Various
OC Subtypes from Monocytes and Lymphocytes

We recently showed how ML-aided analysis of QPI-FC images is
able to discriminate A2780 OC cells from the THP1 monocytic
cell line.[42] Here we expanded our analysis to additional OC
models, namely CAOV3, SKOV3, OVCAR3, and OC314, with
the aim to demonstrate that our approach is capable of correctly
classifying OC cells with different phenotypes and/or genotypes
from monocytes. Of note, CAOV3, OVCAR3, and OC314 reca-
pitulated the high grade serous ovarian cancer (HGSOC), the
most common and deadly OC subtype. Moreover, apart from
analyzing THP1 cells, we obtained data from the lymphocytic
Jurkat cell line, in order to prove that QPI-FC correctly distin-
guishes cancer cells from lymphocytes, since oncologic patients
present with high abundance of this bloodstream cell population.
Hence, in this classification problem, seven cell lines were
considered, that is, monocytes (MCs) and lymphocytes (LCs)
as white blood cells (WBCs), and A2780, CAOV3, SKOV3,
OVCAR3, and OC314 as ovarian cancer cells (OCCs).

The number of cells recorded through the QPI-FC system is
summarized in Table S1 (Supporting Information). The entire
dataset was split into an overall training set and a test set with
a ratio of 3:1 per cell line (Table S1, Supporting Information).

To solve the single-cell classification issue based on the iden-
tification of one out of the seven possible cell lines here consid-
ered, four ML hierarchical classifiers (HCs) were built and tested
(Figure 2), as discussed below. As sketched in Figure 2, all the
HCs share level 1, that is, the classification between WBCs and
OCCs. For training each single classifier composing the four
HCs, the training set was further extracted from the overall train-
ing set summarized in Table S1 (Supporting Information) in
order to balance the analyzed classes, as reported in Table S2–S5
(Supporting Information). Moreover, thanks to the cellular roto-
translation along the microfluidic channel, hundreds of quanti-
tative phase maps (QPMs) per cell were recorded at different
viewing angles (see Experimental Section). This constitutes a rel-
evant difference with respect to conventional QPI-FC systems, in
which one image per cell is commonly acquired. A 2D QPM can
be considered as the integral of the 3D volumetric distribution of
the cell’s RIs along the optical axis.[16] Therefore, two QPMs of
the same cell recorded along two different directions are slightly
different from each other. Hence, the numerical data augmen-
tation, that is commonly employed to increase the dataset dimen-
sion, was hereby replaced by the experimental recording of
several QPMs per cell from different points of view. For this rea-
son, over several trainings, 100 QPMs were randomly chosen for
each cell of the training set reported in Table S2–S5 (Supporting
Information), thus resulting in a 100� data augmentation.
Finally, for each QPM, 44 features were measured, that is, 11
phase features 9 morphology features, and 24 GLCM features
(see Experimental Section).

To evaluate the performance of level 1 in a more reliable way,
it was trained and tested 10 times using the 44 features
described. In particular, every time the overall dataset of single
cells was randomly divided into an overall training and a test set
according to Table S1 (Supporting Information). Subsequently,
the several training sets were randomly drawn from the overall
training set according to Table S2–S5 (Supporting Information).
It is important to underline that, while 100 QPMs per cell were
considered for the training sets, all the cell QPMs were instead
considered for the test sets. As summarized in Table S6
(Supporting Information), the best ML model was identified
for the classification task at level 1, that is, the logistic
regression,[43] by evaluating the classification performance over
the test sets through the MATLAB Classification Learner. Hence,
the classification performances herein reported must be consid-
ered as the average of all 10 evaluations over the corresponding
10 test sets. Performances were quantified by means of three
different parameters, that is,. recall (REC), precision (PREC),
and accuracy (ACC), that are defined as

REC ¼ TP
TPþ FN

PREC ¼ TP
TPþ FP

ACC ¼ TP
TPþ FNþ TNþ FP

(1)
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where TP, TN, FP, and FN are the number of true positives, true
negatives, false positives, and false negatives, respectively. The
accuracy of a classifier is defined as the likelihood of correctly
classifying input elements. It is calculated as the fraction of
correctly classified items out of the total items classified.
Recall for a specific class refers to the probability that its elements
are accurately identified by the classifier. This is calculated as the
ratio of true positives (correctly identified elements of the class)
to the sum of true positives and false negatives (class elements
incorrectly not identified). Precision for a particular class, on the
contrary, is the proportion of elements that are correctly classi-
fied among those categorized as belonging to that class. It is
determined by the ratio of true positives to the sum of true pos-
itives and false positives (elements not belonging to the class but
incorrectly identified as such). Hence, as stated in Equation (1),
high recall values indicate a low number of False Negatives (FN),
while high precision values suggest a low number of False
Positives (FP). Typically, in problems involving cancer diagnosis,
the goal is to minimize FN, thereby maximizing the recall value.
This approach prioritizes ensuring that as many actual cases of
cancer as possible are correctly identified, even if it means accept-
ing a higher number of FP.

Therefore, we report in Figure 2 the average recall (red box)
and the average accuracy (white box) related to level 1, that are the
same for each of the four HCs. In particular, the classification at

level 1 between WBCs and OCCs has an average accuracy of
90.7%, with the WBCs having an average recall of 89.4% and
the OCCs having an average recall of 92.1%.

In summary, our data show that OC and peripheral blood cell
processing with QPI-FC and the subsequent AI-mediated analy-
sis of the obtained images successfully distinguish various OC
types from MCs and LCs. In the clinical setting, among various
tumor-specific features, complete blood count is an important
parameter taken into consideration when managing oncologic
patients. Thus, we evaluated the ability of our QPI-FC system
to correctly distinguish MCs from LCs. As sketched in
Figure 2, after identifying WBCs at the level 1, the level 2.1 is
accessed, which aims at distinguishing MCs from LCs, and is
also common to all the four HCs. The quadratic support vector
machine[43] proved to give the best classification performance
with regard to level 2.1 (see Table S6, Supporting
Information). In particular, this model was firstly trained and
tested 10 times by randomly extracting, every time, the overall
training set and the test set from the overall dataset according
to Table S1 (Supporting Information), and then by randomly
extracting the training set from the overall training set according
to Table S2–S5 (Supporting Information). As reported in
Figure 2, MCs and LCs are distinguished with a high average
accuracy (93.2%), average recall being 93.2% and 93.3%,
respectively.

Figure 2. Sketch of the HCs with the average recalls (red boxes) and the average accuracies (white boxes) of each ML classifier, considered independently
of each other. A) Non-informed HC. B) Histology-informed HC. C) Origin-informed HC. D) Mutation-informed HC.
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3.2. Identification of Specific OC Subtypes via QPI-FC ML-
Aided Analysis Is Optimized by Application of a priori
Prioriclinical information

After detecting an OCC at the level 1 of the HC, a more in-depth
analysis about the OC phenotype can be performed in order to
identify the specific cell line, that is, A2780, CAOV3, SKOV3,
OVCAR3, or OC314, which are modelling various clinical
subtypes of OC. To do this, there are two possibilities. The first
classification case is implemented when there is no a priori infor-
mation about the type of CTC detected within the blood sample,
for example in the scenario of using liquid biopsy as a non-
invasive tool for the early diagnosis of cancer. Hence, in this case,
the non-informed HC sketched in Figure 2A is employed, in
which the level 2.2 is made of a 5-class classifier, avoiding any
intermediate clustering of the OCCs. As summarized in Table
S6 (Supporting Information), the best ML model at the level
2.2 of the non-informed HC is the linear support vector
machine,[43] which, after being trained and tested 10 times
(see Table S1 and S2, Supporting Information), provided an aver-
age accuracy of 67.7%, as reported in Figure 2A along with the
average recalls of the five OC cell lines.

The second classification case is instead implemented when
there is some a priori information about the type of CTC we
are searching in the blood specimen, such as in the clinical con-
text of oncologic patient follow-up, when the initial diagnosis and
molecular/histology data are most often already available. Thus,
we next tested whether such a priori information may be
exploited to improve ML-aided identification of CTCs in the
patient bloodstream with respect to the non-informed HC.
To simulate the clinical data usually available upon diagnosis,
we grouped the OCCs in three different subtype categories
(see Table S7, Supporting Information), based on the following
information available from the literature: 1) histology,
2) origin, and 3) their TP53 genotype, since mutations in this
tumor suppressor gene are the main driver events in ovarian
carcinogenesis.[35,44–46] 1) In the histology category, we distin-
guished HGSOC (i.e., OVCAR3, CAOV3, and OC314) versus
endometrial/clear cell OC (E/CCOC)-derived cell lines (i.e.,
SKOV3 and A2780). Of note, the older literature considered
SKOV3 and A2780 as HGSOC, but more recent molecular
and histological analyses suggested these cell lines most likely
derive from E/CCOC.[44–46] Indeed, when comparing their phe-
notype in 2D culture, OVCAR3, CAOV3 and OC314 tend to pres-
ent with large, polygonal and flattened epithelial morphology,
whereas A2780 and SKOV3more often show a spindle-like shape
(Figure S2, Supporting Information). 2) Within the origin
category, we differentiated primary tumor-derived (A2780 and
CAOV3) versus ascites-derived cell lines (SKOV3, OVCAR3,
and OC314), the latter being indicative of advanced metastatic
disease. 3) The category based on TP53 mutational status distin-
guished wild-type (A2780), truncating mutation (SKOV3 and
CAOV3) or missense mutation (OVCAR3 and OC314)-bearing
cell lines (Table S7, Supporting Information).

Therefore, in addition to the non-informed HC (Figure 2A),
three additional ML-based HCs were built and tested, that are
here defined as clinically informed HCs, as each of them exploits
one of the three a priori phenotypical information about the OC

cells described above. The non-informed HC and the three clini-
cally informed HCs share the level 1, that is, the classification
between WBCs and OCCs, and the level 2.1, that is, the classifi-
cation between MCs and LCs (Figure 2). Instead, the OCC
branch changes among these four HCs. With regard to the clini-
cally informed HCs: 1) The histology-informed HC sketched in
Figure 2B is based on the preliminary clustering at level 2.2 of
OCCs into two groups according to their putative histology, that
are E/CCOC cell lines (i.e., A2780 and SKOV3) versus HGSOC
cell lines (i.e., CAOV3, OVCAR3 and OC314). Next, in order to
identify the specific OC cell line, the detection of an endometrial
cell opens to the level 3.1, while the detection of a serous cell
opens to the level 3.2. 2) The origin-informed HC sketched in
Figure 2C is based on the preliminary clustering at level 2.2
of OCCs into two groups according to their origin, i.e., primary
tumor-derived cell lines (i.e., A2780 and CAOV3) versus ascites-
derived cell lines (i.e., SKOV3, OVCAR3 and OC314). Next, in
order to identify the specific OC cell line, the detection of
tumor-derived cell opens to the level 3.1, while the detection
of an ascites-derived cell opens to the level 3.2. 3) The mutation-
informed HC sketched in Figure 2D is based on the preliminary
clustering of OCCs into three groups according to the TP53
mutation status, i.e., wild-type cells (A2780) versus cells with trun-
cating mutation (CAOV3 and SKOV3) versus cells with missense
TP53mutations (OVCAR3 and OC314). Next, in order to identify
the specific OC cell line, the detection of a truncating mutation
bearing cell opens to the level 3.1, while the detection of a cell
carrying missense mutation opens to the level 3.2.

The single classifiers belonging to the OCC branches of each
clinically informed HC architecture were trained through the
44 features computed from the 100 QPMs related to each cell
belonging to 10 training sets, extracted according to Table S3–S5
(Supporting Information) from the overall training sets reported
in Table S1 (Supporting Information). The OCC classification
performances were computed over all the QPMs belonging to
the 10 test sets extracted according to Table S1 (Supporting
Information). The best ML model was identified again through
the MATLAB Classification Learner for each OC classification
task inside the three clinically informed HCs, including linear
discriminant analysis, logistic regression, support vector
machine, and k-nearest neighbors.[43] A list containing the
selected ML models for each classification task is reported in
Table S6 (Supporting Information), along with the correspond-
ing model hyperparameters and the possible pre-processing of
the dataset based on the z-score standardization (meaning that
each feature vector is shifted to have mean 0 and scaled to have
standard deviation 1). Therefore, we reported in Figure 2B–D the
average recall (red box) and the average accuracy (white box) for
each OC classifier, considered independently from the others.

In a HC model, what occurs at a certain classification level
depends on what happened at the previous levels, as they are
concatenated. For example, considering the OCC branch of
the HCs presented in Figure 2, at the level 1, an OCC is correctly
recognized with 92.1% accuracy; only the OCCs that were cor-
rectly classified at level 1 can access level 2.2, which in turn cor-
rectly recognizes endometrial and serous OCCs with an 87.7%
accuracy; finally, only the endometrial OCCs that were correctly
classified at level 2.2 can access level 3.1, which in turn correctly
recognizes A2780 OCCs with a 89.1% probability. However, the
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real A2780 recall must also consider the misclassification errors
made at level 1 and level 2.2. Thus, the A2780 recall within the
histology-informed HC drops to 66.8%. Hence, by considering
the several connections within the four HCs, we computed
the corresponding confusion matrices displayed in Figure 3,
averaged among the 10 test sets. This is possible because,
within each of the 10 HC trainings, the test set was made of
exactly the same cells throughout the several levels of the HC,
according to the numbers listed in Table S1 (Supporting
Information).

While performance about the classification of MCs and LCs
are the same among the several HCs, by comparing the recall
values about the OC cell lines reported in Figure 3, it is evident
that the employment of an a priori clinical information

(Figure 3B–D) allows improving the performance of the HCs
with respect to the baseline, that is, the non-informed HC
(Figure 3A). For example, the best recall value in the non-
informed HC is reached by CAOV3 cells (i.e., 67.3%), which
increases up to 72.5% in the histology-informed HC and
67.9% in the origin-informed HC. Instead, in both the origin-
informed HC and mutation-informed HC, the best recall value
is reached by the A2780 cells (i.e., 68.6% and 72.7%, respec-
tively), which are higher than the corresponding 66.7% recall
of the non-informed HC. However, in the origin-informed
HC, the best F1 score (that is the harmonic mean between recall
and precision) is obtained with the CAOV3 cells (i.e., 70.8%).
More in general, by comparing the four HCs, the best accuracy
is related to the histology-informed HC, i.e. 75.1%.

Figure 3. HC confusion matrices related to the QPM classification (before max-voting). Details about the several ML model types used in the four HCs
are reported in Table S6 (Supporting Information). A) Non-informed HC. B) Histology-informed HC. C) Origin-informed HC. D) Mutation-informed HC.
The bottom row contains the precision values. The right column contains the recall values. The bottom right value (violet) is the HC overall accuracy.
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3.3. A Max-Voting Strategy Based on the Cell Rotation
Increases the Performance of the Hierarchical Classifiers

The recall values summarized in Figure 3 can be further
increased by exploiting the rotation of the cells along the micro-
fluidic channel during the QPI-FC experiments. So far, thanks
to the cell rotation, the several QPMs belonging to the same cell
were considered as independent elements, i.e., as if each QPM
were a different cell, in order to augment the dataset. However,
within the QPM dataset, hundreds of QPMs are related to the
same cell, even if they were recorded along different viewing
angles. Therefore, in addition to the data augmentation for
the training step, this property can be further exploited during

the inference step. Indeed, after training a specific HC model,
hundreds of QPMs per cell may be recorded thanks to the
employed QPI-FC system, which means that hundreds of infer-
ences may be performed per cell, with each inference providing a
certain output class. To assign a unique label to the cell, a max-
voting strategy can be employed,[26] i.e., the cell can be classified
as belonging to the class that occurred most times across all
QPMs inferences.[31] In this way, we obtained the HC confusion
matrices related to the cell classification reported in Figure 4 for
each of the four HCs we assessed. By comparing the QPM con-
fusion matrices in Figure 3 with the corresponding items in
Figure 4, an overall increase of the classification performances
can be inferred, due to the max-voting strategy that allows

Figure 4. HC confusion matrices related to the cell classification (after max-voting). Details about the several ML model types used in the four HCs are
reported in Table S6 (Supporting Information). A) Non-informed HC. B) Histology-informed HC. C) Origin-informed HC. D) Mutation-informed HC.
The bottom row contains the precision values. The right column contains the recall values. The bottom right value (violet) is the HC overall accuracy.
Non-integer values are due to the average operations among the confusion matrices of the 10 test sets for each HC model.
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recovering cells harboring few misclassified QPMs. Of course,
MC and LC recalls maintain the same values regardless the
HC models, which change only the OCC branch. In particular,
following the WBC branch, MCs can be detected with an 84.0%
recall (instead of 81.1% without max-voting), while LCs can be
detected with a 91.2% recall (instead of 89.3% without max-
voting). Instead, the recall enhancement within the OCC branch
is different depending on the a priori clinical information.
On average, the recall increased by 7.2% in the non-informed
HC, by 6.0% in the histology-informed HC, by 6.5% in the
origin-informed HC, and by 6.8% in the mutation-informed HC.
In order to compare the OCC performance’s boosting of the
four HC models identification, the average recalls obtained in
the QPM case (without max-voting) and in the cell case
(with max-voting) were reported in Figure 5A,B, respectively.
In particular, following the OCC branch in the max-voting case,
for detecting. 1) A2780 OCCs, the best result was given by the
mutation-informed HC (79.3% recall, 82.7% precision, and
81.0% F1 score); 2) CAOV3 OCCs, the best result was given
by the histology-informed HC (81.6% recall, 86.3% precision,
and 83.9% F1 score); 3) SKOV3 OCCs, the best result was
given by the histology-informed HC (45.0% recall, 29.2% preci-
sion, and 35.4% F1 score); 4) OVCAR3 OCCs, the best result was
given by the histology-informed (71.4% recall, 76.5% precision,
and 73.9% F1 score); 5) OC314 OCCs, the best result was given
by the origin-informed HC (81.4% recall, 48.8% precision, and
61.0% F1 score).

For example, to detect A2780, our results proved that the best
approach is to use the mutation-informed HC. Instead, the best
solution for identification of a metastatic HGSOC was given by
the histology-informed HC (OVCAR3) or origin-informed HC
(OC314). In general, the histology-informed HC reached the
highest accuracy (i.e., 79.9%), while the non-informed HC
was never the best solution for classification except for the
SKOV3 case for which the non-informed HC provided the same
performance as the histology-informed HC after max-voting,
even if with a lower precision. Taken together, this means that,
in the proposed HC pipeline, exploiting a priori clinical informa-
tion enhances the classification performance, thus reducing the
FN probability.

3.4. An Independent Test to Assess the Identification of
Specific OC Subtypes

In order to assess the proposed clinically informed ML
approach for the classification of OC subtypes, we performed
a further test, independent to those presented in the previous
Sections. To this end, we carried out another QPI-FC experiment
to collect an additional test set that was as independent as
possible from the dataset used so far to train and test HCs.
Indeed, we collected a different test set made of 62 CAOV3 cells
(with the corresponding 9566 QPMs) and 130 OVCAR3 cells
(with the corresponding 29 964 QPMs). As explained in
Section 3.3, for both CAOV3 and OVCAR3 OCCs, the best clini-
cally informed HC is the one based on an a priori histology infor-
mation. For this reason, to assess the classification performance
over the independent test set, we selected the histology-informed
HC. As explained in Section 3.2, we trained the histology-
informed HC with 10 different training sets in order to
strengthen the ML performance analysis. Hence, among the
10 trained clinically informed HCs, we selected the two ones
having the best recalls over the corresponding original test sets
of CAOV3 cells and OVCAR3 cells, respectively. Finally, we
employed the trained histology-informed CAOV3-HC and
the trained histology-informed OVCAR3-HC to classify OCCs
belonging to the independent test sets of CAOV3 cells and
OVCAR cells, respectively. Results are summarized in
Figure 6, where we reported the percentage of correctly classified
and misclassified CAOV3 cells (see Figure 6A,C) and the per-
centage of correctly classified and misclassified OVCAR3 cells
(see Figure 6B,D). As for the CAOV3 OC cell line, the 51.4%
of QPMs is correctly classified (green bar in Figure 6A), meaning
that, thanks to the max-voting strategy, the 77.4% of cells is cor-
rectly identified (green bar in Figure 6C), which is just the 4.2%
lower than the average recall about the original 10 test sets
(see Figure 5B). As for the OVCAR3 OC cell line, the 52.8%
of QPMs is correctly classified (green bar in Figure 6B), meaning
that, thanks to the max-voting strategy, the 68.5% of cells is cor-
rectly identified (green bar in Figure 6D), which is just the 2.9%
lower than the average recall about the original 10 test sets
(see Figure 5B).

Figure 5. Ovarian cancer cell recall values obtained with each HC model using A) QPM classification (without max-voting) and B) cell classification
(with max–voting).
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4. Discussion and Conclusions

The identification of cancer cells within the blood stream is a very
challenging and hot topic nowadays, framed within the so-called
liquid biopsy paradigm. QPI offers a unique opportunity to iden-
tify OCCs compared to blood cells with similar size andmorphol-
ogy, such as monocytes, thanks to the possibility of measuring RI
which acts as an endogenous marker, thus defining a sort of
fingerprint of the subcellular structures. Indeed, it is known that
OCCs are highly heterogeneous, in terms of molecular and mor-
phological parameters, so it cannot be excluded that some tumor
cells share similarities with immunological populations.
Therefore, the combination of advanced imaging modalities
and AI is crucial to identify OCCs and their subtypes. Indeed,
the results reported here confirm that microfluidic flow cytom-
etry coupled to QPI and ML-powered analysis can successfully
distinguish cell populations in a label-free manner.[20]

In particular, we demonstrated the possibility to classify vari-
ous OCCs from WBCs, which suggests that our approach might
successfully handle the intrinsic population heterogeneity and
correctly identify OC CTCs in a liquid biopsy of a tested subject
during screening. Moreover, we demonstrated the possibility to
distinguish, based on label-free QPI, between MCs and LCs.
Hence, the proposed method may be capable of simultaneously
obtaining complete blood count as well as CTC information, thus
further reducing patient management-related time and work-
load. Specifically, we demonstrated that WBCs can be recognized

with a 91.8% recall while OCCs can be recognized with a 95.3%
recall. Then, following the WBC branch, MCs can be detected
with an 84.0% recall while LCs can be detected with a 91.2%
recall. However, the most significant outcome of our study is
reaching better performance for different OC cell lines depend-
ing on the available a priori phenotypic/genotypic information.
The core of our strategy is the design of a suitable hierarchical
scheme based on the type of OC cells identified as target popu-
lation in a follow-up scenario. Notice that, here we have employed
a simple and straightforward ML approach based on handcrafted
features extraction and conventional classifiers. However, more
sophisticated AI paradigms like deep convolutional neural net-
works can be easily used in our investigation pipeline to define
the best model to be used at each classification level without mod-
ifying the HC schemes.

In particular, to detect A2780, results indicated that the best
approach is to use the mutation-informed HC (79.3% recall),
whereas histology-informed HC is the best option for identifica-
tion of CAOV3 (91.6% recall), SKOV3 (45% recall) and OVCAR3
cells (71.4% recall). Finally, origin-informed HC is optimal
approach for OC314 identification (81.4% recall). To solve each
ML classification task, 44 label-free features measured from the
QPMs of flowing cells were exploited. All the 44 features were
employed to train and test the several ML models. However, we
implemented the Relieff algorithm with 10 nearest neighbors[47]

separately for each of the classification levels sketched in
Figure 2, in order to rank the predictors according to their

Figure 6. Classification performance of the best histology-informed CAOV3-HC and OVCAR3-HC for the identification of an independent test set of
A,C) CAOV3 OCCs and B,D) OVCAR3OCCs, respectively. (A,B) Number of correctly classified QPMs (green) andmisclassified QPMs (red). (C,D) Number
of correctly classified cells (green) and misclassified cells (red), computed after max-voting. The corresponding percentages with respect to the total
number of (A,C) CAOV3 cells and (B,D) OVCAR3 cells are reported at the top of each bar. The green percentage corresponds to the recall value.
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importance in the several classification problems. As summa-
rized in Table S8 (Supporting Information), eccentricity and
entropy were often among the highest ranked features, thus sug-
gesting their greater involvement in ML classifications. It is
worth noting that the overall performances were also improved
thanks to the use of a max-voting strategy, able to exploit multiple
views of a cell to further enhance the ML classification at single-
cell level through the correlation of multiple inferences. In fact,
considering the best recall values of the two WBC cell lines and
the five OC cell lines, the sole max-voting allowed increasing the
performance on average by 6.6%. Moreover, the combination
between the max-voting strategy and the a priori clinical informa-
tion allowed enhancing the recall values of the OCCs up to 18.3%
with respect to the baseline case, that is, the non-informed HC.
Of note, the non-informed HC is never the best solution for clas-
sification. Indeed, clinically informed HCs achieved higher recall
values in all cases, except for SKOV3, possibly due to the lower
cell numbers used for the training set. Different OC cell types
resulted to be optimally identified by application of different clin-
ically informed HCs, suggesting that a priori knowledge, if
appropriately used, improves the reliability in the identification
of specific target cells. Interestingly, histology-guided HC
resulted to be the best solution for three of the five OC cell lines
tested. Although this is a preliminary study, it is reasonable to
hypothesize that histological classification of the cells used here
is associated with their morphology. Indeed, we observed a dis-
tinct cell shape between E/CCOC and HGSOC models when
grown in 2D culture (Figure S2, Supporting Information).
This difference in morphology, encoded in the biological
markers measured by DH microscopy of the rotating cells, pos-
sibly explains why histology-informed HC resulted to be most
performant. On the contrary, the classification of cells based
on their TP53 genotype is less intuitively correlated to their mor-
phological biomarkers, suggesting caution while making conclu-
sions about our data. Nonetheless, it seems clear that ad-hoc use
of a priori known phenotype information minimizes the FN
errors in detecting the expected OCCs, which is of great impor-
tance in the context of using CTC detection for disease and treat-
ment response monitoring.

In summary, the strategy herein proposed can be potentially
employed for two different scenarios of label-free liquid biopsy
based on ML-powered QPI-FC. The non-informed HC is more
suitable for the first diagnosis, when no a priori information is
available. In this case, the OCCs could be recognized with respect
to the WBCs, then MCs and LCs could be counted simulta-
neously with the OC phenotyping. Instead, when cancer pheno-
type is already diagnosed, its follow-up stage can be greatly aided
by the proposed clinically informed HCs, since the best a priori
information about the specific OC cell line to search is available,
thus enhancing the sensitivity of the proposed intelligent deci-
sion maker.

Unlike the non-informed HC, the clinically informed HC can
also perform intermediate classifications that could be useful in
the clinical practice. For example, as summarized in Table 1, OC
CTCs characterized by E/CC histology (70.8% recall) can be
discriminated from HGSOC (90.2% recall) in the histology-
informed HC, or primary tumor-derived OCCs (76.7% recall)
can be identified against ascites-derived OCCs (84.7% recall)
in the origin-informed HC. Finally, to further assess the

proposed clinically informed strategy in the follow-up scenario,
we performed additional and independent experiments by col-
lecting CAOV3 and OVCAR3 images as new test cases of the
trained clinically informed HCmodels. Remarkably, when tested
over the independent test sets, the best clinically informed HCs
(i.e., the histology-informed ones for both these two OC cell
lines) reached comparable performances with respect to the orig-
inal test sets, which were a recall of 77.4% and 68.5% in the
CAOV3 and OVCAR3 cases, respectively. Moreover, according
to the scheme in Figure 2B, in the CAOV3 case, the 100% of
cells were correctly recognized as OCCs at the level 1 and the
83.9% of cells were correctly recognized as OC CTCs character-
ized by E/CC histology at the level 2.2; instead, in the OVCAR3
case, the 95.4% of cells were correctly recognized as OCCs at the
level 1 and the 68.5% of cells were correctly recognized as OC
CTCs characterized by E/CC histology at the level 2.2.
Therefore, the proposed HC scheme proved to be robust under
different and independent test cases. In order to further increase
the robustness and generalization ability, future investigations
will focus on datasets deriving from biological samples with
higher complexity level, such as peripheral blood spiked with
cancer cells or OC patient-derived material, analogue to what
has been reported for renal cell cancer.[48]

We envision our technology will initially be applied to samples
post CTC enrichment. The process is usually preceding most of
the CTC detection methods. For example, Parsortix enrichment
allows up to 105 depletion of nucleated blood cells, with reported
residual nucleated cell number <1000.[49] Notice that, the high
throughput of flow cytometry in immunology and molecular
biology approaches is thousands of cells per second. To the best
of our knowledge, in the field of liquid biopsy, enrichment,
and detection of CTCs by most of the acknowledged methods,
including the leading CellSearchþDEPArray workflow, is about
8 h for 7.5 mL of blood.[50] Our QPI-FC system can collect
hundreds of orientations of the same cells by exploiting hydro-
dynamic forces within the microchannel making all cells rotate
during their flow. We have already demonstrated that the poten-
tial throughput of our QPI-FC system is tens of full-rotating
(360°) cells per second,[51] thus corresponding to thousands of
single-cell images per second taken at different orientations.
Therefore, our system may be competitive, considering it
brings a significant advantage of not being dependent on cell

Table 1. Recall values of the intermediate single-cell classification
problems (after max-voting) in the different HC models.

HC Class

WBC OCC

91.8% 95.3%

Histology-informed Endometrial Serous

70.8% 90.2%

Origin-informed Tumor Ascites

76.7% 84.7%

Mutation-informed Truncating Mutation Missense Mutation Wild-Type

86.3% 79.1% 79.3%
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labeling. Hence, the proposed analysis opens perspectives for
diagnosing the OC cells type in a future scenario of label-free
liquid biopsy.[11] While the significance of liquid biopsy as a
screening approach for early cancer diagnosis is still being eval-
uated, the clinical potential of CTC detection in disease follow-up
has already entered clinical practice worldwide for certain
cancers, and in OC a higher CTC number has been associated
with worse overall survival[4] and resistance to platinum-based
chemotherapy.[5]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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