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Abstract
Artificial intelligence (AI) has advanced rapidly, but it has limited impact on biomedical 
text understanding due to a lack of annotated datasets (a.k.a. few-shot learning). Multi-task 
learning, which uses data from multiple datasets and tasks with related syntax and seman-
tics, has potential to address this issue. However, the effectiveness of this approach heavily 
relies on the quality of the available data and its transferability between tasks. In this paper, 
we propose a framework, built upon a state-of-the-art multi-task method (i.e. MT-DNN), 
that leverages different publicly available biomedical datasets to enhance relation extraction 
performance. Our model employs a transformer-based architecture with shared encoding 
layers across multiple tasks, and task-specific classification layers to generate task-specific 
representations. To further improve performance, we utilize a knowledge distillation tech-
nique. In our experiments, we assess the impact of incorporating biomedical datasets in a 
multi-task learning setting and demonstrate that it consistently outperforms state-of-the-art 
few-shot learning methods in cases of limited data. This results in significant improvement 
across most datasets and few-shot scenarios, particularly in terms of recall scores.
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Transformers
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1 Introduction

Relation extraction (RE) is a subfield of text classification, a natural language processing 
(NLP) task that aims to automatically associate unstructured text to one (Hosseinalipour 
et al. 2021a, b) or several (Khataei Maragheh et al. 2022) labels. Specifically, RE aims to 
identify and extract relationships between entities in unstructured text data. This task is 
crucial for various applications such as information retrieval (Gharehchopogh and Khal-
ifehlou 2012), question answering (Lee et al. 2007), knowledge graph construction (Wang 
et  al. 2017) and text summarization (Mahalleh and Gharehchopogh 2022.) One of the 
major challenges in the field of relation extraction is the high variability and complexity of 
the language used to express relationships. To address this challenge, various methods have 
been proposed, including rule-based methods (Nebhi 2013; Ben Abacha and Zweigenbaum 
2011), machine learning-based methods (Alimova and Tutubalina 2020; Hong et al. 2020), 
and hybrid approaches (Huang et al. 2006; Zhang et al. 2018) that combine both.

In recent years, there has been a surge in research in the fields of soft computing (Afradi 
and Ebrahimabadi 2020; Afradi et  al. 2021, 2020; Afradi and Ebrahimabadi 2021) and 
relation extraction and their potential for various NLP applications, especially in biomedi-
cal text understanding. Applications include detecting protein–protein interactions (PPIs) 
(Pyysalo et al. 2006) and extracting information on adverse drug events (ADEs) (Gurulin-
gappa et al. 2012). One major driving factor behind the advancements in relation extraction 
for biomedical text is the integration of attention mechanisms (Li et  al. 2023) into NLP 
models. These mechanisms enable the models to concentrate on specific parts of the input, 
which is crucial when dealing with complex biomedical text that contains a high density of 
specialized terminology. Furthermore, the widespread availability of pre-trained biomedi-
cal language models has also been a key factor in enhancing the performance of relation 
extraction tasks. These models have been trained on vast amounts of biomedical data and 
can be fine-tuned for specific tasks, resulting in substantial improvements in performance 
(Lewis et al. 2020). Overall, the recent advancements in NLP and the availability of pre-
trained biomedical language models have paved the way for a new generation of relation 
extraction models with improved performance. These models can extract valuable informa-
tion from biomedical text with greater accuracy and efficiency, providing benefits for vari-
ous biomedical applications.

While relation extraction for biomedical text has seen significant progress, the lack 
of large and high-quality annotated biomedical datasets remains a major challenge. The 
annotation process is time-consuming and requires extensive domain knowledge, making 
it expensive to obtain large amounts of annotated data. As a result, this has a significant 
impact on the performance of relation extraction models in real-world applications. To 
overcome these limitations, there is a growing need to shift focus from model-centric to 
data-centric AI, emphasizing the critical role of data in the learning process and the need to 
extract maximum value from it. Such a shift would enable the development of more effec-
tive and robust relation extraction models, addressing the limitations of limited annotated 
datasets.

Multi-task learning (Caruana 1998) is a technique that aims to address the issue of lim-
ited annotated training data by leveraging the similarities between different datasets. This 
approach involves training a single model on multiple related tasks, using the similarities 
between the tasks to improve the training process. This technique has been widely adopted 
in biomedical text understanding and has demonstrated its usefulness in several studies 
(Peng et al. 2020). However, despite its advantages, multi-task learning can also result in 
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a degradation of performance if the datasets used have different structures and objectives. 
The size and underlying properties of the datasets can also have an impact on the perfor-
mance of the model (Alonso and Plank 2017). Thus, careful consideration should be given 
to the choice of datasets used in multi-task learning to ensure optimal results.

In this study, we present a multi-task framework for biomedical relation extraction (RE) 
that utilizes a well-established multi-task learning approach (Liu et al. 2019). We use three 
publicly available multi-class datasets, namely DDI-2013, ChemProt, and I2B2-2010 RE, 
which are annotated with relationships among drugs, chemical compounds and proteins, 
medical problems, treatments, and tests. Our framework consists of a transformer-based 
model with shared layers across the three RE tasks, and separate classification heads for 
each dataset. To further enhance performance, we adopt a training framework based on 
knowledge distillation. Our experiments investigate the effectiveness of our multi-task 
framework in few-shot scenarios, where annotated training data is scarce. Our results 
surpass the state-of-the-art few-shot learning techniques in the majority of the few-shot 
scenarios and datasets, with up to 65% improvement in F1 compared to the second-best 
technique with only 10 training examples. This highlights the potential of multi-task learn-
ing techniques in the challenging context of few-shot biomedical text understanding, where 
collecting large annotated datasets is difficult, but acquiring smaller similar datasets from 
different clinical organizations is more feasible. The code is available on github.1. The con-
tributions of our work can be summarized as follows:

• We propose a framework that utilizes multi-task learning and knowledge distillation to 
deal with the few-shot learning issue in the biomedical relation extraction field.

• We evaluate the quality of our approach with recent baselines, showing that it outper-
forms the existing state-of-the-art in the majority of few-shot learning scenarios.

• We provide an in-depth data-driven analysis of the main factors influencing multi-task 
learning when integrating the knowledge of heterogeneous biomedical datasets.

• We show how the performance of the proposed approach varies in scenarios with vary-
ing degrees of data scarcity (i.e. 1, 10, 50, 100 and 1000 training samples).

The remainder of this paper is organized as follows. Section 2 reviews the related studies 
on relation extraction and its applications in the biomedical field and in few-shot scenarios. 
Section 3 presents the datasets and the proposed method in details. In Sect. 4, experiments 
about the method and its application in few-shot scenarios are provided, and implications 
about results are discussed. Finally, this paper is concluded in Sect. 5.

2  Related work

Relation extraction (RE) has been thoroughly investigated in the realm of NLP and Infor-
mation Extraction (IE). One of the most widely adopted rule-based methods is the use of 
regular expressions and lexical patterns to identify relationships, which rely on the manual 
creation of patterns that are specific to the target relationships and the domain of the text 
(Nebhi 2013; Ben Abacha and Zweigenbaum 2011). While this approach has demonstrated 
good results, it is heavily dependent on the quality and coverage of the patterns. In contrast, 

1 https:// github. com/ IoSyl ar/ Multi- task- Learn ing- for- Biome dical- Relat ion- Extra ction.

https://github.com/IoSylar/Multi-task-Learning-for-Biomedical-Relation-Extraction
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machine learning-based approaches (Alimova and Tutubalina 2020; Hong et al. 2020) lev-
erage supervised learning techniques to train models on annotated text data, enabling the 
models to learn to identify relationships based on context and features of the entities and 
their interactions. This approach is more robust and adaptable to new domains and rela-
tionships, but requires a substantial amount of annotated text data, which can be costly 
and time-consuming to obtain. Hybrid approaches (Huang et al. 2006; Zhang et al. 2018) 
combine the advantages of both rule-based and machine learning-based methods by using 
rule-based methods to pre-process the text and extract candidate relationships, which are 
then fed to a machine learning model for final classification. This approach can enhance 
performance and reduce the need for annotated data.

Relation extraction in biomedical applications presents a unique set of challenges com-
pared to traditional NLP tasks. One of the key difficulties is the complexity of the domain-
specific medical language, which often includes technical terms, acronyms, and abbrevi-
ations that are not found in general English text. Additionally, the relationships between 
entities in biomedical texts can be highly nuanced, with subtle differences in meaning 
that require a deep understanding of the biological and medical context. Despite these 
challenges, relation extraction has a wide range of potential applications in biomedical 
research, including the discovery of biological pathway (Kim et al. 2018) and associations 
between genes and diseases (Marchesin and Silvello 2022).

However, another important challenge is that annotated training data for relation extrac-
tion in the biomedical domain is limited, making it difficult to train machine learning mod-
els to accurately recognize relationships. While a vast amount of works on few-shot learn-
ing exist on image data (Tang et  al. 2020; Sung et  al. 2018), these scenarios in RE are 
relatively under-studied. Hong et al. (2020) propose a method based on distant supervision 
that automatically extract biomedical relations from large-scale literature repositories. Li 
et  al. (2017) propose a joint model for named entity recognition and relation extraction 
based on a CNN for charactel-level representations and BiLSTMs. Chen et al. (2020) intro-
duce transformers as encoding layers of joint models to improve the performance in iden-
tifying patients suitable for clinical trials. Li et al. (2018) explores the relatedness among 
multiple tasks by applying simple multi-task learning approaches.

Despite its advantages, when learning from multiple tasks it is possible that the perfor-
mance of the resulting model may decrease compared to training a separate model for each 
task (Alonso and Plank 2017). This can occur because the model may struggle to balance 
the optimization of multiple tasks, leading to sub-optimal performance on one or more 
tasks. Additionally, the tasks may have conflicting objectives or requirements, which can 
result in poor performance on some tasks. Furthermore, the model may over-generalize or 
over-fit to the training data, making it less effective at making predictions on unseen data. 
Therefore, it is important to carefully evaluate the trade-off between the potential benefits 
of multi-task learning and the potential risks to performance before choosing this approach 
for a given problem. In contrast to prior studies, this work goes beyond the evaluation of 
multi-task biomedical relation extraction models in few-shot scenarios and provides a 
comprehensive examination of the inter-task influences, both positive and negative, in our 
multi-task models.

3  Materials and methods

In this section, we describe data, models and algorithms used to perform our experiments.
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3.1  Datasets

The biomedical datasets used in this study are described in this section. We focus on three 
publicly available multi-class datasets for relation extraction: DDI-2013 (Herrero-Zazo 
et al. 2013), ChemProt (Kringelum et al. 2016), I2B2-2010 RE (Uzuner et al. 2011). We 
use the same pre-processing procedure as in Lewis et al. (2020).

3.1.1  DDI‑2013

This corpus consists in documents from the DrugBank database2 and MedLine3 abstracts 
annotated with pharmacological substances and their interactions. It is the first dataset 
highlighting (1) pharmacodynamic (PD), i.e. the changes in pharmacological effects of a 
drug caused by the presence of another drug, and (2) pharmacokinectic (PK), which occurs 
in presence of interference in the intake of one drug (i.e. the distribution or elimination of 
one drug from another).

The annotated relations are described as follows:

• Mechanism describes the PK interference mechanism
• Effect describes the effect of the intake of a drug or the PD mechanism
• Advice highlights a recommendation or advice which regards interactions between 

drugs
• Int indicates a drug–drug interaction without any additional information, explanations 

or advice

Size of training, development and test sets is: ∣ Dtrain ∣= 29, 334 , ∣ Ddev ∣= 7245 , 
∣ Dtest ∣= 5762.

3.1.2  ChemProt

This corpus contains data from open source databases (e.g. CheMBL, BindingDB, PDSP 
Ki, DrugBank) annotated with chemical compounds, proteins and their interactions. We 
will consider the following groups of chemical–proteins relations (CPRs) in our study:

• CPR 3 indicates upregulation relations (activation, promotion, increased activity)
• CPR 4 indicates downregulation (inhibition, block, decreased activity)
• CPR 5, CPR 6 are related to interactions of type “agonist” and “antagonist”, respec-

tively.
• CPR 9 is related to substrate or part of relations. Therefore, this relation does not have 

particularly relevant features and is thus difficult to extract.

Size of training, development and test sets is: ∣ Dtrain ∣= 19, 461 , ∣ Ddev ∣= 11, 821 , 
∣ Dtest ∣= 16, 944.

2 https:// go. drugb ank. com.
3 https:// www. nlm. nih. gov/ medli ne/ index. html.

https://go.drugbank.com
https://www.nlm.nih.gov/medline/index.html
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3.1.3  I2B2‑2010 RE

This corpus focuses on relationships between medical concepts such as tests and treat-
ments. The relation extraction task has 8 classes divided into 3 categories depending on the 
entities involves. We describes these categories as follows:

• Medical problem-treatment relations

– TrIP the treatment improves or cures the medical problem
– TrWP the treatment worsens the medical problem
– TrCP the treatment causes the medical problem
– TrAP the treatment is administered for the medical problem (the result is not men-

tioned in the sentence)
– TrNAP the tratment is not provided or is intermittently administered due to the med-

ical problem

• Medical problem-test relations

– TeRP the test reveals the medical problem
– TeCP the test is conducted to investigate the medical problem (the sentence does not 

indicate the result but the reason for the test)

• Medical problem-medical problem relations

– PIP medical problem indicates medical problem

Size of training, development and test sets is: ∣ Dtrain ∣= 21, 385 , ∣ Ddev ∣= 873 , 
∣ Dtest ∣= 43, 001.

3.2  Method

In this section, we outline the methodology employed in our study. Specifically, we utilize a 
multi-task learning framework, MT-DNN (Liu et al. 2019), on three biomedical datasets for 

Fig. 1  Overview of the multi-task architecture applied to our study. The Lexicon Encoder and Transformer 
Encoder are shared across the different tasks and maps the input first to a sequence of embedding vectors 
(one for each token) and then to shared contextual embedding vectors which take count of contextual infor-
mation. A task-specific layer is then used for each dataset to generate dataset-specific representations
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the purpose of Relation Extraction, as detailed in Sect. 3.1. As depicted in Fig. 1, an Encoder 
based on a transformer architecture is shared among the tasks, and specialized classification 
heads are fine-tuned for each of the datasets. Subsequently, a knowledge distillation process 
is employed to enhance performance, as illustrated in Fig. 2: multiple multi-task models are 
trained, with their predictions constituting the knowledge that is distilled by a single multi-task 
model.

3.2.1  Multi‑task learning architecture: MT‑DNN

We use a Multi-Task Deep Neural Network (MT-DNN) (Liu et  al. 2019) as the multi-task 
framework for our experiments. The overall architecture is shown in Fig.  1. The input 
X = {[CLS], x2,… , xm} is a word sequence of length m from one of the three analyzed 
datasets. The Lexicon Encoder maps each token xi to its input embedding vector li obtained 
by summing the corresponding word, segment and positional embeddings. The pre-trained 
Transformer Encoder maps input embedding vectors into a sequence of contextual embedding 
vectors thus forming a shared representation across the different tasks. In this work, we use 
one of the pre-trained models made available by (Lewis et al. 2020) as the backbone of the 
multi-task framework. Task specific layers are defined as sentence classification models: the 
first token [CLS] of each sentence X is a semantic representation of the sentence and the prob-
ability that X contains a relation between medical entities is predicted by a logistic regression 
with softmax:

where WT
t
 is the parameter matrix for the task t.

(1)P(is Relation ∣ X) = softmax(WT

t
⋅ x),

Fig. 2  Overview of the knowledge distillation process applied in our study. First, MT-DNN networks are 
trained with different dropout values p = {0.1, 0.15, 0.2} . Each MT-DNN network is then fine-tuned on 
each dataset and all the soft-labels produced by teachers are averaged to produce the dark knowledge to be 
distilled. A single MT-DNN student is trained with a knowledge distillation loss which takes count of the 
knowledge acquired by teachers
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3.2.2  Knowledge distillation

The knowledge distillation (KD) method has been successfully used with multi-task learn-
ing to enjoy the advantages of ensemble learning while not needing to keep the entire 
ensemble of models but just one single model (Liu et al. 2019), our KD methodology is 
shown in Fig. 2: we start by training three MT-DNN networks with three dropout values 
p = {0.1, 0.15, 0.2} and each of them is then used as the backbone for a single-task net-
work fine-tuned on each task dataset. Soft labels produced by teachers for each training 
example are then averaged to produce the dark knowledge to be distilled. We studied the 
effects of two types of KD loss: (1) Mean Squared Error (MSE) and (2) a hybrid loss based 
on Kullback Leibler divergence. MSE minimizes the mean squared discrepancy between 
the soft labels of the teacher and values estimated by the student network:

The hybrid loss is based on two contribution: the first is given by the Kullback Leibler loss 
which minimizes the divergence between two probability distributions, i.e. the soft labels 
of the teacher and the predictions of the student: the second contribution assumes that the 
teacher is not perfect and thus takes into account the ground truth by means of the cross-
entropy loss:

where LCE(y, ŷ) denotes the cross-entropy loss, y = yi
�
 being the ground truth label for the 

i-th sample at time step � and ŷ = f
𝜏
(xi

𝜏
, 𝜃) representing the predicted output for the i-th 

sample at time step � , given the model parameters � ; LKL denotes the Kullback–Leibler 
divergence between the output probability distribution from the model with parameters � 
and the teacher with parameters �T ; the parameter � controls the weighting of the contribu-
tion of the knowledge distillation and ensures that the student also learns from the actual 
ground truth.

4  Experiments

Our analysis will be focused on answering the questions reported as follows.

• Q1: Comparison with few-shot baselines. How does few-shot MT-DNN perform as 
compared to few-shot learning baselines? We use three few-shot learning baselines to 
perform a comparison with the multi-task architecture leveraged in this work: a Sia-
mese network (Koch et al. 2015), ProtoNET Snell et al. (2017), BioBERT Lee et al. 
(2020), ClinicalBERT Alsentzer et al. (2019) and PET Schick and Schütze (2021).

• Q2: Effects of multi-task learning. Can it improve the performance w.r.t. single-task 
models? We select one of the publicly available biomedical pre-trained transformer 
architectures as the base for our multi-task MT-DNN model, which is then enhanced 
with Knowledge Distillation and compared with single-task performance over the 
entire training-sets. Furthermore, we study how knowledge distillation impacts the 

(2)LMSE =
1

N

∑

(y − ŷ)

(3)
Lhybrid = �LCE

(

yi
�
, f
�

(

xi
�
, �
))

+ (1 − �)LKL

(

f
�

(

xi
�
, �
)

, f
�

(

xi
�
, �T

))

,
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overall performance by analyzing the effects of different values assigned to the loss 
weight �

• Q3: Tasks influence analysis. What are the main influencing factors in multi-task learn-
ing? Different datasets can have a different impact over the multi-task performance. We 
will analyze similarities and differences between datasets to understand their effects 
on positive and negative transfer when training the multi-task model. On the basis of 
the above, we will analyze the mutual influence between different tasks by pairwise 
training, i.e. selectively excluding datasets from the training procedure to analyze their 
overall effects over the multi-task performance.

• Q4: Few-shot scenarios. How does the performance vary in few-shot scenarios? We are 
interested in the understanding of the value of multi-task learning when only a few set 
of data is available for each dataset, and how its effects vary when the training dataset 
increases. More in detail, we will train our multi-task models by simulating few-shot 
scenarios in where only k training examples are available for each dataset (with k vary-
ing from 1 to 1000) and we will test their performance over the entire test set.

4.1  Training parameters

In this section we report the training parameters used in our experiments. We fixed the 
input sequence length to 512 and the batch size to 8. We used the training 
parameters suggested in Liu et  al. (2019) for both the multi-task and single-task experi-
ments. In particular, we conducted experiments by setting various hyperparameters such as 
learning rate, weight decay and optimizer using an initial random search and subsequently 
performing a greedy search focusing on the neighborhood of the default values on a subset 
of the training data, as commonly done in the literature. These preliminary experiments 
confirmed the suggested parameter values. Thus, we used an Adamax optimizer with 
learning rate set to 5e−5 and weight decay to 0.01 with adam eps to 1e−7. 
To avoid gradient explosion, the grad clipping parameter is set to 1.0. Additionally, 
we provide an empirical study on the value of the loss weighting parameter � used in the 
knowledge distillation process.

When the training procedure involves the entire training dataset or at least 1000 exam-
ples, we set the number of epochs to 10 (in both the single-task and multi-task cases), 
while we set it to 20 in 1-, 10-, 50- and 100-shot scenarios.

The loss functions vary according to the type of approach: in single-task and simple 
multi-task learning, we use the cross-entropy loss; when using knowledge distillation, we 
experimented with MSE and a hybrid loss formed by cross-entropy and Kullback Leibler 
divergence.

The training parameters used for few-shot baselines are reported as follows:

• Siamese Network (Koch et al. 2015): we use GloVe embeddings (embedding size 
= 100)

• ProtoNET (Snell et al. 2017): learning rate is set to 1e−5, Euclidean loss is used 
and the support set varies depending on the number of shots. In 1-shot training, a sup-
port set equal to 1 is necessarily chosen; in 10-shot training we select a support set 
equal to 5 and this value remains the same in all the other scenarios due to RAM avail-
ability constraints.

• BioBERT (Lee et al. 2020) and ClinicalBERT (Alsentzer et al. 2019): same parameters 
used to train our multi-task networks.
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• PET (Schick and Schütze 2021): 5 epochs with 250 steps, learning rate set to 
1e−4, batch size to 8, weight decay to 0.01. Furthermore, we initialize the 
weights of the transformer architecture with the biomedical checkpoint publicly made 
available in Lewis et al. (2020), which is the same we use for our MT-DNN models.

Note that the number of epochs and the learning rate were selected based on the complex-
ity of the model and the amount of data available, and were determined through appropri-
ate tuning to avoid overfitting, obtaining the best possible model on the validation set. It 
was observed that as the amount of data increased in few-shot tasks, fewer training epochs 
were required. To maintain fairness in comparing the results between the different tasks, 
common evaluation metrics such as F1, recall, and precision were used. The dependence 
on the number of shots and the initialization of the various networks was mitigated by 
sampling with 5 different seeds for each shot of training for each task, and initializing the 
network with these seeds during different trainings. This helps to increase the reliability 
and generalizability of the results and ensure a fair comparison between the different tasks.

4.2  Results

4.2.1  Q1: Comparison with few‑shot baselines

Tables 1, 2 and 3 report the comparison between our framework and state-of-the-art base-
lines in terms of precision, recall and F1 scores, respectively.

The results presented in Table 1 indicate that ProtoNET yields the highest precision 
in scenarios with extremely limited training data (1-shot and 10-shot). This method is 
based on a prototypical network that emphasizes on the representation of each rela-
tion type and the calculation of prototypes for each relation type, which enhances 
precision in relation identification when the training samples are relevant. However, 
when a slightly larger number of training samples are available, the multi-task learn-
ing approach demonstrates superior performance. This is due to the information shared 

Table 1  Comparison of precision scores (mean ± std values across five repetitions) with state-of-the-art 
baselines in k-shot learning scenarios, k ∈ {1, 10, 50}

Best scores are reported in bold

Shots Dataset Siamese ProtoNET Clinical-
BERT

BioBERT PET Ours

1 DDI-2013 4.96 ± 1.66 23.42 ± 10.92 5.80 ± 2.08 6.50 ± 2.11 8.19 ± 1.37 6.97 ± 2.01
ChemProt 5.63 ± 1.87 16.03 ± 5.39 4.19 ± 0.77 4.64 ± 0.62 6.04 ± 1.32 7.57 ± 1.79
I2B2-2010 3.21 ± 0.75 14.19 ± 3.06 1.98 ± 0.85 2.31 ± 0.80 2.55 ± 0.92 1.66 ± 0.79

10 DDI-2013 6.55 ± 0.76 33.58 ± 4.44 14.52 ± 1.42 15.04 ± 0.86 15.03 ± 1.45 16.00 ± 0.88
ChemProt 5.26 ± 0.79 20.71 ± 7.29 10.43 ± 1.53 12.73 ± 2.15 11.30 ± 0.56 17.00 ± 0.90
I2B2-2010 4.79 ± 1.42 20.37 ± 3.58 15.15 ± 2.97 14.47 ± 2.77 10.55 ± 5.04 18.39 ± 2.34

50 DDI-2013 11.10 ± 2.74 32.03 ± 4.34 24.12 ± 1.21 27.17 ± 1.83 22.26 ± 2.76 35.58 ± 4.20
ChemProt 7.77 ± 2.20 18.62 ± 2.30 23.04 ± 1.83 27.51 ± 1.92 21.44 ± 1.67 31.40 ± 1.19
I2B2-2010 14.02 ± 2.09 22.45 ± 2.93 25.89 ± 1.50 27.76 ± 3.23 22.55 ± 2.07 29.82 ± 2.85
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among the three relation extraction tasks and the increased robustness and generaliza-
tion capability of the model resulting from the larger number of training samples.

Despite its precision in identifying relations, ProtoNET exhibits a low recall as evi-
denced by the results presented in Table  2. The utilization of language models pre-
trained with biomedical data as BioBERT and ClinicalBERT, the implementation of 
prompts in PET, which effectively leverages the knowledge gained by language mod-
els, and multi-task approaches that incorporate information from additional tasks may 
enhance recall and thus make these approaches more suitable for identifying a greater 
number of relevant relationships. Among these methods, our multi-task learning 
approach guarantees the highest results in terms of recall scores.

To sum up, our approach consistently produced the best results in 50-shot contexts with 
regard to precision, recall, and F1. In 10-shot contexts, our approach still achieved the best 
F1, as shown in Table 3, although precision was comparable or slightly lower compared 

Table 2  Comparison of recall scores (mean ± std values across five repetitions) with state-of-the-art base-
lines in k-shot learning scenarios, k ∈ {1, 10, 50}

Best scores are reported in bold

Shots Dataset Siamese ProtoNET Clinical-
BERT

BioBERT PET Ours

1 DDI-2013 23.31 ± 14.04 5.04 ± 1.90 27.59 ± 8.65 35.92 ± 13.37 44.17 ± 8.60 34.58 ± 10.02
ChemProt 18.06 ± 2.29 4.19 ± 0.85 17.72 ± 3.49 21.24 ± 2.90 23.15 ± 5.51 32.05 ± 7.95
I2B2-2010 18.42 ± 6.59 2.73 ± 0.65 11.74 ± 6.99 14.47 ± 1.81 10.78 ± 6.57 6.64 ± 2.90

10 DDI-2013 26.92 ± 4.10 6.82 ± 0.64 60.30 ± 4.13 67.61 ± 6.14 62.96 ± 6.38 74.22 ± 5.26
ChemProt 22.21 ± 3.24 4.99 ± 1.19 42.00 ± 6.04 49.21 ± 8.98 41.72 ± 4.98 64.41 ± 6.24
I2B2-2010 27.20 ± 6.74 3.59 ± 0.50 58.88 ± 6.67 57.49 ± 7.53 61.67 ± 2.61 68.23 ± 6.67

50 DDI-2013 40.20 ± 9.77 7.18 ± 1.39 71.48 ± 2.49 78.44 ± 2.22 78.30 ± 2.34 83.92 ± 2.04
ChemProt 29.75 ± 7.30 5.22 ± 0.92 68.35 ± 3.31 76.56 ± 3.86 67.32 ± 5.14 82.31 ± 2.28
I2B2-2010 50.88 ± 3.24 3.92 ± 0.54 77.55 ± 2.12 78.13 ± 1.02 71.67 ± 2.61 85.21 ± 1.38

Table 3  Comparison of F1 scores (mean ± std values across five repetitions) with state-of-the-art baselines 
in k-shot learning scenarios, k ∈ {1, 10, 50}

Best scores are reported in bold

Shots Dataset Siamese ProtoNET Clinical-
BERT

BioBERT PET Ours

1 DDI-2013 7.76 ± 3.06 8.20 ± 3.31 9.55 ± 3.22 10.62 ± 3.97 13.82 ± 2.38 11.55 ± 3.16
ChemProt 8.48 ± 2.19 6.66 ± 1.50 6.76 ± 1.18 7.68 ± 0.80 9.51 ± 2.03 12.06 ± 2.84
I2B2-2010 5.40 ± 1.31 4.53 ± 0.79 3.38 ± 1.55 3.30 ± 1.12 4.32 ± 1.61 3.17 ± 2.07

10 DDI-2013 10.49 ± 1.08 11.30 ± 0.84 23.34 ± 1.71 24.17 ± 1.57 24.22 ± 2.44 26.32 ± 1.41
ChemProt 8.50 ± 1.25 8.00 ± 2.06 16.71 ± 2.41 20.21 ± 3.44 17.75 ± 0.94 26.86 ± 1.27
I2B2-2010 8.14 ± 2.34 6.10 ± 0.87 24.05 ± 4.15 23.07 ± 3.93 17.52 ± 7.82 28.92 ± 3.16

50 DDI-2013 17.36 ± 4.19 12.07 ± 1.09 36.06 ± 1.55 40.34 ± 2.13 34.61 ± 3.50 49.84 ± 3.90
ChemProt 12.38 ± 3.46 8.12 ± 1.19 34.42 ± 2.09 40.46 ± 2.53 32.51 ± 2.42 45.60 ± 0.74
I2B2-2010 20.35 ± 1.62 6.66 ± 0.85 32.63 ± 15.10 40.41 ± 3.88 34.22 ± 2.18 44.12 ± 3.22
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to other baselines. However, our approach excelled in terms of recall, significantly out-
performing other methods. This is attributed to the use of data from other tasks, which 
allowed us to identify a larger number of relevant relationships.

4.2.2  Q2: Effects of multi‑task learning

The results of utilizing MT-DNN and its extension through knowledge distillation are pre-
sented in Table 4. It is evident from the table that multi-task learning provides a significant 
improvement for the inference task on the ChemProt and I2B2-2010 datasets. However, it 
results in a decrease in performance when applied to the DDI-2013 dataset. The applica-
tion of knowledge distillation is advantageous for all downstream tasks but fails to outper-
form the single-task performance on the DDI-2013 dataset. This phenomenon, referred to 
as negative transfer, will be thoroughly analyzed in research question Q3.

Furthermore, we analyzed the impact of knowledge distillation on the overall perfor-
mance. In particular, we have performed hyper-parameter tuning on the weighting param-
eter � which controls the contribution of ground truth to the knowlege distillation loss as 
in Eq. 3. Specifically, the tuning was conducted using shots 1, 10, and 50, while fixing the 
network initialization and shot extraction seeds to be the same across experiments with 
different � values. The parameters used in these experiments are the same as those used in 
our multi-task few-shot experiments. The � values used for tuning are: 0, 0.2, 0.4, 0.6, 0.8, 
and 1. Results in Fig. 3 show that the best F1 score is achieved with � values that imply 
considering both the ground truth and teachers. In particular, the optimal value obtained 
in every few-shot scenario and with all the datasets—with the only exception of DDI-2013 
(10-shot)—is � = 0.4 , slightly biased towards the teacher’s additional knowledge. Hence, 
the student network can learn from the teacher how to capture more subtle and complex 
patterns in the data such as uncertainties and correlations between different classes and the 

Table 4  Comparison of MT-DNN variants with single-task models over the entire training sets (results are 
reported in terms of mean ± stdDev)

Best scores are reported in bold
We experimented MT-DNN in its original version and with the knowledge distillation procedure described 
in Sect. 3.2.2 by using the MSE loss (MT-DNN+KD (MSE)) and the hybrid loss based on Kullback Leibler 
divergence (MT-DNN+KD (Klb))

Dataset Task Precision Recall F1

DDI-2013 Single Task 83.37 ± 0.76 80.82 ± 0.66 82.07 ± 0.63
MT-DNN 83.05 ± 0.65 79.96 ± 0.79 81.47 ± 0.57
MT-DNN+KD (Klb) 82.86 ± 0.49 79.67 ± 1.09 81.22 ± 0.56
MT-DNN+KD (MSE) 83.32 ± 0.72 79.86 ± 1.06 81.55 ± 0.66

ChemProt Single Task 74.41 ± 1.64 74.90 ± 1.81 74.62 ± 0.42
MT-DNN 75.64 ± 0.74 75.38 ± 0.91 75.25 ± 0.26
MT-DNN+KD (Klb) 75.94 ± 0.44 75.62 ± 0.52 75.75 ± 0.29
MT-DNN+KD (MSE) 75.61 ± 0.85 76.31 ± 0.82 75.95 ± 0.20

I2B2-2010 Single Task 75.96 ± 1.78 75.64 ± 4.25 75.68 ± 1.35
MT-DNN 76.88 ± 0.79 76.59 ± 0.84 76.73 ± 0.35
MT-DNN+KD (Klb) 77.31 ± 0.70 76.74 ± 0.54 77.02 ± 0.10
MT-DNN+KD (MSE) 77.56 ± 0.82 76.78 ± 0.77 77.17 ± 0.12
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nuances and complexities of the language. However, results degrade when the student net-
work relies too heavily on the teachers’ predictions.

4.2.3  Q3: Tasks influence analysis

We first analyze the three tasks based on their similarities, and then study their mutual 
influence and effects in the multi-task learning framework used.

Differences in syntax Initially, a vocabulary was derived from each dataset that 
encompasses the occurring words. The number of shared words between the tasks is 
depicted in the pie chart of Fig. 4. It can be observed that the tasks of DDI-2013 and 
ChemProt exhibit the highest number of shared words, which is 42.9% of the total 
vocabulary. Conversely, the words in the I2B2-2010 dataset are distinct from those in 
the other two datasets, with a similarity of 30.8% and 26.3% compared to ChemProt and 
DDI-2013, respectively.

In Fig. 5, the distributions of sentence lengths are presented, where the sentences are 
represented as a sequence of words. It is evident that, despite the similarities in median val-
ues across the various tasks, DDI-2013 exhibits a substantial quantity of lengthy sentences, 
with approximately 1000 instances surpassing 600 words. Conversely, sentences in I2B2-
2010 tend to be comparatively shorter in comparison to those in other tasks.

Differences in semantics The semantic similarity between various tasks was determined 
by computing the similarity between sentence embeddings generated with SentenceBERT 
(Reimers and Gurevych 2019). This was achieved by utilizing BlueBERT (Peng et  al. 
2019) as the primary encoder. The method involved calculating the cosine similarity score 
between each sentence from each dataset and all the examples in each dataset, and then 
averaging the scores to obtain the similarity score between the target sentence and the three 
datasets. To obtain the similarity scores between datasets D1 and D2 , the average similarity 
scores between sentences s ∈ D1 and dataset D2 were calculated.

The results presented in Fig. 6 indicate that I2B2-2010 is the most heterogeneous data-
set, as evidenced by the low similarity score with itself. This is likely due to the fact that 
the data was collected from eight distinct hospitals. Conversely, ChemProt and DDI-2013 
demonstrate a high degree of semantic similarity to each other.

We are interested in understanding the impact of semantic similarity and dissimilarity 
on performance when considering pairs of tasks. This investigation was conducted through 
the use of pairwise training (Standley et al. 2020). The results presented in Table 5 show 
the scores obtained when multi-task training was performed with the task indexed in the 
row and the task indexed in the column (single-task performance is reported on the diago-
nal). The table reveals that while the performance of the other tasks is improved through 
multi-task training, DDI-2013 experiences a negative transfer, probably due to the absence 
of long sentences in other datasets, resulting in a decrease in performance compared to the 
single-task scenario. Additionally, the contributions made by DDI-2013 to the performance 
improvement of the other tasks are generally inferior compared to those made by the other 
tasks. On the other hand, the I2B2-2010 task, despite its inherent high variability, benefits 
the most from multi-task training.
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4.2.4  Q4: Few‑shot scenarios

We examined the impact of multi-task learning on performance in scenarios with vary-
ing degrees of data scarcity. To accomplish this, we measured the performance of multi-
task models as the number of samples (k) increased ( k ∈ 1, 10, 50, 100, 1000 ), and the 
results are presented in Fig. 7 in terms of precision, recall, and F1 scores. In contrast 
to the results obtained in the pairwise experiments as described in Question Q3, we 
observed a generally positive transfer in performance. Specifically, while the DDI-2013 
dataset experienced negative transfer when utilizing the complete training data, we 
noted a benefit from multi-task learning in low-resource scenarios for all datasets, with 
relative improvements ranging from 18.3 to 32.4% in F1 scores.

Furthermore, the improvement percentage typically increased as the amount of 
training data decreased, reaching a maximum of 77.4% in F1 scores on the ChemProt 
data in the 1-shot scenario. This aligns with previous research (Worsham and Kalita 
2020; Standley et  al. 2020) that emphasizes the potential benefits of multi-task learn-
ing in few-shot learning contexts. Although the improvement in precision scores either 
remained constant or increased as the number of samples increased, there was a nota-
ble decrease in recall scores. This suggests that the advantage of multi-task learning in 
the few-shot scenarios investigated is mainly due to the improved ability of the trained 
model to differentiate between true positives and false negatives.

We conducted the pairwise experiment in few-shot learning scenarios to gain a 
deeper understanding of positive and negative transfer in few-shot scenarios. The results 
displayed in Fig. 8 demonstrate that models trained in a pairwise manner have compa-
rable scores to the multi-task models examined in Fig. 7. The small differences across 
the pairwise results can be only observed in recall scores, where we can observe small 
decreases in performance when pairing ChemProt with other datasets. Additionally, 
the performance of the pairwise models is consistently higher than that of single-task 
models.

5  Conclusion and future work

In this study, we propose a novel framework for few-shot biomedical relation extraction, 
which is based on a transformer-based network and multi-task learning method (Liu et al. 
2019). Our approach uses a shared layer across biomedical RE tasks and trains a classifica-
tion head for each task separately. To enhance the model’s performance, we adopt a train-
ing framework based on knowledge distillation.

Our evaluation of the factors contributing to positive and negative transfer in biomedi-
cal relation extraction demonstrates that our framework achieves positive transfer in all 
low-resource scenarios, where labeled data is limited for the primary task. Moreover, our 
approach surpasses state-of-the-art few-shot learning baselines in most tasks and scenarios, 
especially in recall scores, reaching up to 84% with only 50 training samples. This suggests 
that our system correctly identifies a large portion of true positive relations in the data.

Fig. 3  Impact of the knowledge distillation on F1 scores in few-shot learning scenarios ( k ∈ {1, 10, 50} . 
Results with varying loss weight � . As � increases, more weight is given to the ground truth instead of rely-
ing on teachers’ knowledge

▸
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Fig. 4  Percentage of words 
shared between pairs of datasets

Fig. 5  Sentence length distributions. Median values are marked with a dotted line

Fig. 6  Heatmap showing the 
semantic similarities across tasks

Table 5  Pairwise multi-task relationships between datasets

In the first three columns, single-task results are reported on the diagonal and pair-wise multi-task results 
obtained on the row-indexed dataset are reported when it is used in a multi-task setting with the column-
indexed dataset. Multi-task results obtained by using all the datasets of this study are reported in the last 
column
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However, our method’s low precision scores indicate that there is still room for 
improvement, especially in applications where high-stakes decision-making is involved. 
To enhance the precision of multi-task models, we suggest incorporating additional fea-
tures such as dictionaries and medical ontologies, which provide a structured vocabu-
lary and semantic rules for relation identification.

Lastly, it is important to note that our assessment of the system’s performance was 
based on publicly available data, which may not accurately depict its performance 
on real-world clinical data. Therefore, further investigations are necessary to exam-
ine the system’s performance with real-world clinical data and determine its practical 
applicability.

Fig. 7  Few-shot comparison between single-task and multi-task networks. Performance on the three data-
sets under analysis (rows) is reported in terms of precision (first column), recall (second column) and F1 
(third column). The improvement percentage of the multi-task network w.r.t. the single task network is 
reported for each k-shot setting
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