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Synergistic use of SAR satellites with deep learning 
model interpolation for investigating of active landslides 
in Cuenca, Ecuador

Mohammad Amin Khalili , Silvio Coda , Domenico Calcaterra and  
Diego Di Martire 

Department of Earth, Environmental and Resource Sciences, Federico II University of Naples, Naples, Italy 

ABSTRACT 
Among the most intense geological disasters, landslides frequently 
occur throughout the world. These phenomena have been studied 
using space geodetic techniques, including Global Navigation 
Satellite Systems (GNSS) and Multi-Temporal Interferometric 
Synthetic Aperture Radars (MT-InSAR). Nevertheless, complete map
ping and analysis of landslides’ surface deformation in most areas 
can be complicated due to a large diversity in kinematics, such as 
periods of quiescence and acceleration in the toe and crown. One 
of these landslides is the Cuenca landslides in Ecuador, where the 
geological investigation revealed that the toe of the landslides was 
located in urban areas, with more noticeable deformation effects. In 
contrast, its crown was located mainly in a rural and green land 
area. In this study, we show the potential of a synergistic use of 
COSMO-SkyMed (CSK) and Sentinel-1A (S1A) synthetic aperture 
radar (SAR) data for comprehensively monitoring the Cuenca land
slides. To this aim, we have used Long-Short Term Memory (LSTM) 
and Convolutional Neural Networks (CNN) as two different Deep 
Learning Algorithms (DLAs) to integrate results in the temporal and 
spatial domain, respectively. A cross-comparison of the results was 
made with the nine GPS-derived deformations and the visual effects 
(i.e. crack width and pattern) on the field. This validation against 
GPS observation reveals that the RMSEs of the final MT-InSAR- 
derived velocity after applying the synergic double band SAR data
set decrease at more than 73% of nine GPS stations.

HIGHLIGHTS

� Synergic MT-InSAR approach for studying landslide deformation 
in diverse kinematic areas.
� Utilized DLAs (LSTM and CNNs) for effective temporal and spa

tial interpolation of InSAR results.
� Findings emphasize the potential of multi-sensor SAR and DLAs 

for landslide monitoring regarding improving the RMSE at nine 
stations with an average of 73%.    
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GRAPHICAL ABSTRACT  

1. Introduction

Rural and urban areas are vulnerable to landslides, constituting a significant geo
logical hazard (Rianna et al. 2023). In rural areas, landslides can severely impact agri
cultural operations and even result in loss of life (Solari et al. 2020; Zhao et al. 2021). 
In addition, in urban environments, landslides can cause extensive damage to residen
tial and commercial structures, disrupt public utilities, and compromise road net
works (Esmaeeli et al. 2023; Khalili et al. 2023; Pu et al. 2023). The study of 
landslides kinematics (i.e. the description of motion without considering the forces 
that cause it) is critical to mitigating their destructive effects (Amin Khalili et al. 
2024). The factors influencing landslides kinematics may include the stability of 
slopes, patterns of precipitation (Shi et al. 2022), the type of soil, and the extent of 
vegetation cover (Guzzetti et al. 2012). Also, human activities such as urban develop
ment, construction practices, and alteration of natural landscapes add complexity to 
the kinematics of landslides in these contexts (Guerriero et al. 2019; Das et al. 2020). 
Therefore, understanding landslides kinematics is crucial for developing effective 
strategies for disaster preparedness and risk reduction in both rural and urban areas 
(Khalili et al. 2024).

GNSS and remote sensing SAR interferometry have been used as essential tools for 
studying the kinematics of landslides in rural and urban settings (Zhao and Lu 2018; 
Del Soldato et al. 2021; Khalili et al. 2023; Sonnessa et al. 2023). Interferometry SAR 
has been developed for decades in various ways that have improved precision and 
accuracy (Kumar et al. 2011; Mullissa et al. 2017). In brief, Interferometric Synthetic 
Aperture Radars (InSAR) is a type of two-SAR image processing technique (Gabriel 
et al. 1989), while Multi-Temporal InSAR (MT-InSAR) is a multi-SAR image time 
series processing technique (Franceschetti and Lanari 1999). To improve the imple
mentation of the MT-InSAR method, different concepts have emerged in recent years, 
such as Smal BAseline Subset (SBAS) (Berardino et al. 2002; Lanari et al. 2004) and 
Permanent Scatterers Interferometry (PSI) (Ferretti et al. 2001; Hooper et al. 2004). 
Each has its benefits and drawbacks when retrieving spatio- and temporal aspects of 
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surface deformations over short and long periods in different types of locations 
(Babaee et al. 2024; Tasan et al. 2024).

Previous research in the area of interest (Cuenca-Ecuador) has utilized similar 
technologies, advancing our understanding of landslide dynamics. Notable works 
include Khalili et al. (2023), who assessed MT-InSAR processing techniques for land
slide monitoring, and Di Napoli et al. (2023), who performed a multitemporal relative 
landslide exposure and risk analysis. Additionally, Sellers et al. (2021) monitored 
ground deformation affecting strategic buildings, while Miele et al. (2021) developed 
a Landslide Awareness System to enhance the resilience and safety of transport infra
structure, particularly along the Pan-American Highway.

The SBAS method uses interferograms network with minimal temporal and spatial 
baselines for assessing land deformations. This method is particularly adept at utilizing 
distributed scatterers (DSs) (i.e. radar reflectors that exhibit smooth variations over a 
specific period of time). DS pixels are primarily found in agricultural areas or natural 
terrains (green areas), which enhances the efficacy of the SBAS method for studying 
deformations in this area (Berardino et al. 2002). While the PSI method uses Permanent 
Scatterers (PSs) (i.e. radar reflectors that exhibit temporal phase stability over time) to 
measure deformation (Hanssen and Ferretti 2002) that are mostly found in urban areas. 
Therefore, unlike the SBAS method, this method is less efficient in green areas due to 
the unavailability of stable scatterers (Delgado Blasco et al. 2019).

In addition, the C-band SAR images operate at a lower frequency, enabling a 
greater signal penetration depth into the ground surface (Li et al. 2023). This attribute 
is particularly advantageous in vegetated areas where the signal can penetrate foliage 
to detect ground movements, a task where X-band SAR images encounter difficulties 
due to their limited penetration depth. However, the lower frequency C-band comes 
with a lower spatial resolution compared to the X-band. Consequently, its effective
ness in delineating fine-scale features and individual structures is compromised, 
potentially limiting the accuracy of defining landslide boundaries. The X-band pro
vides superior spatial resolution, allowing it to analyze landslide boundaries and 
detect smaller deformations in detail (Chini et al. 2015; Tings et al. 2021; Bausilio 
et al. 2024).

The unique advantages of both C-band and X-band and those of PSI and SBAS 
techniques highlight the necessity of a synergistic approach in landslide studies. The 
joint use of double-band SAR imagery can exploit the higher spatial resolution and 
sensitivity to small deformations of the X-band, compensating for the reduced cover
age and penetration of the C-band, especially in densely green areas. Furthermore, 
the synergy between PSI and SBAS allows for a more detailed understanding by com
bining their results as complementary to each other, mainly due to high PS and DS 
density in urban and non-urban areas, respectively (Bonano et al. 2013; Nunziata 
et al. 2016). Therefore, the simultaneous application of both double-band SAR 
imagery and multiple techniques enables a more nuanced understanding of landslide 
kinematics and boundaries, optimizing each method’s strengths and mitigating their 
weaknesses. Therefore, to fully map and analyze landslides’ surface deformation and 
its kinematics in urban and rural areas, one may need to combine the abovemen
tioned concepts as a synergic approach (Busquier et al. 2022).
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In this regard, several studies have focused on multi-sensor data fusion (Samsonov 
and d’Oreye 2012; Lin et al. 2016; Pepe et al. 2016; Sun et al. 2016; Chen et al. 2021; 
Jiang et al. 2023). These methods are either often used to combine time series in the 
temporal domine or exploit the limitations of the model and do not fully consider 
the nature of the observations. However, the spatiotemporal multi-sensor data fusion 
might be influenced by various factors and often show difference characteristics. In 
this article, synergistic fusion of PSI and SBAS results based on spatiotemporal deep 
learning method allows us to leverage the strengths of both methods and explores 
intricate relationships between different observations. In addition, it is worth noting 
that two InSAR datasets (Sentinel-1 and CSK) used in this study have different wave
lengths (i.e. C-band and X-band), which allow us to apply these data to monitor dif
ferent regions based on the required monitoring accuracy.

Therefore, we employed a deep learning model for spatial and temporal interpol
ation to execute this synergic approach. Long Short-Term Memory (LSTM) models 
are utilized for temporal interpolation due to their remarkable capacity to learn long- 
term dependencies in time series data, allowing for robust reconstruction of missing 
time steps in a new timeframe (Suzuki and Ikehara 2020; Liu et al. 2022; Khalili et al. 
2023). Convolutional Neural Networks (CNNs) are the preferred choice for spatial 
interpolation in this study (Otake et al. 2020; Dong et al. 2021). Its ability to extract 
spatial features and learn complex patterns from data makes it well-suited for predict
ing unobserved data points in space, ensuring the continuity and spatial integrity of 
the resultant grid. Thus, using LSTM and CNN for temporal and spatial interpol
ation, respectively, can significantly enhance the quality and coherence of the final 
data representation, promoting a more reliable and insightful landslide analysis 
(Mu et al. 2023).

In conclusion, our approach is leveraging CNN and LSTM for interpolation pur
poses. Our methodology seeks to bridge the gap in traditional remote sensing techni
ques by introducing a synergic approach combining CSK and S1A by CNN and 
LSTM to yield more accurate and interpretable velocity and time series maps. This 
approach not only provides enhanced detail of landslide monitoring but also paves 
the way for better risk assessment, kinematic analysis, and mitigation planning for 
areas prone to landslides. The article’s findings led us to adopt the suggested method
ology, aiming to enhance the visibility of unstable areas using a synergistic approach 
with specific SAR bands (i.e. C and X).

2. Case study and geological setting

The area is located in the south-eastern Cuenca city’s sector with an extension of 
about 3 km2. The University of Azuay’s main campus is centrally located and is 
crossed by the Pan-American Highway from west to east (Figure 1a).

The area falls into the Cuenca basin in the Inter-Andean region (Litherland 1994), 
and from south-east to north-west, the Miocene terrigenous formations of Azogues 
(tuffaceous sandstones), Mangan (siltstones and conglomeratic sandstones), and Turi 
(coarse conglomerates) crop out (Figure 1a) (Hungerb€uhler et al. 2002). These forma
tions are characterized by substantial heterogeneity in stratigraphy and mechanical 
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properties due to different sediments’ origins (fluvial, alluvial, colluvial, and volcanic), 
which leads to different susceptibility to trigger landslides. The study area’s eastern 
and northern sectors are covered by quaternary deposits, specifically colluvial and 
alluvial deposits, respectively (Hungerb€uhler et al. 2002; Miele et al. 2021).

The highest elevation values are recorded in the southern sector, up to 2830 m 
a.s.l. (Figure 1b), where the steepest slopes are also present up to values of 60 degrees 
(Figure 1c), thanks to the outcropping of materials that are more lithoid and, there
fore, capable of giving rise to sub-vertical slopes (Turi Formation). On the contrary, 
the eastern slope, where both the upper sector, falling within the Mangan formation, 
and the central sector (slope deposits) show medium slopes (approximately), while 
the lower sector records rather limited acclivities, being in the foothill sector. 
Regarding the morphological aspect, two main sectors can be distinguished, east- 
facing slopes in the westernmost sector and north-west-facing slopes in the eastern
most sector (Figure 1d). This morphology suggests the presence of two different 
basins which are channelled into the main impluvium that passes underneath the 
structures of the University campus. In fact, the morphology highlights the presence 
of a hydrographic network with the Tomebamba stream as its destination.

Figure 1. Geological sketch map (a), DTM (b), slope (c), and aspect (d) of the study area.
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The landslides surveyed since 1997 are represented by rotational slides and falls, 
causing damaging effects on buildings and linear infrastructures, as reported by sev
eral recent studies (Sellers et al. 2021). Several rupture surfaces were detected by geo
technical surveys, up to 80 m of depth, estimating an approximate volume of more 
than 35 million m3 (Ammirati et al. 2020; Sellers et al. 2021). Unfortunately, geognos
tic investigations or even sampling to define the physical-mechanical characteristics 
of the materials involved have never been carried out. The only investigations carried 
out are of the geophysical type (Electrical Tomography and Seismic Refraction and 
Reflection) which have allowed, in certain areas, to define a probable flow surface at 
a depth of about 17 m (Sellers et al. 2021). The test area for the developed method
ology (see purple polygon in Figure 1) has an extension of approximately 0.44 km2 

and involves two slope sectors facing east and northwest, respectively.

3. Data sets

This manuscript utilizes several rich datasets to comprehensively study land deform
ation, explicitly focusing on landslides in urban and rural areas. The first dataset 
comes from the S1A missions, courtesy of the European Space Agency (ESA) (Bonnet 
and Manno 1994). These missions operate in the C-band. The S1A dataset is com
posed of images captured over several years. Specifically, the study utilized an ascend
ing S1A radar images track acquired between 10 January 2015 and 26 November 
2018, consisting of 61 Single Look Complex (SLC) images (Table 1).

The second dataset leverages the capabilities of the CSK constellation (F. Covello 
et al. 2010). CSK, funded by the Italian Space Agency (ASI), is a constellation of four 
medium-sized low-Earth orbit satellites (Bovenga et al. 2010). These satellites are 
equipped with high-resolution multi-mode SAR sensors that operate in the X-band. 
The dataset from CSK, consisting of 57 SLC SAR images collected over an ascending 
geometry track between 12 March 2015 and 13 January 2019, is used (Table 1). Each 
image covers a 40� 40 km2 area, providing substantial spatial coverage and further 
enhancing the data quality available for the study.

The third data set includes data from GPS stations around the area of study (i.e. 
consisting of eleven permanent stations) (Figure 4). In the context of this study, GPS 
stations facilitate spatial coordination and adjustment of the deformation measure
ments derived from the SAR images (stations including M21, and M01). They also 
serve a validation role, confirming the outcomes derived from the synergic SAR 
images in X- and C-bands.

Table 1. Specifications of the S1A and CSK acquisitions.
Information S1A CSK

Acquisition time January 10, 2015, 
November 26, 2018

March 12, 2015, 
January 13, 2019

Type SLC SLC
Images (Nr) 61 57
Swath IW2 –
Pass Ascending Ascending
Central Look Angle (�) 34 29
Polarization VV HH
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Note that the L-band SAR images offering deeper penetration capabilities, espe
cially in vegetated areas, can also introduce issues related to volumetric scattering in 
regions with dense vegetation. Additionally, the availability of L-band data was lim
ited for the specific regions under investigation in our study. Given our focus on the 
University of Azuay and the Pan-American highway regions, encompassing urban 
and rural-green areas, the C- and X-bands provided the requisite spatial resolution 
and minimized scattering effects in urban settings. Also, the combination of S1A and 
CSK images in C- and X-bands, respectively, offered the optimal balance of penetra
tion depth and resolution for our specific objectives.

4. Methodology

4.1. SAR data processing

SAR data analysis forms the core of this study, employing both PSI and SBAS 
approaches. We applied the PSI technique to analyze CSK images within the 
SUBSOFT package (Mora et al. 2003; Iglesias et al. 2015). The Coherent Pixels 
Technique - Temporal Phase Coherence (CPT-TPC) was used to process the data 
during this phase. This technique is instrumental in identifying all possible interfero
gram pairs with perpendicular and temporal baselines concerning a single master 
image, which are 400 m and 100 days, respectively.

The decision to employ the PSI technique for processing CSK images derives from 
the inherent characteristics and advantages of both the imaging system and the 
method itself. CSK, with its high-resolution capabilities, offers a dense network of PSs 
in urban areas, which are particularly suited for PSI analysis. PSI excels in environ
ments with many stable scatterers, like those found in urban settings, allowing for 
precise deformation monitoring over extended periods.

A Temporal Phase Coherence (TPC) threshold of 0.7 was set to ensure high-qual
ity data. Only those points that exceeded this threshold were considered for more 
advanced analyses. Implementing this selective method ensured that the outputs, 
including the Line of Side (LoS) deformation rate map and time series, offered a 
high-precision view of the deformation. The PSI technique used a 10 � 10 m Digital 
Elevation Model (DEM). Also, the 3� 3 multi-looking factor was applied in both 
range and azimuth.

We applied the SBAS technique using the InSAR Scientific Computing 
Environment (ISCE) (Rosen et al. 2011; Agram et al. 2016) and MintPy (Yunjun 
et al. 2019) packages. During the processing of the S1A images, the SNAPHU phase 
unwrapping algorithm (Chen and Zebker 2001), with a threshold of 0.05 selected to 
limit noise and ensure high-quality interferograms, was utilized. The perpendicular 
baseline was fixed at 100 m for S1A images, with a temporal baseline of 90 days. 
These parameters were carefully chosen to facilitate the detection of deformation pat
terns across varying spatial and temporal scales. The SBAS technique was imple
mented using a DEM with a cell resolution of 30 � 30 m and multi-looking with a 
factor of 3� 9 to enhance the coherence and reduce noise. In total, 234 interferogram 
pairs were generated for the S1A dataset.

GEOMATICS, NATURAL HAZARDS AND RISK 7



SBAS is particularly adept at analyzing datasets with more DS points, such as those 
presented in S1A’s coverage in rural and green areas. While it might seem straightfor
ward to process both datasets with SBAS, using PSI for CSK allows us to exploit the 
strengths of each method and dataset combination, ensuring optimal results and a 
comprehensive understanding of the landslides phenomena across varied terrains and 
resolutions.

4.2. Synergic of SAR processed results

Using CSK, PS points, and S1A, DS points synergistically leverage the strengths of 
both satellites. Our data integration approach is outlined in the following four steps:

1. Unification of the measurement geometries in observation points, i.e. projecting 
LoS velocities in the CSK dataset into the direction of S1A LoS velocities.

2. Equalization of the measurement time epochs in the time series of each point in 
different datasets, i.e. performing a temporal interpolation with the LSTM model 
(Figure 5).

3. The spatial datum of different datasets is equalized using the existing GPS sta
tions in the region, chosen as reference geometry.

4. Construct a unique spatial dataset based on interpolating different datasets on a 
regular grid (after hyperparameter tuning by the CNN model), i.e. two datasets 
have been joined and interpolated using the CNN model.

The following details of each of these steps are explained, and the overview flow
chart of the synergic approach is designed below (Figure 2).

To ensure the reproducibility of our study and to facilitate similar investigations in 
high-altitude regions prone to landslides, we utilized a combination of various soft
ware tools and libraries for the implementation of our temporal and spatial interpol
ation methods. The LSTM and CNN models for temporal and spatial interpolations 
were developed using Python, leveraging libraries such as TensorFlow and Keras for 
deep learning, Pandas for data manipulation, and NumPy for numerical operations. 
Additionally, for geospatial analysis and visualization, we used QGIS 3.22 and ArcGIS 
10.8, which provided robust tools for managing and analyzing spatial data. These 
platforms enabled the integration of various datasets and facilitated the creation of 
detailed maps. MATLAB 2022a was employed for further statistical analysis and val
idation, particularly in refining the interpolation results and ensuring their accuracy 
against ground truth data.

4.2.1. Projection with local incident angle
When integrating different datasets, it is crucial to consider the imaging geometry of 
the sensor, specifically factors like the imaging track and the incidence angle. Given 
that both datasets have an ascending geometry, the primary differentiation lies in the 
incidence angle of data collection. Multiple-satellite LoS velocities are given in the 
native incidence angles of both datasets. CSK satellite images at an average angle of 
30 degrees, whereas the S1A images at about 43 degrees. To effectively merge the LoS 
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velocities, they must first be aligned to a shared incidence angle. This is done by 
computing the difference in incidence angles for each pixel between the CSK and 
S1A datasets. The CSK LoS velocities are then projected onto the S1A LoS direction 
at each measurement point as:

VProj
CSK ¼

VCSK

cos a1 − a2ð Þ
(1) 

Figure 2. The flowchart of the synergic approach.
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VProj
CSK is a projected velocity on Sentinel LoS, VCSK is CSK-derived LoS velocity, a1 

and a2 are local incidence angles in Sentinel and CSK, respectively.
Figure 3 schematically depicts the geometry of the S1A incidence angle compared 

to the CSK incidence angle.

4.2.2. Re-coordinate of DS and PS points by GPS station
Because deformations in various datasets are based on different reference points, we 
use the regional GPS station (M21) as standard reference geometry to align the final 
interpolated deformation measurements. The light-blue triangles in Figure 4 are the 
location of the GPS stations. To carry out this re-coordination, firstly, the 3D deform
ation vectors of GPS are projected to the imaging geometry along the LoS of the sat
ellite using the following relationship:

GNSSLos ¼ Dup cos hþ Dns sin hsina − Dew sin hcosa (2) 

Where h represents the incidence angle and a the azimuth angle. Dup, Dns, and 
Dew denote the up-down, north-south, and east-west deformation components, 
respectively. The difference between the GPS station’s time series and the MT-InSAR 
time series is then computed.

Note that in order to avoid the problem of retrieving the real 3D displacement 
field in this study, our analysis applied in both PS/SBAS measurements along the LoS 
geometry which have the vectoral nature, and therefore all the analysis is done on 
this basis. Interestingly, the specific direction of real displacement did not signifi
cantly impact the final results of our analysis.

Figure 3. Schematic of multiple-satellite LoS-velocities geometry.
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4.2.3. Temporal and spatial interpolation
In addressing the temporal and spatial dimensions of landslide deformation analysis, 
this study leverages the advanced capabilities of LSTM and CNN algorithms. Unlike 
traditional interpolation methods, these deep learning algorithms excel in recognizing 
complex patterns and ensuring high precision in displacement measurements. The 
choice of LSTM is justified by its proficiency in capturing long-term dependencies 
within temporal sequences, a crucial aspect for understanding the dynamics of land
slide movements. Similarly, CNN’s effectiveness in spatial interpolation stems from its 
ability to preserve essential spatial features within displacement fields.

We utilized two distinct SAR datasets—CSK processed via the PSI technique and 
S1A processed with the SBAS method—to generate cumulative displacement data for 
a study area. Key steps include synchronizing the time intervals of the CSK and S1A 
datasets to a uniform 12-day cycle (mirroring the S1A acquisition frequency) with the 
same start and end date (obtained by the intersection of S1A and CSK acquisition 
time), followed by temporal interpolation of these datasets by LSTM algorithms. 
These interpolated datasets then serve as input for CNN algorithms to conduct spatial 
interpolation, culminating in generating a time series of displacements. This proced
ure ultimately yields a final velocity map via a synergic approach. To validate the 
accuracy and improvements achieved by this method, time series displacement data 
from nine GPS stations in the region are employed as ground truth references.

This uniform temporal spacing does not imply an alteration of the S1 dataset, 
which inherently aligns with the 12-day cadence, except in cases of missing 

Figure 4. The location of eleven GPS stations (M01 and M21 used as reference points and others 
used for validation) in the study area.
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acquisitions (For example, the first date of acquisition, which is equivalent to 12/03/ 
2015, is comparable to the first date of acquisition of CSA images.). Conversely, the 
CSK data are subjected to temporal interpolation to coincide with the S1 acquisition 
dates, facilitating a synchronized comparison. It is crucial to acknowledge the differ
ential interpolation effect on the CSK dataset and its potential implications for inter
polation accuracy. This distinction underscores the nuanced approach taken to merge 
these datasets while maintaining their integrity and the fidelity of their respective 
measurements.

While there are indeed many deep learning algorithms available, the selection 
should always be based on the nature of the data and its specific challenges. For 
InSAR interpolation, where we deal with complex temporal sequences and intricate 
spatial patterns, the combination of LSTM and CNN provides a robust and effective 
solution. Their combined use ensures a comprehensive capture of the intricate tem
poral trends and spatial patterns inherent in InSAR data, thus enabling a more accur
ate and detailed interpolation.

Temporal interpolation using LSTM: The first stage in our methodology concerns 
addressing temporal discrepancies among the datasets. This step is crucial to ensure 
we compare the same temporal time steps and intervals across all datasets. We used 
LSTM, a recurrent neural network apt for managing time series data.

Introduced by Hochreiter & Schmidhuber (Hochreiter and Schmidhuber 1996), 
LSTM is tailored to learn long-term dependencies and counters the vanishing gradi
ent issue. It consists of a cell state and three gates (forget, input, and output). Each 
gate uses a sigmoid activation function, which confines the output between 0 and 1, 
optimizing gate operations.

The primary strength of LSTM lies in its ability to process sequential data. 
InSAR temporal data is sequential in nature, recording cumulative deformation 
over a series of time points. LSTM can remember patterns over long sequences 
and is less susceptible to the vanishing gradient problem, making it suitable for 
detecting trends or patterns over extended periods (Kong et al. 2018). LSTMs can 
adaptively learn the temporal dependencies of InSAR data. The gates in the LSTM 
units, such as the forget gate, input gate, and output gate, allow the network to 
learn and decide what information to store, update, or discard. This ensures that 
only relevant temporal features contributing to the deformation are considered 
(Monner and Reggia 2012). Unlike many other algorithms, LSTMs can generalize 
patterns across different time scales. This property is beneficial when dealing with 
InSAR data with deformations occurring at varied intervals based on the CSK and 
S1A timesteps. LSTM gates information and equations can be found in Liu et al. 
(2022).

This study addresses the challenge of integrating S1A and CSK datasets, character
ized by differing acquisition frequencies, into a unified analysis framework. By 
employing the LSTM algorithm, we bridged the temporal gaps between these datasets, 
standardizing the measurement intervals to a consistent twelve-day cycle, reflective of 
S1A’s operational frequency. As depicted in Figure 5, this temporal harmonization 
leverages LSTM’s capabilities in time series prediction to align CSK’s cumulative 
deformation measurements with S1A’s temporal grid.
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Here, finding the time interval and start and end date of temporal interpolation 
was done at the time interface of data collection. Assuming the time series of each 
pixel is in the CSK dataset as tCSK

N1
¼ t1, t2, :::, tN1f g, in the S1A dataset as tS1A

N2
¼

t1, t2, :::, tN2f g, the intersection of these two datasets is defined as tN ¼ tCSK
N1
\

tS1A
N2
¼ t1, t2, :::, tNf g: In other words, to perform this temporal interpolation, we have 

considered the start and end times of the interpolation as max minðtcskÞ, minðtS1AÞ
� �

and min maxðtcskÞ, maxðtS1AÞ
� �

, respectively. Then, the time intervals from the start 
date to the final date are set as 12 days. Note that in this temporal interpolation, both 
S1A and CSK data are interpolated on the new temporal grid (Figure 5).

The LSTM can be utilized here by training the network to find and predict the 
missing data in the new time-step (tN), which we determine as the same time interval 
for all datasets based on learning of all old time-steps for each dataset separately. 
Then, we can feed the LSTM with actual data up to the time to generate the value 
for the missing time-step.

In our study, after hyperparameter tuning and training the LSTM model on 
the all-available time steps of each dataset, it was used to predict deformation for the 
new time-step (tN). This approach allowed all two datasets to be synchronized to the 
same timeline, ensuring consistency and comparability across the datasets. Table 2

Figure 5. The methodology is to find the time interval and start and end date of temporal inter
polation by the time interface of data collection.
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shows the important parameter we used for the temporal interpolation by the LSTM 
model after hyperparameter tuning. The presented LSTM model is configured with 
three layers, indicative of a design that seeks to balance depth with computational 
efficiency. Each layer houses 50 units, a moderate number that suggests an attempt to 
capture intricate temporal patterns while still retaining a manageable level of model 
complexity and computational demand. This structure enables the model to learn 
from and make predictions based on time-series data, which is essential for the task 
of temporal interpolation in this study. The careful calibration of the number of 
layers and units per layer reflects an effort to optimize the model’s performance with
out succumbing to the problems of overfitting, especially critical in scenarios where 
training data may be limited or highly variable.

Regularization techniques are employed robustly within the LSTM architecture to 
further mitigate overfitting. A dropout rate and a recurrent dropout rate of 0.2 pro
vide a systematic approach to reducing the model’s complexity during training, effect
ively simplifying the model by ignoring a subset of the neurons. The use of the 
Adam optimizer with a specific learning rate of 0.008 is a strategic choice, as Adam 
is known for its adaptive learning capabilities and is adept at managing sparse gra
dients. The batch size is set at 32, a standard in the industry, balancing the benefits 
of stochastic gradient descent with computational efficiency. Training over 86 epochs, 
the model undergoes a thorough learning process, likely determined through trial and 
error to be the optimal duration for convergence without excessive computation. This 
careful selection of hyperparameters, including the learning rate and number of 
epochs, suggests a comprehensive fine-tuning process, tailoring the model to the 
unique requirements of accurately capturing and interpreting the temporal evolution 
of landslide deformation.

Spatial interpolation using CNN: With the two different satellite-derived datasets 
(CSK and S1A), we applied a robust and adaptive CNN to solve the spatial interpol
ation problem.

The structure and functioning of a CNN allow it to analyze and interpret spatial 
data. It features three types of layers, each bringing its unique functionalities to the 
fore: convolutional layers, pooling layers, and fully connected layers. In conjunction, 
they facilitate a robust understanding of spatial patterns in data and are, therefore, 
aptly suited for spatial interpolation tasks.

CNNs excel in hierarchical feature learning. Given the spatial nature of InSAR 
data, there are likely local patterns (like specific deformation signatures) and more 
global trends (like overall landslides movement). CNNs, with their convolutional 

Table 2. Hyperparameter and parameter used in 
LSTM model for temporal interpolation.
Parameter Value

Number of layers 3
Units per layer 50
Dropout rate 0.2
Recurrent Dropout rate 0.2
Optimizer Adam
Learning rate 0.008
Batch size 32
Number of epochs 86
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layers, can extract these multi-level spatial features effectively (Zhang et al. 2020). 
One of the strengths of CNNs is their ability to recognize patterns regardless of their 
position in the input space. For InSAR spatial data, this means that a specific deform
ation pattern can be recognized by the CNN irrespective of where it appears in the 
datasets obtained from CSK and S1A (Brengman and Barnhart 2021). The architec
ture of CNNs involves sharing weights across spatial locations. This not only reduces 
the number of parameters, making the model more efficient, but also ensures that a 
particular feature can be detected anywhere in the input, further emphasizing its 
application for spatial interpolation of InSAR data.

CNN layer information, definitions, and equations can be found in Ghosh et al. 
(2020).

In our study, the data from S1A and CSK were resampled into a pre-defined grid 
to ensure uniformity and consistency across datasets. The resampling was an essential 
preparatory step to make the data amenable to synergistic integration. As mentioned 
before, the spatial interpolation utilizing a CNN was performed on structured data 
extracted and pre-processed from S1A and CSK datasets rather than directly on 
imagery. We adapted the Bilinear Interpolation technique (Peng et al. 2021) to suit 
our dataset’s unique structure for the critical step of resampling the data extracted 
from CSK and S1A images and compiled into Excel files. While traditionally applied 
to pixel values in images, the principles of Bilinear Interpolation were creatively 
repurposed to calculate new cumulative deformation values based on a weighted aver
age of spatially adjacent data points within our Excel datasets.

To facilitate the CNN algorithm’s application, this data was resampled into a pre- 
defined grid, ensuring that the datasets could be uniformly and consistently integrated 
despite originating from different satellite sources. The objective was to align the spa
tial properties of these datasets, creating a conducive environment for the CNN 
model to predict spatial deformation patterns accurately. It’s essential to note that the 
pre-processing steps, including resampling, were geared towards achieving homogen
eity in the input data for practical spatial analysis by the CNN model. While not 
visualized as images in our documentation, the resampled data served as the founda
tion for our spatial interpolation analysis, ultimately contributing to our comprehen
sive understanding of landslide kinematics.

Rather than using a simple weighted sum, which might compromise on retaining 
detailed features from each dataset, we utilized the convolutional layers of the CNN 
model. With its hierarchy of convolutional filters, CNN efficiently combined the data
sets by extracting and preserving crucial features from each source. This approach 
ensured a comprehensive representation of the combined datasets, retaining unique 
details while leveraging the strengths of each dataset.

Boundaries play a crucial role in spatial interpolation, particularly in geospatial 
datasets like InSAR. The ability of CNNs to discern boundaries is attributed to the 
convolution operation, which can detect abrupt changes or transitions in spatial data. 
When a CNN processes geospatial data, the convolutional filters, especially those in 
the initial layers, act as edge detectors. These filters are trained to recognize differen
ces in neighboring pixels or cells, marking out boundaries or transitions. As the spa
tial data progresses through more profound network layers, these detected boundaries 
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become integral features that the subsequent layers use to guide the spatial interpol
ation process. Furthermore, pooling layers within CNNs by Downsampling the input 
ensures that the model can recognize broader spatial patterns and not just localized 
features. This balance of recognizing minute details while being aware of larger spatial 
contexts aids CNN in accurately defining boundaries and executing spatial interpol
ation without introducing artifacts or unrealistic transitions.

Based on the learned spatial patterns, the fully connected layer assigns an interpo
lated value to each specific location on the optimized 2D grid. The multiple layers of 
the CNN model facilitated high-precision estimation of deformation in unobserved 
locations, culminating in a comprehensive understanding of our spatial domain. The 
critical hyperparameter of the size of the 2D grid was determined through an exten
sive cross-validation process.

The final act of this grand play was the CNN model performing spatial interpol
ation across our entire dataset, using the optimal grid size. This process concluded 
with generating high-precision deformation predictions for the spatial region of 
interest.

It is worth noting that training the CNN involves adjusting its parameters, which 
are the weights and biases of the filters in the convolutional layers and the connec
tions in the fully connected layer. This is done via a method called backpropagation, 
which computes the gradient of the loss function concerning the network parameters 
and applies an optimization algorithm named Adam to minimize the loss function. 
Through these steps, the model learns the optimal parameters to estimate deform
ation in the spatial domain with high precision on the optimized 2D grid.

In Table 3, you can find the important parameter we used for the spatial interpol
ation by the CNN model. The CNN specified in the table is structured with three convo
lutional layers, indicating a design to capture complex features from the input data at 
multiple levels of abstraction. With 64 filters in each layer, the network is capable of 
identifying a wide array of features within the data, which could be essential for nuanced 
detection or classification tasks. The chosen filter size of 5� 5 strikes a balance between 
detail and computational efficiency, allowing the CNN to effectively process spatial 
information without becoming bogged down by an excessive computational load. The 
application of ’Max’ pooling suggests an intent to reduce dimensionality and prevent 
overfitting by summarizing the most prominent features within a pool window, thus 
ensuring the most significant attributes are retained for subsequent layers.

Table 3. Hyperparameter and parameter used in CNN model 
for spatial interpolation.
Parameter/Hyperparameter Value

Convolutional layers 3
Number of layer’s filters 64
Filter size 5� 5
Pooling type ’Max’
Activation function ’ReLU’
Optimizer ’Adam’
Loss function ’Mean Squared Error’
Batch size 32
Epochs 100
Grid dimension 20.22 m
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The CNN utilizes the ‘ReLU’ activation function to introduce non-linearity, a cru
cial feature for enabling the model to capture complex patterns and make predictions 
beyond the scope of linear models. The ‘Adam’ optimizer reflects a choice for adap
tively tuning the learning rate to effectively handle a wide range of data dynamics. 
With ‘Mean Squared Error’ as the loss function, the model seems to be geared toward 
regression tasks, where minimizing the average of the squares of the differences 
between predicted and actual values is critical. Training is conducted with a batch 
size of 32, providing a compromise between the accuracy of the gradient estimate 
and memory efficiency. Over 100 epochs, this training regime allows the CNN to 
refine its weights thoroughly, adjusting and improving from the feedback of the data 
iteratively. Lastly, the specified grid dimension of 20.22 m indicates the spatial granu
larity of the analysis, a crucial factor in applications like remote sensing, where it 
determines the scale at which phenomena are observed and predictions are made.

The success of deep learning models hinges on systematic training and robust val
idation methodologies. For our study, we adopted a comprehensive process to ensure 
the LSTM and CNN models effectively analyze and interpolate the missing data of 
the new time frame and also the new boundary of the InSAR data. The dataset was 
partitioned into training, validation, and test sets, adopting an 80-10-10 split. The 
training set formed the foundational bedrock upon which our LSTM model was ini
tially trained. Given the time-series nature of our dataset, LSTM was trained using 
sequences of cumulative deformation data, making certain the model grasped the 
inherent temporal dependencies and patterns. The sequence length was optimized 
(tN) to maintain a harmony between recognizing long-term temporal trends and 
ensuring computational feasibility.

Upon extracting temporal patterns using LSTM, the CNN model took over to 
understand the spatial intricacies of the deformation. It analyzed spatial data chunks, 
ensuring a keen understanding of localized and expansive spatial deformation pat
terns. The convolutional layers, with varying kernel sizes, were trained to discern and 
differentiate between granular features and overarching spatial trends. Incorporated 
within both models were regularization strategies, like dropout layers, to avert overfit
ting. Early stopping, which monitored the validation loss, was another measure taken; 
curtailing the training once overfitting signs became evident, thus reinforcing model 
generalizability.

The validation set, constituting 10% of the data, acted as a periodic checkpoint 
throughout the training phase. After each epoch, the LSTM and the CNN models 
were assessed against this validation set. This iterative training and validation 
approach ascertained that the models were not only aligning with the training data 
nuances but also proficiently generalizing to novel data. Conclusively, the models 
were tested on the reserved 10% dataset upon reaching an optimized state, offering 
an extensive performance evaluation.

4.2.4. Re-projection synergic data with GPS stations
In the final stages of our methodology, after executing temporal interpolation via 
LSTM and spatial interpolation through CNN, we integrate our PS and DS points to 
form a unified grid file. Each data point is now characterized by its unique space, 
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time, and associated velocity coordinates, which have been determined with high pre
cision through our robust interpolation. This critical unification, after having navi
gated through the complexities of diverse satellite datasets and irregular time and 
space intervals, is a significant step toward creating our final velocity map.

Following this, it is necessary to integrate the GPS station (M01) located in the sta
ble area into our synthesized dataset. The GPS measurements serve as the bedrock 
for our spatial coordination, providing a reliable and accurate reference frame. We 
utilize these GPS readings to co-reference our DS and PS points, rectifying and refin
ing our velocity estimates. The GPS data integration and the subsequent coordinate 
transformation allow for a spatially harmonized and consistent final velocity map. 
Indeed, to align Synergic and GPS datasets in same reference frames, the offset 
between them must be removed. So, for a selected stable GPS site, we calculate the 
Synergic-derived LoS values for pixels located within a circle radius around it. Then, 
the velocity of this GPS site is projected onto the LoS according to local incidence 
angles. So, we estimate a mean Synergic LoS rate inside a circle. Finally, the averaged 
value of offsets between GPS and Synergic is subtracted from all the Synergic 
observations.

5. Results

5.1. Mean deformation rate maps

Employing the SBAS technique with the S1A operating in the C-band, we noted con
siderable movement rates in the central region of the instability zone. Meanwhile, the 
upper sector exhibited lower rates, yet these rates were still indicative of significant 
movement (Figure 6). As far as the eastern sector is concerned, the most significant 
deformation rates were recorded in the upper sector, in correspondence, in this case, 
to the high density of buildings. It is noticed that the mean deformation rate maps 
obtained from SBAS and PSI were provided before spatial and temporal 
interpolation.

Complementing these findings, the CSK dataset, leveraging the X-band’s high spa
tial resolution, provided more detail-oriented insights into landslide kinematics. Even 
though it operates with a narrower swath, the precise spatial information offered by 
the X-band presented a detailed picture of localized deformation patterns. The ability 
to capture minute changes in the urban landscapes was invaluable in characterizing 
the landslides’ boundaries and internal kinematics (Figure 7). As in previous out
comes, although in this case, the targets are only concentrated at the urban area 
(characteristic of the X-band), again the highest deformation rates were found in the 
central sector at the university campus. However, the deformation in highway struc
ture did not appear on this map due to the type of road, characterized by the absence 
of guardrails, which would ensure that the electromagnetic signal would return to the 
sensor and thus be identified.

These distinct datasets converged to provide a comprehensive view of landslide 
kinematics, each contributing a unique perspective. In fact, on the one hand, it is 
possible to identify two distinct phenomena, one in the westernmost and the other in 
the easternmost sector, characterized at their respective crowns by slightly different 
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deformation rates (indicate velocities). The distinction is also confirmed by the differ
ence in sign found in the evaluation of the deformation rates, negative for the west
ernmost phenomenon and positive for the easternmost phenomenon, which also 
confirms the deformation directions of the phenomena. In fact, as is well known, for 
ascending data, positive values move toward the satellite in the East–West direction, 
while negative data moves away from the satellite in the West–East direction. Finally, 
the existence of the two different phenomena would seem to be further confirmed by 
the significant deformation rates found at the toe zone. Indeed, in this area, the con
fluence of the volumes involved in the two distinct phenomena generates an overlap 
of effects that gives rise to higher deformation rates. The observed variations across 
datasets underscore the importance of using multi-sensor and multi-technique 
approaches for a fundamental understanding of landslide phenomena.

5.2. Histogram of the velocity point scatterers

The data obtained from the PSI technique on CSK images represents the distribution 
of PS points at different velocities. Based on the graph obtained from this data 
(Figure 8a), it is clear that velocities range from −33 mm/yr to 14 mm/yr. Negative 
values signify eastward movement, while positive values represent westward 

Figure 6. The mean deformation rate map along the LoS in ascending track according to 
SBAS (S1A).
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Figure 7. The mean deformation rate maps along the LoS in ascending track according to 
PSI (CSK).

Figure 8. The histogram of scatterer points based on velocity includes a) PSI_CSK and b) 
SBAS_S1A.
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movement. The highest frequency of PS points occurs at a velocity of −2mm/yr, sug
gesting that many features are moving at this velocity.

Fewer PS points are observed at both very high and very low velocities. For 
example, there is only one PS point at a velocity of −33 mm/yr and one at 10 mm/yr. 
This indicates that fewer geological features are moving at these extreme velocities. 
Most PS points (approximately 75.5%) fall within the −13 to 0 mm/yr velocity range. 
This suggests that most of the geological features under consideration are moving at 
these velocities. There is an evident skewness towards negative velocities, suggesting 
that most of the observed features move in the direction associated with these nega
tive values.

As shown in Figure 8(b), obtained from S1A, respectively, provides the distribution 
of DS points across different velocities.

As with the previous data, velocities range from −28 mm/yr to 14 mm/yr. The 
negative and positive velocities suggest movement in two (west-east and east-west) 
directions, respectively. The highest number of DS points occurs at a velocity of 
−6 mm/yr, indicating that many features are moving at this velocity. The second 
highest number of DS points is at −2 mm/yr.

There are fewer DS points at both high positive and high negative velocities. Most 
DS points (i.e. approximately 74.2%) are concentrated within the velocity range from 
−13 to 0 mm/yr. This could indicate that the majority of features in the studied area 
are moving within these velocities. Like the PS data, there is an evident skewness 
towards negative velocities, indicating that most observed features are moving in the 
direction associated with these negative values.

5.3. Synergic mean deformation rate maps

A synergistic mean deformation rate map was generated upon integrating the individ
ual results by applying spatial and temporal interpolation methods. The results deriv
ing from the combination of the different processes allow some considerations to be 
made: on the one hand, the area affected by significant deformation rates could iden
tify two different landslides, a first one with an SW-NE direction, characterized by 
greater deformation rates in the central sector, involving the university campus, a 
second landslide, on the other hand, with an S-N direction with significant deform
ation rates in the highest sector; however, a consideration lies in the results found in 
the downstream sector, where the positive values found would identify the accumula
tion zone of both landslides identified (Figure 9, left-top corner).

This collective approach enriched the spatial characteristics of the mean deform
ation map, enhancing the boundary of landslides, particularly in areas where the indi
vidual datasets may have been less effective alone. The integrated mean deformation 
rate map, depicting the spatial distribution of velocity changes over time, presented a 
unified perspective of landslide kinematics in both urban and rural landscapes. It 
highlighted potential areas of instability, tracing the kinematic evolution of these 
landslides and offering invaluable insights for risk assessment and landslides manage
ment (Figure 9).
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As can be seen in Figure 10, the highest number of points occurs at a velocity of 
−3 mm/yr, suggesting that many features are moving at this velocity. The second 
highest number of points are at velocities −2 and −3 mm/yr, respectively. A substan
tial majority of points are concentrated within the velocity range from about −15 to 
0 mm/yr. Specifically, 763 out of a total of 1010 points, or about 75.5%, are in this 
interval. This suggests that most of the geological features in the study area are mov
ing at these velocities.

For a better understanding of the kinematic and temporal variation of the synergic 
result, Figure 11 has been provided. The left side of Figure 11 showcases a Synergic 
Velocity Map (with more details, coordinate and scale bar illustrated in Figure 9). 
This is overlaid on an aerial view of the area of interest and is marked with areas A, 
B, C, and D. Each area has a distinct color set based on the velocity scale presented 
in the legend.

� Area A: This is the area where the above two phenomena meet, causing significant 
deformation rates, probably due to overlapping effects. From a geological point of 

Figure 9. The mean deformation rate maps along the LoS in ascending track according to synergic 
datasets, including PSI (CSK) and SBAS (S1A).
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Figure 10. The histogram of scatterer points is based on the velocity of the synergic approach.

Figure 11. Temporal analysis of cumulative deformation obtained from Synergic approach.
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view, the convoyed materials are at the contact between the Turi formation and 
the slope deposit.

� Area B: In the westernmost landslides’ uppermost (crowning) sector, reduced 
deformation rates can be observed, indicating a more modest landslide activity 
involving materials (Turi Formation) that are not so poor from a mechanical point 
of view.

� Area C: In the crowning sector of the easternmost landslides, on the other hand, 
moderate rates of deformation are observed, thus indicating a range of activity. 
Confirming this also from a geological point of view, materials with definitely 
poorer mechanical properties classified as slope deposits are involved. The mostly 
lower velocities and the upward trend observed in the time-series graph suggest 
that this area is experiencing some recovery or rebound.

� Area D: Significant, albeit positive, values of deformation rates are recorded in this 
area. We are at the foot of landslide phenomena where materials are present from 
a mechanical point of view poorer. Also, from a morphological point of view, the 
sector is uplifting, thus indicating a possible rotational sliding phenomenon 
(Cascini et al. 2009).

Landslides can exhibit varied deformation patterns based on their stage of activity 
and the type of movement (e.g. translational, rotational, and block slides). The 
regions of rapid deformation (like Area A) represent areas of potential active sliding, 
where continuous monitoring would be crucial. Areas with varied deformation rates 
(like Area B) might indicate intermittent sliding zones or the base of landslides where 
deposition and compression occur. The uplift observed in Area C could be a sign of 
compensational uplift from a nearby sliding area.

In general, The region under observation is experiencing varied kinematics of 
deformation. While areas like A and D are primarily deforming downwards, Area C 
displays signs of uplift. Area B, on the other hand, remains relatively stable but with 
periodic fluctuations, which could be seasonal.

5.4. Validation by GPS stations

With the availability of measurements from nine different GPS stations, we can con
duct a more detailed comparison between the InSAR-derived deformation rates and 
the ground truth data. Each GPS station provides information, as they are located in 
different areas with varying landslide behaviours and conditions. This comparative 
analysis underscores the potential of our synergic approach to provide a comprehen
sive understanding of landslide kinematics, as it integrates the strengths of the indi
vidual datasets and techniques.

Table 4 presents a comparative analysis between different techniques—SBAS 
(S1A), PSI (CSK), and the synergic approach—and the actual values measured at the 
GPS stations at nine locations. Each row represents a unique station, while each col
umn specifies the deformation rates averaged across the time series that each method 
estimated at these stations. With its integrative ability, the synergic approach 
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consistently provides estimates that harmonize the values derived from the other 
techniques, demonstrating its capacity to assimilate their collective strengths.

For a better understanding of the temporal behavior of true GPS measurements 
and the time series obtained by CSK, S1A, and the Synergic Approach, Figure 12 has 
been provided. In this Figure, the trends of all four data sources in M09, M10, M15, 
M18, M20, and M23 stations appear reasonably consistent, indicating good agreement 
between the Synergic approach, CSK, S1A, and true GPS measurements. GPS meas
urements and the Synergic approach results show very close matches in these stations, 
suggesting that the Synergic approach provided a reliable estimation of ground 
deformation, closely mirroring the GPS readings. The results obtained from CSK and 
S1A data tend to be slightly above the GPS and Synergic lines but follow a similar 
trend, indicating some systematic offset or discrepancy but retaining the overall 
deformation pattern.

In station M17, the Synergic approach and GPS closely align, with S1A also show
ing a similar trend but with an offset. However, the CSK data starts aligning with the 
others but diverges around mid-2017. This divergence could be due to errors or arti
facts in the CSK dataset or actual differences in the deformation detected by CSK.

In station M19, an attractive station as the Synergic, CSK, and S1A measurements 
oscillate and do not maintain a consistent trend throughout the period. The GPS 
data, however, maintains a relatively consistent downward trend. This discrepancy 
might suggest that the satellite-derived measurements (Synergic Approach, CSK, and 
S1A) could be influenced by factors that the GPS is not, or vice versa. It might be 
worth further investigating the causes of these oscillations.

In station M22, while all datasets start with an aligned trend, post-mid-2017, there 
is a clear divergence between the GPS/Synergic approach results and the CSK/S1A 
data results. This divergence could again be attributed to errors, artifacts, or actual 
variations in the deformation captured by the different methodologies.

In general, In most stations, there is a good agreement between the Synergic 
approach and the direct GPS measurements. This suggests that the Synergic 
approach is reliable for capturing the broad trends of ground deformation. There 
are instances where the CSK and S1A datasets show slight to moderate discrepan
cies compared to the GPS data. These differences might be due to the satellite 
data’s inherent limitations, differences in processing, or actual variations in 

Table 4. Comparison of deformation rates (mm/year) derived from SBAS (S1A), PSI (CSK), and the 
synergic approach, with actual values measured at nine GPS stations.

GPS station
CSK 

(mm/year) S-1A (mm/year) Synergic  (mm/year) Measured by GPS (mm/year)

M09 −4 −5 −6 −6
M10 −4 −10 −13 −12
M15 −2 −15 −17 −17
M17 −8 −2 −4 −5
M18 −9 −5 −7 −6
M19 −4 −3 −5 −4
M20 −7 −4 −7 −6
M22 −6 −5 −3 −2
M23 −11 −6 −9 −10
RMSE 6.05 2.33 0.88 _

GEOMATICS, NATURAL HAZARDS AND RISK 25



deformation patterns captured by these satellites based on the location of the case 
study (urban and green area).

Note that, despite nine GPS points seem to be located in urban areas, which are 
expected to be more consistent with the deformation results exported from CSK data, 
however, upon comparing Figure 4 (which shows the locations of GPS stations) with 
Figure 7 (depicting measurement CSK points), it becomes evident that the CSK observa
tions are notably absent in most of the GPS stations. Consequently, interpolation becomes 
necessary to construct CSK time series data, relying on neighboring points. Interestingly, 
the effect of this phenomenon is significantly less pronounced in the case of S1A observa
tions. For instance, this difference is more pronounced at stations M19 and M20, where 
interpolation occurs over greater spatial distances. Conversely, the difference is much less 
at points like M22 and M23, where the interpolation spatial distance is smaller. Also, as 

Figure 12. Comparison of time series deformation across nine GPS stations using Synergic 
approach, CSK, S1A, and direct GPS measurements.
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mentioned before, the proximity of GPS observations to S1A observations is likely due to 
the reference setting of the angles in the Sentinel satellite’s imaging geometry, facilitating 
the comparison of time series data along the satellite’s LoS.

Table 5 offers a detailed comparison of the percentage of cross-correlation from three 
distinct satellite-based techniques—SBAS (S1A), PSI (CSK), and the synergic 
approach—with actual values measured at nine GPS stations. A closer look at the data 
for individual GPS stations reveals that For station M09, the Synergic approach outper
forms the others with a correlation of 98.46%, closely followed by CSK at 97.98% and 
S1A at 97.90%. M10 and M15 demonstrate remarkable correlations across all methods, 
especially the Synergic approach that peaks at 99.52% for M10 and 99.76% for M15. At 
station M17, there is a noticeable variation, with CSK at 98.57%, the Synergic approach 
at 96.95%, and S1A lagging at 94.52%. The correlations for stations M18 and M19 are 
tightly packed, with all values hovering around the high 97% to 98% range. M20 show
cases a strong performance for the Synergic approach at 98.70%. However, station M22 
presents a stark deviation, especially for CSK, which dips to 71.40%, whereas S1A and 
the Synergic approach maintain a higher correlation of 94.68% and 92.19%, respectively. 
Lastly, M23 exhibits excellent correlations across the board, led by CSK at 99.24%.

The mean values, representing the average correlation across all nine stations, fur
ther underscore the performance of each method. While individual station data 
showed variations, the Synergic approach offers the highest mean correlation at 
97.83% on average. S1A follows closely, with an average of 96.57%. The CSK method, 
despite its strong performance in several stations, is pulled down by its dip in M22, 
leading to an overall mean correlation of 95.64%.

In conclusion, the table underscores the efficacy of the Synergic approach in corre
lating with actual GPS measurements. It frequently rivals or surpasses the perform
ance of both S1A and CSK, especially when considering the mean values. The data 
serves as a testament to the evolving precision of satellite-based deformation measure
ment techniques when benchmarked against ground-truth GPS data.

Table 6 shows the RMSE values obtained from time series’ results of different 
methods and GPS observations. As it is evident, the time series deformation obtained 
using the Synergic Approach is more accurate than the other CSK and S1A datasets. 
In the Synergic Approach, the mean RMSE value was calculated as 0.77 mm, which is 
more accurate than the mean RMSE of the other methods.

Table 5. Comparison of the percentage of cross-correlation from S1A, CSK, and the synergic 
approach, with actual values measured at nine GPS stations.

GPS station

Cross-correlation w.r.t GPS

CSK S1A Synergic

M09 97.98% 97.90% 98.46%
M10 99.10% 99.32% 99.52%
M15 99.86% 99.74% 99.76%
M17 98.57% 94.52% 96.95%
M18 98.81% 98.55% 98.34%
M19 97.34% 96.69% 97.24%
M20 98.43% 97.71% 98.70%
M22 71.40% 94.68% 92.19%
M23 99.24% 99.05% 99.29%
Mean 95.64% 96.57% 97.83%
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Our study found that integrating the S1A and CSK datasets with the SBAS and PSI 
techniques provided a comprehensive and precise perspective on landslide kinematics.

A notable limitation surfaced with the PSI technique when applied to the CSK data
set; it was less effective in detecting PS along highways and in green and rural environ
ments. Using the synergistic approach provided an enhanced understanding of the 
landslides’ direction and deformation pattern, reflecting the study area’s geological set
ting. It accurately depicted the prevalent movement in the west-east direction and pro
vided detailed information on the varying deformation rates across different locations.

Comparing our findings with prior research, the synergistic approach stood out due to 
its improved accuracy in investigating and analyzing landslides kinematics. Previous studies 
typically relied on a single-source SAR dataset and used a single processing technique, 
which may need to be more comprehensive to capture the complex kinematics of land
slides. However, our synergistic approach proved more robust, yielding deformation rate 
estimates closer to the actual values measured by GPS stations. Based on the RMSE 
obtained from each technique and each dataset in comparison to the synergic approach, 
we have achieved an average improvement of 73% in the RMSE when compared to the 
measured values of the GPS station. The RMSE obtained from the synergic approach was 
improved compared with SBAS (S1A) and PSI (CSK) with 62.23% and 85.50%, 
respectively.

Furthermore, the observed correlation between landslide deformation rates and 
areas with high densities of buildings underscores the need for considering geoha
zards in urban planning and development.

5.5. Comparison between different interpolation results

This section offers a detailed comparison with synergic approach, illustrating the 
superior accuracy of deep learning approaches, especially when corroborated by GPS 
data. This sophisticated analysis highlights the advantages of using LSTM and CNN 
for landslides and sets a new benchmark for future research in this domain.

We evaluate the outcoming synergic results with two simple and well-known inter
polation techniques, namely nearest neighbour, and kriging, to judge worth and com
pare the performances of our proposed method (Figure 13).

Table 6. Comparison of RMSE obtained from S1A, CSK time series deformation, and the synergic 
approach, with actual values measured at nine GPS stations.

GPS station

RSEM w.r.t GPS

CSK S1A Synergic

M09 1.12 0.89 0.40
M10 2.30 1.44 0.94
M15 2.41 1.43 0.47
M17 2.05 2.31 0.88
M18 3.46 0.75 0.93
M19 2.97 0.76 0.90
M20 1.83 1.60 0.79
M22 0.80 2.18 0.77
M23 1.96 3.07 0.88
Mean 2.10 1.60 0.77
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Table 7 shows the RMSE values obtained from time series’ results of different 
aforementioned methods and GPS observations. As it is evident, the time series 
deformation obtained using the Synergic Approach is very close to GPS observations. 
In the Synergic Approach, the mean RMSE value was calculated as 0.77 mm, which is 
more accurate than the mean RMSE of the other interpolation methods (Table 7).

6. Discussion

This study successfully integrated SAR satellite data and deep learning models to 
investigate active landslides in Cuenca, Ecuador, demonstrating the potential of com
bining advanced remote sensing techniques and different SAR imagery with machine 
learning for geohazard monitoring. However, it is crucial to critically analyze the 

Figure 13. Comparison of time series deformation across nine GPS stations using synergic, nearest- 
neighbour, kriging interpolations, and direct GPS measurements.
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strengths and limitations of our approach to provide a comprehensive understanding 
of its implications and prospects.

The primary strength of our approach lies in the synergistic use of multi-source 
SAR datasets (S1A and CSK) and advanced deep learning algorithms (LSTM and 
CNN). By leveraging the complementary strengths of the C-band and X-band 
imagery, we achieved a more comprehensive spatial and temporal understanding of 
the landslide dynamics. The LSTM model effectively addressed the temporal discrep
ancies between the datasets, ensuring a uniform 12-day time interval for analysis. The 
CNN model facilitated high-precision spatial interpolation, enabling us to generate 
detailed deformation maps with improved accuracy. This integration significantly 
enhances the capability to monitor slow-moving landslides in both urban and rural 
areas, as highlighted by previous studies (Crosetto et al. 2016; Di Napoli et al. 2023; 
Khalili et al. 2023).

The utilization of MT-InSAR techniques, such as PSI and SBAS, has allowed for 
the continuous monitoring of surface deformations with high precision. PSI, in par
ticular, is adept at detecting small movements over long periods, especially in urban 
areas where stable scatterers like buildings are prevalent (Ferretti et al. 2001; 
Colesanti et al. 2003). On the other hand, SBAS is more effective in rural or vegetated 
areas where distributed scatterers are more common (Berardino et al. 2002). By com
bining these techniques with deep learning models, we have capitalized on the 
strengths of both methods, thereby providing a more holistic view of the landslide 
processes. Researchers have been trying to combine the two techniques for processing 
PSI and SBAS interferometric data for several years. On the one side by implement
ing processing chains as in the case of Ferretti et al. (2011) and Hooper (2008), and 
on the other side by using the data derived from different processing in a combined 
manner by integration, but in post-processing (Gama et al. 2019). In this work, an 
attempt was made to combine the results of the two techniques through the applica
tion of ML algorithms to obtain more robust results to better describe from a spatial 
and temporal point of view the phenomenon at hand.

Despite the promising results, our approach has certain limitations. Firstly, the 
accuracy of the interpolated results depends on the quality and density of the input 
data. In regions with sparse data points, the interpolation accuracy may decrease, 
potentially leading to less reliable deformation estimates. The temporal and spatial 

Table 7. Comparison of RMSE obtained from nearest-neighbour, Kriging interpolations, and the 
synergic approach, with actual values measured at nine GPS stations.

GPS station

RSEM w.r.t GPS

Nearest-neighbor Kriging Synergic

M09 1.56 0.59 0.40
M10 3.31 1.38 0.94
M15 5.01 1.32 0.47
M17 0.75 2.03 0.88
M18 0.49 0.64 0.93
M19 0.43 0.57 0.90
M20 1.16 1.25 0.79
M22 0.94 1.32 0.77
M23 2.59 2.80 0.88
Mean 1.80 1.32 0.77
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resolutions of the SAR datasets are also limiting factors. For instance, while the CSK 
data provides high spatial resolution, its temporal resolution is lower compared to 
S1A, which can lead to challenges in capturing rapid deformation events (Di Martire 
et al. 2016). In addition, the complexity of deep learning models such as LSTM and 
CNN requires extensive computational resources and expertise in model training and 
validation, which may not be readily available to all researchers.

Future research should aim to address these limitations by exploring methods to 
enhance data density and quality, particularly in areas with sparse observations. 
Advanced techniques such as data fusion, where multiple types of geospatial data are 
integrated, could improve model performance and reduce computational require
ments (Hu et al. 2020). Incorporating additional geospatial data sources, such as 
high-resolution optical imagery and ground-based measurements, could further refine 
the spatial and temporal accuracy of the deformation maps (Mohan et al. 2021).

Moreover, there is potential in utilizing transfer learning and domain adaptation 
techniques to apply models trained in one region to another, thereby enhancing the 
generalizability of the approach (Goodfellow et al. 2016). Extending the analysis to 
include different types of geohazards and environmental conditions will enhance the 
versatility and applicability of the methods developed in this study. Additionally, 
developing hybrid models that combine machine learning with physical models of 
landslide processes could provide more robust and interpretable results (Rivas- 
Medina et al. 2018).

In summary, while our study demonstrates significant advancements in landslide 
monitoring through the integration of SAR data and deep learning models, ongoing 
efforts to refine the methodology and address its limitations are essential for broader 
application and increased reliability. This research not only contributes to the scien
tific understanding of landslide dynamics but also provides a robust framework for 
future studies aimed at improving geohazard monitoring and risk mitigation.

7. Conclusion

Our research aimed to investigate using multi-source SAR datasets, including S1A 
and CSK, to understand and monitor landslide phenomena better.

We completely understood landslide movement through a multi-technique and 
multi-dataset approach. C-band imagery (S1A) proved better for analyzing landslide 
activity in mainly vegetated regions, while X-band imagery (CSK) was helpful in 
urban areas. In fact, on the one hand, the integrated analysis allowed us to identify 
more precisely the areal extension of the two landslides. The latter affects both 
intensely urbanized portions of the territory (foot or accumulation zone) and pre
dominantly rural sectors of the slope (crown or upstream portion of the slope). On 
the other hand, it also allowed us to highlight differentiated deformation rates within 
the two identified landslides, recording higher rates in the lower middle sector of the 
westernmost landslides and similarly significant rates in the upstream sector of the 
easternmost landslides.

Additionally, we revealed an interesting pattern in the deformation direction based 
on the geological setting, with a prevalent SW-NE and S-N movement observed. 
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Furthermore, DLAs were instrumental in deriving a mean deformation rate map, 
revealing a new potential avenue for geohazard monitoring.

Also, From the velocity garnered through each method and dataset, compared to 
the synergic approach, the average improvement of 73.86% in the RMSE relative to 
the observed values from the GPS station was received.

This research lays the groundwork for a new investigation in landslide monitoring, 
highlighting the effectiveness of integrating multiple SAR datasets, diverse processing 
techniques, and DLAs. Our work emphasizes that the future of geohazard monitoring is 
likely to be increasingly interdisciplinary and technologically innovative, potentially lead
ing to more robust and accurate risk assessment methodologies. Also, for future research, 
it is suggested to focus on retrieving deformation in the east, south, and up directions, 
based on the combination of some other SAR sources (such as ALOS or Sentinel-1A 
descending orbits), which is more practical and meaningful compared to LOS direction.
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