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Abstract
A steady flow generated by a well of given strength takes place in a two-dimensional heterogeneous porous formation

where the conductivity K is modeled as a random space function (RSF). As a consequence, the flow-variables become RSF

s, and we wish to compute the effective conductivity (EC) by means of the self-consistent approximation. Toward this aim,

the porous formation is sought as a collection of circular, non overlapping, inclusions with different (and statistically

independent) conductivities. We compute the EC by adapting a procedure which was originally developed for mean

uniform flows. Overall, the EC is found to be position-dependent, and therefore it can not be regarded as a medium’s

property (unless one is dealing with large distances from the well). Then, it is shown how results of the present study can be

used for practical applications.

Keywords Porous media � Sink-flow � Heterogeneity � Stochastic modelling � Self-consistent approximation �
Effective conductivity

1 Introduction

The classical equations of groundwater flow assume that

the properties of the aquifer and of the flowing fluid(s) are

regarded as constant over the entire domain (Bear 2013).

However, in natural porous media these assumptions are

not supported by measurements (see, e.g. Comegna et al.

2010). In particular, it is a rule (rather than an exception)

that samples taken at different locations exhibit signifi-

cantly different conductivity-values, even if samples are

homogeneous at the laboratory scale (see, e.g. Dagan 1989;

Rubin 2003; Severino et al. 2010). In addition, owing to

several logistic and economic limitations, hydraulic prop-

erties can be measured only at a limited number of posi-

tions, and inferring parameters at points where

measurements are not available entails random errors (see,

e.g. Fallico et al. 2016). As matter of fact, these errors and

uncertainties render the formation’s properties RSF s, and

concurrently the flow (and transport) variables become

random fields (Severino et al. 2005).

One of the central problems in the environmental fluid

mechanics is to determine the equations for the average

flow variables. In particular, here we aim at deriving the

effective conductivity Keff , relating the mean flux hqi to

the mean head gradient rhhi, i.e. hq xð Þi ¼ �Keffrhh xð Þi
(effective Darcy law). Determining the EC has a long

tradition starting from Beran (1968), and subsequently

forwarded to several contexts ranging from electricity,

wave scattering and the theory of elasticity (for a wide

review, see Milton 2002; Torquato 2013, and references

therein). In the mechanics of fluids in porous media, the

same problem is traced back to Dagan (1989) in the case of

linear flows, and more recently it has been also tackled in

the context of nonlinear flows (Tartakovsky et al. 2003;

Severino et al. 2003; Severino and Santini 2005; Severino

and Coppola 2012).

In the present study, the EC in well-type flows is com-

puted by means of the SCA. The physical model underly-

ing the SCA regards the porous formation as a collection of

many (homogeneous) inclusions set at random in space,

and the fluctuation of the head field induced by each
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inclusion is computed by assuming that it is surrounded by

a homogeneous matrix of unknown conductivity. Hence,

the EC is computed by requiring that: ‘‘it is equal to the

conductivity of the medium as a whole’’ (Sahimi 2003). In

spite of their approximate nature, the simplicity of the

results makes them particularly useful in comparison with

those attained by numerical simulations, and (more

important) they lead to simple estimates of statistical flow

properties with no limitation imposed on the magnitude of

the variance r2Y of the log-conductivity Y � lnK.

The simplest case, largely documented both in the lit-

erature of composites (Milton 2002; Torquato 2013) and in

the literature of porous media (Dagan 1979, 1981; Renard

and De Marsily 1997; Fiori et al. 2003), is that of steady

flows which are uniform in the average (see, e.g. Zarlenga

et al. 2018). However, in the presence of spatially dis-

tributed sources, the assumption of mean uniform flow is

not anymore applicable. Hence, the natural question is

whether one can derive also for source/sink flows a self-

consistent approximation of the EC. This problem has

received little attention in the literature, its importance for

the applications, notwithstanding.

With the exception for a few exact closed formulae, all

results concerning the computation of the EC were

obtained under various assumptions about the fluctuations

of the log-conductivity field Y, and they are quoted in a few

papers (e.g. Indelman 1996, 2001; Tartakovsky et al. 2003;

Severino 2011b), and monographs (e.g. Dagan 1989;

Rubin 2003). In his pioneering studies, Shvidler (1964) has

developed a perturbation procedure valid for r2Y � 1, and

he has obtained two asymptotics for the EC valid close and

far from the well. These results were subsequently refined

by Severino (2011b) who investigated the transitional

behavior of the EC from the near to the far field. The main

conclusion, in line with the fundamental results of Indel-

man and Abramovich (1994) and Indelman (2001), was

that a local (i.e. depending only upon the statistics of the

conductivity) EC can not be defined.

The plan of the paper is as follows: we present the

problem at stake; we focus on the derivation of the gov-

erning equation for the EC; we discuss the general prop-

erties, and in particular we highlight the potential

applications of our results; we end up with concluding

remarks.

2 Problem statement

A steady incompressible flow takes place into a two-di-

mensional unbounded porous medium, and it is generated

by a ‘‘point-like’’ (representing a well at regional scale) of

strength Q ≡ Q/(2π), being Q the discharge for unit

length of well. The constitutive model and continuity

equation write as

where q � ðq1; q2Þ> is the (Darcy) flux, h is the hydraulic

head (energy per unit weight), and x � ðx1; x2Þ 2 R2 is the

position. This potential flow provides solution to steady

flow to wells in order to identify the aquifer’s parame-

ters (Gómez et al. 2009; Fallico et al. 2018). Moreover,

techniques of superposition (such as an injecting well

superimposed on a uniform flow field) enable one to tackle

quality problems in which only advective solute flux is

considered (a comprehensive review can be found in Jan-

kovic et al. 2017, and references therein).

We assume that the porous formation is of random and

stationary Gaussian Y with mean hYi and variance r2Y . By
following the stand point of the SCA (a comprehensive

exposition can be found in Kanaun and Levin 2007), the

porous formation is sought as a collection of a large

number of randomly arranged, homogeneous, non over-

lapping inclusions of different conductivity-values. Then,

by invoking the ergodic argument one can replace the

above formation with the ensemble average, and therefore

the simultaneous interaction among the numerous inclu-

sions can be approached by focusing upon a single one

implanted into a medium homogenized by a background

(unknown at the moment) conductivity. A major simplifi-

cation, which facilitates the derivation of a simple (closed

form) expression for the flow-field, is to represent inclu-

sions by regular, well defined, shapes. Nevertheless, the use

of such a shape does not constitute a severe limitation since

it leads to results which match very well numerical simu-

lations (Jankovic et al. 2003). For this reason, we deal

hereafter with a porous medium which is sought as a col-

lection of circular inclusions. In addition, due to the iso-

tropy of the porous formation, the EC is a scalar in this

case.

ð1Þ
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We consider a single inclusion X0 (with conductivity

K0) whose position and size are r0 and R0, respectively

(Fig. 1). For such a ‘‘single realization’’, we consider the

flux q, and concurrently the fluctuation

q0ðxÞ ¼ qðxÞ þ K1rhðxÞ; ð2Þ

where K1 (unknown for the moment) is the conductivity

of the background X1 � R2=X0 (Fig. 1). The decompo-

sition (2) is now averaged over all possible positions, sizes,

and conductivities to come up with

hqðxÞi ¼ �K1rhhðxÞi þ hq0ðxÞi; ð3Þ

which suggests into a straightforward manner that the self-

consistent requirement is such that

hq0ðxÞi � 0; Keff � K1: ð4Þ

Hence, it is clear that the crux of the matter consists into

solving a sink flow as disturbed by a single inclusion.

2.1 Sink-flow in the presence of an inclusion
of conductivity different from the matrix

We consider a steady flow toward a point-like sink located

at the origin. A permeable circular inclusion X0 (of con-

ductivity K0 and radius R0) is implanted at r0, being

r0 [R0 (Fig. 1). As such, the origin belongs to X1 �
R2=X0 for any choice of the pair ðr0;R0Þ, whereas the flow
domain consists of two sub-domains, i.e. R2 � X1 [ X0,

with X0 separating the portion of R2 laying within the

inclusion from the external domain X1 (of conductivity

K1 6¼ K0). The analytical solution of this flow was derived

by Wheatcraft and Winterberg (1985). In the ‘‘Appendix’’

we generalize such a solution by accounting for any

anomaly a of the vector r0 (correcting also for an error and

a few typos appearing in the paper of Wheatcraft and

Winterberg 1985). Thus, the hydraulic head h and the

stream function w are:

ð6Þ

where j � K0=K1 is the contrast ratio, and ~r0 �

1� ðR0=r0Þ2
h i

r0 is a vector parallel to r0. For K1 � K0

(i.e. j � 1) one has h� ln x and w�#, in agreement with

the well known result valid for homogeneous media. The

same conclusion is drawn at large distances from the

inclusion (i.e. x � r0), since in the far field the disturbance

due to X0 becomes immaterial. The scaled flow-net

, as computed by Eqs. (5)–

(6), is depicted in the Fig. 2. For low values of j the stream

lines ws � const tend to circumvent the inclusion (and

concurrently the curves hs � const get denser inside the

ð5Þ

O
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ϑ

Ω0

Ω∞ ≡ R
2/Ω0

r̃0

α

β
γ

Fig. 1 A circular inclusion X0 of radius R0, and center implanted at

r0 � r0ðcos a; sin aÞ. The position of any point belonging to the flow

domain R2 � X1 [ X0 is represented by the vector

x � xðcos#; sin#Þ, whereas ~r0 is a vector parallel to r0
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inclusion). The behavior of the iso-heads and stream lines

is completely reversed for large j-values.

3 Discussion

In the fluid mechanics of porous media, the implementation

of the SCA was applied by Dagan (1989) to mean uniform

flows. In the present study, we have adapted the SCA to a

sink-type flow leading to the condition (4). Hence, the

resulting effective (constitutive) flow model, together with

the mass conservation law, i.e.

, can be used to solve several

problems of practical concern (see, e.g. Severino 2011a;

Severino et al. 2011, 2012, and references therein).

In order to derive an equation for Keff , we consider the

mass conservation of the ensemble average of the fluctu-

ation which, according to the first of (4), can be written as
Z

XR

dxr � q0ðxÞi ¼ 0;

�
ð7Þ

being XR a large circle of radius R � r0 surrounding the

inclusion X0, whereas the fluctuation q0 is computed

from (5) as

The integral appearing into (7) is computed by applying

Green’s theorem and accounting for the fact that in the

limit R ! 1 the exterior term drops out, i.e.

with #0 � R0=r0 � 1. Hence, from Eq. (7) one finally ends

up with

Ω0

Ω∞

Ω0

Ω∞

κ /1κ = 10= 1/10

Fig. 2 Contour-plot of the scaled hydraulic head hs (red dashed lines), and stream function ws (blue continuous lines) for two largely different

values of the contrast ratio j. The center of the inclusion X0 is at r0 � 5ðcos p=4; sin p=4Þ

ð8Þ

Stochastic Environmental Research and Risk Assessment

123



Keff � K0

Keff þ K0

#0

� �
¼ 0; ð10Þ

where the ensemble average is sought over all possible

values of the RSF s K0 and #0. The nonlinear Eq. (10),

representing the main achievement of the present study,

enables one to determine Keff once the joint probability

distribution f K0; #0ð Þ is selected. The most important fea-

ture which is detected from (10) is the dependence

of Keff upon the (relative) distance #0, that prevents de

facto considering Keff as a local medium’s property. Such

a result was also obtained by Indelman and Abramovich

(1994) and subsequently by Severino (2011b) via a per-

turbation approach which regards the variance r2Y as a

small parameter (first-order approximation, FOA). Here,

the same conclusion is extended to any formation (irre-

spective of the magnitude of r2Y ).
At this stage, it is worth recapitulating the approxima-

tions underlying Eq. (10): (1) the matrix surrounding each

block can be replaced by a homogeneous background of

conductivity K1. This approximation is bound to be quite

accurate if one deals with a multiphase material, and (more

important) if interactions between inclusions are not

accounted for (at least into a direct manner). (2) Blocks are

circular, which is again a quite accurate approximation for

an isotropic formation. (3) The averaging domain is large

compared to that of the inclusion.

Although the assumptions (1)–(3) are clearly an

approximation of the model, they nevertheless do not limit

the accuracy of the final result, as it was assessed by Jan-

kovic et al. (2003) by means of very accurate numerical

simulations, and by Hashin and Shtrikman (1962) in a

completely different context. For illustration purposes, we

consider r0 as a constant so that Eq. (10) writes as:
Z 1

0

Z r0

0

dK0 dR0 f K0;R0ð ÞKeff � K0

Keff þ K0

R0 ¼ 0; ð11Þ

which is easily solved for given bivariate probability dis-

tribution function f � f K0;R0ð Þ. In particular, it allows to

investigate the flow behavior in both the near and the far

field. More precisely, close to the sink Eq. (11) reads as:

Z 1

0

dK0 f K0; r0ð Þ Keff � K0

Keff þ K0

’ 0 ðsmall r0Þ;

ð12Þ

which clearly shows the non locality of the EC. At the

other extreme of large r0, one has:
Z 1

0

Z 1

0

dK0 dR0 f K0;R0ð ÞKeff � K0

Keff þ K0

R0 ¼ 0: ð13Þ

In this case the EC is not anymore a function of the posi-

tion, and therefore one can claim that in the far field Keff is

a medium’s property, in agreement with the results valid

for weakly heterogeneous formations (Severino et al.

2008; Severino 2011b). In the sequel, we focus on the case

of lack of correlation between K0 and #0, which trans-

lates (10) into

Keff � K0

Keff þ K0

� �
�

Z 1

0

dK0 f K0ð Þ Keff � K0

Keff þ K0

¼ 0: ð14Þ

The nonlinear Eq. (14) coincides with that valid for mean

uniform flows (Dagan 1989). Nevertheless, it is known (-

see, e.g. Indelman 2001; Severino et al. 2008) that away

from the sink (far field) the flow behaves like a mean

uniform one, and therefore we conclude that the neglect of

correlation between K0 and #0 is a good working hypoth-

esis when one is interested in the far field behavior.

Moreover, it has been recently demonstrated by Di Dato

et al. (2017) that the above approximation works quite well

even in the vicinity of the sink.

The normalized Keff=KG (being KG � exp Yh i the geo-

metric mean), as computed by (14), is depicted in the -

Fig. 3. This latter has been produced by adopting the log-

normal model for the univariate probability density func-

tion f ðK0Þ (see the data-survey in Rubin 2003). To com-

pare with the results known for weakly heterogeneous

media, we have also depicted Keff=KG ¼ exp �r2Y=2
� �

þ
3 sinh r2Y=2

� �
which is valid for small r2Y (Severino 2011b).

The striking (and quite evident) result is that the FOA

provides a lower bound for Keff due to the neglect of the

higher order effects in the effective medium behavior. In

particular, the SCA is found to be in close agreement with

the FOA till to r2Y.0:2. The insert displays the dependence

ð9Þ
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of the EC upon r2Y in the regime where the FOA does not

apply.

4 Concluding remarks

The behavior of flow variables in porous media depends to

a great extent upon the formation’s heterogeneity. One of

the central problem pertains to the computation of the EC,

that has been intensively studied for flows uniform in the

mean (Dagan et al. 2013). However, there are numerous

applications (such as well-type flows) for which the above

flow conditions do not apply. Despite the importance for

the applications, and with the exception of a series of

papers all dealing with weakly heterogeneous media (see,

e.g. Severino et al. 2008; Severino 2011b, and references

therein), to our knowledge there are no analytical studies

aiming at deriving the EC for a formation of any degree of

heterogeneity.

The focus of this study was the computation of

the EC for a steady sink-type flow taking place in a

heterogeneous medium whose local conductivity K is a

stationary, and isotropic RSF. To this aim, we have adap-

ted to the problem at stake the SCA, which was originally

employed for mean uniform flows. Thus, we have first

revisited the flow as disturbed by a single circular inclu-

sion, and subsequently we have derived an approximate

equation which enables one to compute the EC for any r2Y .

The main result, in agreement with previous studies dealing

with weakly heterogeneous media (see, e.g. Indelman and

Abramovich 1994), is that Keff is not a local property.

Nevertheless, it is shown that the far field limit, authorizing

to regard the EC as a local property, is a robust tool to

tackle problems of practical concern.

The approximate procedure developed in the present study

can be extended to three dimensional flows, aswell. This is part

of ongoing research projects. To conclude, this paper is a pre-

liminary investigation toward the computation of the EC in

non uniform sink/source flows. As such, it is hoped that it will

stimulate further developments especially with respect to the

complex problem of transport in highly heterogeneous porous

formations. At the occurrence, it is worth noting that, although

a 2D flow solution seems to be limiting, it can be applied to

three dimensional formations after employing the adapting

methodology of Severino et al. (2011).
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Appendix: sink-type flow disturbed
by a single circular inclusion of conductivity
different from the background

For the purposes of the present study, we generalize here

the approximate analytical solution of Wheatcraft and

Winterberg (1985) by allowing for any position r0 of the

circular inclusion (Fig. 1). The starting point is the well-

known solution (Milne-Thomson 1968, ch.8.61) of a flow

past a circular obstacle of radius R0 located at z0 ¼
r0 expðiaÞ in the complex plane C ¼ fz : Rez �
x1; Imz � x2g. With the sink at the origin, the complex

potential wH � wHðzÞ is determined by the circle-theo-

rem (Milne-Thomson 1940) as

being z00 ¼ ½1� ðR0=r0Þ2	z0 � jOAjðcos a; sin aÞ (Fig. 1).

The arbitrary constant CH is generally a complex number.

Thus, according to (15) the flow generated by a sink

at z � 0, and disturbed by a circular obstacle implanted at

z ¼ z0, can be sought as the superposition of flows deter-

mined by: i) a real sink at z � 0, ii) and a system of ficti-

tious sink/source of equal strength at z ¼ z00 and z ¼ z0,

ð15Þ

SCA

FOA

σ2
Y

Keff

KG

Fig. 3 The dimensionless effective conductivity Keff=KG according

to: (i) the SCA (continuous line), and (ii) the FOA (dashed line) as a

function of the log-conductivity variance r2Y . The insert shows the

dependence of Keff=KG upon r2Y beyond the validity of the FOA
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respectively. Since R0\r0, the system of fictitious sink/-

source lies inside the obstacle, and it acts such that no fluid

particle enters/leaves it in order to honor the boundary

condition of impermeable inclusion.

For a permeable inclusion (with conductivity K0), the

flow domain consists of two sub-domains, i.e.

R2 � X1 [ X0, where X0 ¼ fz 2 C : jz� z0j 6 R0g sep-

arates the portion of R2 inside the inclusion from the

external domain X1 ¼ R2=X0 (of conductivity K1 6¼ K0).

In this case, the flow inside X1 is still generated by a sink

at z � 0 of strength equal to , whereas the system of

fictitious sink/source system is now characterized by a

strength (unknown at the moment), i.e.

Inside the inclusion the flow is driven by the sink at the

origin with unknown strength , i.e.

w0ðzÞ ¼ Q0 ln zþ C0: ð17Þ

The values of Q1 and Q0 are determined by requiring the

continuity of: i) the hydraulic head h (computed by

dividing the real part of the complex potential by the

medium conductivity), and ii) the stream function w:

hðxÞ ¼
h1 � K�1

1 Reðw1Þ x 2 X1

h0 � K�1
0 Reðw0Þ x 2 X0;

(
wðxÞ ¼

w1 � Imðw1Þ x 2 X1

w0 � Imðw0Þ x 2 X0;

�

ð18Þ

along the boundary oX0 of the inclusion. In other words,

the system of sink/source inside the inclusion acts now

such that: i) to allow the flow passing through the inclusion,

and ii) to preserve energy and mass. To extract the real and

the imaginary part of the complex potentials w1 and w0, it

is convenient to represent the (polar) coordinates of each

source and sink as follows

z ¼ jzj expði#Þ; z� z00 ¼ jz� z00j expð�ibÞ;
z� z0 ¼ jz� z0j expð�icÞ:

ð19Þ

This leads to the general expression for the hydraulic head

and the stream function

Hence, by requiring that h1 � h0 and w1 � w0 along

the boundary oX0 one has

ð23Þ

Since, according to the circle-theorem, A and O are inverse

points with respect to the circle X0 (ch. 5.15 in Milne-

Thomson 1968), it results CA � CO ¼ CP
2
(see Fig. 4), and

concurrently triangles PCA and PCO are similar (by virtue

of the second criterium of similarity). This implies that:

#� a ¼ b� c: ð24Þ

The application of the law of sines to the sides: i) PC and

PA of the triangle PCA, and ii) PO and CO of the triangle

PCO leads to:

ð16Þ

ð20Þ

ð21Þ

ð22Þ
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PA

PC
¼ PO

CO
: ð25Þ

The relationship (25) is known as ‘‘the inversion theorem’’.

Insertion of (24)–(25) into (22)–(23), and choosing the

arbitrary constants Re C0 � jC1ð Þ and Im C0 � C1ð Þ such
that:

Re C0 � jC1ð Þ ¼ �jQ1 ln CO; Im C0 � C1ð Þ ¼ aQ1;

ð26Þ

gives

ð27Þ

(in agreement with Wheatcraft and Winterberg 1985). The

constant C1 is determined by specifying w1 at an arbitrary

point belonging to X1 � R2=X0. In particular, the algebra

is simplified by requiring that at

B � ðr0 �R0Þðcos a; sin aÞ (see Fig. 1). From (19) one has

the following values:

jzj � r0 1�R0

r0

� �
; jz� z00j � R0 1�R0

r0

� �
;

jz� z0j � R0; # � a; b � c ¼ 0;

ð28Þ

which lead to:

C1 ¼ �Q1

h 2

1� j
lnðr0 �R0Þ � ln r0

i
: ð29Þ

The left constant C0 is straightforwardly determined by the

second of (26) and (29), i.e.

C0 ¼ �Q1

h 2j
1� j

lnðr0 �R0Þ � ia
i
: ð30Þ

Summarizing, the complex potentials (16)–(17) are deter-

mined uniquely by means of (27), and (29)–(30). The

quantity Re ðwÞ=K1 and (21) provide eqs (5)–(6).
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