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Abstract—In the human-robot interaction (HRI) literature,
there is a focus on the ability of a robotic system to display
emotional expressions to make them easily recognizable by the
users. However, only few studies addressed how the multimodal
behaviours of a robot may cause a specific emotional reaction in
a user. In this work, we deploy a late fusion model for emotion
recognition using facial and bio-signal inputs, and we use such a
model in a user study aiming at evaluating the role of embodied
interaction in emotion elicitation. To this extent, we evaluate the
ability of a robot to change the elicited emotion with respect to
the one elicited by a standardized stimulus (e.g., a video). Initial
results show that the robot’s behaviour is effective in changing
the valence of the perceived emotion, but not the arousal that is
lowered.

Index Terms—emotion elicitation, human-robot interaction,
non-verbal behaviour, multi-modal fusion

I. INTRODUCTION

Emotions pervade our daily lives and are of extraordi-
nary importance in the context of psychological processes.
In human-robot interaction, it is important that the robot
recognizes and is able to simulate people’s emotions, creating
a natural and empathic interaction between people and robots.
Indeed, Social Robots (SR) to be effective need to be able
to both correctly perceive the emotional reactions of the
users, but also to adapt their assistive behaviours to each user
[1]. A robot that has the human innate capability to show
empathy can provide effective interactions, such as to sustain
children’s emotional status in vaccination centres [2], and even
in paediatric Emergency Departments (ED) [3] as they are
designed to increase motivation and sustain engagement while
displaying emotional behaviours. Non-verbal communications
of a robot through body movements have been investigated in
[4] aiming at evaluating emotion elicitation in users during a
lecture taken by a NAO robot. While the students were not
able to recognize differences in the mood of the robot, the
self-reported value seemed to align with it.

In the HRI literature, particular attention is directed on en-
dowing a robotic system with the ability to display emotional
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expressions in a multimodal way to make them easily rec-
ognizable by the users [5], [6]. Several multimedia content is
used to elicit emotional responses in people by observing their
body, eyes (e.g., observing the pupil dilation and contraction)
and the overall changes in the facial expressions [7], [8].
However, only a few studies addressed how the multimodal
behaviours of a robot may cause a specific emotional reaction
in a user while interacting with a robot. For example, in [1], a
robot’s emotion elicitation capabilities were measured by us-
ing electrocardiography (ECG). Elicitation mechanisms were
achieved by the means of combining the Pepper robot’s body
movements (classified in terms of valence and arousal) with
coordinated music. However, there is no way to discriminate
whether is the robot, its movements, or the music to mainly
contribute to the emotion elicitation.

While in Human-Computer Interaction (HCI) benchmarks
for emotion elicitation exist using standardized stimuli, in HRI
such evaluations in a controlled setting do not exist. Among
the multimedia data, the most used for emotion elicitation
are videos [7]. For example, Soleymani et al. [9] presented a
user-independent emotion recognition method with the aim of
retrieving affective tags for videos using the electroencephalo-
gram. Existing methodologies use stimuli that the user watch
(videos or images) or hear (music and sounds) to elicit an
emotion [10], [11]. These methodologies, while useful for
benchmarking Emotion Recognition (ER) capabilities, are not
sufficient to provide insight into how the behaviour alone
of a robot may elicit such emotions, since affect is also
directly related to the interaction with the robot [12]. As a
consequence, while such standardized stimuli may be used
for benchmarking ER systems, how to isolate the role of the
robot embodiment from such stimuli is still unclear.

Here, we present a user study where the role of a robot
embodiment is evaluated in terms of its contribution to the
elicitation of emotional reactions. For this purpose, a bench-
mark task is proposed relying on videos to be displayed on
the robot screen, and the robot’s actions are evaluated in
terms of their ability to contribute to such emotional reaction.
The videos are selected from a standard dataset used for
ER applications. A multimodal emotion recognition system is
developed relying on facial expressions and bio-signals such
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as electrocardiography and Galvanic Skin Response (GSR).
Decision-level fusion (late fusions) is adopted to provide more
flexibility in the change of individual channels and single
classifiers. The advantage of decision fusion over feature
fusion is to easily employ an optimal weighting scheme to
adjust the degree of the contribution of each modality to
the final decision result based on the reliability of individual
modalities [13].

The proposed approach consists in first assessing the emo-
tional reaction elicited by a standardized video to be shown
on the tablet of a robot not moving. This is to set the initial
baseline for the evaluation of the embodiment contribution.
Then, to assess the contribution of the performed non-verbal
expression in the elicitation process, the same videos are
shown as accompanied by body movements (already evaluated
as clearly recognizable) showing an emotional behaviour in
coherence or not coherence with the emotion elicited by the
video [14]. A similar setting was investigated by Fiorini et al.
[10] that used a set of 60 images, retrieved from a standardized
database, for eliciting emotions in their participants while they
interacted with a Pepper robot showing three emotions (i.e.
positive, negative, and neutral). Their aim was to evaluate the
contribution of the robot’s behaviour in the recognition perfor-
mance of different algorithms to be used for ER from facial
expressions. Results showed that the multimodal behaviours
of the robot helped in the recognition of the emotion that
was elicited by the images. The main emotion is induced by
the image and there is no way to effectively evaluate the
contribution of the robot’s behaviours. For this reason, we
propose a more ecological setting where the robot’s behaviours
are accompanied by videos to elicit emotion. While pictures
sometimes can be more effective than videos in eliciting
emotions [15], robot behaviours have a duration in time. Since
the human perception of affect is affected by visual motion
[16], we believe that in HRI the use of videos as a baseline for
evaluation is more suitable. Our goal is to understand whether
the robot’s behaviour itself is able to induce emotion, and we
propose to evaluate such ability by measuring it in shifting the
emotion away from the one elicited by the videos.

The proposed approach has been tested on 30 participants
in a user study showing that the behaviour of the robot is able
to modify the elicited emotion, especially in terms of a change
in valence. Summarizing, the contributions of this work are:

• Proposing a benchmark task for the evaluation of the
impact of a robot’s non-verbal behaviour in eliciting
emotions during HRI;

• The development of a multi-modal architecture for emo-
tion recognition that relies on facial expressions and bio-
signals and is easily configurable for different inputs.

II. METHODS

We propose a system to predict people’s emotions by
analysing different human stimuli. Facial expressions are one
of the most significant non-verbal modalities to express emo-
tions and intentions [17]. However, some people are able to
mask their facial emotions by adopting a neutral expression

and using non-intuitive human body language that may lead to
misinterpretation [18]. For this reason, here, we also want to
consider the more reliable physiological signals. These signals
are harder to be covered or altered by human disguising [19],
and they can be continuously collected, reflecting people’s
emotions and changes in the emotions in their daily activities.
Physiological signals are largely used in clinical diagnostics,
and in HRI studies to increase the accuracy and robustness of
the emotion recognition system [20], [21]. In this perspective,
multimodal systems have a key role in improving the perfor-
mances of emotion recognition with respect to single-modality
approaches in HRI [6].

The most used signals are electromyogram (EMG), elec-
troencephalography (EEG), electrocardiography, galvanic skin
response (GSR), skin temperature (ST), skin conductivity
(SC), respiration (RSP), body expression, and blood oxygen
saturation (OXY). However, using too many bio-signals to
recognize human emotions is not suitable for practical applica-
tions, and it may hinder people during daily life activities [22],
[23]. In this work, we decided to use ECG, and GSR signals
because they are both good indicators for the recognition of
emotions [24]. Moreover, while single-modal models struggle
to assess people’s affective states [25], we decided to rely on
multimodal emotion recognition. In particular, we propose a
multi-modal model trained on facial, ECG and GSR signals
for recognising people’s emotions. Our model is validated on
the AMIGOS dataset [26] on 4 classes of emotion, and it first
uses three single-modal classifiers, one each for the types of
input signal, and then, we applied a late fusion with a greedy
algorithm.

A. The Dataset

The AMIGOS dataset, whose acronym is “A dataset for
Multimodal research of affects, personality traits and mood
in Individuals and GROUPS”, because it contains people’s af-
fective responses, through neurophysiological signals and their
relationship with personality, mood, social context, and dura-
tion of stimuli. Unlike other databases, the AMIGOS dataset
includes people’s aroused affection in short and long videos
in two social contexts: (i) when people are alone (individual
setting), and (ii) when they are part of an audience (group
setting). In fact, the data is collected in two experimental
settings: in the first, 40 participants watched 16 short emotional
videos (duration < 250 s); in the second, they watched 4
long videos (duration > 14 min), some of them alone and
the others in groups. Since it is more likely that a long video
elicits diverse emotional states according to the scenes pre-
sented, we selected 16 short videos. The videos’ data included
Electroencephalogram, Electrocardiogram and Galvanic Skin
Response data, which were recorded using wearable sensors.
The dataset also includes participants’ frontal HD video, and
both RGB and depth full-body videos. Affective levels of the
participants were reported in a self-assessment (excitement,
valence, dominance, sympathy, familiarity and seven basic
emotions) and in an external annotation (arousal and valence).
The five dimensions are measured on a scale from 1 (low) to 9



(high), and the basic emotions (neutrality, disgust, happiness,
surprise, anger, fear, and sadness) are binary values. Moreover,
videos were annotated using continuous and change from -1
(low valence/arousal) to 1 (high valence/arousal) scales.

B. Train Data Classification

Considering a classification of emotions using Russell’s
Circumplex Model [27], we identified 4 classes of emotion
given by the 4 quadrants of the model:

• LALV (0): Low Arousal - Negative Valence;
• LAHV (1): Low Arousal - Positive Valence;
• HALV (2): High Arousal - Negative Valence;
• HAHV (3): High Arousal - Positive Valence.

We used the dataset AMIGOS with FACE, ECG and GSR for
classifying 16 short videos by quadrants of valence and arousal
(high and low). We used a k-means classification method to
define the four clusters with thresholds for the labels of arousal
and valence [28].

C. Face Classifier

We used a CNN, called AlexNet network [29], for the face
classification. The network is composed of::

• The first convolutional layer takes input images of di-
mensions of 224×224×3 and applies 96 kernels of size
11×11×3;

• The second layer takes the output of the previous level
as input and filters it with 256 kernels of size 5×5×48;

• The third and fourth layers have 384 kernels of size
3×3×256 each. These layers have no pooling operations
either normalization;

• The fifth layer has 256 kernels of size 3×3×192;
• The last three fully connected layers have 4096, 4096 and

1000 nodes respectively;
• The last layer has 4 neurons and uses the Softmax as the

activation function.
We extracted one frame for a second from the video in the
AMIGOS dataset, and then we used mini-batch training due
to the high dimensions of the dataset. Each mini-batch contains
about 7000 images, which are divided into a training set (70%)
and a test set (30%). The training data is further divided into
a training set (70%) and a validation set (30%). Each mini-
batch has been trained with the Adam optimizer [30] with a
learning rate of 0.001 and 7 epochs.

D. Bio-signal Classifiers

Biosignal classification has been done using a Support
Vector Machine (SVM) network architecture for the ECG and
GSR biosignals. As a first step, we pre-processed the data
by normalising it through its standard deviation and mean.
Then, we extracted only the significant characteristics from
each signal that we intended to use for classification. For the
classification, we divided the dataset AMIGOS into a training
set (70%) and test set (30%), and the training data is further
divided into a training set (70%) and validation set (30%).

1) Pre-processing ECG: For pre-processing ECG signals
and selecting the features, we applied frequency filters to clean
the signal from noise (i.e., Butterworth filter) and identify the
position of the R peaks within the signal. Then, we selected
the relevant characteristics. In particular, we were interested in
evaluating the variation in heart rate (HRV), represented by the
difference in R-R intervals e by the consequent instantaneous
variations of HR. Heart rate variability or R-R sequence
variability can be calculated with different types of analyses:

• Time Domain analysis: this analysis uses the standard
deviation of the R-R intervals (SDRRI), which represents
the distance of each heartbeat and the root mean square
of the successive differences between each heartbeat
(RMSSD).

• Frequency Domain analysis: it allows us to highlight
some significant components, in this case, the number
of beats is not considered but the recurrence rate. The
following measurements were analysed:

– HF (High Frequency): is a sign of vagal activa-
tion, represents a respiratory component that reflects
parasympathetic respiration;

– LF (Low Frequency): is associated with the activa-
tion of sympathetic and vagal. It is associated with
the baroreflex phenomenon, it reflects sympathetic
and parasympathetic modulation;

– LF/HF: represents the sympathovagal balance and is
given by the ratio of low-frequency power to high-
frequency power.

2) Pre-processing GSR: As for the ECG signals, we first
applied frequency filters to clean the signal from noise (i.e.,
Butterworth filter) and identified the position of the SCRs
peaks within the signal; then, we extracted significant char-
acteristics. In particular, we considered the following factors:

• SCR amplitude: Amplitude difference in GSR level
between SCR onset and the SCR peak;

• SCR rise time: The time difference between SCR onset
and peak;

• SCR half recovery time: Time difference between when
the GSR level was recovered to 50% of the SCR ampli-
tude and the peak time.

E. Model Evaluation

The evaluation of the individual classifiers is performed
completely in offline mode. In particular, we used the metrics
for accuracy, precision, recall and F-measure.

Table I show the performance of the individual implemented
networks (FACE, ECG and GSR). We can observe that FACE
and ECG had similar performances, with FACE with slightly
higher accuracy than ECG. Both FACE and ECG has definitely
better performances than GSR.

F. Fusion Module

Previous studies on emotion recognition focused on the
use of single sensor modality, features and classifiers, which
are ineffective to discriminate complex emotion classes. The



TABLE I
EVALUATION OF THE INDIVIDUAL CLASSIFIERS (FACE, ECG AND GSR) USING THE AMIGOS DATASET.

FACE

LALV(0) LAHV(1) HALV(2) HAHV(3)

Precision 0.70 0.71 0.76 0.79
Recall 0.78 0.75 0.72 0.72

F1 Score 0.78 0.76 0.77 0.74

Accuracy 0.77

ECG

LALV(0) LAHV(1) HALV(2) HAHV(3)

Precision 0.75 0.75 0.77 0.78
Recall 0.79 0.76 0.74 0.77

F1 Score 0.77 0.76 0.75 0.78

Accuracy 0.76

GSR

LALV(0) LAHV(1) HALV(2) HAHV(3)

Precision 0.65 0.61 0.73 0.66
Recall 0.69 0.63 0.61 0.71

F1 Score 0.67 0.62 0.67 0.68

Accuracy 0.66

fusion of multiple modalities aims at improving classifica-
tion accuracy by exploiting the complementarity of different
modalities [13].

An interesting advantage of decision fusion over feature
fusion is that we can easily employ an optimal weighting
scheme to adjust the degree of the contribution of each
modality to the final decision result based on the reliability
of individual modalities [13]. Based on the latter observation,
we used the following weighting scheme to determine the final
output. For a given test data X, the decision output of the
fusion system is:

c∗ = argmaxi

{
M∏

m=1

Pi(X | λm)am

}
(1)

where M is the number of modalities, λm is the classifier
for the m-th modality, and Pi(X | λm) is its output for
the i-th class. The weights am which satisfy 0 ≤ am ≤ 1
and

∑M
m=1 am = 1 represent the modality’s reliability, which

determines its degree of contribution to the final decision.
To set the weights, a greedy algorithm has been used. A

greedy algorithm is any algorithm that follows the problem-
solving heuristic of making the locally optimal choice at each
stage. In many problems, a greedy strategy does not produce
an optimal solution, but a greedy heuristic can yield locally
optimal solutions that approximate a globally optimal solution
in a reasonable amount of time. In this case, the optimal
weights are estimated by an exhaustive search of the grid
space, where each weight is increased from 0 to 1 with a
step size of 0.01 and for each i, the weights producing the
best Pi(X | λm)am , are selected.

III. BENCHMARKING EMBODIED INTERACTION FOR
AFFECTIVE ELICITATIONS

In this work, we are interested in evaluating the effect of
the robot’s embodiment and emotional gesture on affective
elicitation. To do so, we propose a benchmarking task where
the contribution of the robot’s behaviours in eliciting emotions
is compared to a baseline with standardized stimuli and no
robot contribution. In details, we propose to evaluate the robot

TABLE II
MAPPING OF THE ROBOT’S EMOTIONAL BEHAVIOURS (I.E., SADNESS, JOY,

FRUSTRATION) AND RELATIVE CHANGE OF COLOUR OF THE LEDS (I.E.,
YELLOW, ORANGE, RED, WHITE).

Class Emotion Coherent Incoherent Neutral

LALV Sad, orange Joy, yellow No-emotion, white
LAHV Joy, yellow Frustrated, red No-emotion, white
HALV Frustrated, red Joy, yellow No-emotion, white
HAHV Joy, yellow Sad, orange No-emotion, white

contribution by evaluating the ability of a robot to reinforce
the emotion induced by the stimulus or modify it toward a
different emotional class.

A. The Robot

In our study case, we used an Aldebaran Robotics Pepper1

robot Y20 V18A. Using the Choregraphe and NAOqi software
of the robot, we modelled three types of emotional behaviours
of the robot (Coherent, Incoherent, and Neutral) by changing
the colour of the eyes’ LEDs, body movements, and head
and body pose. For each class of emotion (i.e., low and high
valence and arousal, and a neutral), we used pre-defined Pep-
per’s gestures which were chosen according to the evaluation
of valence and arousal of the affective gestures made by the
robot in Marpena et al. study [31].

We modelled the Coherent and Incoherent behaviours with
non-verbal gestures that belong to a class quadrant of Russell’s
Circumplex Model. The non-verbal behaviours described are
combined with selected emotional videos (see Table II) that
are shown on Pepper’s tablet during the interaction.

B. The videos

We chose to show videos from DECAF, which is a mul-
timodal dataset for decoding user physiological responses to
affective multimedia content [32].

We decided to use short videos to avoid having more than
one emotion. Table III shows the videos selected for each class

1Aldebaran Robotics https://www.aldebaran.com/en/pepper



TABLE III
VIDEO SELECTED FOR EACH CLASS.

Class Video Duration Scene Description

LALV
Bambi 90.1s Bambi’s mother gets killed
UP 89.1s Old Carl loses his wife
Life is Beauti-
ful

112.1s Guido shot to death by a Nazi solder

LAHV
UP 67.1s Carl, a shy and quiet boy meets the

energetic Elle
August Rush 90.1s A son meets his lost mother
Wall-e 90.2s Wall-E and Eve spend a romantic

night together

HALV
Pink Flamingos 60.2s A lady licks and eats dog faeces
Black Swan 62.2s A lady notices paranormal activity
Psyco 76.2s Lady gets killed by intruder in her

bathtub

HAHV
Ace-Ventura:
Pet Detective

102.1s Ace Ventura successfully hides his
pets

The Gods Must
be Crazy II

67.1s A couple stranded in the desert steal
ostrich eggs

When Harry
Met Sally

100.2s Sally shows Harry how women fake
orgasms at a restaurant

(LALV, LAHV, HALV, HAHV), with the respective duration
in seconds.

C. The Procedure

Firstly, participants were asked to read the participant in-
formation form and sign the consent form. Then, we collected
participants’ demographics (e.g., age and gender), and their
responses to the Empathy Quotient test (EQ) for adults [33].
The EQ test consists of 40 questions (e.g., “It upsets me to see
an animal suffer”, “I understand if someone is hiding his true
emotions”) to be rated on a scale from 4 “Absolutely agree”
to 1 “Absolutely disagree”.

Participants were accommodated on a chair with a small
table where they could rest their hands equipped with ECG
electrodes (electrode with a negative and a neutral charge
on the right palm and electrode with a positive charge on
the left palm), and GSR electrodes (electrode with positive
and negative charge respectively on the forefinger and middle
fingers). The robot was positioned in front of the participants
(see Figure 1).

Each participant watched the selected videos in a random-
ized order. For each video, one of the following conditions
was selected in a random order:

• In the Neutral condition, the robot stays in a static
position without using any non-verbal cues.

• In the Coherent condition, the robot displays non-verbal
gestures selected in the same class of the video.

• In the Incoherent condition, the robot displays non-verbal
gestures selected in the opposite class of the video (for
example, in the case of a video in LALV class the robot
gestures are selected in HAHV class).

The study lasted around 30 minutes on average.

D. Collecting Participants’ Multi-modal Signals

To collect the biosignals of the participants, we used
BITalino (r)evolution [34], which supports several other

Fig. 1. Example of the experimental setting

sensors, such as Electrodermal Activity (EDA), Electrocar-
diography, Electromyography, Electroencephalography, Light
(LUX), Pushbutton (BTN) and the Accelerometer (ACC). In
this work, we only used ECG and EDA signals. We collect
100 samples for a second for each type of signal.

Moreover, participants were recorded with a camera that
was located at the back of the robot to get their facial
expressions (see Figure 1).

IV. RESULTS

A. The Participants

We recruited 30 participants (19 male, 11 female) aged
between 20 and 60 years old (avg. 44.06, st.dv. 12.25).
Participants were recruited between staff and students at the
University of Naples, Italy. The study was performed in
accordance with the ethical standards laid down in the 1964
Declaration of Helsinki, and participants also gave written
informed consent prior to their participation in the study.

Participants were evaluated for their ability to feel empathy
(i.e., what others may feel or think) using the Empathy
Quotient test. This test is composed of 40 statements on
empathy, where questions have a score from 1 to 2 points,
for a total score of 80 points and a threshold score lower than
30. To clearly distinguish participants’ levels of empathy, we
defined four empathy bands based on the scores obtained:

• Low: subjects with a score from 0 to 20;
• Medium-Low: subjects with a score from 21 to 40;
• Medium-High: subjects with a score from 41 to 60;
• High: subjects with a score from 61 to 80.
The majority of participants (94%) fall in both Medium

bands (Medium-Low and Medium-High) with equal distribu-
tion. Only 6% scored High, and no participants fell in the Low
band. This means that the majority of participants have an
average level of empathy towards others’ feelings and desires.



TABLE IV
EVALUATION OF THE FUSION OF FACE, ECG AND GSR USING THE

AMIGOS DATASET AND A GREEDY ALGORITHM.

Fusion

LALV(0) LAHV(1) HALV(2) HAHV(3)

Precision 0.49 0.66 0.85 0.91
Recall 0.91 0.62 0.58 0.47

F1 Score 0.64 0.64 0.69 0.62

Accuracy 0.74 0.83 0.87 0.86

B. Multimodal Fusion

Since the data are collected continuously, we performed a
sampling for each subject that allows us to divide the data
related to each video. For the evaluation of the face, the
recordings of participants’ facial expressions were divided into
12 sub-videos to clearly distinguish each video shown on the
robot’s tablet, and by eliminating any non-relevant timeframes
(i.e., the time to transition from one video to another). We then
extracted the frames for each sub-video and evaluated them
using the face classifier. In particular, each frame is classified
individually and together with the classification associated
with the whole video, which is given by the average of the
classification probabilities obtained from all the frames.

Biometrical signals were recorded associated with their
timestamp and were subjected to an initial screening to remove
signals from non-relevant transitional time-frames. We then
applied the previously described pre-processing process to the
ECG and GSR signals collected to extract their characteristics
for each video. At the end of this phase, we obtained the
classification results of each video shown for each participant.

As previously described, we evaluated the multimedia clas-
sifier with a greedy approach. Results in Table IV show an
overall good performance in classification.

C. Evaluation of Robot’s Behaviours

In this study, we were not interested in the classification
performance per se, but in evaluating the impact of the three
behaviours of the robot (Neutral, Coherent and Incoherent) on
participants. To this extent, we evaluated the correctness of the
classification based on the robot’s behaviours. Table V shows
the percentage of correctness obtained by videos belonging
to a certain class. As we can observe from the table, Neutral
behaviour has a higher percentage of correctness, and it repre-
sents the baseline to evaluate the robot’s contribution in emo-
tion elicitation. Classification results for Neutral behaviours
differ slightly from the percentage obtained with Coherent
behaviour. As we foresee, a significantly lower percentage of
correct results is obtained in the case of Incoherent behaviour,
meaning that the emotion elicited in some of the users was
different with respect to the one elicited by the video displayed
on the tablet. This result is particularly evident for classes
characterized by high arousal (HALV and HAHV).

To evaluate if such a lower result corresponds to the effect
of the robot’s behaviour in changing the elicited emotion,

TABLE V
CORRECTNESS OF THE CLASSIFICATION WITH RESPECT TO THE ROBOT’S

BEHAVIOURS.

Robot’s behaviours

Class Emotion Neutral Coherent Incoherent

LALV(0) 100% 97% 77%
LAHV(1) 77% 70% 40%
HALV(2) 77% 70% 27%
HAHV(3) 67% 63% 10%

Average 75% 74% 43%

Fig. 2. Confusion matrix for the Neutral (top image) and the Incoherent
(bottom image) conditions

we, then, evaluated the confusion matrices obtained for the
Neutral and Incoherent conditions (see Figure 2). In general,
as shown in the Neutral condition, errors of the multi-modal
classifier are towards a miss-classification of the class LALV.
However, as shown in the Incoherent case, there is an increase
of classification of the perceived emotion towards the class
opposite to the one related to the video (and in line with the
behaviour of the robot). These results are in favour of the
possible ability for the robot in shifting the elicited emotion.
This is particularly relevant in the case of the class HAHV(3)
where the majority of the classifications, in the case of an
Incoherent robot behaviours, lie in the opposite class (e.g.,
LALV(0). Smaller effects are on the pair LAHV(1)-HALV(2).



TABLE VI
CORRECTNESS EVALUATION OF THE OPPOSITE CLASSES FOR THE

INCOHERENT ROBOT’S BEHAVIOUR.

Class Emotion Prob(0) Prob(1) Prob(2) Prob(3)

LALV(0) 0.820 0.268 0.303 0.316
LAHV(1) 0.448 0.598 0.322 0.297
HALV(2) 0.427 0.311 0.623 0.270
HAHV(3) 0.545 0.285 0.289 0.541

TABLE VII
POST-DOC ANALYSIS WITH BONFERRONI CORRECTION FOR HALV(2)

AND HAHV(3) CLASSES.

HALV(2) class

Difference of the mean Prob(1) Prob(2)

Neutral - Incoherent -0.249 0.258
Coherent - Incoherent -0.206 0.246

HAHV(3) class

Difference of the mean Prob(0) Prob(3)

Neutral - Incoherent -0.297 0.302
Coherent - Incoherent -0.247 0.328

To further investigate the differences in the classification ac-
cording to the robot behaviours, we conducted an ANOVA sta-
tistical analysis on the probabilities returned by the multimodal
classification process. In our case, we considered as a factor
the robot’s behaviour (Neutral, Coherent and Incoherent),
while the dependent variable is the classification obtained for
a given class, applying the Bonferroni correction for multiple
comparisons. Table VI shows the results obtained from this
analysis, where the rows represent the real classes, while
Prob(0), Prob(1), Prob(2) Prob(3) indicate respectively the
obtained probability of belonging to class LALV(0), LAHV(1),
HALV(2) and HAHV(3). The elements highlighted in the table
indicate significant differences.

Considering the different behaviours for the HALV(2) class,
we obtained a significant difference both for Prob(2), which
represents the probability of belonging to the HALV(2) class
(real class) and for Prob(1), which represents the probability
of belonging to the LAHV(1) class (i.e. the opposite class).
We can observe similar results for the HAHV(3) class. This
means that the robot’s behaviours for these two classes had an
impact on the emotional reaction to the video, and in many
cases managed to shift participants’ emotions to the opposite
class through Incoherent Behaviour. This is also confirmed by
the Bonferroni correction with significant difference on the
means around 20-30% (see Table VII).

Considering the LAHV(1) class, we found a significant
difference only in the Prob(2) case, which represents the
probability of belonging to the opposite class (HALV(2)),
but not in Prob(1). Finally, for the class LALV(0) we have
identified a significant difference with the case Prob(1), which
does not correspond to the opposite class.

V. CONCLUSIONS

In this work, we presented a multi-modal architecture for
classifying emotions using participants’ facial expressions and
two different biosignals (electrocardiogram and the galvanic
skin response). We considered the emotions in terms of
valance and arousal, and we defined four classes of emotions,
which refer to the four quadrants of Russell’s Circumplex
model (LALV, LAHV, HALV, HAHV).

We tested our model in a user study with a physical robot
to understand the impact of the robot’s emotional non-verbal
behaviour on the emotion elicitation process. To this extent,
we designed three robot behaviours (incoherent, coherent and
neutral) and we used them to manipulate people’s emotional
reactions while watching short clips extracted from a standard-
ized dataset used for emotion elicitation.

Our results showed that there are significant differences
between HALV(2) and HAHV(3) classes. In particular, the
non-verbal behaviour modelled for the robot was effective
for the classes and, in the case of incoherent behaviour, it
could change people’s emotions of the considered class to the
opposite one. However, we did not observe a similar effect
for the LALV(0) and LAHV(1) classes. Our main hypothesis
to explain our results is that in the specific setting, the robot
behaviours are able to get the attention from the video and
so change the valence to the opposite class but without being
able to achieve high arousal. Indeed, eliciting an emotional
reaction with high arousal could be challenging by the use
only of accompanying emotional gestures and need additional
interaction strategies.

These results highlight the importance of social robots as a
supportive role in healthcare scenarios where they could help
vulnerable people, such as older people and patients, to cope
with an emotional situation that may negatively affect their
quality of life. In future work, we aim to further investigate
the robot’s eliciting behaviours using this framework and by
considering not only the effect on the opposite class. Moreover,
different emotional interaction strategies have to be explored
to investigate how to impact arousal with different robots.

ETHICAL IMPACT STATEMENT

a) Potential negative applications: The attempt of robots
in mimicking human ability to feel and show emotions to elicit
a change in people’s affective responses may be perceived as
a robot’s deception. Robot deception presents a philosophical
and psychological controversy where a person may not be
willing to further use the robot in the future, or they may
be affected by a sense of betrayal or feel less confident in
their own abilities and judgement.

b) Generalizability and Potential Bias: The majority of
participants were white, and recruited within the University’s
premises, therefore, our results may not be generalised to par-
ticipants of other nationalities, backgrounds or different levels
of empathy. Future works should include data representing a
larger and more inclusive population.



c) Privacy: Participants received a brief of the human-
robot interaction prior to taking part in the study. They
were aware of the data (face, GSR and ECG) collected and
provided written consent. Data were securely stored in the
research institute, and accessible only to the experimenter and
researchers of the project. The data has been destroyed after
the analysis.
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