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Addressing brain metabolic connectivity in treatment-resistant
schizophrenia: a novel graph theory-driven application of
18F-FDG-PET with antipsychotic dose correction
Giuseppe De Simone 1,4, Felice Iasevoli 1,4, Annarita Barone1, Valeria Gaudieri2, Alberto Cuocolo 2, Mariateresa Ciccarelli 1,
Sabina Pappatà3,4 and Andrea de Bartolomeis 1,4✉

Few studies using Positron Emission Tomography with 18F-fluorodeoxyglucose (18F-FDG-PET) have examined the neurobiological
basis of antipsychotic resistance in schizophrenia, primarily focusing on metabolic activity, with none investigating connectivity
patterns. Here, we aimed to explore differential patterns of glucose metabolism between patients and controls (CTRL) through a
graph theory-based approach and network comparison tests. PET scans with 18F-FDG were obtained by 70 subjects, 26 with
treatment-resistant schizophrenia (TRS), 28 patients responsive to antipsychotics (nTRS), and 16 CTRL. Relative brain glucose
metabolism maps were processed in the automated anatomical labeling (AAL)-Merged atlas template. Inter-subject connectivity
matrices were derived using Gaussian Graphical Models and group networks were compared through permutation testing. A
logistic model based on machine-learning was employed to estimate the association between the metabolic signals of brain
regions and treatment resistance. To account for the potential influence of antipsychotic medication, we incorporated
chlorpromazine equivalents as a covariate in the network analysis during partial correlation calculations. Additionally, the machine-
learning analysis employed medication dose-stratified folds. Global reduced connectivity was detected in the nTRS (p-
value= 0.008) and TRS groups (p-value= 0.001) compared to CTRL, with prominent alterations localized in the frontal lobe, Default
Mode Network, and dorsal dopamine pathway. Disruptions in frontotemporal and striatal-cortical connectivity were detected in TRS
but not nTRS patients. After adjusting for antipsychotic doses, alterations in the anterior cingulate, frontal and temporal gyri,
hippocampus, and precuneus also emerged. The machine-learning approach demonstrated an accuracy ranging from 0.72 to 0.8 in
detecting the TRS condition.
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INTRODUCTION
The lack of response to antipsychotics, affecting nearly 30% of
schizophrenia patients1,2, leads to increased symptom severity and
everyday functional impairment3. The present study marks the first
attempt to address treatment-resistant schizophrenia (TRS) by
a metabolic connectivity analysis based on 18F-fluorodeoxyglucose
(18F-FDG)-Positron Emission Tomography (PET). As a further step, we
applied a machine-learning approach aimed at classifying treatment-
resistant patients from responders to antipsychotics (nTRS). The
novelty lies in tackling the connectivity issue through a functional
imaging technique, utilizing a direct measure of regional brain
glucose metabolism for highlighting potential alterations in brain
networks and instructing a machine-learning algorithm. This
approach is particularly meaningful as it is embedded in one of the
most recognized milieu of schizophrenia pathology, conceptualized
as a disorder of synapse and connectivity4,5.
Dysregulated processing and integration of neuronal responses

at the synaptic level may affect the overall brain connectivity and/
or the functionality of specific networks, including the Default
Mode Network (DMN)6–11. For instance, disruptions in the function
of glutamate receptors and changes in postsynaptic density
elements can impair synaptic signaling, leading to reduced
connectivity between neuronal networks5,7. Several areas have

been identified as potential stratifiers between nTRS and healthy
controls, including fronto-temporal and fronto-occipital regions,
which exhibit differences in structural covariance networks12.
Recent findings have highlighted a significant relationship
between treatment refractoriness and more progressed stages
of brain morphology patterns, as identified through a data-driven
machine learning approach13. PET studies based on 18F-DOPA and
11C-raclopride signal, as well as functional magnetic resonance
imaging (fMRI), revealed altered hubs of dopaminergic networks,
particularly the dorsal striatum, and frontostriatal connectivity in
schizophrenia subjects, with differences between individuals
responsive and non-responsive to treatment14–19.
Most research on functional connectivity has predominantly

utilized fMRI protocols based on the blood oxygenation level-
dependent (BOLD) signal. While PET with 18F-FDG directly reflects
neuronal metabolic activity20, the neurovascular coupling under-
lying the hemodynamic response in fMRI is influenced by a
complex interplay between local cerebral blood flow, blood
volume, and the cerebral metabolic rate of oxygen20. Simulation
studies of fMRI connectivity have shown that aberrant connectiv-
ity in brain disorders reflects not only abnormal neural activity but
also alterations in brain vessels and associated hemodynamic/
metabolic pathophysiology20,21. When 18F-FDG-PET and fMRI data

1Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive
Sciences and Dentistry, University of Naples “Federico II”, School of Medicine, Naples Italy, Via Pansini 5, 80131 Naples, Italy. 2Department of Advanced Biomedical Sciences,
University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy. 3Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145 Naples, Italy.
4These authors contributed equally: Giuseppe De Simone, Felice Iasevoli, Sabina Pappatà, Andrea de Bartolomeis. ✉email: adebarto@unina.it

Published in partnership with the Schizophrenia International Research Society

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41537-024-00535-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41537-024-00535-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41537-024-00535-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41537-024-00535-4&domain=pdf
http://orcid.org/0000-0003-0422-3415
http://orcid.org/0000-0003-0422-3415
http://orcid.org/0000-0003-0422-3415
http://orcid.org/0000-0003-0422-3415
http://orcid.org/0000-0003-0422-3415
http://orcid.org/0000-0002-7051-5013
http://orcid.org/0000-0002-7051-5013
http://orcid.org/0000-0002-7051-5013
http://orcid.org/0000-0002-7051-5013
http://orcid.org/0000-0002-7051-5013
http://orcid.org/0000-0003-3431-7658
http://orcid.org/0000-0003-3431-7658
http://orcid.org/0000-0003-3431-7658
http://orcid.org/0000-0003-3431-7658
http://orcid.org/0000-0003-3431-7658
http://orcid.org/0000-0001-8944-414X
http://orcid.org/0000-0001-8944-414X
http://orcid.org/0000-0001-8944-414X
http://orcid.org/0000-0001-8944-414X
http://orcid.org/0000-0001-8944-414X
http://orcid.org/0000-0002-3188-5652
http://orcid.org/0000-0002-3188-5652
http://orcid.org/0000-0002-3188-5652
http://orcid.org/0000-0002-3188-5652
http://orcid.org/0000-0002-3188-5652
https://doi.org/10.1038/s41537-024-00535-4
mailto:adebarto@unina.it


were simultaneously acquired from the same participants, PET
data demonstrated a higher proportion of variance explained by
fewer components compared to fMRI data22. This higher variance
concentration suggests that PET results may be more robust and
replicable across samples22. Overall, these findings along with
previous brain network analysis based on 18F-FDG-PET enhance
the potential utility of metabolic connectivity by highlighting its
validity and replicability20,23–28.
In 18F-FDG-PET connectivity analyses, connectivity is assessed

through intersubject estimation by analyzing covariation in signal
intensity across participants, as only one static PET image per
subject is available20,27. Network measures and graph metrics in
the context of 18F-FDG-PET reflect these intersubject covariations,
meaning that regions with correlated metabolic activity across
subjects belong to the same functional network20,23,26,27. This
methodology could be particularly valuable for exploring group-
level connectivity patterns in disorders like schizophrenia, where
metabolic alterations have been identified29–36.
While connectivity studies have employed 18F-FDG-PET to

compute network measures and conduct graph theory analyses
in neurological conditions, there remains a gap in its application to
psychotic disorders, particularly schizophrenia23–28. Integrating a
metabolic-constructed map with the existing information pre-
dominantly based on fMRI, which primarily reflects neurovascular
coupling, could offer a novel perspective on aberrant connectivity
in schizophrenia, potentially yielding a more comprehensive
understanding of the disease through the use of multimodal
techniques.
In this framework, we investigated metabolic connectivity in

schizophrenia patients with the following objectives: i) to
characterize connectivity patterns in patients and controls by
providing a descriptive analysis and graph representation of brain
networks; ii) to statistically compare network parameters between
groups using permutation-based methods; iii) to perform a
stratification of TRS and nTRS based on a pilot machine-learning
approach trained with the metabolic signals of brain regions; and
iv) to address the potential impact of antipsychotic dosage in
detecting differences among groups.

METHODS
Data acquisition and preprocessing
18F-FDG-PET scans were obtained by 70 participants, including 54
patients (28 nTRS and 26 TRS patients) and 16 age-matched
controls (CTRL). Patients were diagnosed using the Structured
Clinical Interview for Diagnosis (SCID-5), and categorized in nTRS/
TRS based on TRRIP (Treatment Response and Resistance in
Psychosis) Working Group consensus guidelines2. Inclusion criteria
were: age 18–55 years, disease duration ≥2 years, no substantial
medication changes within the past six months, and no worsening
of psychotic symptoms within the last three months. Exclusion
criteria encompassed the presence of macroscopic brain structural
abnormalities, other psychiatric disorders, and severe medical
conditions. All participants completed a screening process to
ensure eligibility for the PET scan. Patients with specific contra-
indications were not recruited, such as pregnancy, allergies to the
radiotracer, uncontrolled diabetes, recent major surgery, systemic
inflammatory diseases, and severe kidney problems.
The sample size calculation was based on previous studies that

demonstrated effective detection of circuit-level differences
through 18F-FDG-PET network analysis26. 18F-FDG-PET scans were
performed according to the European Association of Nuclear
Medicine guidelines37. To prevent movement during the PET/CT
acquisitions the head of the patients was fixed in a dedicated
head holder and the patient was instructed to avoid any head
movement. Static 15-minute brain images were acquired in 3D
mode 45-min after the injection of 200–250 MBq of 18F-FDG using

time-of-flight PET/CT system (Philips Ingenuity TF 64, Philips
Medical Systems, Best, The Netherlands) with an axial field of view
of 18 cm yielding 90 slices of 2 mm thickness and an axial and
transaxial resolution (full width at half maximum [FWHM]) of 4.7
and 4.8 mm respectively. Static images were reconstructed with
the iterative time-of-flight reconstruction algorithm (BLOB-OS-TF)
and corrected for attenuation using CT scans. Reconstructed
images were visually inspected to check for potential artefacts due
to movements or to other technical factors. PET datasets were
processed using the PMOD 3.9 version (PMOD Technologies LLC)
and anatomically parcellated into 65 volumes of interest (VOIs)
based on the automated anatomical labeling (AAL)-merged atlas
defined in the MNI space (Supplementary T1). We selected the
AAL atlas due to its use in previous brain metabolic connectivity
studies and its balance between anatomical detail and a
manageable number of regions, making it well-suited for high-
dimensional data analysis23,26. Further, the use of the AAL atlas,
which combines smaller regions to obtain larger volumes, likely
mitigated some of the spatial resolution constraints inherent to
PET imaging. Specific brain circuits, such as DMN and dorsal
dopamine pathway, were chosen based on their established roles
in schizophrenia and their well-characterized node composition in
prior studies (Supplementary T2)23,26,38.
This study, approved by the Ethical Committee for Clinical

Studies of the University of Naples “Federico II” (protocol number:
195/19), significantly expands previously published data, incorpor-
ating approximately one-third more subjects29. All participants
provided written informed consent prior to inclusion in the study.
The study workflow is illustrated in Fig. 1.

Graph theory application and network computation
Whole-brain connectivity matrices were constructed using partial
correlation analysis. Functional connectivity research predominantly
utilizes marginal correlation analysis, focusing on pairwise relation-
ships between brain regions without considering third-party effects27.
However, this approach may not effectively capture interactions
among multiple brain regions working together27. To address this
limitation, researchers have increasingly adopted partial correlation
analysis, which assesses the association between pairs of brain
regions while controlling for spurious associations by eliminating the
influence of global or third-party effects on the pairwise correlation27.
Estimating partial correlations typically involves maximum likelihood
estimation (MLE) of the inverse covariance matrix. For reliable results,
a significantly larger sample size (n) than the number of regions being
studied (p) is necessary, a condition usually met in fMRI but not in PET
studies27,28. When p exceeds n (high-dimensional data), the
covariance matrix becomes non-invertible and ill-conditioned, result-
ing in substantial estimation errors28,39. To obtain trustworthy
information, it is preferable to employ sparse inverse covariance
estimation (SICE), known as Gaussian graphical models (GGMs), for a
sparser matrix estimation, achieved by setting enough entries to
zero27,28. The degree of sparsity is determined by the regularization
parameter λ, which imposes a constraint on sparsity27,28. SICE is
widely accepted as a valuable tool for determining the binary
structure of an inverse covariance matrix, particularly in distinguishing
between zero and non-zero entries27,28. Nevertheless, its reliability in
estimating the actual values of non-zero entries is compromised by
the shrinkage effect27,28,39. To tackle this issue, previous studies
primarily utilized “quasi-measures” to assess the strength of functional
connections23,25,26. Here, to obtain robust estimations of true brain
networks and to mitigate the shrinkage effect, GGMs with a non-
convex regularization approach, the arctangent type penalty (atan),
were employed40–42. The atan penalty effectively shrinks smaller
partial correlations towards zero while preserving larger partial
correlations from the regularization process41,42. This characteristic
of non-convex regularization is expected to yield nearly unbiased
estimations, thereby enhancing predictive accuracy (Supplementary
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F1)41,42. The Atan-penalized least squares procedure has consistently
demonstrated the ability to select the correct model40. Furthermore,
when combined with a BIC-type criterion, the Atan procedure
performs exceptionally well across a variety of settings40. Hence, we
combined the Atan regularization with the BIC criterion to choose the
tuning parameter, setting the hyperparameter γ to 0.01 in accordance
with recommendations from prior research40–42.

Descriptive analyses of networks’ properties
Several network properties were computed to qualitatively
characterize the group networks. First, we measured network
robustness by averaging the size of the largest connected
component after sequentially removing nodes43. We analyzed
the number of edges and edge density, computed as the ratio of
the actual number of edges in the graph to the maximum possible
number of edges, which indicate the level of connectivity within a
network. The global clustering coefficient was used to measure
the tendency of nodes to form tightly connected groups,
indicating network’s integration capability44. The average shortest
path length was calculated to assess the efficiency of information
transfer within the network, with lower values indicating more
efficient communication44. Finally, the small-worldness index was
computed to assess how well the network balances local
clustering with global efficiency, with lower values suggesting
deviations from the ideal small-world structure often seen in
healthy brain networks45.
To identify the subnetworks exhibiting alterations in connectiv-

ity, the average degree - defined as the average number of edges
connected to each node - was calculated for each community
within the brain graphs. This metric provides insight into the

interconnectivity of nodes within the communities, enabling us to
assess the degree to which alterations in connectivity may
influence the overall network structure and functionality.
Hubs, which are high-degree nodes, were identified by

selecting nodes with a participation coefficient one standard
deviation above the mean, as previously described in the
literature23. The participation coefficient quantifies a node’s
engagement with various communities within the network46.
When a node’s connections are exclusively within its own
community, its participation coefficient is 046. Conversely, if a
node’s connections are evenly distributed across all communities,
the participation coefficient reaches a maximum value approach-
ing 146. The Louvain method was employed to define modules
within the network23. Networks computation was performed by
the “GGMncv” package41,42 while descriptive analyses of brain
graphs were made by “igraph”, “brainGraph” (https://cran.r-
project.org/web/packages/brainGraph/), “clustAnalytics”, and
“NetworkToolbox” packages47–49 in RStudio R version 4.1.250.
Brain networks were graphically represented by BrainNet Viewer51.

Comparative analysis between group networks based on
permutation testing
To conduct a statistical comparison between the networks of
patients and CTRL, a permutation-based approach was utilized.
Permutation tests, a subset of non-parametric statistics, proved
particularly advantageous given the small sample sizes52. Permu-
tation tests offer an exact method for analyzing high-dimensional
data due to their distribution-free nature and flexibility53. In these
tests, p-values are determined by assessing the positions of test
statistics within an empirical null distribution created through

Fig. 1 Schematic representation of the study workflow. Patients were recruited at the Department of Neuroscience, Reproductive Sciences
and Dentistry, Unit of Treatment-Resistant Psychosis, University of Naples “Federico II”. PET scans were performed at the Department of
Advanced Biomedical Sciences, Nuclear Medicine, University of Naples “Federico II”. VOIs were then transformed into the native 18F-FDG-PET
space of each subject using the inverse transformation. Averaged VOI uptake values were normalized to global gray matter average values.
Network estimations were based on GGMs combined with the atan penalty. Networks were compared across groups through permutation
testing. Machine learning was used to stratify treatment-resistant and treatment-responsive patients. For a comprehensive acknowledgement,
refer to the Method section.
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random shuffling53. In previous studies, permutation testing
proved to be an effective method for comparing biological
networks53–56. The reliability and broad applicability of permuta-
tion testing were also demonstrated in prior network analyses of
brain PET studies54. The “Network Comparison Test” function from
the “GGMncv” package was employed for the permutation-based
network comparison41,42,57. The absolute values of edge weights
were considered for the statistical analysis. To ensure robust
replicability, a high number of iterations (it= 10,000) was
applied54. In all network comparison analyses, permuted p-values
were adjusted for multiple testing and considered significant if
below 0.05.
Comparative analyses of whole-brain networks included assess-

ments of global strength, a measure of the overall connectivity of
the network; nodes’ weighted degree, which reflects the
importance of a node based on the weights of its connected
edges; and paired edges, which are edges that connect the same
pair of nodes. Together, these metrics provide a comprehensive
understanding of network architecture, as they are cross-related
and interdependent. Specifically, global strength is influenced by
the centrality measures of nodes, which are determined by the
presence of paired edges. This interconnectedness highlights how
variations in one metric can impact the others, ultimately shaping
the network’s overall structure and function.
Analyses were also conducted at the level of a priori defined

networks, such as the DMN and dorsal dopamine pathway. The
graphical output was generated using the “corrplot” package58 in
RStudio R version 4.1.250 and BrainNet Viewer51. To account for
the potential effect of medication dosage on the observed
correlations between cerebral regions, chlorpromazine equiva-
lents were integrated into the network as a node. Network
estimation and permutation-based differences were computed,
incorporating the dosage effect into the analysis. Thus, the
influence of medication dosage was considered when computing
the edges between pairs of brain regions. Following the analysis,
the medication dosage node and its connections were removed
from the network.
While network comparison analyses were performed by

comparing the three groups pairwise, the regression analyses,
aimed at evaluating the potential impact of antipsychotic dosage
on network parameters, were restricted to the TRS and nTRS
groups.

A machine-learning approach to explore patients’ resistance
or responsiveness to treatment
Following recent guidelines for machine learning in mental health
research, we carefully considered data quantity for selecting the
applied algorithm and leveraged nested cross-validation to
identify hyperparameter combinations that enhance model
generalizability through the “nestedcv” package59,60. Nested
cross-validation avoids the pooling of training and testing data,
leading to an almost unbiased estimation of the model regardless
of sample size61,62, as well as maximizes the utilization of the
entire dataset to assess overall accuracy59. This method could be
especially helpful when the number of variables is significantly
larger than the sample size, as the application of other machine-
learning techniques could lead to strongly biased performance
estimations59,61,62.
The “nestedcv” package provides a function to partition the

dataset into outer and inner loops59. The inner loop is responsible
for tuning and validating the hyperparameter/model59. The best-
performing model from the inner loop is subsequently tested on
the unseen data from the outer fold, and this process is repeated
across all outer folds59. We employed a Random Forest-based
approach for hyperparameter tuning, specifically to optimize
values such as alpha (α) and lambda (λ). Alpha controls the
sparsity of the model, while lambda adjusts the overall strength of

regularization. Following this, an additional cross-validation is
conducted on the entire dataset to identify the final hyperpara-
meters for the model, which are then used for predictions on
external unseen data59. The number of inner folds, as well as the
number of outer folds, was set at the default value of ten59.
To ensure balanced distribution of antipsychotic medication

dosage across folds, we employed stratification based on
chlorpromazine equivalents during nested cross-validation. In
other terms, each fold represented a balanced range of
chlorpromazine equivalents, preventing an overrepresentation of
a specific dosage in any fold. This approach mitigated the risk of
bias due to uneven distribution of antipsychotic doses across the
dataset.
The variance and the 95% Confidence Intervals (95%C.I.) of the

Area Under the ROC Curve (AUC) were computed by the “pROC”
package63. The Brier Score was utilized as a measure of prediction
accuracy to evaluate the performance of our prediction model.

RESULTS
Details on clinical and demographic features (Supplementary T3),
along with correlation matrices before and after regularization
(Supplementary F2–7), are represented in Supplementary
Information.

Graph theory application and assessment of network
properties
This section presents a qualitative, descriptive analysis of the
metabolic networks, highlighting patterns and differences
between the CTRL group and schizophrenia patients, without
statistical testing, which is addressed in the following section.
Robustness exhibited similarity across the groups (Supplementary
T4). Both the nTRS and TRS groups showed lower global
connectivity, as well as reduced integration and efficiency in
communication than the CTRL group (Fig. 2). This was evidenced
by network measures, such as the number of edges, edge density,
global clustering coefficient, average shortest path length, and
small-worldness index (Supplementary T5).
Altered connectivity primarily occurred within the frontal lobe

(0.53 vs 0.31 and 0.37), the DMN (0.75 vs 0.4 and 0.4), and the
dorsal dopamine pathway (0.53 vs 0.32 and 0.36), as shown in Fig.
2. Otherwise, cerebellar (0.35 vs 0.32 and 0.34), occipital (0.34 vs
0.37 and 0.35), limbic (0.29 vs 0.32 and 0.25), and temporal (0.13 vs
0.15 and 0.11) subnetworks displayed similar values of connectiv-
ity across groups (Supplementary T5).
The CTRL group showed eleven hubs within five modules. In

contrast, the nTRS and TRS groups displayed twelve and ten hubs,
respectively, distributed across eight modules. The lower tendency of
nodes to cluster together and the alteration in modular organization
suggests a decreased efficiency and integration of schizophrenia
networks. A global reconfiguration of hubs and modules in nTRS and
TRS networks was identified and illustrated in Fig. 3. In the CTRL
group, five out of the eleven hubs were part of the DMN and were
lost in patients’ networks. Among the reconfigured hubs, such as
hubs present in patients but not in CTRL networks, five out of the nine
in the TRS group, as well as four out of the eleven in the nTRS group,
were comprised within the dorsal dopamine pathway. Nodes’
participation coefficients, which were used for hub identification
along with the Louvain method for modules’ detections, are
represented in Supplementary T6.
Overall, these findings show altered connectivity in schizo-

phrenia patients, particularly in the DMN and dorsal dopamine
pathway, alongside changes in the modular organization of the
metabolic networks and reconfigurations in the hub structure
across the TRS and nTRS groups.
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Network comparison by statistical testing
Whole-brain differences in global strength were found between
CTRL and patients’ networks (permutated p-value= 0.008 for CTRL
vs nTRS and 0.001 for CTRL vs TRS), with a reduced connectivity in
schizophrenia groups. No significant difference was found in
global strength between nTRS and TRS (permutated
p-value= 0.98).
Concerning centrality measures, both the nTRS and TRS networks

exhibited significant differences from the CTRL group in terms of
nodes’ weighted degree. The most noteworthy alterations were
identified in the DMN and the dorsal dopamine pathway, as
illustrated in Fig. 4. Specifically, permutation testing revealed eleven
nodes with significantly different strength in the comparison between
the nTRS and CTRL groups, with six nodes located in the DMN and
eight in the dorsal dopamine pathway. In the comparison between
the TRS and CTRL groups, fifteen nodes demonstrated a notable
difference in weighted degree, with six nodes associated with the
DMN and eight with the dorsal dopamine pathway. While values in
weighted degree for each node within each group are provided in
Supplementary T7, the heatmap of Fig. 4 and the Supplementary T8
provide a comprehensive overview of the statistical significance
obtained through permutation testing. In the comparison between
patients and CTRL networks, most affected nodes were the left
precentral gyrus (p-value= 0.026 for nTRS; p-value= 0.006 for TRS),
the left superior (p-value= 0.026 for nTRS; p-value= 0.013 for TRS),
middle (p-value= 0.026 for nTRS; p-value= 0.006 for TRS), and inferior
(p-value < 0.05 for nTRS; p-value= 0.04 for TRS) frontal gyri, the right
superior (p-value= 0.026 for nTRS; p-value= 0.006 for TRS) and
middle (p-value < 0.05 for nTRS; p-value= 0.026 for TRS) frontal gyri,
the right (p-value= 0.029 for nTRS; p-value= 0.006 for TRS) and left
(p-value < 0.05 for nTRS; p-value= 0.026 for TRS) putamen, the right
mid part of the cingulate gyrus (p-value < 0.05 for nTRS; p-value=
0.02 for TRS), and the right calcarine fissure (p-value= 0.026 for nTRS;
p-value= 0.006 for TRS). Compared to CTRL, other affected nodes
were the right posterior part of the cingulate cortex (p-value < 0.05 for
nTRS), the left calcarine fissure (p-value= 0.013 for TRS), the right
gyrus rectus (p-value= 0.032 for TRS), angular gyrus (p-value= 0.039

for TRS), fusiform gyrus (p-value= 0.006 for TRS), and lingual gyrus (p-
value= 0.013 for TRS).
There were no notable variations in paired edges observed

between the groups although the application of multiple testing
correction significantly undermined the likelihood of obtaining
significant results. Consequently, the comparisons were examined
at the individual subnetwork level, including the DMN and dorsal
dopamine pathway. Several connections significantly differed
between group networks, especially within the DMN. By compar-
ing nTRS and TRS networks with CTRL, significant alterations in
the connections of the right posterior cingulate with the right
(p-values= 0.015) and left (p-value= 0.034) cuneus were
detected. The connectivity of the right superior frontal gyrus with
the left cuneus (p-values= 0.012 and 0.006, respectively for nTRS
and TRS vs CTRL) and the left middle frontal gyrus (p-values=
0.049 and 0.039) were notably impaired. Disrupted connections
were further observed between the right temporal region and the
right supramarginal gyrus (p-value= 0.029 and 0.024) and, for the
nTRS group only, the right anterior cingulate (p-value= 0.028).
The correlation between the left precuneus and the left anterior
cingulate was significantly altered in the comparison of nTRS vs
CTRL (p-value= 0.037). Significant alterations in the connection
between the hippocampus and the inferior frontal gyrus within
the left (p-value= 0.022) and right (p-value= 0.028) hemispheres
were detected by comparing TRS and CTRL. The inferior frontal
gyrus also exhibited dysconnectivity between its right and left
hemispheric locations (p-value= 0.039). Disrupted connections
were identified between the left temporal region and the left
superior frontal gyrus (p-value= 0.005) and the left hippocampus
(p-value= 0.036). The left anterior cingulate showed alterations in
functional connectivity with several brain regions, including the
left and right inferior and superior frontal gyri. Altered subcortical-
cortical connectivity was identified in TRS patients compared to
CTRL, especially concerning the edges linking the right and left
putamen with the right superior frontal gyrus (p-value= 0.034)
and postcentral gyrus (p-value= 0.04). Of interest, impairments in
the connectivity of the right temporal region with the right

Fig. 2 Brain graphs of CTRL, nTRS, and TRS groups are depicted alongside regularized correlation matrices. The scaling factor used in
BrainNet Viewer is set to 1 for each group, and the node sizes reflect the weighted degree values without any group-specific scaling. Node
colors indicate modules defined using the AAL-merged atlas. Edge size and color signify the strength of connections between pairs of brain
regions. The analysis revealed that patients, when compared to CTRL, exhibit a widespread reduction in metabolic connectivity. This reduction
is consistently observed in the frontal lobe, Default Mode Network, and Dorsal Dopamine pathway.
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posterior cingulate (p-value= 0.022) and superior frontal gyrus
(p-value= 0.001) were detected in the comparison between nTRS
and TRS groups. Other differences were identified in the
correlation between cingulate and frontal regions as well as in
the connectivity of the right hippocampus with the right angular
gyrus (not detected after adjustment for chlorpromazine

equivalents). The correction for medication dosage unveiled
further differences in the connectivity of the superior frontal
gyrus with the hippocampus (p-value= 0.049) and precuneus
(p-value= 0.035) in the left hemisphere, as well as between the
right temporal lobe and the left anterior cingulate
(p-value= 0.035). Altered functional connectivity was observed
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regarding the supplementary motor area and in the connection
between the right caudate with the left postcentral gyrus (p-
value= 0.005). A comprehensive report of differential paired
connections is available in the Supplementary T9–16, as well as in
the matrices of Figs. 5 and 6. Brain plots relative to edge
differences are provided in Supplementary F8, 9. Effects of age,
sex, years of education, duration of illness, and age of onset were
reported in Supplementary F10–14.
In summary, significant differences in global connectivity

strength were found between the CTRL and schizophrenia groups,
with no notable differences between nTRS and TRS. Alterations in
weighted degree were observed, particularly affecting nodes
within the DMN and dorsal dopamine pathway. Further
subnetwork-level comparisons revealed additional connectivity
changes, especially between cortical and subcortical regions, as
well as between frontal, temporal, and cingulate areas, which
distinguish TRS from nTRS.

Association between metabolic signals and treatment
resistance based on machine-learning
To estimate the associations between the metabolic signals of
VOIs and treatment responsiveness or resistance in schizophrenia
patients, a logistic model was computed using a nested cross-
validation approach. The assessment of the binary outcome was

based on the 18F-FDG signal, considering the whole pool of VOIs,
regions of the DMN, or areas within the dorsal dopamine
pathways. The results indicated higher accuracy when utilizing
DMN data (accuracy= 0.83), followed by the dorsal dopamine
pathway (accuracy= 0.81), and then the entire dataset (accu-
racy= 0.75). The AUC was 0.85 by selecting brain regions
comprised in the DMN (95%C.I.= 0.74, 0.96), 0.83 with the dorsal
dopamine pathway (95%C.I.= 0.71, 0.95), and 0.81 by utilizing the
whole dataset (95%C.I.= 0.69, 0.92). The Brier score was 0.15 by
selecting data from DMN, 0.17 with the dorsal dopamine pathway,
and 0.18 when the whole dataset was used. Models’ coefficients,
ROC curves from both outer and inner folds, deviance due to
alpha and lambda hyperparameters are represented in Fig. 7 and
Supplementary F15, 16.

DISCUSSION
To the best of our knowledge, the present study marks the first
attempt to unveil alterations in schizophrenia responsive and
resistant patients based on 18F-FDG metabolic connectomics.

Graph-theory driven analyses
By a qualitative approach, our metabolic brain connectivity
analysis revealed altered global properties, nodes’ centrality, and

Fig. 4 Differences in weighted degree between network nodes. Permutated p-values, corrected for multiple testing, are depicted on a color
scale (A), ranging from 1 (blue) to 0 (red). Significant differences are denoted by stars (*). Nodes that significantly differed in strength between
nTRS (B) and TRS (C) groups compared to CTRL are visually represented using different colors to indicate the network they belong to: yellow
for nodes within the Default Mode Network (DMN), orange for nodes in the dorsal dopamine pathway (DDP), red for nodes included in both
DMN and DDP, and green for nodes included in other networks. Affected nodes were the precentral gyrus, the superior, middle, and inferior
frontal gyri, the putamen, the posterior and the mid part of the cingulate gyrus, the gyrus rectus, the angular, fusiform, and lingual gyrus, and
the calcarine fissure.

Fig. 3 Network modules and hubs of CTRL, nTRS, and TRS groups. In A, nodes are represented with distinct colors indicating the modules
to which they belong within each network. The Louvain method was employed to compute network communities for the CTRL, nTRS, and TRS
groups. It was observed that individuals with schizophrenia exhibited a reduced level of modular organization compared to the CTRL group.
More specifically, nodes within nTRS and TRS networks were distributed across eight communities, while CTRL nodes clustered into five
modules. In B, differential hubs are present in both nTRS and TRS groups when compared to CTRL. Hubs are visualized using various colors to
indicate their status: those present in the CTRL group but absent in patients (lost hubs in red), those present in both groups (preserved hubs
in green), and those present in patients but not in CTRL (reconfigured hubs in blue). Eleven hubs (amygdala, mid and posterior part of the
cingulate cortex, middle and superior frontal gyri, hippocampus, precuneus, rectus gyrus, thalamus, paracentral lobule) were identified in the
CTRL group whereas the nTRS and TRS groups displayed twelve (anterior cingulate, calcarine fissure, caudate, superior frontal gyrus, insula,
occipital lobe, postcentral gyrus, putamen, thalamus, Rolandic operculum, supramarginal gyrus) and ten hubs (anterior and mid part of the
cingulate gyrus, caudate, cerebellum, superior frontal gyrus, Heschl’s gyrus, precuneus, precentral and postcentral gyri, putamen), respectively.
Most of the affected hubs were comprised within the Default Mode Network and the dorsal dopamine pathway.
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network organization in schizophrenia. Patients’ networks exhib-
ited a global hypoconnectivity pattern, reduced integration, and
efficiency in communication, primarily in frontal regions, DMN,
and dorsal dopamine pathway. The graph analysis showed a lower
tendency of nodes to cluster together and a decreased level of
modular organization in schizophrenia groups. These connectivity
disruptions were associated with changes in centrality measures
of network nodes and a reconfiguration of relevant hubs.
These findings align with previous research on schizophrenia.

Specifically, a meta-analysis of resting-state functional connectivity
showed that chronic schizophrenia was characterized by

hypoconnectivity within large-scale brain networks, particularly
the DMN8. Similarly, reduced global strength, along with lower
clustering coefficient, higher count of smaller communities, and
reconfiguration of hubs comprised in the DMN were found in
chronic schizophrenia64. Thus, the hypoconnectivity pattern and
the altered modular organization observed in the present study
could represent features specific for chronic schizophrenia, which
may depend on long-term antipsychotic medication65. However, it
has been demonstrated that the antipsychotic dose does not
correlate with brain metabolic activity in both treatment-
responsive and treatment-resistant patients29, as well as in first-

Fig. 5 Differences in paired edges between group networks for the Default Mode Network. Statistical edge comparisons were computed
for nTRS vs CTRL; TRS vs CTRL; nTRS vs TRS without and after adjustment for chlorpromazine equivalents. The results are presented as a matrix
of p-values, with darker colors indicating values closer to 1 and lighter colors representing values closer to 0. Significant p-values are denoted
by stars. Detected alterations include changes in hippocampal-frontal connectivity and correlations between the activity of the precuneus/
cuneus and cingulate and frontal cortex (patients vs CTRL). In the comparison between nTRS and TRS, modifications in the connectivity of
temporal and frontal areas, as well as cingulate regions, were identified. After correction for drug dosage, the correlation of the right
hippocampus with the right angular gyrus disappeared, while differences in the connectivity of the superior frontal gyrus with the
hippocampus and precuneus in the left hemisphere, as well as between the right temporal lobe and the left anterior cingulate, emerged.

G. De Simone et al.

8

Schizophrenia (2024)   116 Published in partnership with the Schizophrenia International Research Society



episode psychosis patients66. The latter suggests that the
alterations observed may indeed represent biological correlates
of the chronic course of the disease rather than being an artifact
of antipsychotic medication.

Network-level differences between patients and controls
In this study, direct statistical comparisons of metabolic con-
nectivity networks between groups revealed significant differ-
ences in the weighted degree of nodes and paired edges across
several brain regions, including the superior, middle, and inferior
frontal gyri, precentral gyrus, calcarine fissure, and cingulate
regions. These findings support our working hypothesis that

schizophrenia is associated with widespread dysconnectivity
across key brain networks.
Frontal lobe dysconnectivity has been consistently identified as

a core feature of schizophrenia, both in acute and chronic forms of
the disorder67–69. Our findings align with previous research
showing altered connectivity between the superior frontal gyrus
and cuneus in schizophrenia patients70. Additionally, global
functional connectivity of the left superior frontal gyrus was
found to differentiate the patients or siblings from controls,
further supporting the idea of frontal lobe dysfunction as a
potential neurobiological endophenotype67. Other studies have
reported impaired connections between frontal regions71,72,
particularly between the middle and superior frontal gyri, which
we also observed72. Abnormalities in the inferior frontal gyrus

Fig. 6 Differences in paired edges between group networks for the dorsal dopamine pathway. Statistical edge comparisons were
computed for nTRS vs CTRL; TRS vs CTRL; nTRS vs TRS without and after adjustment for chlorpromazine equivalents. The results are presented
as a matrix of p-values, with darker colors indicating values closer to 1 and lighter colors representing values closer to 0. Significant p-values
are denoted by stars. Altered edges were observed in connections linking the supplementary motor area with other regions and in
subcortical-cortical connectivity. No differences were observed by adjusting for chlorpromazine equivalents.
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Fig. 7 Results from nested cross-validation using data of DMN regions. Boxplots of model variables are depicted to show the distribution of
glucose signals along the selected VOIs (A). It is shown how deviance is affected by alpha (B) and lambda (C). In D, a scale of variable
importance was provided through coefficients estimated by the model. The coefficients were normalized to obtain the relative importance of
each variable. This approach provides an overview of the variables that contribute most to the model’s performance. ROC curves from both
outer (E) and inner (F) cross-validation are plotted.
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have been linked to clinical symptoms, such as delusions/blunted
affect in first-episode psychosis, and semantic processing deficits
in chronic schizophrenia68,72.
Our analysis of the left precentral gyrus also revealed significant

disruptions in schizophrenia patients, consistent with previous
studies using fMRI, which identified this region as part of the
altered “social brain” circuitry73–76. Reduced activation in the left
precentral gyrus during facial emotion processing has been
documented in schizophrenia patients, particularly when com-
pared to non-psychotic siblings and healthy controls76.
Regarding the calcarine fissure, we identified dysconnectivity in

both the right and left hemispheres. This aligns with a meta-
analysis showing decreased regional homogeneity in the bilateral
calcarine fissure of schizophrenia patients75, as well as functional
decoupling between the calcarine fissure and the cuneus, both in
patients and individuals at ultra-high risk for psychosis77–79.
Notably, first-episode schizophrenia patients showed increased
activity in the calcarine fissure following antipsychotic treatment,
suggesting that this region may be sensitive to therapeutic
interventions80.
Disruptions in cingulate connectivity were also evident in our

analysis. These findings are consistent with previous studies reporting
impaired connectivity between the posterior cingulate/precuneus and
the anterior cingulate cortex81,82, the cuneus82, and frontal areas82, as
well as between the anterior cingulate region and the right middle
temporal gyrus74. These regions are critical components of the DMN,
and alterations in their connectivity have been associated with the
severity of psychotic symptoms, including hallucinations, delusions,
thought disturbances, and negative symptoms83. Further, decreased
striatal–cortical DMN connectivity has been associated with an
elevated risk of developing psychotic symptoms, highlighting the
potential role of DMN disruptions in the pathophysiology of
schizophrenia84.

Different neurobiological correlates for treatment-resistant
schizophrenia
In the present study, significant differences were observed in the
metabolic networks of individuals affected by TRS compared to
CTRL and nTRS, particularly in the DMN, frontotemporal, and
subcortical-cortical connectivity. These findings support our initial
hypothesis that TRS patients exhibit a distinct pattern of
dysconnectivity compared to nTRS and controls.
Permutation testing highlighted a different reorganization of DMN

in non-responders, with altered connectivity involving the frontal,
cingulate, and temporal regions. Further, TRS patients exhibited
hippocampal functional decoupling from the angular gyrus and
inferior frontal gyrus. By controlling for the effects of medication
dosage, alterations in the functional connectivity of the anterior
cingulate cortex, along with the frontotemporal network, emerged as
potential contributors to TRS. These results are consistent with
previous research, which highlights frontotemporal dysconnectivity as
a neurobiological underpinning of TRS85–88. The observed dysfunction
within a bilateral fronto-temporo-parietal network, including the
anterior and posterior cingulate, reinforces the hypothesis that TRS
patients may exhibit a distinct pattern of dysconnectivity, which may
contribute to the persistence of symptoms unresponsive to
antipsychotic treatments85,89,90. Moreover, our machine learning
analysis confirmed the importance of metabolic signals from key
regions, such as the anterior and posterior cingulate, superior and
inferior frontal gyri, and hippocampus, in distinguishing TRS from
nTRS patients. Of interest, neurostimulation techniques in TRS patients
have revealed an association between clinical improvements and the
functional connectivity among temporal areas, frontal gyri, angular
gyrus, and hippocampus, suggesting these regions may be
therapeutic targets for intervention85,91–93.
The observed disruptions in anterior cingulate connectivity are

particularly notable given the well-established role of this region

in TRS pathophysiology. Specifically, previous studies have shown
elevated glutamate levels in the anterior cingulate cortex of TRS
patients, which have been linked to cognitive deficits and reduced
cortical thickness94–102. Of interest, 18F-FDG-PET imaging has been
suggested as a proxy for assessing glutamatergic neurotransmis-
sion103,104. This proposal is grounded in the concept that
glutamate is produced in neurons from glucose-derived tricar-
boxylic acid cycle intermediates and branched-chain amino
acids104. Additionally, glucose-derived energy is necessary for
uptake and release of glutamate104.
Our analysis also uncovered disruptions in connectivity invol-

ving the putamen and frontal regions when comparing TRS
patients to CTRL. These findings are consistent with previous
studies that have considered dysconnectivity within the striatal-
cortical network, particularly involving the putamen and caudate,
as a putative biological indicator of psychosis and predictors of
treatment responsiveness in schizophrenia105,106.
We observed further alterations in the TRS group, concerning

connectivity in the right angular and fusiform gyrus, and within
the dorsal dopamine pathway, including the left postcentral gyrus
and right caudate. The connectivity changes in the postcentral,
angular, and fusiform gyrus could serve as potential discriminators
between TRS and nTRS, as suggested by previous neuroimaging
research107. Aberrant connections between the postcentral gyrus
and right dorsal caudate were identified in individuals experien-
cing a breakthrough psychosis episode while on antipsychotic
maintenance medication compared to those who were
antipsychotic-free at the time of relapse, indicating that these
regions may also play a role in the underlying mechanisms of
treatment resistance108. In this context, a recent study employed a
functional MRI-based sliding window analysis to calculate
weighted permutation entropy, revealing reduced complexity in
the caudate at baseline in schizophrenia patients compared to
healthy controls. Following treatment, the complexity of the left
caudate increased, indicating a potential normalization of activity
patterns after antipsychotic intervention109.
Interestingly, after correcting for both duration of illness and

age of onset, we observed a significant alteration in connectivity
between the cuneus and the posterior cingulate. This finding is
noteworthy, as it bears some resemblance to the cingulate island
sign, which has been described in the context of dementia with
Lewy bodies and may be related to cognitive alterations110.

Limitations
The study has limitations that warrant consideration. Firstly, the
relatively small sample size compared to the high number of analyzed
brain regions may introduce bias, as well as unequal sample size
between patients and controls. To address the high-dimensional data
problem, AAL-merged atlas to define VOIs, GGMs with atan
regularization for unbiased estimations, permutation testing, and
nested cross-validation were employed. Permutation testing was also
employed to better deal with unbalanced sample sizes across
groups55. It is important to note that previous studies investigating
metabolic connectivity and those utilizing machine learning analyses
often employed similar sample sizes23,111.
Secondly, the recruited patients were under antipsychotic

treatment, making it challenging to distinguish medication effects
from those associated with the disorder. To address this
methodological issue and balance drug doses across groups, we
employed a stratification strategy during nested cross-validation
and considered chlorpromazine equivalents as a covariate when
calculating edges in permutation-based comparisons, minimizing
the risk of medication-related biases in our results.
To mitigate Type I errors, we have employed permutation

testing and adjustment of p-values for multiple comparisons,
which help control for false discovery rates in our statistical
comparisons. While the use of GGMs with atan penalty allows for
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flexible modeling of brain region relationships and may help
reduce Type II errors, we acknowledge that larger sample sizes
would enhance the reliability of our findings.

CONCLUSION
This study tackles a novel approach to metabolic connectivity
analysis in psychiatric disorders, particularly schizophrenia. Using a
methodology that integrates graph theory, network comparison,
and machine learning, we identified significant alterations in
global brain network properties, nodal degrees, and interregional
connectivity. These findings underscore the potential of 18F-FDG-
PET-based metabolic connectivity to enhance understanding of
schizophrenia and to distinguish treatment-responsive from
treatment-resistant patients. Our results align with findings from
previous studies and suggest high accuracy for metabolic signals
in characterizing TRS. Future studies focusing specifically on ultra-
treatment-resistant patients could provide valuable insights into
more severe forms of treatment resistance.
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