Quaternary International 383 (2015) 47-73

Contents lists available at ScienceDirect

Quaternary International

journal homepage: www.elsevier.com/locate/quaint

Lower–Middle Pleistocene ostracod assemblages from the Montalbano Jonico section (Basilicata, Southern Italy)

Giuseppe Aiello^{*}, Diana Barra, Roberta Parisi

Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Largo San Marcellino 10, 80138 Napoli, Italy

ARTICLE INFO

Article history: Available online 27 December 2014

Keywords: Ostracoda Montalbano Jonico section Lower–Middle Pleistocene MIS 21–18 Paleobathymetry Paleo-oxygen levels

ABSTRACT

The Montalbano Jonico section is a Pleistocene sequence, about 450 m thick, comprising silty clays and silty sands deposited during the upper part of the Calabrian Stage and lower part of the "Ionian" Stage. It is a candidate global boundary stratotype section and point for the Middle Pleistocene Subseries. Ostracod assemblage analyses were carried out on 40 samples from the uppermost levels of the Lower Pleistocene and the lowermost part of the Middle Pleistocene, with the aim of reconstructing the paleoenvironmental evolution around the Matuyama-Brunhes boundary. Taxonomic investigations, quantitative distribution data and statistical analysis (Q-mode cluster analysis) define four intervals, correlated with sea-level changes linked to Marine Isotope Stages (MIS) 21-18. The lower part of the section, ranging from 864.00 to 820.00 ka, was deposited in an outer shelf paleoenvironment during a period of high sea level associated with MIS 21. The transition to the second interval (815.42-785.62 ka) is marked by a shallowing trend, reflecting the MIS 20 decrease in sea level. The overlying part of the section (783.54-749.91 ka) yielded assemblages indicating a return to deeper-water conditions corresponding to the warm phase MIS 19. The uppermost interval was deposited during 746.60-740.54 ka, when cooling in MIS 18 produced a sea level drop. Here, some levels (164.20 m, 745.51 ka; 170.10 m, 743.05 ka; 176.10 m, 740.54 ka) show the presence of both "deep" and "shallow" autochthonous taxa, suggesting the occurrence of upwelling episodes during this cold phase. In some layers, deposited during warm stages, the ostracod assemblages indicate the presence of kenoxic bottom waters. The lowest paleo-oxygen levels are correlated with Marine Isotope Substages 21.3 and 19.1.

© 2014 Elsevier Ltd and INQUA. All rights reserved.

1. Introduction

Investigations into the taxonomy and distribution of Southern Italy's Plio-Pleistocene ostracods have provided, since the 19th Century (e.g. Costa, 1853; Seguenza, 1880), a level of data suitable for reliable paleoecological and stratigraphic reconstructions. The most relevant studies concerning Quaternary assemblages of the Ionian side of Southern Italy are the contributions by Ruggieri (1953), Colalongo (1966), Ciampo (1972), Greco et al. (1974) and Colalongo and Pasini (1980). The last of these papers analyses the ostracods of the well-known Vrica section, of great significance for

* Corresponding author. E-mail address: aie64llo@hotmail.com (G. Aiello). the chronostratigraphy of the Pleistocene. The Pliocene-Pleistocene boundary was ratified by the International Union of Geological Sciences in 1984 at the top of sapropel "e" in the Vrica section (Aguirre and Pasini, 1985). Presently the section is recognized as Gelasian-Calabrian in age (brief review and extensive references in Maiorano et al., 2010), and now serves as the global boundary stratotype section and point (GSSP) of the Calabrian Stage, with an astronomical age of 1.80 Ma (Cita et al., 2012). The ostracod assemblages of the Monte San Nicola section, which contains the GSSP of the Gelasian Stage (Gibbard and Head, 2010; Gibbard et al., 2010), have been studied in detail by Abate et al. (1993, 1994), Aiello et al. (1993, 1996a, 1996b, 1996c, 2000), Barra et al. (1996) and Bonaduce et al. (1999, 2000), providing the basis, together with the aforementioned contributions, for Pleistocene ostracod systematics and paleoenvironmental interpretations. The only previous study of the ostracod

assemblages of the Montalbano Jonico succession (Maiorano et al., 2008) concerns the IM-5 agosto section. This mid-Pleistocene part of the Montalbano Jonico composite section includes sapropel 19 (insolation cycle 90, ~954 ka). The results of that investigation showed the sensitivity of ostracod assemblages to paleoenvironmental factors, in particular bathymetry and dissolved oxygen levels in bottom waters.

The aim of the present paper is to describe the composition and variation of the ostracod assemblages recovered from sediments of the Montalbano section (Basilicata Region, Southern Italy; Fig. 1) at the Early–Middle Pleistocene boundary, and to investigate the relationship with paleoenvironmental changes during the considered time span. The Montalbano Jonico succession (MJS) has been

regarded as a potential candidate for the Middle Pleistocene GSSP (Ciaranfi and D'Alessandro, 2005; Ciaranfi et al., 2010; Maiorano et al., 2010).

2. Materials and methods

Ostracod assemblages from 40 silty-clay samples, pertaining to the sampling of the Montalbano Jonico section described and dated in Ciaranfi et al. (2010), Maiorano et al. (2010) and Marino et al. (2015), have been studied. The astronomical calibration of the section has been provided using the sapropel pattern, the Ar/Ar age of selected volcaniclastic layers, biostratigraphic constraints based on calcareous plankton, and oxygen isotope records (Ciaranfi et al.,

Fig. 1. Location, lithology and chronostratigraphy of the Montalbano Jonico section (following Marino et al. 2015); dashes on the right side of the lithological column indicate the location of samples examined.

2010; Maiorano et al., 2010; Marino et al., 2015). The samples (Table 1) range from 65.10 to 176.10 m (864.00–740.54 ka), and belong to the uppermost part of the Lower Pleistocene and to the lower part of the Middle Pleistocene (MIS 21–18), and consequently span the Matuyama/Brunhes paleomagnetic boundary (MBB) that is located within MIS 19. Marino et al. (2015) suggest that the MBB at the Montalbano Jonico section should be placed between the volcaniclastic layer V4 (773.9 \pm 1.3 ka) and MIS 19.2 (771.84 ka). Detailed stratigraphic studies on the Montalbano Jonico succession carried out by a number of authors (Marino et al. 2015, and references therein) have provided an extensive reference data set. The ages of samples are reported to two decimal places following Marino et al. (2015).

The sediment samples (300 g dry), disaggregated in boiling water with sodium carbonate and washed through 230 and 120 mesh sieves (63 μ m and 125 μ m respectively), were examined under a reflected light microscope. All the ostracod remains, both adult and young instars, were picked from the coarsest fraction (>125 μ m). The total number of valves (TNV) and minimum number of individuals (MNI) were then counted. The TNV includes all the recovered juvenile and adult valves. The MNI has been calculated by adding the greater number between right and left adult valves to the number of adult carapaces; juveniles are not

 Table 1

 Height (m of the section) and age of studied samples in the Montalbano Jonico section (following Ciaranfi et al., 2010; Maiorano et al., 2010; Marino et al., 2015).

Sample m Age (ka) NC 436 176.10 740.54 NC 436 170.10 743.05 NC 430 170.10 743.05 NC 424 165.10 745.14 NC 423 164.20 745.51 NC 420 161.60 746.60 NC 417 158.30 749.91 NC 413 154.60 753.61 NC 409 151.10 757.12 NC 404 146.40 761.83 NC 400 140.20 768.04 NC 320 138.50 769.74 NC 299 132.50 775.94 NC 290 130.30 778.36 NC 271 127.00 782.00 NC 258 125.00 783.54 NC 250 122.30 779.47 NC 271 127.00 782.00 NC 179 107.90 798.62 NC 179 107.90 798.62 NC 179 107.90 798.62 NC 179			
NC 436 176.10 740.54 NC 434 174.00 741.42 NC 430 170.10 743.05 NC 424 165.10 745.14 NC 423 164.20 745.51 NC 420 161.60 746.60 NC 417 158.30 749.91 NC 413 154.60 753.61 NC 409 151.10 757.12 NC 404 146.40 761.83 NC 400 140.20 768.04 NC 320 138.50 769.74 NC 304 134.20 774.07 NC 293 131.00 777.59 NC 290 130.30 778.36 NC 258 125.00 783.54 NC 250 122.30 786.62 NC 179 107.90 786.62 NC 179 107.90 788.62 NC 179 107.90 788.62 NC 179 107.90 788.62 NC 179 107.90 788.62 NC 179 <	Sample	m	Age (ka)
NC 434 174.00 741.42 NC 430 170.10 743.05 NC 424 165.10 745.14 NC 423 164.20 745.51 NC 420 161.60 746.60 NC 417 158.30 749.91 NC 413 154.60 753.61 NC 409 151.10 757.12 NC 404 146.40 761.83 NC 400 140.20 768.04 NC 320 138.50 769.74 NC 304 134.20 774.07 NC 299 132.50 775.94 NC 293 131.00 777.59 NC 290 130.30 778.36 NC 284 129.30 794.77 NC 271 127.00 782.00 NC 258 125.00 783.54 NC 250 122.30 785.62 NC 194 111.65 794.00 NC 179 107.90 798.62 NC 184 100.04 807.55 NC 185 100.04 807.25 NC 184 171.93.70 815.42	NC 436	176.10	740.54
NC 430 170.10 743.05 NC 424 165.10 745.14 NC 423 164.20 745.51 NC 420 161.60 746.60 NC 417 158.30 749.91 NC 413 154.60 753.61 NC 409 151.10 757.12 NC 404 146.40 761.83 NC 400 140.20 768.04 NC 320 138.50 769.74 NC 304 134.20 774.07 NC 293 131.00 777.59 NC 290 130.30 778.36 NC 284 129.30 779.47 NC 250 122.30 785.62 NC 219 115.80 790.65 NC 194 111.65 794.00 NC 179 107.90 788.62 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J44 82.00 823.00 DF J44 82.00 823.00 DF J44 82.00 823.00	NC 434	174.00	741.42
NC 424 165.10 745.14 NC 423 164.20 745.51 NC 420 161.60 746.60 NC 417 158.30 749.91 NC 413 154.60 753.61 NC 409 151.10 757.12 NC 404 146.40 761.83 NC 400 140.20 768.04 NC 320 138.50 769.74 NC 299 132.50 775.94 NC 290 130.30 777.59 NC 290 130.30 778.36 NC 258 125.00 783.54 NC 250 122.30 785.62 NC 219 115.80 790.65 NC 194 111.65 794.00 NC 179 107.90 786.22 NC 179 107.90 786.22 NC 157 102.20 805.43 NC 157 102.20 805.43 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J46 84.60 826.00 <td>NC 430</td> <td>170.10</td> <td>743.05</td>	NC 430	170.10	743.05
NC 423 164.20 745.51 NC 420 161.60 746.60 NC 417 158.30 749.91 NC 413 154.60 753.61 NC 409 151.10 757.12 NC 404 146.40 761.83 NC 400 140.20 768.04 NC 320 138.50 769.74 NC 304 134.20 774.07 NC 299 132.50 775.94 NC 290 130.30 778.36 NC 284 129.30 779.47 NC 271 127.00 782.00 NC 250 122.30 785.62 NC 219 115.80 790.65 NC 179 107.90 798.62 NC 179 107.90 798.62 NC 179 107.90 805.43 NC 179 107.90 805.43 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J46 84.60 826.00 DF J46 84.60 826.00	NC 424	165.10	745.14
NC 420 161.60 746.60 NC 417 158.30 749.91 NC 413 154.60 753.61 NC 409 151.10 757.12 NC 404 146.40 761.83 NC 400 140.20 768.04 NC 320 138.50 769.74 NC 304 134.20 774.07 NC 299 132.50 775.94 NC 290 130.30 778.36 NC 284 129.30 779.47 NC 271 127.00 782.00 NC 258 125.00 783.54 NC 250 122.30 785.62 NC 194 111.65 794.00 NC 179 107.90 798.62 NC 188 105.10 802.02 NC 179 107.90 798.62 NC 188 105.10 802.02 NC 179 107.90 798.62 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J44 82.00 823.00 <td>NC 423</td> <td>164.20</td> <td>745.51</td>	NC 423	164.20	745.51
NC 417 158.30 749.91 NC 413 154.60 753.61 NC 409 151.10 757.12 NC 404 146.40 761.83 NC 400 140.20 768.04 NC 320 138.50 769.74 NC 304 134.20 774.07 NC 299 132.50 775.94 NC 293 131.00 777.59 NC 290 130.30 778.36 NC 284 129.30 779.47 NC 258 125.00 785.62 NC 219 115.80 790.65 NC 194 111.65 794.00 NC 179 107.90 786.2 NC 179 107.90 798.62 NC 157 102.20 805.43 NC 145 100.04 807.25 NC 133 98.50 820.00 DF J46 84.60 826.00 DF J44 82.00 829.00 DF J44 82.00 829.00 DF J44 82.00 829.00 DF J44 82.00 829.00	NC 420	161.60	746.60
NC 413 154.60 753.61 NC 409 151.10 757.12 NC 404 146.40 761.83 NC 400 140.20 768.04 NC 320 138.50 769.74 NC 304 134.20 774.07 NC 299 132.50 775.94 NC 290 130.30 778.36 NC 284 129.30 779.47 NC 258 125.00 783.54 NC 250 122.30 785.62 NC 219 115.80 790.65 NC 179 107.90 78.62 NC 179 107.90 798.62 NC 179 107.90 798.62 NC 157 102.20 805.43 NC 145 100.04 807.55 NC 133 98.50 820.00 DF J48 87.20 823.00 DF J44 82.00 829.00	NC 417	158.30	749.91
NC 409 151.10 757.12 NC 404 146.40 761.83 NC 400 140.20 768.04 NC 320 138.50 769.74 NC 304 134.20 774.07 NC 299 132.50 775.94 NC 290 130.30 778.36 NC 284 129.30 779.47 NC 255 122.00 783.54 NC 250 122.30 785.62 NC 219 115.80 790.65 NC 179 107.90 786.22 NC 179 107.90 798.62 NC 179 107.90 798.62 NC 179 102.20 805.43 NC 145 100.04 807.55 NC 133 98.50 820.00 DF J50 89.80 820.00 DF J44 82.00 823.00 DF J44 82.00 829.00 DF J44 82.00 829.00 DF J44 82.00 829.00 DF J44 82.	NC 413	154.60	753.61
NC 404 146.40 761.83 NC 400 140.20 768.04 NC 320 138.50 769.74 NC 304 134.20 774.07 NC 299 132.50 775.94 NC 290 130.30 778.36 NC 284 129.30 778.47 NC 271 127.00 782.00 NC 250 122.30 785.62 NC 219 115.80 790.65 NC 194 111.65 794.00 NC 179 107.90 788.62 NC 179 107.90 798.62 NC 179 107.90 798.62 NC 175 102.20 805.43 NC 145 100.04 807.55 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J44 82.00 829.00 DF J45 76.80 820.00 DF J44 82.00 829.00 DF J44 82.	NC 409	151.10	757.12
NC 400 140.20 768.04 NC 320 138.50 769.74 NC 304 134.20 774.07 NC 299 132.50 775.54 NC 293 131.00 777.59 NC 290 130.30 778.36 NC 284 129.30 779.47 NC 271 127.00 782.00 NC 255 122.30 785.62 NC 219 115.80 790.65 NC 194 111.65 794.00 NC 179 107.90 788.62 NC 179 107.90 798.62 NC 168 105.10 802.02 NC 157 102.20 805.43 NC 145 100.04 807.55 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J44 82.00 823.00 DF J46 84.60 826.00 DF J44 82.00 829.00 DF J44 82.	NC 404	146.40	761.83
NC 320 138.50 769.74 NC 304 134.20 774.07 NC 299 132.50 775.94 NC 293 131.00 777.59 NC 290 130.30 778.36 NC 284 129.30 779.47 NC 271 127.00 782.00 NC 258 125.00 783.54 NC 250 122.30 785.62 NC 194 111.65 794.00 NC 179 107.90 798.62 NC 179 107.90 798.62 NC 168 105.10 802.02 NC 157 102.20 805.43 NC 145 100.04 807.55 NC 139 99.40 808.72 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J44 82.00 823.00 DF J46 84.60 826.00 DF J40 76.80 843.71 DF J57 74.70 846.00 DF J38 73.20 843.71	NC 400	140.20	768.04
NC 304134.20774.07NC 299132.50775.94NC 293131.00777.59NC 290130.30778.36NC 284129.30779.47NC 271127.00782.00NC 258125.00783.54NC 250122.30785.62NC 194111.65794.00NC 179107.90798.62NC 168105.10802.02NC 157102.20805.43NC 145100.04807.55NC 13398.50820.00DF JA684.60826.00DF J4482.00829.00DF J4684.60826.00DF J4375.50843.71DF J5774.70846.00DF J3873.20848.63DF J5570.30853.72DF J3165.10864.00	NC 320	138.50	769.74
NC 299 132.50 775.94 NC 293 131.00 777.59 NC 290 130.30 778.36 NC 284 129.30 779.47 NC 271 127.00 782.00 NC 258 125.00 783.54 NC 250 122.30 785.62 NC 219 115.80 790.65 NC 194 111.65 794.00 NC 179 107.90 798.62 NC 179 107.90 798.62 NC 157 102.20 805.43 NC 145 100.04 807.55 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J48 87.20 823.00 DF J44 82.00 829.00 DF J44 82.00 829.00 DF J44 82.00 829.00 DF J44 82.00 829.00 DF J45 74.70 846.00 DF J57 74.70<	NC 304	134.20	774.07
NC 293 131.00 777.59 NC 290 130.30 778.36 NC 284 129.30 779.47 NC 271 127.00 782.00 NC 258 125.00 783.54 NC 250 122.30 785.62 NC 219 115.80 790.65 NC 179 107.90 798.62 NC 179 107.90 798.62 NC 179 102.20 805.43 NC 145 100.04 807.55 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J44 82.00 823.00 DF J44 82.00 829.00 DF J44 82.00 829.00 DF J43 75.50 843.71 DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J51 65.10 864.00	NC 299	132.50	775.94
NC 290 130.30 778.36 NC 284 129.30 779.47 NC 271 127.00 782.00 NC 258 125.00 783.54 NC 250 122.30 785.62 NC 219 115.80 790.65 NC 194 111.65 794.00 NC 179 107.90 788.62 NC 179 107.90 798.62 NC 168 105.10 802.02 NC 145 100.04 807.55 NC 139 99.40 808.72 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J44 82.00 823.00 DF J44 82.00 829.00 DF J44 82.00 829.00 DF J45 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	NC 293	131.00	777.59
NC 284 129.30 779.47 NC 271 127.00 782.00 NC 258 125.00 783.54 NC 250 122.30 785.62 NC 219 115.80 790.65 NC 194 111.65 794.00 NC 179 107.90 798.62 NC 168 105.10 802.02 NC 157 102.20 805.43 NC 145 100.04 807.55 NC 139 99.40 808.72 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J44 82.00 823.00 DF J44 82.00 829.00 DF J44 82.00 829.00 DF J42 79.40 834.50 DF J40 76.80 840.00 DF J39 75.50 843.71 DF J55 70.30 853.72 DF J51 74.70 846.00 DF J55 70.30 853.72 DF J51 70.30 853.72	NC 290	130.30	778.36
NC 271 127.00 782.00 NC 258 125.00 783.54 NC 250 122.30 785.62 NC 219 115.80 790.65 NC 194 111.65 794.00 NC 179 107.90 798.62 NC 168 105.10 802.02 NC 157 102.20 805.43 NC 145 100.04 807.55 NC 139 99.40 808.72 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J48 87.20 823.00 DF J44 82.00 829.00 DF J44 82.00 829.00 DF J44 82.00 824.00 DF J57 74.70 846.00 DF J57 74.70 846.00 DF J55 70.30 853.72 DF J51 70.30 853.72 DF J31 65.10 864.00	NC 284	129.30	779.47
NC 258 125.00 783.54 NC 250 122.30 785.62 NC 219 115.80 790.65 NC 194 111.65 794.00 NC 179 107.90 798.62 NC 179 107.90 798.62 NC 168 105.10 802.02 NC 157 102.20 805.43 NC 145 100.04 807.55 NC 139 99.40 808.72 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J48 87.20 823.00 DF J44 82.00 829.00 DF J42 79.40 834.50 DF J40 76.80 840.00 DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	NC 271	127.00	782.00
NC 250 122.30 785.62 NC 219 115.80 790.65 NC 194 111.65 794.00 NC 179 107.90 798.62 NC 168 105.10 802.02 NC 157 102.20 805.43 NC 145 100.04 807.55 NC 139 99.40 808.72 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J48 87.20 823.00 DF J46 84.60 826.00 DF J44 82.00 829.00 DF J42 79.40 834.50 DF J40 76.80 840.00 DF J57 74.70 846.00 DF J55 70.30 853.72 DF J31 65.10 864.00	NC 258	125.00	783.54
NC 219 115.80 790.65 NC 194 111.65 794.00 NC 179 107.90 798.62 NC 168 105.10 802.02 NC 157 102.20 805.43 NC 145 100.04 807.55 NC 139 99.40 808.72 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J48 87.20 823.00 DF J48 87.20 823.00 DF J44 82.00 829.00 DF J42 79.40 834.50 DF J42 79.40 834.50 DF J43 75.50 843.71 DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	NC 250	122.30	785.62
NC 194 111.65 794.00 NC 179 107.90 798.62 NC 168 105.10 802.02 NC 157 102.20 805.43 NC 145 100.04 807.55 NC 139 99.40 808.72 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J48 87.20 823.00 DF J46 84.60 826.00 DF J44 82.00 829.00 DF J42 79.40 834.50 DF J43 87.20 823.00 DF J44 82.00 829.00 DF J43 75.50 843.71 DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	NC 219	115.80	790.65
NC 179 107.90 798.62 NC 168 105.10 802.02 NC 157 102.20 805.43 NC 145 100.04 807.55 NC 139 99.40 808.72 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J48 87.20 823.00 DF J44 82.00 829.00 DF J44 82.00 829.00 DF J42 79.40 834.50 DF J39 75.50 843.71 DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	NC 194	111.65	794.00
NC 168 105.10 802.02 NC 157 102.20 805.43 NC 145 100.04 807.55 NC 139 99.40 808.72 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J48 87.20 823.00 DF J44 82.00 829.00 DF J42 79.40 834.50 DF J39 75.50 843.71 DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	NC 179	107.90	798.62
NC 157 102.20 805.43 NC 145 100.04 807.55 NC 139 99.40 808.72 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J48 87.20 823.00 DF J44 82.00 829.00 DF J42 79.40 834.50 DF J50 840.00 05 DF J50 843.71 05.50 DF J57 74.70 846.00 DF J55 70.30 853.72 DF J31 65.10 864.00	NC 168	105.10	802.02
NC 145 100.04 807.55 NC 139 99.40 808.72 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J48 87.20 823.00 DF J46 84.60 826.00 DF J42 79.40 834.50 DF J40 76.80 840.00 DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	NC 157	102.20	805.43
NC 139 99.40 808.72 NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J48 87.20 823.00 DF J46 84.60 826.00 DF J42 79.40 834.50 DF J40 76.80 840.00 DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	NC 145	100.04	807.55
NC 133 98.50 809.78 DF J71 93.70 815.42 DF J50 89.80 820.00 DF J48 87.20 823.00 DF J46 84.60 826.00 DF J44 82.00 829.00 DF J42 79.40 834.50 DF J40 76.80 840.00 DF J39 75.50 843.71 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	NC 139	99.40	808.72
DF J71 93.70 815.42 DF J50 89.80 820.00 DF J48 87.20 823.00 DF J46 84.60 826.00 DF J44 82.00 829.00 DF J42 79.40 834.50 DF J40 76.80 840.00 DF J39 75.50 843.71 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	NC 133	98.50	809.78
DF J50 89.80 820.00 DF J48 87.20 823.00 DF J46 84.60 826.00 DF J44 82.00 829.00 DF J42 79.40 834.50 DF J40 76.80 840.00 DF J39 75.50 843.71 DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	DF J71	93.70	815.42
DF J48 87.20 823.00 DF J46 84.60 826.00 DF J44 82.00 829.00 DF J42 79.40 834.50 DF J40 76.80 840.00 DF J39 75.50 843.71 DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	DF J50	89.80	820.00
DF J46 84.60 826.00 DF J44 82.00 829.00 DF J42 79.40 834.50 DF J40 76.80 840.00 DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	DF J48	87.20	823.00
DF J44 82.00 829.00 DF J42 79.40 834.50 DF J40 76.80 840.00 DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	DF J46	84.60	826.00
DF J42 79.40 834.50 DF J40 76.80 840.00 DF J39 75.50 843.71 DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	DF J44	82.00	829.00
DF J40 76.80 840.00 DF J39 75.50 843.71 DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	DF J42	79.40	834.50
DF J39 75.50 843.71 DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	DF J40	76.80	840.00
DF J57 74.70 846.00 DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	DF J39	75.50	843.71
DF J38 73.20 848.63 DF J55 70.30 853.72 DF J31 65.10 864.00	DF J57	74.70	846.00
DF J55 70.30 853.72 DF J31 65.10 864.00	DF J38	73.20	848.63
DF J31 65.10 864.00	DF J55	70.30	853.72
	DF J31	65.10	864.00

considered. When only young instars occur, the number of specimens equals one.

Taxa have been identified according to the modern literature, with special regard to the Mediterranean area (including Müller, 1894; Ruggieri, 1950, 1952, 1975; 1976, 1978; Pucci, 1955; Mistretta, 1967; Schornikov, 1969; Ciampo, 1972, 1976; Sissingh, 1972; Bonaduce et al., 1976, 1998, 1999; Whatley and Masson, 1979; Colalongo and Pasini, 1980; Aruta and Ruggieri, 1983; Abate et al., 1993; Aiello et al., 1993, 1996a; 1996b, 1996c; 2000; Coles et al., 1994; Barra et al., 1996; Barra and Bonaduce, 1996; Aiello and Szczechura, 2004). Paleoecological reconstructions are based on available data based on both living and extinct species.

Autochthonous and allochthonous specimens have been discriminated. The features of ostracod shells allow more reliable allochthoneity/autochthoneity analyses than, for example, with the generally more robust foraminifer tests. This appraisal is based upon the following features: the state of preservation of the valves (poor preservation generally indicates allochthonous specimens), the co-occurrence of different development stages (autochthonous species are frequently characterized by juveniles and adult valves), presence of dimensionally selected instars (*i.e.* different taxa represented by adult and/or juvenile valves with the same dimension suggest size sorting due to transport), and on the available distribution data (*e.g.* Whatley, 1988; Boomer et al., 2003; Coimbra et al., 2006; D'Amico et al., 2013).

2.1. Paleobathymetry

Paleobathymetric variations have been estimated by calculating the assemblage paleodepth on the basis of the following distribution data and considerations.

Presence of the genus Aurila. In Neogene Mediterranean shallow marine deposits, the genus Aurila is generally highly differentiated, showing a considerable number of species (e.g. Uliczny, 1969; Aruta and Ruggieri, 1983; Dall'Antonia et al., 2005; Faranda et al., 2008). It declines during the Upper Pleistocene (Ruggieri, 1976). In the studied sediments only two species are well represented, Aurila bradleyana and Aurila cimbaeformis. This low diversity suggests that sedimentation occurred constantly below the infralittoral zone.

A. bradleyana: this Pliocene–Pleistocene species shows a close resemblance to *Aurila convexa* (indeed *A. bradleyana* could be considered a subspecies of *A. convexa*), presently living in Atlantic and Mediterranean shallow marine waters (Athersuch et al., 1989 and references therein). We hypothesize, also on the basis of fossil records, that *A. bradleyana* had the same depth distribution as *A. convexa*. The latter species has been recorded in the Mediterranean at a maximum depth of 1894 m below sea level (mbsl) (Puri et al., 1969), and considered autochthonous up to 122 mbsl (Bonaduce and Masoli, 1970; Bonaduce et al., 1976; Breman, 1976; Lachenal, 1989 and references therein).

A. cimbaeformis: this extinct species shows a distribution very similar to that of *A. bradleyana* and very probably had the same ecological features.

 Distribution of Leptocytheridae: The genera Leptocythere and Callistocythere are typical of infra-circalittoral environments. The most abundant species of Leptocythere are Leptocythere multipunctata and Leptocythere bacescoi. The former is a fossil species, the latter lives in the Mediterranean in the depth range 0–135 mbsl (e.g. Rome, 1964; Puri et al., 1964; Uffenorde, 1972; Bonaduce et al., 1976; Breman, 1976).

Fig. 2. (a) *Henryhowella sarsii* (G.W. Müller 1894), IV, sample DF J42, ABMC 2014-003. (b) *Bosquetina dentata* (G.W. Müller 1894), RV, sample NC 271, ABMC 2014-001. (c) *Aurila bradleyana* Ruggieri 1976, LV, sample NC 139, ABMC 2014-007. (d) *Bairdoppilata conformis* (Terquem 1878), RV, sample NC 417, ABMC 2014-002. (e) *Aurila (Cimbaurila) cimbaeformis* (Seguenza 1883), LV, sample NC 436, ABMC 2014-024. (f) *Semicytherura ruggierii* (Pucci 1955), RV, sample NC 420, ABMC 2014-012. (g) *Palmoconcha subrugosa* (Ruggieri 1967), LV, sample DF J44, ABMC 2014-018. (h) *Cytheropteron ruggierii* Pucci 1955, RV, sample DF J42, ABMC 2014-023. (i) *Leptocythere bacescoi* (Rome 1942), LV, sample NC 179, ABMC 2014-016. (j) *Callistocythere macilenta* Ciampo 1976, RV, sample NC 219, ABMC 2014-006. LV = lateral view of left valve; RV = lateral view of right valve. Scale bar corresponds to 100 μm.

The extinct species *Callistocythere macilenta* is very similar to its possible descendent *Callistocythere littoralis*, and we consider that the depth data of the latter species can be attributed to the former. *C. littoralis* occurs up to 135 m (*e.g.* Puri et al., 1964; Barbeito-Gonzalez, 1971; Bonaduce et al., 1976, 1977; Aiello et al., 2006).

- Loxoconchidae: two species of *Sagmatocythere*, *S. versicolor* and *Sagmatocythere concentrica*, are well represented in the Montalbano Jonico section. The first is widely distributed on the shelf (*e.g.* Puri et al., 1964; Bonaduce et al., 1976, 1977, 1979; Breman, 1976, Peypouquet and Nachite, 1984) with maximum abundances between 20 and 170 mbsl. *S. concentrica* is a typical circalittoral–upper bathyal species with an optimum depth ranging from 125 to 170 mbsl (*e.g.* Bonaduce et al., 1976; Breman, 1976). *Palmoconcha subrugosa* has been recorded in the Bay of Naples (Puri et al., 1964; as *Loxoconcha* n. sp. A) and the Adriatic Sea (Bonaduce et al., 1976; as *Loxoconcha* aff. *L. agilis*) from the infralittoral up to 170 mbsl.

- Genus *Cytheropteron*. The genus is typical of circalittoral-bathyal environments. *Cytheropteron ruggierii* is the only species not rare in the infralittoral zone of the Mediterranean (Bonaduce et al., 1976; Aiello and Barra, unpublished data). The

Fig. 3. Relative abundance, based on the minimum number of individuals (MNI), of Aurila spp., Leptocythere spp., Semicytherura ruggierii, Sagmatocythere versicolor, S. concentrica, Krithe spp., Cytheropteron spp., Henryhowella sarsii, Bairdoppilata conformis, and Bosquetina dentata.

simple diversity data indicates that the co-occurence of four species of *Cytheropteron* is recorded below 70 mbsl. *C. zinzulusae*, rare in the Montalbano Jonico section, is an outer shelf—bathyal species living below 110 mbsl (Bonaduce et al., 1976; Breman, 1976).

- *Bosquetina dentata*: this is a lower infralittoral—upper bathyal species. High abundances are recorded in the depth interval 120–170 mbsl (Bonaduce et al., 1976).
- Genus Krithe: the genus is typical of bathyal—abyssal environments. Krithe praetexta generally occurs in the depth range 50–500 mbsl (e.g. Bonaduce et al., 1976; Athersuch et al., 1989).

The co-occurence of two to three *Krithe* species is recorded at depths greater than 150–200 mbsl (Breman, 1976; Whatley and Zhao, 1993; Coles et al., 1994; Carmo and Sanguinetti, 1995). *Krithe compressa* lives below 160 mbsl (Whatley and Zhao, 1993; Coles et al., 1994; Ayress et al., 1999).

- *Eucytherura mistrettai*: this species is very rare above 70 mbsl, with its optimum between 70 and 200 mbsl (Bonaduce et al., 1976; Breman, 1976).
- *Bairdoppilata conformis*; the species is present below 70 mbsl, and common in the depth interval 110–200 mbsl (Bonaduce et al., 1976; Breman, 1976).

Fig. 4. Relative abundance, based on the total number of valves (TNV), of Aurila spp., Leptocythere spp., Semicytherura ruggierii, Sagmatocythere versicolor, S. concentrica, Krithe spp., Cytheropteron spp., Henryhowella sarsii, Bairdoppilata conformis, and Bosquetina dentata.

Fig. 5. Bathymetry data of selected ostracod taxa recorded in the Montalbano Jonico section. Thick lines indicate optimum depth of the species. It is assumed that the living species marked with an asterisk, Aurila convexa and Callistocythere littoralis, have depth distributions similar to the extinct species Aurila bradleyana and Callistocythere macilenta (see text).

- *Henryhowella sarsii*: this species lives at depths greater than 110 mbsl (Bonaduce et al., 1998, 1999).

Terra, dell'Ambiente e delle Risorse, Università degli Studi di Napoli Federico II.

2.2. Bottom water oxygen conditions

An attempt has been made to reconstruct the paleo-oxygen levels following the method of Maiorano et al. (2008). It is based on the evidence that ostracod assemblage composition depends upon oxygen levels, especially in bathyal environments (Peypouquet, 1977; McKenzie et al., 1989; Whatley, 1991; Whatley and Zhao, 1993; van Harten, 1995; Corbari, 2004). Ostracod assemblages are very poor and scarcely diversified when O_2 is < 3 ml/l (Peypouquet, 1977) and ostracod life is not possible in "anoxic" (sensu van Harten, 1987) environments. Consequently abundance and simple diversity are two main factors for evaluating bottom dissolved paleo-oxygen. Following observations on the relationship between infaunal/epifaunal benthic foraminifers and bottom water oxygen levels (Stefanelli, 2004 and references therein), Maiorano et al. (2008) proposed the use of the infaunal/epifaunal ostracod ratio, calculated by dividing Krithe and Parakrithe (K + P) by Cytheropteron and Henryhowella (C + H) abundances. The mode of life of Krithe has been inferred from shell structure (e.g. Coles et al., 1994) and directly observed by Majoran and Agrenius (1995). The genus Parakrithe shows very similar features and it is assumed to be infaunal. Henryhowella is considered epifaunal on the basis of both the structure of the carapace and indirect observations (Kempf and Nink, 1993; Didié and Bauch, 2002). Cytheropteron is characterized by alae generally interpreted as typical of taxa crawling over bottom sediments (Elofson, 1941). Abundance and diversity values and the infaunal/epifaunal ratio indicate aerobic and kenoxic (Cepek and Kemper, 1981; Whatley, 1990) phases. Aerobic phases are mainly characterized by high diversity and abundance and low values of the infaunal/epifaunal ratio; kenoxic phases generally show low diversity and abundance values and high infaunal/epifaunal ratios; the "ostracod barren" deposits, devoid of authochtonous ostracod remains, are characterized by dysaerobic foraminifer assemblages. We tested the method in circalittoral paloenvironments.

The studied specimens are housed in the Aiello Barra Micropaleontological Collection (A.B.M.C.), Dipartimento di Scienze della

3. Results

Ostracod assemblages studied from the Montalbano Jonico section include 138 species in 54 genera (Appendix 1). Selected species are illustrated in Fig. 2. No samples were barren of ostracods. Both autochthonous and mixed (sensu Fagerstrom, 1964: "a fossil assemblage containing large numbers of specimens which belonged to the same ecological community; however, the assemblage also contains many specimens transported from other contemporaneous communities or derived from the erosion of preexisting rocks") assemblages occur. Most samples yielded mixed assemblages (including both autochthonous and allochthonous specimens). Five assemblages, from samples DFJ40, NC290, NC320, NC404, NC413, consist exclusively of autochthonous shells. Allochthonous specimens appear to be displaced from shallower marine environments or, in rare cases, from non-marine, continental waters. The occurrence of valves reworked from older sediments was not recorded.

The allochthoneity/autochthoneity analysis distinguished four groups of taxa (Appendix 1):

- 1 Non-marine taxa, including *Candona* sp. and *Cyprideis torosa*, very rare, allochthonous (Tables 2 and 3);
- 2 Fifteen shallow-marine species, pertaining to the genera *Carinocythereis, Caudites, Cistacythereis, Costa, Loxoconcha, Paradoxostoma, Pontocythere, Procytherideis, Urocythereis* and *Xestoleberis,* consistently allochthonous (*i.e.* transported from shallow marine waters; Tables 2 and 3);
- 3 A third group comprises six species assigned to *Aurila*, *Paracytheridea* and *Pterygocythereis*, that show, alternatively, allochthonous or autochthonous features (Tables 2–5);
- 4 The remaining 115 species are autochthonous (Tables 4 and 5).

Paleoecological reconstructions, considering only autochthonous taxa, are based on assemblage composition and relative abundance and diversity values (Tables 6 and 7). The most abundant species are reported in Table 8. Relative abundance trends of the most significant taxa are reported in Figs. 3–4. Bathymetrical data of the selected taxa are summarized in Fig. 5.

Table 2

Allochthonous ostracod taxa ((MNI: minimum	number of individuals),	* indicates juvenile specimens.
-------------------------------	---------------	-------------------------	---------------------------------

Samples	DF J31	DF J55	DF J38	DF J57	DF J39	DF J40	DF J42	DF J44	DF J46	DF J48	DF J50	DF J71	NC 133	NC 139	NC 145	NC 157	NC 168	NC 179	NC 194
Height (m)	65.10	70.30	73.20	74.70	75.50	76.80	79.40	82.00	84.60	87.20	89.80	93.70	98.50	99.40	100.04	102.20	105.10	107.90	111.65
Age (ka)	864.00	853.72	848.63	846.00	843.71	840.00	834.50	829.00	826.00	823.00	820.00	815.42	809.78	808.72	807.55	805.43	802.02	798.62	794.00
Aurila bradleyana Aurila (C.) cimbaeformis Aurila sp. 1 Aurila sp. Candona sp. 1 Carinocythereis carinata Caudites calceolatus Cistacythereis turbida Costa batei Costa edwardsi Cyprideis torosa Lovocoreka avulata	*	*	*	* 1 * 1*	*		* * * *	1*	*	*	* * *	*		4 *	•	* * 1*	* 1* * 1* 1*		*
Loxoconcha sp. Paracytheridea triquetra Paradoxostoma aff. P. simile Pontocythere turbida Procytherideis rutbiara Procytherideis subspiralis Pterygocythereis jonesii Urocythereis favosa Xestoleberis communis Xestoleberis parva Xestoleberis sp. 1	1* 1 *	*		1 *			4* 1* 1* 3*	* 1* * 1*		1 * 1 1*	* * 1 *	* 8*	*	4* * *	•	•	* 1*	*	1* 3* 1

Table 3

Allochthonous ostracod taxa (TNV: total number of valves).

Samples	DF J31	DF J55	DF J38	DF J57	DF J39	DF J40	DF J42	DF J44	DF J46	DF J48	DF J50	DF J71	NC 133	NC 139	NC 145	NC 157	NC 168	NC 179	NC 194
Height (m)	65.10	70.30	73.20	74.70	75.50	76.80	79.40	82.00	84.60	87.20	89.80	93.70	98.50	99.40	100.04	102.20	105.10	107.90	111.65
Age (ka)	864.00	853.72	848.63	846.00	843.71	840.00	834.50	829.00	826.00	823.00	820.00	815.42	809.78	808.72	807.55	805.43	802.02	798.62	794.00
Aurila bradleyana Aurila (C.) cimbaeformis Aurila sp. 1	6 4	1	1	8			89 27	9	19	2	8 12 2						94 26		43 7
Aurila sp. 1 Candona sp. 1				1			31	5			2						23		6
Carinocythereis carinata Caudites calceolatus	5			1			1				1			4	6	4	3	5	2
Cistacythereis turbida Costa batei				5	1		4 3				1	8 8	3	16	2	18 3	2		1
Costa edwardsi Cyprideis torosa Loxoconcha ovulata	1																1		
Paracytheridea triquetra Paradoxostoma aff. P. simile				1			11	1		1	3			20	2				4
Pontocythere turbida Procytherideis retifera	5			3	1		14	3		1	1	32	1	4 4	4	19	10	9	6
Procytheriaets subspiratis Pterygocythereis jonesii					1			_		_	1								
Urocythereis favosa Xestoleberis communis Xestoleberis parva Xestoleberis sp. 1	1 3	1 1		1			2 15	1 3		1 2	6	16	1	4		1	4	1	1

3.1. Cluster analysis

Statistical analysis was performed using the free software PAST version 3.01 (Hammer et al., 2001). Cluster analysis was applied to ostracod assemblage data using the Morisita similarity coefficient, considering both the minimum number of individuals (MNI) and the total number of valves (TNV), which gave results consistent with the paleoecological trends observed throughout the section.

Cluster analysis revealed, both for MNI and TNV, two significant clusters (A and B), divided into subclusters (A1, A2, B1, B2) (Figs. 6–7). In spite of some minor differences between the MNI

and TNV clustering, the results allow the definition of four intervals within the section that have well-defined features.

Interval I – (65.10–89.80 m, 864.00–820.00 ka). The basal part of the section yielded assemblages characterized by *Krithe* spp. and *Cytheropteron* spp., *H. sarsii, E. mistrettai* and *S. concentrica*. These taxa indicate an outer shelf paleoenvironment. Samples are grouped by cluster analysis in the subcluster A1. Cluster analysis includes three samples (DF J31, DF J57, DF J39) belonging to this interval in the subcluster B1, due to the high abundance of *B. conformis* and *B. dentata*. The genus *Aurila*, typical of infralittoral/upper circalittoral waters, is not present.

NC 219	NC 250	NC 258	NC 271	NC 284	NC 290	NC 293	NC 299	NC 304	NC 320	NC 400	NC 404	NC 409	NC 413	NC 417	NC 420	NC 423	NC 424	NC 430	NC 434	NC 436
115.80	122.30	125.00	127.00	129.30	130.30	131.00	132.50	134.20	138.50	140.20	146.40	151.10	154.60	158.30	161.60	164.20	165.10	170.10	174.00	176.10
790.65	785.62	783.54	782.00	779.47	778.36	777.59	775.94	774.07	769.74	768.04	761.83	757.12	753.61	749.91	746.60	745.51	745.14	743.05	741.42	740.54
		*	*			*	*	*				2*		*					*	
		*	* 1*	*		*	*	*		*		*		*					*	
			1*															*		
*	1		1				*	*							1*					2*
	24	*	•					*							*					
Ŧ	2*		1			•		*							I			I		
								*												*
																	1			2
			1													*		1		2*
					2													1		2
*							*	*							*	*			*	2*
																*				
		1				2		*												
							*					1			2			*		
															*					

NC 219	NC 250	NC 258	NC 271	NC 284	NC 290	NC 293	NC 299	NC 304	NC 320	NC 400	NC 404	NC 409	NC 413	NC 417	NC 420	NC 423	NC 424	NC 430	NC 434	NC 436
115.80	122.30	125.00	127.00	129.30	130.30	131.00	132.50	134.20	138.50	140.20	146.40	151.10	154.60	158.30	161.60	164.20	165.10	170.10	174.00	176.10
790.65	785.62	783.54	782.00	779.47	778.36	777.59	775.94	774.07	769.74	768.04	761.83	757.12	753.61	749.91	746.60	745.51	745.14	743.05	741.42	740.54
		6 5	27 6 26 3	1		2 2	21 11	31 17		1		70 1 1		8 1				1	20 3	
1 3	2 20	1	1 1 1			2	1	4 1 3							2 1 1			1		4
			1					1								2	1	1		6 2
1			I		4		1	4							4	2		I	2	4
		1				2	4	1				1			2 2	-		1		

Interval II – The second interval (93.70–122.30 m, 815.42–785.62 ka) shows high abundances of the genus *Leptocythere*, including *L. bacescoi*, typical of infralittoral to upper circalittoral waters. Assemblages are characterised by *Aurila* spp., *Sagmatocythere versicolor* and *Semicytherura ruggierii*. The genera *Cytheropteron* and *Krithe* are each mainly represented by a single species, *C. ruggierii* and *Krithe praetexta*. *B. conformis* and *B. dentata* are not present, *H. sarsii* is rare, and *E. mistrettai* very rare. All samples pertain to the subcluster A2 and represent a lower circalittoral (upper part) paleoenvironment.

Interval III – This part of the section (125.00-158.30 m, 783.54-749.91 ka) is better defined by the cluster analysis on the

total number of valves (TNV) than with the minimum number of individuals (MNI). It includes samples of cluster B (subclusters B1 and B2). The assemblages are dominated by *B. conformis*, *B. dentata* and *H. sarsii*. The genus *Cytheropteron* includes generally two or more species, and *E. mistrettai* and *S. concentrica* are common. *L. bacescoi* is rare and the genus *Aurila* does not occur. Inferred paleodepths indicate an outer shelf paleoenvironment.

Interval IV – The uppermost sediments (161.60–176.10 m; 746.60–740.54 ka) are characterized by the species *L. bacescoi*, *S. ruggierii*, *S. versicolor* and the genus *Aurila*. Assemblages are grouped by cluster analysis in subcluster A2 together with the second interval samples, indicating a similar lower circalittoral

 Table 4

 Autochthonous ostracod taxa (MNI: minimum number of individuals) * indicates juvenile specimens.

Samples	DF J31	DF J55	DF J38	DF J57	DF J39	DF J40	DF J42	DF J44	DF J46	DF J48	DF J50	DF J71	NC 133	NC 139	NC 145	NC 157	NC 168	NC 179	NC 194
Height (m)	65.10	70.30	73.20	74.70	75.50	76.80	79.40	82.00	84.60	87.20	89.80	93.70	98.50	99.40	100.04	102.20	105.10	107.90	111.65
Age (ka)	864.00	853.72	848.63	846.00	843.71	840.00	834.50	829.00	826.00	823.00	820.00	815.42	809.78	808.72	807.55	805.43	802.02	798.62	794.00
 Aglaiocypris sp. Argilloecia acuminata Argilloecia fatua Argilloecia ganzalori?	2* 2*	1	1	4* 1	2*		1*				1					1*			
Argilloecia pseudoreticolata Argilloecia robusta				*	1														
Argilloecia sp. Argilloecia sp. Aurila bradleyana Aurila (C) cimbaeformis					1							40* 8*	2*	28* 32*	8* *	14* 4*		2* 2*	
Aurila sp. 1 Aurila sp. Bairdoppilata conformis	21*		2*	19*	17*							0	*	52		-		*	
Bosquetina dentata Buntonia sublatissima Callistocythere aff. C. abjecta	2*	1	*	5*	8*														1
Callistocythere adriatica Callistocythere macilenta Callistocythere aff. C. rastrifera	1*			*	1*		20* 3*	4*	2*	1*		16*	7* 1*	12*	2*	5* 1	19* 2	13* 1*	9*
Callistocythere sp. 1 Callistocythere sp. 2 Callistocythere sp. 3 Callistocythere sp. 4							3 1							4 4		1	1		
Callistocythere sp.	2	*		1	2		2				*								
Cytherella vulgatella	2 4*	I	3*	4	2 4*		2				1	0						1*	1*
Cytherois fischeri Cytherois aff. C. succinoides												0		8				*	1
Cytherois sp. 2 Cytheroma variabilis Cytheromorpha aff. C. nana												8							
Cytheropteron ionicum	4*		2	11*				1											1
Cytheropteron monoceros Cytheropteron ruggierii	5* 9*	2*	1	2 6*	4*	3	3* 54*	6*	18*	11*	12*	88*	6*	32*	16*	1 5*	1 5*		
C. aff. C. sagittaeferrum Cytheropteron sulcatum			1	3*	1*							*				1* 7*	1 5*	1* 2*	1
Cytheropteron volantium ssp. 1 Cytheropteron zinzulusae Cytherura curta	13* 1	1*	2	3*	2*	1	30* 2	1	3	7*	6	8* *		4			1* 1		
Cytherura levireticulata Dopseucythere mediterranea	-		1				-							-					
Eucythere curta	⊿*		-	10*	1*		2*			*	*		1*					2*	
Eucytherura aff. E. gibbera Eucytherura mistrettai	1*		1	2	3		1		1		*						1	*	
Eucytherura patercoli Eucytherura sp. 1	1						1						1				4		
Eucytherura sp. 2 Eucytherura sp. 3							2									2*			
Eucytherura sp. 4 Hemicytherura defiorei				•			4*			1		8				1	1		
Hemicytherura videns Henryhowella parthenopea	*				1			*											1*
Henryhowella sarsii Kangarina abyssicola	6*		1	1*	1*		8* *	•	*	2*	*	8*	*	20*	*	*	1*	1*	*
Krithe compressa Krithe marialuisae		3		1		1		1	2 1	4 4	6* 5*	8*							
Krithe aff. K. minima Krithe monosteracensis		1												4					
Krithe praetexta Krithe sp. 1	11*	2	15*	4*	3*	3	5*				4*		1	12*			5*	3*	2* 1
Leptocythere bacescoi Leptocythere crepidula Leptocythere macella		1		1 1 1			10* 2 2	1		1	1	8	10* 1	12	2*	12* 4* 2	13*	13*	26
Leptocythere multipunctata Leptocythere ramosa "Leptocythere" sp. 1	4*	1*		2	1	1	35* 7*	3* 1*	6	2*	5*	224* 8	48* 2*	144* 4*	58* 2	56* 2*	25* 2*	94* 20*	158* 4
Loxoconcha gibberosa Loxoconchidea minima Macromckenziea ligustica	1						1*					16	1*			*	3*	2*	2*
M. aff. M. ligustica Microcytherura angulosa	1			*								0					1*	1	1
Microcytherura fulva "Microcytherura" sp. 1 Neocytherideis subulata					1				1			8			2	1	*		
Pachycaudites sp. Palmoconcha subrugosa Palmoconcha turbida	1* 1*	2*	22*	10*	11*	18* *	25* 2*	31* 2*	9* 5	20* 1*	39*	* 56* 16*	3* 2*	32*	20* 4*	3* 6*	1* 9*	1 2*	3*

NC 219 115.80 790 65	NC 250 122.30 785.62	NC 258 125.00 783 54	NC 271 127.00 782.00	NC 284 129.30 779.47	NC 290 130.30 778 36	NC 293 131.00 777 59	NC 299 132.50 775 94	NC 304 134.20 774.07	NC 320 138.50 769 74	NC 400 140.20 768.04	NC 404 146.40 761.83	NC 409 151.10 757 12	NC 413 154.60 753.61	NC 417 158.30 749 91	NC 420 161.60 746 60	NC 423 164.20 745 51	NC 424 165.10 745 14	NC 430 170.10 743.05	NC 434 174.00 741 42	NC 436 176.10 740 54
															1			, 15:05		, 10.0 1
			23*			6*	2*	1	1					5*	3*			1*		4
			8* 1*			2		1*										*		
	1	1*	2*		2	2		1												
2* 5*	30* 1*							I							20* 4*	20* 4*	1* *	6* *		46* 10*
															*					
		4* 1	57* 30*	13* 3*	54* 2*	90* 14*	19* 6*	24* 4*	1* 7*	47* 18*	3* 3*		3* 9*	47* 8*			8*	11* 10*	2	2*
22*	1*	5*	2*			2*	3*	13*		1		*		1*	7*	6	2*	23*	1*	10*
								2	1						2*					
	1*														1					
				1	2 2	2		2							-			1		
		*	8* 2	3*	8*	2*	3*	3*	*	*	*	*		*						
1	1																			
		1*	1												2		•			
		3*	7*		6*	2	1*	2*			1*		2	4*	2*	6*	5*	1 3		
4*	44*	1* 38*	1* 23*	1*	* 16	18*	1 9*	3 9*	1 1		1 3*	1 18*		2*	2* 8*	6*	2 2	32*	6*	18*
10*	12*	1* 1*	1* 3*		2*	2	*	3* 1						1	1 1	•			1*	
	1*	5*	15*		10	2	3	2*	2		1	12		1	2	2*	2	6*	7	6*
					2	2								1						
			6*			4*		1*						1	1					
		1	8*	1 1	2*	2		3*						1	1		8*		1	
	1																			
																		1		n
		1													2*			*		2
*	1* *	1 11*	28*	*	*	*	1*	6*	3*	9*	*	6*	2*	*	12*	8*	8*	2*		4*
			2*				*	5*		1		*		7*	_	2 2		3*		2
								2				10*			5				4	
	18*	10*	9*		2	6	3*		1*	5			4*		3*		1*	3*	4*	16*
5*	4	2	1		2		1*	2 2							2* 2			4*	* 1*	10
52*	66*	8*	6*	1	2	*	1	2*	1		*	10*		1	46*	128*	3	44*	14*	80*
I	3	2	1*		8*	2			1						2*					
			•												-					
					1												3	1*		8*
															1					
1 2*	109* 6*	14* 1*	32*	2	4*	14*	10*	13* 1	2	4*	1 *	10* 3*	2	3* 1*	6* 3*	4 4*	3 1	5* 3*	* 1*	6* 8*

(continued on next page)

Table 4 (continued)

Samples	DF J31	DF J55	DF J38	DF J57	DF J39	DF J40	DF J42	DF J44	DF J46	DF J48	DF J50	DF J71	NC 133	NC 139	NC 145	NC 157	NC 168	NC 179	NC 194
Height (m)	65.10	70.30	73.20	74.70	75.50	76.80	79.40	82.00	84.60	87.20	89.80	93.70	98.50	99.40	100.04	102.20	105.10	107.90	111.65
Age (ka)	864.00	853.72	848.63	846.00	843.71	840.00	834.50	829.00	826.00	823.00	820.00	815.42	809.78	808.72	807.55	805.43	802.02	798.62	794.00
Palmoconcha sp. 1 Paracypris sp. 1 Paracytheridea triquetra Paracytherois agigensis Paracytherois rara								1			*		1	4		1*	8*	1	1
Paracytherois striata Parakrithe ambigua Parakrithe dimorpha Parakrithe rotundata Phlyctocythere pellucida Platyleberis? sp. 1	1		2	5* *	2 1											1	1	1	
Polycope Inequens? Polycope tuberosa Pontocypris acuminata Pontocypris aff. P. frequens Pontocypris pallida Propontocypris succinea Propontocypris sp. 1	•		*		•						1	*							
Propontocypris sp. Pterygocythereis jonesii Pterygocythereis siveteri	*		*											4			2*	*	
Sagmatocythere concentrica Sagmatocythere littoralis	16*		4	10*	8*			2 1			1*		*						
Sagmatocythere aff. S. littoralis Sagmatocythere moncharmonti Sagmatocythere versicolor	1 4*	3*		2 3*	2	2	26*	7*	8*	12*	21*	64* 152*	14*	136*	58*	18*	20*	47*	21*
Sagmatocythere sp. Sclerochilus aff. S. dubowsky Sclerochilus gewemuelleri Sclerochilus sp. 1		* 1*									* 1								
Sclerochilus sp. Semicytherura acuticostata Semicytherura alifera Semicytherura dispar Semicytherura inversa	1						2 1* 1*	1*			*	8 8 8	1 1 2			2* 2	3* 1*	1	2 1
Semicytherura mediterranea Semicytherura quadridentata Semicytherura rara	* 1				1		2* 1 10			2		16 8	4	28*	6	2 16*	1 14*	1 8*	8*
Semicytherura rarecostata Semicytherura ruggierii Semicytherura sp. 1	3*	1		1*			2 27*	*	8*	1* 1	2*	3 184*	22*	236*	30*	106*	55*	69*	43*

(upper part) paleoenvironment. Some samples contain the outer shelf to bathyal species *K. compressa* and show high diversity for the genus *Cytheropteron*. The sample NC 434 (174.00 m, 741.42 ka) has to be considered as anomalous (cluster B1 in MNI, B2 in TNV) due to the abundance of *B. dentata* and *E. mistrettai*, suggesting a peak in water depth.

3.2. Paleobathymetry

The distributional data of the species characterizing the ostracofaunas recorded in the study section indicate the influence of bathymetric variations on the assemblage composition. Sedimentation took place in the circalittoral zone. We excluded the possibility of deposition in infralittoral environments due to the lack of autochthonous specimens belonging to typical shallow-water genera such as *Carinocythereis*, *Pontocythere*, and *Urocythereis* (Tables 2 and 3), widespread in Neogene–modern Mediterranean waters, and here represented by scattered, mainly juvenile, displaced valves.

All assemblages indicate deposition within the Lower Circalittoral Subzone (LCS) described by Sgarrella and Moncharmont Zei (1993), and based on Mediterranean benthic foraminiferal data distribution. The upper and lower limits of the LCS are placed, respectively, at 80–100 mbsl and 150–200 mbsl. The presence of species characteristic of deep, mainly bathyal environments, such as *K. compressa*, indicates that the section reaches a maximum paleodepth corresponding to the circalittoral/bathyal boundary.

The approach used to estimate paleobathymetry is outlined in Figs. 5 and 8. Fig. 5 shows distribution data for the most abundant species present in the Montalbano Jonico section. Fig. 8 shows the percentage abundance of taxa characterizing one of the shallowest (upper part of LCS) assemblages (sample NC 157, 102.20 m) and two "deep" (outer shelf, lower part of LCS) assemblages (NC 284, 129.30 m, and DF J46, 84.60 m). The ostracod assemblage for the sample NC 284 is dominated by *B. conformis*, *B. dentata* and *H. sarsii*, and the assemblage of DF J46 consists mainly of species belonging to *Krithe* and *Cytheropteron*.

Paleobathymetric ranges have been inferred for each sample from distributional data of living and fossil species. Analysis of the assemblage composition allowed the discrimination of 12 groups of assemblages. The main features of the assemblages are outlined as follows.

Group A: autochthonous specimens of *Aurila bradleyana*, *Aurila cimbaeformis* and *L. bacescoi* co-occur. The relative abundance of *A. bradleyana* ranges from 0.68 to 6.56% (MNI) and from 3.11 to 20.20% (TNV), *A. cimbaeformis* from 0.18 to 4.20% (MNI) and from 0.56 to 6.83% (TNV), and *L. bacescoi* from 0.66 to 4.44% (MNI) and from 0.16 to 3.37% (TNV). The sum of the percentages of *Aurila* spp. and *L. bacescoi*, here named "Infra–Circalittoral Taxa Abundance" (ICTA), ranges from 5.43 to 10.68% (MNI) and from 9.29 to 23.48% (TNV). *B. conformis* and *B.dentata* are not present, rare specimens of

(continued)

NC 219	NC 250	NC 258	NC 271	NC 284	NC 290	NC 293	NC 299	NC 304	NC 320	NC 400	NC 404	NC 409	NC 413	NC 417	NC 420	NC 423	NC 424	NC 430	NC 434	NC 436
790.65	785.62	783.54	782.00	779.47	778.36	777.59	775.94	774.07	769.74	768.04	761.83	757.12	753.61	749.91	746.60	745.51	745.14	743.05	741.42	740.54
															2	2		1*		10*
	I		2																	
					2	2														
			*						1											
			1*												1		*			
	7*	5*	9*		2*			2*	1	2*			1		1*			1*		2
16*		4*	14*	5*	20*	10*	6*	5*		3	1*			5	2	4	11*		1*	
	171*	10*	2* 3*		10*	4*	5*	5*				9*		2*	47*	20*	8*	35*	8*	42*
								*												
	1		2*					* 1							1					
4*	1							1 1							1					2
33*	171*	5*	5*		2*		1*		1			4*		1*	108*	32*		1 17*	9*	24*

K. compressa occur in sample DF J71 at 93.70 m with 0.77% (MNI) and 0.62% (TNV), E. mistrettai is present only in sample NC 179 at 107.90 m with 0.34% (MNI) and 0.09% (TNV), H. sarsii ranges from 0.34 to 3.93 % (MNI) and from 0.20 to 10.48% (TNV), and S. concentrica shows percentages lower than 10.06% (MNI) and 9.37% (TNV). The sum of percentages of B. conformis, B. dentata, E. mistrettai, H. sarsii, Krithe spp. and S. concentrica, i.e. "Circalittoral-Bathyal Taxa Abundance" (CBTA), ranges from 0.36 to 10.69% (MNI) and 0.74-12.57% (TNV). We consider samples of Group A as representing a paleobathymetric range between 100 and 120 mbsl. Group A includes samples DF J71 at 93.70 m, NC 139 at 99.40 m, NC 145 at 100.04 m, NC 157 at 102.20 m NC 179 at 107.90 m, NC 219 at 115.80 m, NC 250 at 122.30 m, and NC 420 at 161.60 m. Sample NC 133 at 98.50 m, which is devoid of A. bradleyana, is placed in this group due to the relative abundance values [ICTA: 10.29% (MNI) and 17.81% (TNV), CBTA: 2.21% (MNI) and 3.29% (TNV); L. bacescoi 7.35% (MNI) and 5.75% (TNV), A. cimbaeformis 2.21% (MNI) and 3.84% (TNV), H. sarsii 0.74% (MNI) and 2.47% (TNV), and S. concentrica 0.74% (MNI) and 0.27% (TNV)].

Group B: autochthonous specimens of *K. compressa* and *Aurila* spp. co-occur. ICTA ranges from 5.05 to 21.15% (MNI) and from 17.27 to 36.75% (TNV). *A. bradleyana* ranges from 2.75 to 14.74% (MNI) and from 13.98 to 28.28% (TNV), *A. cimbaeformis* from 0.46 to 3.20% (MNI) and from 2.14 to 6.46% (TNV), and *L. bacescoi* from 0 to 3.21 % (MNI) and from 0 to 2% (TNV). CBTA ranges from 5.51 to 13.30 %

(MNI) and from 5.79 to 15.30 % (TNV). *B. conformis* occurs only in sample NC 430 at 170.10 m with 5.05% (MNI) and 7.73% (TNV), *B. dentata* from 0 to 4.59% (MNI) and 0–3.95% (TNV), *E. mistrettai* is not present, *H. sarsii* ranges from 0.92 to 3.15 % (MNI) and from 1.34 to 10.67% (TNV), *K. compressa* ranges from 0.64 to 1.38% (MNI) and from 0.22 to 1.15% (TNV), and *S. concentrica* is present in sample NC 423 at 164.20 m with 1.57% (MNI) and 1% (TNV). Paleobathymetric estimation: 100–120 mbsl, possibly deposited during upwelling episodes. Group B includes the samples NC 423 at 164.20 m, NC 430 at 170.10 m, and NC 436 at 176.10 m.

Group C: The genus *Aurila* is not present. The relative abundance of *L. bacescoi* ranges from 6.22 to 8.93% (MNI) and from 5.55 to 6.76% (TNV), *H. sarsii* from 0.34 to 0.48% (MNI) and from 1.19 to 2.68% (TNV); CBTA: from 1.37 to 2.87% (MNI) and from 1.98 to 4.65% (TNV). *B. conformis, B. dentata, K. compressa* and *S. concentrica* are not present. Paleodepth: 100–120 mbsl. Group C includes the samples NC 168 at 105.10 m, and NC 194 at 111.65 m.

Group D: Aurila, B. conformis and K. compressa are not present. The relative abundance of L. bacescoi ranges from 1.61 to 3.36% (MNI) and 1.88–2.17% (TNV); CBTA ranges from 4.70 to 19.35% (MNI) and from 10.75 to 13.04 % (TNV). Group D includes the samples DF J42 at 79.40 m and NC 434 at 174.00 m. Inferred pale-odepth range: 120–140 mbsl.

Group E includes only sample NC 424 at 165.10 m. *L. bacescoi*, *K. compressa*, and *B. dentata* are not present. The relative abundance of *A. bradleyana* is 1.39% (MNI) and 5.59% (TNV), and that of

 Table 5

 Autochthonous ostracod taxa (TNV: total number of valves).

	Samples	DF J31	DF J55	DF J38	DF J57	DF J39	DF J40	DF J42	DF J44	DF J46	DF J48	DF J50	DF J71	NC 133	NC 139	NC 145	NC 157	NC 168	NC 179	NC 194
	Height (m)	65.10	70.30	73.20	74.70	75.50	76.80	79.40	82.00	84.60	87.20	89.80	93.70	98.50	99.40	100.04	102.20	105.10	107.90	111.65
	Age (ka)	864.00	853.72	848.63	846.00	843.71	840.00	834.50	829.00	826.00	823.00	820.00	815.42	809.78	808.72	807.55	805.43	802.02	798.62	794.00
_	A 1 :	001.00	055.72	0-10.05	040.00	045.71	040.00	054.50	025.00	020.00	025.00	020.00	015.42	005.70	000.72	007.55	005.15	002.02	750.02	754.00
	Aglaiocypris sp. Argilloecia acuminata Argilloecia fatua Argilloecia gonzalesi?	5 5	1	1	10 2	5		3				1					4			
	Argilloecia pseudoreticolata Argilloecia robusta Argilloecia robusta				3	2														
	Argilloecia sp. 1 Argilloecia sp.					2														
	Aurila bradleyana												288	14	236	34	179		36	
	Auriia (C.) cimbaeformis Aurila sp. 1												48	14	128	12	5		34	
	Aurila sp.													30					5	
	Bairdoppilata conformis Bosauetina dentata	123 11		9 4	112 13	113 20				1										
	Buntonia sublatissima					20														1
	Callistocythere aff. C. abjecta	5	1																	
	Callistocythere macilenta	5			3	2		123	11	6	7		56	22	44	8	46	60	52	48
	Callistocythere aff. C. rastrifera Callistocythere sp. 1							7 5						3	8		2 2	3 1	3	
	Callistocythere sp. 2 Callistocythere sp. 3							1							4					
	Callistocythere sp. 4																			
	Callistocythere sp. Cluthia keiii	2	4 1		1	3		3				1								
	Cytherella vulgatella	58		10	8	18		1											2	2
	Cytherois carcinitica Cytherois fischeri Cytherois aff C succinoides												8		8				2	1
	Cytherois sp. 1																		-	
	Cytherois sp. 2 Cytheroma variabilis												8							
	Cytheromorpha aff. C. nana																			
	Cytheropteron ionicum	11		3	26			7	1								1	1		1
	Cytheropteron ruggierii	9 28	4	1	3 11	14	5	/ 199	11	30	37	32	224	16	72	32	1 11	25		
	C. aff. C. sagittaeferrum Cytheropteron sulcatum			1	7	3							8				2 17	1 10	2 7	1
	Cytheropteron volantium ssp. 1	30	2	3	9	4	2	61	1	3	16	10	40					2		
	Cytheropteron zinzulusae	1						2					8		4			1		
	Cytherura levireticulata	1						2							-					
	Dopseucythere mediterranea Eucvthere curta			2				5			1	1		2					4	
	Eucytherura complexa	8			19	3		-			-	-		-					-	
	Eucytherura aff. E. gibbera	2		1	2	4		1		1		1						2	1	
	Eucytherura patercoli	1		1	2	4		1		1		1							1	
	Eucytherura sp. 1							1						1				4		
	Eucytherura sp. 2 Eucytherura sp. 3							2									3			
	Eucytherura sp. 4																			
	Hemicytherura defiorei Hemicytherura videns	1			1	1		9	1		1		8				1	1		2
	Henryhowella parthenopea	•				•			•											2
	Henryhowella sarsii Kangarina abussicola	48		1	16	4		107 2	2	1	17	10	56	9	132	4	12	19	10	9
	Krithe compressa		3					2	1	3	6	9	16							
	Krithe marialuisae				1		1			1	4	11								
	Krithe aff. K. minima Krithe monosteracensis		1												1					
	Krithe praetexta	24	3	19	9	7	4	12				7		2	24			14	6	5
	Krithe sp. 1 Lentocythere bacescoi		1		1			21	1			1	8	21	20	4	24	48	39	1 42
	Leptocythere crepidula		•		2			3	•			•	U	1	20	•	9	10	55	
	Leptocythere macella	0	2		2	1	1	2	7	10	1	12	464	112	269	124	3 125	104	110	277
	Leptocythere ramosa	0	2		2	1	1	14	2	10	5	15	16	4	12	2	4	5	59	4
	Loxoconcha gibberosa							4						4			2	11	6	5
	Loxoconchidea minima Macromckenziea ligustica	1											16							
	M. aff. M. ligustica	1			1													2	1	2
	wicrocytnerura angulosa Microcytherura fulva	1			1								8					ځ	1	2
	"Microcytherura" sp. 1					1				1						2				
	Neocytherideis subulata Pachycaudites sp.	1											16				1	1		
	Palmoconcha subrugosa	2	4	49	38	27	63	133	84	30	60	68	96	10	92	46	5	7	1	
	Palmoconcha turbida	2					1	24	5	7	4		160	10		22	51	18	13	22

NC 219 115.80 790.65	NC 250 122.30 785.62	NC 258 125.00 783.54	NC 271 127.00 782.00	NC 284 129.30 779.47	NC 290 130.30 778.36	NC 293 131.00 777.59	NC 299 132.50 775.94	NC 304 134.20 774.07	NC 320 138.50 769.74	NC 400 140.20 768.04	NC 404 146.40 761.83	NC 409 151.10 757.12	NC 413 154.60 753.61	NC 417 158.30 749.91	NC 420 161.60 746.60	NC 423 164.20 745.51	NC 424 165.10 745.14	NC 430 170.10 743.05	NC 434 174.00 741.42	NC 436 176.10 740.54
			75			0	5		1					16	1			2		
			14			0	5	2	1					10	0			2		2
	1		2			4		4										4		
25	207	2	2		2	2		1							170	150	10	95		254
18	24														24	34	6	13		58
			361	99	272	366	143	103	6	125	25		6	143	3		27	47		
		15	110	13	24	38	19	11	20	48	6		21	21				24	4	8
102	8	14	15			6	8	39		1		3		3	24	8	5	69	5	28
								2	1						4					
	2														1					
		2	01	1	2 4 20	2	11	3	1	1	2	2		1				1		
1	1	3	3	δ	30	12	11	0	1	I	2	3		I						
			1																	
		2	8												2		1	1		
		6 2	18 2		10 2	2	2 1	4 4	1		2 1	1	2	8	6 5	10	12 2	3		
8	85 26	100 2 3	113 2 4	2	32	28	14 1	23 7 1	2		5	39		5	24 2 1	10 2	2	67	11 2	34
24	3	12	4 30		18	2	6	5	4		1	20		1	3	2	2	12	9	14
					2	2								1						
			21		2	6		4						1	1		1			
		1	33	1 1	10	2		7						1	1		12		1	
	1																			
																		1		2
	5	1													5			1		
3	5	258	328 6	1	2	2	8 1	56	26	32	1	121 1	9	1	110	64 2	43	9		12
								11 2		1		30		15	5	2		7	5	2
	54	38	47		2	8	4		2	6			10		15		2	6	6	30
17	4	3	1		2		2	3							4			7	3	18
200	175	21	8	1	2	2	1	2			1	21		2	2	180	4	94	2	172
1	6	2	-	-	10	2	-	-	1		-			-			-			
			3									2			4					
					2												4	2		14
															1					
1	447	47	122	2	14	26	26	43	4	6	1	28	2	9	20	4	4	8	2	24
8	76	5			-	-	-	1		-	2	18		4	19	10	1	9 (contin	2	30

(continued on next page)

Table 5 (continued)

Samples	DF J31	DF J55	DF J38	DF J57	DF J39	DF J40	DF J42	DF J44	DF J46	DF J48	DF J50	DF J71	NC 133	NC 139	NC 145	NC 157	NC 168	NC 179	NC 194
Height (m)	65.10	70.30	73.20	74.70	75.50	76.80	79.40	82.00	84.60	87.20	89.80	93.70	98.50	99.40	100.04	102.20	105.10	107.90	111.65
Age (ka)	864.00	853.72	848.63	846.00	843.71	840.00	834.50	829.00	826.00	823.00	820.00	815.42	809.78	808.72	807.55	805.43	802.02	798.62	794.00
Palmoconcha sp. 1 Paracypris sp. 1 Paracytheridea triquetra Paracytherois agigensis Paracytherois rara								1			1		1	4		3	15	1	1
Paracytherois striata Parakrithe ambigua Parakrithe dimorpha Parakrithe rotundata Phlyctocythere pellucida Platyleberis? sp. 1	2		2	11	2 1											1	1	1	
Polycope frequens? Polycope tuberosa Pontocypris acuminata Pontocypris aff. P. frequens Pontocypris pallida Propontocypris succinea Propontocypris succinea	1		3		1						2	24 8							
Propontocypris sp. 1 Propontocypris sp. Pterygocythereis jonesii Pterygocythereis siveteri	1		1											4			20	1	
Sagmatocythere internationalis	35		7	26	16			2 2			2		1						
Sagmatocythere an. S. nitorans Sagmatocythere moncharmonti Sagmatocythere versicolor Sagmatocythere sp. Sclerochilus aff. S. dubowsky Sclerochilus gewenuelleri	10	5 1 2		2 25	4	3	184	33	36	45	93 1 1	224 288	46	376	178	53	126	221	60
Sclerochilus sp. 1 Sclerochilus sp. Semicytherura acuticostata Semicytherura alifera Semicytherura dispar Semicytherura inversa Semicytherura mediterranea	1						5 2 3 5	2			1	8 8 8	1 1 3			4 3 2	7 3	1	1
semicytherura quadridentata Semicytherura rara Semicytherura rarecostata Semicytherura ruggierii Semicytherura sp. 1	1 1 5	1		5	1		1 19 2 63	2	17	2 4 1	5	24 8 40 384	7 42	36 400	8 62	26 273	1 24 171	13 218	14 154

Table 6

Ostracod abundance and diversity index values based on MNI (minimum number of individuals).

Samples	DF J31	DF J55	DF J38	DF J57	DF J39	DF J40	DF J42	DF J44	DF J46	DF J48	DF J50	DF J71	NC 133	NC 139	NC 145	NC 157	NC 168	NC 179	NC 194
Height (m)	65.10	70.30	73.20	74.70	75.50	76.80	79.40	82.00	84.60	87.20	89.80	93.70	98.50	99.40	100.04	102.20	105.10	107.90	111.65
Age (ka)	864.00	853.72	848.63	846.00	843.71	840.00	834.50	829.00	826.00	823.00	820.00	815.42	809.78	808.72	807.55	805.43	802.02	798.62	794.00
Taxa S	34	16	17	31	24	8	36	19	14	16	22	30	24	20	14	30	31	28	22
Individuals (100 g)	43	8	20	39	26	10	99	22	22	27	38	344	45	254	71	93	69	98	97
Dominance D	0.08	0.08	0.20	0.07	0.10	0.39	0.09	0.24	0.14	0.15	0.18	0.12	0.18	0.17	0.19	0.20	0.12	0.19	0.34
Shannon H	2.98	2.67	2.09	2.99	2.69	1.40	2.78	2.08	2.22	2.22	2.24	2.59	2.28	2.16	1.97	2.24	2.63	2.08	1.65
Equitability J	0.84	0.96	0.74	0.87	0.85	0.67	0.78	0.71	0.84	0.80	0.72	0.76	0.72	0.72	0.75	0.66	0.76	0.62	0.54

 Table 7

 Ostracod abundance and diversity index values based on TNV (total number of valves).

Samples	DF J31	DF J55	DF J38	DF J57	DF J39	DF J40	DF J42	DF J44	DF J46	DF J48	DF J50	DF J71	NC 133	NC 139	NC 145	NC 157	NC 168	NC 179	NC 194
Height (m)	65.10	70.30	73.20	74.70	75.50	76.80	79.40	82.00	84.60	87.20	89.80	93.70	98.50	99.40	100.04	102.20	105.10	107.90	111.65
Age (ka)	864.00	853.72	848.63	846.00	843.71	840.00	834.50	829.00	826.00	823.00	820.00	815.42	809.78	808.72	807.55	805.43	802.02	798.62	794.00
Taxa S	34	16	17	31	24	8	37	19	14	16	22	31	25	21	14	31	32	28	23
Taxa S Individuals (100 g)	34 148	16 12	17 39	31 124	24 86	8 27	37 372	19 57	14 49	16 70	22 92	31 859	25 122	21 625	14 179	31 295	32 237	28 386	23 252
Taxa S Individuals (100 g) Dominance D	34 148 0.13	16 12 0.08	17 39 0.22	31 124 0.13	24 86 0.22	8 27 0.63	37 372 0.11	19 57 0.29	14 49 0.17	16 70 0.17	22 92 0.20	31 859 0.10	25 122 0.15	21 625 0.14	14 179 0.19	31 295 0.17	32 237 0.13	28 386 0.21	23 252 0.31
Taxa S Individuals (100 g) Dominance D Shannon H	34 148 0.13 2.55	16 12 0.08 2.60	17 39 0.22 2.02	31 124 0.13 2.63	24 86 0.22 2.15	8 27 0.63 0.89	37 372 0.11 2.55	19 57 0.29 1.78	14 49 0.17 2.03	16 70 0.17 2.07	22 92 0.20 2.09	31 859 0.10 2.60	25 122 0.15 2.39	21 625 0.14 2.24	14 179 0.19 1.96	31 295 0.17 2.22	32 237 0.13 2.47	28 386 0.21 1.98	23 252 0.31 1.66

(continued)

NC 219	NC 250	NC 258	NC 271	NC 284	NC 290	NC 293	NC 299	NC 304	NC 320	NC 400	NC 404	NC 409	NC 413	NC 417	NC 420	NC 423	NC 424	NC 430	NC 434	NC 436
115.80	122.30	125.00	127.00	129.30	130.30	131.00	132.50	134.20	138.50	140.20	146.40	151.10	154.60	158.30	161.60	164.20	165.10	170.10	174.00	176.10
790.65	785.62	783.54	782.00	779.47	778.36	777.59	775.94	774.07	769.74	768.04	761.83	757.12	753.61	749.91	746.60	745.51	745.14	743.05	741.42	740.54
															2	2		7		22
	4		6																	
					4															
						2														
			2						1											
			2												1					
	26	11	22		4			5	1	3			1		2		1	9		2
52		5	69	11	32	40	21	12		4	3			10	2	6	19		2	
	813	33	8 6		20	6	20	15				57		9	225	48	21	91	32	124
								1												
	1		6					2 1							1					
	2																			
8	1							1 1							1					2
87	381	12	18		4		3		1			7		3	234	64		1 27	14	46

NC 219	NC 250	NC 258	NC 271	NC 284	NC 290	NC 293	NC 299	NC 304	NC 320	NC 400	NC 404	NC 409	NC 413	NC 417	NC 420	NC 423	NC 424	NC 430	NC 434	NC 436
115.80	122.30	125.00	127.00	129.30	130.30	131.00	132.50	134.20	138.50	140.20	146.40	151.10	154.60	158.30	161.60	164.20	165.10	170.10	174.00	176.10
790.65	785.62	783.54	782.00	779.47	778.36	777.59	775.94	774.07	769.74	768.04	761.83	757.12	753.61	749.91	746.60	745.51	745.14	743.05	741.42	740.54
15	25	26	35	11	26	23	19	33	15	10	12	14	7	20	35	18	20	27	16	21
15 53	25 182	26 46	35 108	11 11	26 54	23 65	19 26	33 42	15 8	10 30	12 6	14 29	7 8	20 31	35 102	18 85	20 24	27 73	16 21	21 104
15 53 0.19	25 182 0.22	26 46 0.12	35 108 0.08	11 11 0.22	26 54 0.15	23 65 0.24	19 26 0.12	33 42 0.08	15 8 0.12	10 30 0.32	12 6 0.11	14 29 0.12	7 8 0.23	20 31 0.27	35 102 0.18	18 85 0.29	20 24 0.09	27 73 0.11	16 21 0.12	21 104 0.12
15 53 0.19 2.01	25 182 0.22 1.87	26 46 0.12 2.63	35 108 0.08 2.93	11 11 0.22 1.92	26 54 0.15 2.56	23 65 0.24 2.15	19 26 0.12 2.49	33 42 0.08 3.00	15 8 0.12 2.43	10 30 0.32 1.53	12 6 0.11 2.34	14 29 0.12 2.28	7 8 0.23 1.71	20 31 0.27 2.00	35 102 0.18 2.34	18 85 0.29 1.87	20 24 0.09 2.66	27 73 0.11 2.54	16 21 0.12 2.35	21 104 0.12 2.47

NC 219	NC 250	NC 258	NC 271	NC 284	NC 290	NC 293	NC 299	NC 304	NC 320	NC 400	NC 404	NC 409	NC 413	NC 417	NC 420	NC 423	NC 424	NC 430	NC 434	NC 436
115.80	122.30	125.00	127.00	129.30	130.30	131.00	132.50	134.20	138.50	140.20	146.40	151.10	154.60	158.30	161.60	164.20	165.10	170.10	174.00	176.10
790.65	785.62	783.54	782.00	779.47	778.36	777.59	775.94	774.07	769.74	768.04	761.83	757.12	753.61	749.91	746.60	745.51	745.14	743.05	741.42	740.54
15	25	26	35	11	27	23	20	34	15	10	12	14	7	20	35	18	20	27	16	21
185	816	200	516	47	171	191	99	129	24	76	17	117	17	85	350	200	60	203	46	299
0.20	0.19	0.23	0.13	0.52	0.30	0.42	0.26	0.12	0.22	0.37	0.28	0.18	0.26	0.33	0.15	0.19	0.12	0.10	0.16	0.15
1.93	1.98	2.07	2.53	1.13	1.98	1.55	1.99	2.60	1.93	1.33	1.78	2.03	1.57	1.78	2.26	2.01	2.43	2.56	2.21	2.30
0.71	0.61	0.63	0.71	0.47	0.60	0.49	0.66	0.74	0.71	0.58	0.72	0.77	0.81	0.59	0.64	0.69	0.81	0.78	0.80	0.76

Table 8

Ostracod species with maximum relative abundances. MNI: minimum number of individuals; TNV: total number of valves.

Species	Number of samples	Max % MNI	Max % NTV
Aurila bradleyana	12	14.7%	28.3%
Bairdoppilata conformis	18	51.6%	70.7%
Bosquetina dentata	19	39.1%	41.2%
Callistocythere macilenta	29	13.8%	10.1%
Cytheropteron ruggierii	36	27.7%	20.4%
Cytheropteron volantium n. ssp. 1	30	13.8%	7.6%
Eucytherura mistrettai	17	11.1%	6.7%
Henryhowella sarsii	37	12%	43%
Krithe compressa	12	13%	4.3%
Krithe marialuisae	9	11.5%	8.6%
Krithe praetexta	27	24.6%	19.6%
Leptocythere multipunctata	36	54.3%	49.9%
Palmoconcha subrugosa	39	60%	78.8%
Sagmatocythere concentrica	21	15.6%	10.6%
Sagmatocythere versicolor	32	31.3%	33.6%
Semicytherura ruggierii	30	37.7%	30.8%

A. cimbaeformis is 1.39% (MNI) and 3.35% (TNV). CBTA: 50% (MNI) and 57.54% (TNV). Inferred paleodepth range: 120–150 mbsl.

Group F: The genus *Aurila* and *K. compressa* are not present. The relative abundance of *L. bacescoi* ranges from 0.31 to 1.30% MNI and from 0.06 to 0.67% TNV, *B. conformis* from 16.10 to 33.54% (MNI) and from 23.31 to 53.02% TNV, *B. dentata* from 1.24 to 9.26% (MNI) and from 3.49 to 7.10% (TNV), *H. sarsii* from 0.85 to 8.64% (MNI) and from 0.39 to 21.17 % (TNV), *S. concentrica* from 4.32 to 8.47% (MNI) and from 4.45 to 7.07 % (TNV); CBTA ranges from 35.59 to 45.45% (MNI) and from 48.12 to 66.67% (TNV). Group F includes the samples DF J57 at 74.70 m, NC 271 at 127.00 m, NC 290 at 130.30 m, and NC 299 at 132.50 m. Inferred paleodepth range: 130–150 mbsl.

Group G includes only sample NC 258 at 125.00 m. The genus *Aurila* and the species *K. compressa* and *B. conformis* are not present. The relative abundance of *L. bacescoi* is 1.46% (MNI) and 0.5% (TNV), *B. dentata* is 2.92% (MNI) and 2.5% (TNV), *H. sarsii* is 8.03 (MNI) and 43% (TNV), and *S. concentrica* is 2.92% (MNI) and 0.83% (TNV). CBTA: 21.90% (MNI) and 52.83% (TNV). Inferred paleodepth range: 130–150 mbsl.

Group H: The genus *Aurila* and the species *B. conformis* and *B. dentata* are not present. The species *L. bacescoi* and *K. compressa* co-occur. The relative abundance of *H. sarsii* is lower than 1.49% (MNI) and 3.61% (TNV), few specimens of *E. mistrettai* occur in sample DF J50 at 89.80 m [0.88% (MNI), 0.36% (TNV)], *S. concentrica* is present in sample DF J44 at 82.00 m [2.99% (MNI), 1.18% (TNV)]. The relative abundance of *L. bacescoi* ranges from 0.88 to 4.35 % (MNI) and from 0.36 to 2.78 % (TNV). Group H includes the samples DF J55 at 70.30 m, DF J44 at 82.00 m, and DF J50 at 89.80 m. CBTA ranges from 5.97 to 26.09% (MNI) and from 2.94% to 19.44% (TNV). Inferred paleodepth range: 130–150 mbsl.

Group I includes only sample NC 304 at 134.20 m. The genus *Aurila* is not present. The relative abundance of *B. conformis* is 19.05% (MNI) and 26.61% (TNV), *K. compressa* 3.97% (MNI) and 2.84% (TNV), *L. bacescoi* 1.59% (MNI) and 0.77% (TNV), *B. dentata* 3.17% (MNI) and 2.84% (TNV), *E. mistrettai* 2.38% (MNI) and 1.81% (TNV), *H. sarsii* 4.76% (MNI) and 14.47% (TNV), and *S. concentrica* 3.97% (MNI) and 3.10% (TNV). CBTA: 38.89% (MNI) and 52.20% (TNV). Inferred paleodepth range: 130–160 mbsl.

Group J: The genus *Aurila* and the species *K. compressa* and *L. bacescoi* are not present. CBTA ranges from 39.34 to 78.26% (MNI) and from 35.04 to 90.20% (TNV). Group J includes the samples DF J31 at 65.10 m, DF J38 at 73.20 m, DF J39 at 75.50 m, NC 284 at

129.30 m, NC 293 at 131.00 m, NC 320 at 138.50 m, NC 404 at 146.40 m, and NC 413 at 154.60 m. The samples DF J40 at 76.80 m [CBTA: 13.33% (MNI) and 6.25% (TNV)] and NC 409 at 151.10 m [CBTA: 18.39% (MNI) and 43.02% (TNV)] are included in Group J due to the strong resemblance of the assemblage composition. Inferred paleodepth range: 140-160 mbsl.

Group K: The genus *Aurila* and the species *L. bacescoi* are not present. The relative abundance of *K. compressa* ranges from 3.03 to 5.63 % (MNI) and from 2.04 to 2.84% (TNV). CBTA ranges from 9.09 to 14.08% (MNI) and from 4.76 to 12.80% (TNV). Group K includes the samples DF J46 at 84.60 m and DF J48 at 87.20 m. Inferred paleodepth range: 140–170 mbsl.

Group L: The genus *Aurila* and the species *L. bacescoi* are not present. The relative abundance of *K. compressa* ranges from 1.10 to 7.45% (MNI) and from 0.44 to 5.88% (TNV). CBTA ranges from 73.40 to 91.21 % (MNI) and from 74.90 to 95.15 % (TNV). Group L includes the samples NC 400 at 140.20 m and NC 417 at 158.30 m. Inferred paleodepth range: 170–200 mbsl.

The paleobathymetry trend (Fig. 9) has been defined by considering the main part of the assemblage variations as dependent on water depth changes. The trend fits well with both the benthic δ^{18} O trend (Maiorano et al., 2010; Marino et al. 2015) and with the sea level curve of Bintanja and van de Wal (2008), and shows a strong correlation between climatic phases and sea level (Fig. 9).

The lower part of the section (subcluster A1 and B1), deposited in an outer shelf environment, can be linked to the high sea level typical of MIS 21.

The shallowing indicated by the upper LCS ostracod assemblages recorded in the second interval (subcluster A2) is related to the climatic cooling of MIS 20. In the third interval (subclusters B1 and B2), the rise in sea level resulting from the warm climate of MIS 19 induced the replacement of upper LCS assemblages with open shelf ostracods.

The section ends with a new shallowing (subcluster A2) corresponding to the cold phase MIS 18, including a brief deepening episode at 741.42 ka. This last interval shows the unexpected presence of autochthonous specimens of *Aurila* spp. (mainly infralittoral and upper circalittoral) and *Krithe compressa*, a species generally living below 160 m. The co-occurrence of taxa with different ecological preferences may be interpreted to represent an upward migration of outer shelf to bathyal taxa during upwelling episodes, inducing the mixing of upper bathyal and middle circalittoral waters (*e.g.* Borne, 1995).

3.3. Bottom-water oxygen conditions

Among the main factors influencing the composition of ostracod assemblages, dissolved oxygen levels play a role that depends on the general context of the paleoenvironmental trend. For example, the assemblages of the Calabrian IM-5 Agosto section (Maiorano et al., 2008), deposited within the upper bathyal zone, show a close relationship with paleo-oxygen levels, leading to the complete loss of ostracods during anoxic—dysoxic phases. In the studied part of the section, the sediments were deposited in lower circalittoral paleoenvironments, and the ostracod assemblages largely reflect the paleobathymetric variations. Consequently, the data seem inadequate to reconstruct a continuous paleo-oxygen curve. Nonetheless, the previously adopted methodology (Maiorano et al., 2008) that considers the infaunal/epifaunal ratio together with simple diversity and abundance, yielded some meaningful results.

a The lack of barren samples indicates that bottom waters did not reach the low-oxygen levels of an anoxic–dysoxic environment.

Fig. 6. Dendrogram based on a cluster analysis of the minimum number of individuals (MNI).

Fig. 7. Dendrogram based on a cluster analysis of the total number of valves (TNV).

Fig. 8. Relative abundances of selected taxa in three samples belonging to different clusters. (a) Sample DFJ46 MNI. (b) Sample DFJ46 TNV (cluster A1, outer shelf paleoenvironment, cold phase MIS 21). (c) Sample NC284 MNI. (d) Sample NC 284 TNV (cluster B1, outer shelf paleoenvironment, warm phase MIS 19). (e) Sample NC 157 MNI. (f) Sample NC 157 TNV (cluster A2, upper LCS paleoenvironment, cold phase MIS 20).

Fig. 9. Paleoecological events through the Montalbano Jonico section and paleobathymetry trends compared with the benthic δ^{18} O curve (Marino et al. 2015) and global sea level curve (Bintanja and van de Wal, 2008). The asterisks indicate kenoxic ostracod assemblages. V3 and V4: volcaniclastic layers; Phase A: MIS 21.3 warm-humid phase; Phase I: MIS 19.1 warm-humid phase (following Marino et al. 2015).

b Some samples show high infaunal/epifaunal ratios, ranging from 0.7 to 2, coinciding with low values of simple diversity ranging from 7 to 24. The data are reported in Table 9.

The samples indicating low-oxygen bottom waters (*i.e.* "kenoxic" *sensu* Maiorano et al., 2008) mostly belong to the first and the third part of the section, related to the warm intervals MIS 21 and MIS19 (indicated by asterisks in Fig. 9). These layers most likely represent phases of moderate stratification of the water column linked to interglacial phases frequently represented, in deep paleoenvironments, by the deposition of sapropel layers (*e.g.* Olausson, 1961; Ryan, 1972; review and references in Cramp and O'Sullivan, 1999).

Table 9

Infaunal/epifaunal ratio, species richness and abundance (number of specimens/ 100 g) values of kenoxic assemblages recorded in the Montalbano Jonico section.

Sample	m	Age (ka)	MIS	Infaunal/epifaunal ratio	Taxa S	Ab. MNI	Ab. TNV
NC 417	158.30	749.91	19	0.94	20	44	255
NC 413	154.60	753.61	19	0.92	7	23	51
NC 400	140.20	768.04	19	0.24	10	91	227
DF J50	89.80	820.00	21	0.53	22	113	277
DF J40	76.80	840.00	21	0.75	8	30	80
DF J39	75.50	843.71	21	0.42	24	79	257
DF J38	73.20	848.63	21	2.00	17	61	117
DF J55	70.30	853.72	21	1.14	16	23	36

Samples with the lowest simple diversity, low abundance and high infaunal/epifaunal ratios are DFJ40 (76.8 m, 840.00 ka) and NC 413 (154.6 m, 753.61 ka) which can be considered as representing minimum paleo-oxygen levels (Fig. 10). Furthermore, these assemblages show very low Shannon H diversity and high Dominance D values (Tables 6 and 7).

Given that the relationships between climatic events and bottom water paleo-oxygen conditions, as well as the dating of related sediments, are not completely defined at this time, we suggest some possible correlations that require confirmation through further investigations. The kenoxic assemblages recorded in the cold phase MIS 21, with the exception of sample DF J50, fall within 854–840 ka, which includes the warm-humid phase ("phase A") recorded by Marino et al. (2015), corresponding to MIS 21.3 and dated at about 846 ka by Marino et al. (2015).

Murat (1999), describing the sapropel levels recovered at ODP leg 161 Site 976 (Alboran Sea), recognized a 0.94 m thick layer (key bed number 620) with total organic carbon (TOC) max. = 1.58%, dated 835.38 ka. This sapropel has been related to insolation cycle (i-cycle) 80, dated at 841 ka (Laskar et al., 1993; de Kaenel et al., 1999; Lourens, 2004; Reale and Monechi, 2005; Joannin et al., 2011). Consequently, the minimum-oxygen ostracod assemblage occurring in sample DF J40 (840.00 ka) could reflect the insolation maximum of i-cycle 80 in an open shelf environment, approximately coeval with sapropel deposition in deep Mediterranean waters.

Fig. 10. Simple diversity (taxa S), abundance (individuals per 100 g), and infaunal/epifaunal ratios for the studied interval, highlighting the minimum paleo-oxygen levels recorded in samples DFJ40 and NC413. MNI = minimum number of individuals, TNV = total number of valves.

The kenoxic assemblages of samples NC 413 (753.61 ka) and NC 417 (749.91 ka) are associated with the assemblages of the underlying deposits (NC 409, 757.12 ka; NC 404, 761.83 ka; NC 400, 768.04 ka) that show low simple diversity (10–14) and low abundance (MNI: 18–91; NTV: 50–351), thus indicating a kenoxic interval that corresponds approximately with the increase of arboreal mesothermic taxa recorded by Marino et al. (2015; "warm phase I", 768 ka) associated with the warm and humid phase of MIS 19.1 (dated 765 ka in Bassinot et al., 1994; de Kaenel et al., 1999; 766 ka in Wei et al., 2003; 772 ka in Langereis et al., 1997; Capraro et al., 2005). A certain correspondence with the insolation maximum of cycle 72 (dated 765 ka; Laskar et al., 1993; de Kaenel et al., 1999) is noted.

4. Conclusions

The sensitivity of ostracods to environmental changes allows recognition of paleoecological trends in the studied part of the Montalbano Jonico succession, ranging from 864.00 to 740.54 ka. Assemblage compositions show close connections with the evolution of paleobathymetry that, in turn, is linked to climate phases recorded around the Lower–Middle Pleistocene (Matuyama–Brunhes) boundary. Quantitative taxonomic analysis and cluster analysis indicate four paleobathymetric–paleoclimatic

Table 10

Intervals of the study section resulting from paleoecological considerations and cluster analysis, and positions of the hypothesized kenoxic levels and upwelling episodes.

Sample	m	Age (ka)	Interval	Events
NC 436	176.10	740.54	IV Semicytherura ruggierii,	- upwelling
NC 434	174.00	741.42	Sagmatocythere versicolor,	
NC 430	170.10	743.05	Aurila spp. (~MIS 18)	 upwelling
NC 424	165.10	745.14		
NC 423	164.20	745.51		 upwelling
NC 420	161.60	746.60		
NC 417	158.30	749.91	III Bairdoppilata conformis,	 kenoxic
NC 413	154.60	753.61	Bosquetina dentata,	 kenoxic
NC 409	151.10	757.12	Henryhowella sarsii (~MIS 19)	
NC 404	146.40	761.83		
NC 400	140.20	768.04		 kenoxic
NC 320	138.50	769.74		
NC 304	134.20	774.07		
NC 299	132.50	775.94		
NC 293	131.00	777.59		
NC 290	130.30	778.36		
NC 284	129.30	779.47		
NC 271	127.00	782.00		
NC 258	125.00	783.54		
NC 250	122.30	785.62	II Leptocythere spp.,	
NC 219	115.80	790.65	Aurila spp. (~MIS 20)	
NC 194	111.65	794.00		
NC 179	107.90	798.62		
NC 168	105.10	802.02		
NC 157	102.20	805.43		
NC 145	100.04	807.55		
NC 139	99.40	808.72		
NC 133	98.50	809.78		
DF J71	93.70	815.42		
DF J50	89.80	820.00	I Krithe spp.,	 kenoxic
DF J48	87.20	823.00	Cytheropteron spp.,	
DF J46	84.60	826.00	Henryhowella sarsii (~MIS 21)	
DF J44	82.00	829.00		
DF J42	79.40	834.50		
DF J40	76.80	840.00		 kenoxic
DF J39	75.50	843.71		 kenoxic
DF J57	74.70	846.00		
DF J38	73.20	848.63		 kenoxic
DF J55	70.30	853.72		 kenoxic
DF J31	65.10	864.00		

intervals (Table 10). The lowest part of the section, deposited in the lower part of LCS, is related with the warm phase MIS 21. The overlying sediments have yielded assemblages characteristic of the upper part of the LCS, due to the lowered sea level of MIS 20. The third part, including the Lower-Middle Pleistocene boundary, shows a deepening in outer shelf waters during the warm phase of MIS 19. Above this, a new shallowing is recorded, resulting in upper LCS sediments associated with MIS 18. The paleobathymetric trends show a close correlation with the sea level reconstruction as defined by Bintanja and van de Wal (2008). The presence of upwelling episodes has been inferred from the co-occurrence of autochthonous infra-to circalittoral and circalittoral to bathyal taxa. A secondary factor influencing ostracod assemblages is the dissolved oxygen level in bottom waters. Two major kenoxic events have been recognized. The first, occurring within the warm phase MIS 21, can be related to the substage 21.3. The second is associated with the substage MIS 19.1. Dysoxic-anoxic phases, typical of sapropel deposition, have not been recorded.

Acknowledgements

The authors thank David Horne (Queen Mary University of London) and editors Martin Head and Norm Catto, whose comments and suggestions greatly improved the manuscript. We especially acknowledge Maria Marino and Neri Ciaranfi (Univesità degli Studi di Bari) who provided the samples and Roberto de' Gennaro (Cisag, Università di Napoli Federico II) who took the SEM micrographs. We are particularly grateful to Tania Alfeo for the valuable scientific contribution during the starting phase of this investigation.

Appendix 1. List of ostracod taxa recorded in the present study. Numbers in parentheses indicate autochthonous/ allochthonous groups (see text).

(4) Aglaiocypris sp.
(4) Argilloecia acuminata G.W. Müller 1894
(4) Argilloecia fatua Barra et al. 1996
(4) Argilloecia gonzalesi? Barra et al. 1996
(4) Argilloecia pseudoreticolata Barra et al. 1996
(4) Argilloecia robusta Bonaduce et al. 1976
(4) Argilloecia sp. 1
(4) Argilloecia sp.
(3) Aurila bradleyana Ruggieri 1976
(3) Aurila (Cimbaurila) cimbaeformis (Seguenza 1883)
(3) Aurila sp. 1
(3) Aurila sp.
(4) Bairdoppilata conformis (Terquem 1878)
(4) Bosquetina dentata (G.W. Müller 1894)
(4) Buntonia sublatissima (Neviani 1906)
(4) Callistocythere aff. C. abjecta Schornikov 1966
(4) Callistocythere adriatica Masoli 1968
(4) Callistocythere macilenta Ciampo 1976
(4) Callistocythere aff. C. rastrifera (Ruggieri 1953)
(4) Callistocythere sp. 1
(4) Callistocythere sp. 2
(4) Callistocythere sp. 3
(4) Callistocythere sp. 4
(4) Callistocythere sp.
(1) Candona sp. 1
(2) Carinocythereis carinata (Roemer 1838)
(2) Caudites calceolatus (O.G. Costa 1853)
(2) Cistacythereis turbida (G.W. Müller 1894)
(4) Cluthia keiji Neale 1975
(2) Costa batei (Brady 1866)

- (2) Costa edwardsi (Roemer 1838)
- (1) Cyprideis torosa (Jones 1850)
- (4) Cytherella vulgatella Aiello, Barra, Bonaduce and Russo 1996
- (4) Cytherois carcinitica Marinov 1964
- (4) Cytherois fischeri (Sars 1866)
- (4) Cytherois aff. C. succinoides Dubowsky 1939
- (4) Cytherois sp. 1
- (4) Cytherois sp. 2
- (4) Cytheroma variabilis G.W. Müller 1894
- (4) Cytheromorpha aff. C. nana Bonaduce et al. 1976
- (4) Cytheropteron ionicum Colalongo and Pasini 1980
- (4) Cytheropteron monoceros Bonaduce et al. 1976
- (4) Cytheropteron ruggierii Pucci 1955
- (4) Cytheropteron aff. C. sagittaeferrum Aiello and Szczechura 2004
 - (4) Cytheropteron sulcatum Bonaduce et al. 1976
 - (4) Cytheropteron volantium Whatley and Masson 1979 ssp. 1
 - (4) Cytheropteron zinzulusae Bonaduce et al. 1976
 - (4) Cytherura curta Colalongo and Pasini 1980
 - (4) Cytherura levireticulata Colalongo and Pasini 1980
- (4) *Dopseucythere mediterranea* (Bonaduce, Masoli, Pugliese and McKenzie 1980)
 - (4) Eucythere curta Ruggieri 1975
 - (4) Eucytherura complexa (Brady 1866)
 - (4) Eucytherura aff. E. gibbera G.W. Müller 1894
 - (4) Eucytherura mistrettai Sissingh 1972
 - (4) Eucytherura patercoli Mistretta 1967
 - (4) Eucytherura sp. 1
 - (4) *Eucytherura* sp. 2
 - (4) Eucytherura sp. 3
 - (4) Eucytherura sp. 4
 - (4) Hemicytherura defiorei Ruggieri 1953
 - (4) Hemicytherura videns (G.W. Müller 1894)
 - (4) Henryhowella parthenopea Bonaduce et al. 1999
 - (4) *Henryhowella sarsii* (G.W. Müller 1894)
 - (4) Kangarina abyssicola (G.W. Müller 1894)
 - (4) *Krithe compressa* (Seguenza 1880)
 - (4) Krithe marialuisae Abate et al. 1993
 - (4) Krithe aff. K. minima Coles et al. 1994
 - (4) Krithe monosteracensis (Seguenza 1880)
 - (4) Krithe praetexta (Sars 1866)
 - (4) *Krithe* sp. 1
 - (4) *Leptocythere bacescoi* (Rome 1942)
 - (4) Leptocythere crepidula Ruggieri 1950
 - (4) Leptocythere macella Ruggieri 1975
 - (4) *Leptocythere multipunctata* (Seguenza 1883)
 - (4) Leptocythere ramosa (Rome 1942)
 - (4) "Leptocythere" sp. 1
 - (4) Loxoconcha gibberosa Terquem 1878
 - (2) Loxoconcha ovulata (O.G. Costa 1853)
 - (2) Loxoconcha sp.
 - (4) Loxoconchidea minima Bonaduce et al. 1976
 - (4) Macromckenziea ligustica (Bonaduce et al. 1977)
 - (4) Macromckenziea aff. M. ligustica Bonaduce et al. 1976
 - (4) Microcytherura angulosa (Seguenza 1880)
 - (4) *Microcytherura fulva* (Brady and Robertson 1874)
 - (4) "Microcytherura" sp. 1
 - (4) Neocytherideis subulata (Brady 1868)
 - (4) Pachycaudites sp.
 - (4) Palmoconcha subrugosa (Ruggieri 1967)
 - (4) Palmoconcha turbida (G.W. Müller 1912)
 - (4) Palmoconcha sp. 1
 - (4) Paracypris sp. 1
 - (3) Paracytheridea triquetra (Reuss 1850)
 - (4) Paracytherois agigensis Caraion 1963

- (4) Paracytherois rara G.W. Müller 1894
- (4) Paracytherois striata G.W. Müller 1894
- (2) Paradoxostoma aff. P. simile G.W. Müller 1894

71

- (4) Parakrithe ambigua Ciampo 1980
- (4) Parakrithe dimorpha Bonaduce et al. 1976
- (4) Parakrithe rotundata Aiello et al. 1993
- (4) *Phlyctocythere pellucida* (G.W. Müller 1894)
- (4) Platyleberis? sp. 1
- (4) Polycope frequens? G.W. Müller 1894
- (4) Polycope tuberosa G.W. Müller 1894
- (4) Pontocypris acuminata (G.W. Müller 1894)
- (4) Pontocypris aff. P. frequens (G.W. Müller 1894)
- (4) Pontocypris pallida (G.W. Müller 1894)
- (2) Pontocythere turbida (G.W. Müller 1894)
- (2) Procytherideis retifera Ruggieri 1978
- (2) Procytherideis subspiralis (Brady, Crosskey and Robertson
- 1874)
 - (4) Propontocypris succinea (G.W. Müller 1894)
 - (4) Propontocypris sp. 1
 - (4) Propontocypris sp.
 - (3) Pterygocythereis jonesii (Baird 1850)
 - (4) Pterygocythereis siveteri Athersuch 1978
 - (4) Sagmatocythere concentrica (Bonaduce et al. 1976)
 - (4) Sagmatocythere littoralis (G.W. Müller 1894)
 - (4) Sagmatocythere aff. S. littoralis (G.W. Müller 1894)
 - (4) Sagmatocythere moncharmonti (Ciampo 1972)
 - (4) Sagmatocythere versicolor (G.W. Müller 1894)
 - (4) Sagmatocythere sp.
 - (4) Sclerochilus aff. S. dubowsky Marinov 1962
 - (4) Sclerochilus gewemuelleri Dubowsky 1939
 - (4) Sclerochilus sp. 1

(4) Semicytherura sp. 1

(2) Xestoleberis sp. 1

Italiana 32 (3), 349-366.

References

116 - 120

- (4) Sclerochilus sp.
- (4) Semicytherura acuticostata (G.O. Sars 1866)

(4) Semicytherura mediterranea (G.W. Müller 1894)

(4) *Semicytherura quadridentata* (Hartmann 1953)

(4) Semicytherura rarecostata Bonaduce et al. 1976

Abate, S., Barra, D., Aiello, G., Bonaduce, G., 1993. The genus Krithe Brady, Crosskey

Abate, S., Barra, D., Bonaduce, G., 1994. The deep-water Xestoleberidinae Sars, 1928

Aguirre, E., Pasini, G., 1985. The Pliocene-Pleistocene boundary. Episodes 8,

Aiello, G., Barra, D., Abate, S., Bonaduce, G., 1993. The genus *Parakrithe* van den Bold, 1958 (Ostracoda) in the Pliocene – Early Pleistocene of Sicily. Bollettino della

Aiello, G., Barra, D., Bonaduce, G., 1996a. The genus Cytheropteron Sars, 1866

Aiello, G., Barra, D., Bonaduce, G., 1996b. Anchistrocheles interrupta, a new deep-

(Crustacea: Ostracoda) in the Pliocene - Early Pleistocene of the M. San Nicola

water marine ostracod species (Pussellinae, Ostracoda) from the Plio-

Pleistocene of the Mediterranean Basin. Bollettino della Società Paleon-

and Robertson, 1874 (Crustacea: Ostracoda) in the Pliocene – Early Pleistocene of the M. San Nicola Section (Gela, Sicily). Bollettino della Società Paleontologica

(Crustacea: Ostracoda) in the Pliocene – Early Pleistocene of the M. San Nicola Section (Gela, Sicily). Revista Española de Micropaleontologia 26 (2), 43–47.

- (4) Semicytherura alifera Ruggieri 1959
- (4) Semicytherura dispar (G.W. Müller 1894)
- (4) Semicytherura inversa (Seguenza 1880)

(4) Semicytherura rara (G.W. Müller 1894)

(4) Semicytherura ruggierii (Pucci 1955)

(2) Urocythereis favosa (Roemer 1838)

(2) Xestoleberis parva G.W. Müller 1894

Società Paleontologica Italiana 32 (2), 277-285.

tologica Italiana 34 (3), 271–274.

Section (Gela, Sicily). Micropaleontology 42 (2), 167–178.

(2) Xestoleberis communis G.W. Müller 1894

- Aiello, G., Barra, D., Bonaduce, G., 2000. Systematic and biostratigraphy of the ostracoda of the Plio-Pleistocene Monte S. Nicola Section (Gela; Sicily). Bollettino della Società Paleontologica Italiana 39 (1), 83–112.
- Aiello, G., Barra, D., Bonaduce, G., Russo, A., 1996c. The genus *Cytherella* Jones, 1849 (Ostracoda) in the Italian Tortonian – recent. Revue de Micropaléontologie 39 (3), 171–190.
- Aiello, G., Barra, D., Coppa, M.G., Valente, A., Zeni, F., 2006. Recent infralittoral Foraminiferida and Ostracoda from the Porto Cesareo Lagoon (Ionian Sea, Mediterranean). Bollettino della Società Paleontologica Italiana 45 (1), 1–14.
- Aiello, G., Szczechura, J., 2004. Middle Miocene ostracods of the Fore-Carpathian depression (Central Paratethys, southwestern Poland). Bollettino della Società Paleontologica Italiana 43 (1–2), 11–70.
- Aruta, L., Ruggieri, G., 1983. Il genere Aurila (Ostracoda, Podocopa) nel Pleistocene inferiore di Olivella (Palermo). Bollettino della Società Paleontologica Italiana 22 (3), 287–295.
- Athersuch, J., Horne, D.J., Whittaker, J.E., 1989. Marine and Brackish Water Ostracods. In: Kermack, D.M., Barnes, R.S.K. (Eds.), Synopses of the British Fauna (New Series), vol. 43, p. 343.
- Ayress, M.A., Barrows, T., Paslow, V., Whatley, R.C., 1999. Neogene to Recent Species of *Krithe* (Crustacea: Ostracoda) from the Tasman Sea and off Southern Australia with description of five new species. Records of the Australian Museum 51, 1–22.
- Barbeito-Gonzalez, P.J., 1971. Die Ostracoden des Küstenbereiches von Naxos (Griechenland) und ihre Lebensbereiche. Mitteilungen aus dem hamburgischen zoologischen Museum und Institut 67, 255–326.
- Barra, D., Aiello, G., Bonaduce, G., 1996. The genus Argilloecia Sars, 1866 (Crustacea: Ostracoda) in the Pliocene – Early Pleistocene of the M. San Nicola Section (Gela, Sicily). In: Proceedings of the 2nd European Ostracodologists' Meeting. British Micropaleontological Society, pp. 129–134.
- Barra, D., Bonaduce, G., 1996. The genus *Cistacythereis* Uliczny, 1969 (Ostracoda, Trachyleberididae) in the recent of the Mediterranean Sea with a taxonomic revision. Bollettino della Società Paleontologica Italiana 34 (3), 275–282.
- Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., Lancelot, Y., 1994. The astronomical theory of climate and the age of the Brunhes–Matuyama magnetic reversal. Earth and Planetary Science Letters 126, 91–108.
- Bintanja, R., van de Wal, R.S.W., 2008. North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 454, 869–872.
- Bonaduce, G., Barra, D., Aiello, G., 1998. The areal and bathymetrical distribution of the genus *Henryhowella* Puri (Ostracoda) in the Gulf of Naples. In: Crasquin-Soleau, S., Braccini, E., Lethiers, F. (Eds.), Proceeding 3rd European Ostracodologists Meeting, Paris 1996, Bulletin Centre de recherches Elf Exploration Production, Mém. 20, pp. 133–139.
- Bonaduce, G., Barra, D., Aiello, G., 1999. The genus *Henryhowella* Puri, 1957 (Crustacea, Ostracoda) in the Atlantic and Mediterranean from Miocene to Recent. Bollettino della Società Paleontologica Italiana 38 (1), 59–72.
- Bonaduce, G., Barra, D., Aiello, G., 2000. The ostracods of the Plio-Pleistocene Monte S. Nicola Section (Gela, Sicily): an attempt of palaeoecological interpretation. Bollettino della Società Paleontologica Italiana 39 (2), 157–164.
- Bonaduce, G., Ciampo, G., Masoli, M., 1976. Distribution of Ostracoda in the Adriatic Sea. Pubblicazioni della Stazione Zoologica di Napoli 40 (Suppl. 1), 1–304.
- Bonaduce, G., Masoli, M., 1970. Benthic marine Ostracoda from Malta. Pubblicazioni della Stazione Zoologica di Napoli 38, 47–56.
- Bonaduce, G., Masoli, M., Minichelli, G., Pugliese, N., 1979. The benthic ostracods. In: Burollet, P.F., Clairefond, P., Winnock, E. (Eds.), La mer Pélagienne, Géologie Mediterranéenne, vol. 6 (1), pp. 280–284.
- Bonaduce, G., Masoli, M., Pugliese, N., 1977. Ostracodi bentonici dell'alto Tirreno. Studi Trentini di Scienze Naturali, Biologica 54, 243–261.
- Boomer, I., Horne, D.J., Slipper, I.J., 2003. The use of ostracods in palaeoenvironmental studies, or what can you do with an ostracod shell? In: Park, L.E., Smith, A.J. (Eds.), Bridging the Gap: Trends in the Ostracode Biological and Geological Sciences, The Paleontological Society, Papers 9, pp. 153–179.
- Borne, P.F., 1995. Evidence of Late Pliocene—Early Pleistocene environmental change and possible coastal upwelling based on marine ostracodes from the Moin Formation, Costa Rica. Gulf Coast Association of Geological Societies – Transactions 45, 61–64.
- Breman, E., 1976. The Distribution of Ostracodes in the Bottom Sediments of the Adriatic Sea Academisch Proefschrift. Vrije Universiteit te Amsterdam, Amsterdam, p. 165.
- Capraro, L., Asioli, A., Backman, J., Bertoldi, R., Channell, J.E.T., Massari, F., Rio, D., 2005. Climatic patterns revealed by pollen and oxygen isotope records across the Matuyama–Brunhes Boundary in the central Mediterranean (southern Italy). In: Head, M.J., Gibbard, P.L. (Eds.), Early–Middle Pleistocene Transitions: the Land–ocean Evidence, Geological Society London, Special Publications, vol. 247, pp. 159–182.
- Carmo, D.A., Sanguinetti, Y.T., 1995. Krithe occurrence on the Brazilian continental margin: an ecological approach. In: Ríha, J. (Ed.), Ostracoda and Biostratigraphy. Balkema, Rotterdam, pp. 407–412.
- Cepek, W.A., Kemper, E., 1981. Der Blättertonstein des nordwestdeutschen Barrême und die Bedeutung des Nannoplanktons für die fein laminieretn, anoxisch entstandenen Gesteine. Geologische Jahrbuch. Hannover A58, 3–13.
- Ciampo, G., 1972. Gli Ostracodi delle argille pleistoceniche del Mar Piccolo (Taranto). Bollettino della Società dei Naturalisti in Napoli 80, 49–88.
- Ciampo, G., 1976. Ostracodi pleistocenici di Cala Bianca (Marina di Camerota, Salerno). Bollettino della Società Paleontologica Italiana 15 (1), 3–23.

- Ciaranfi, N., D'Alessandro, A., 2005. Overview of the Montalbano Jonico area and section: a proposal for a boundary stratotype for the lower—middle Pleistocene, Southern Italy Foredeep. Quarternary International 131, 5–10.
- Ciaranfi, N., Lirer, F., Lirer, L., Lourens, L.J., Maiorano, P., Marino, M., Petrosino, P., Sprovieri, M., Stefanelli, S., Brilli, M., Girone, A., Joannin, S., 2010. Integrated stratigraphy and astronomical tuning of lower-middle Pleistocene Montalbano Ionico section (southern Italy). Ouaternary International 219, 109-120.
- Jonico section (southern Italy). Quaternary International 219, 109–120.
 Cita, M.B., Gibbard, P.L., Head, M.J., The Subcommission on Quaternary Stratigraphy, 2012. Formal ratification of the base Calabrian Stage GSSP (Pleistocene Series, Quaternary System). Episodes 35 (3), 388–397.
- Coimbra, J.C., Costa, K.B., Fauth, G., 2006. Palaeoenvironmental significance of allochthonous vs. autochthonous late Quaternary ostracodes from Imaruí Lagoon and d'Una River, southern Brazil. Revista Brasileira de Paleontologia 9 (3), 295–302.
- Colalongo, M.L., 1966. Gli ostracodi della serie di Le Castella (Calabria). Giornale di Geologia serie 2 33 (1), 83–123.
- Colalongo, M.L., Pasini, G., 1980. La ostracofauna plio-pleistocenica della Sezione Vrica in Calabria (con considerazioni sul limite Neogene/Quaternario). Bollettino della Società Paleontologica Italiana 19 (1), 44–126.
- Coles, G.P., Whatley, R.C., Moguilevsky, A., 1994. The ostracod genus *Krithe* from the Tertiary and Quaternary of the North Atlantic. Paleontology 37 (1), 71–120.
- Corbari, L., 2004. Physiologie respiratoire, comportementale et morphofonctionnelle des ostracodes Podocopes et Myodocopes et d'un amphipode caprellidé profond. In: Stratégies Adaptatives et implications évolutives, p. 300. These presentee a l'Universite Bordeaux 1, n. d'ordre 2885.
- Costa, O.G., 1853. Paleontologia del Regno di Napoli: Ordine IV, de' Cipridei. Atti dell'Accademia Pontaniana 8, 157–192.
- Cramp, A., O'Sullivan, G., 1999. Neogene sapropels in the Mediterranean: a review. Marine Geology 153, 11–28.
- Dall'Antonia, B., Bossio, A., Mazzanti, R., 2005. The Lower–Middle Pleistocene succession of the Coastal Tuscany (Central Italy): new stratigraphic and palaeoecological data based on the ostracod fauna. Revue de micropaléontologie 48, 63–81.
- D'Amico, C., Aiello, G., Barra, D., Bracone, V., Di Bella, L., Esu, D., Frezza, V., Rosskopf, C.M., 2013. Late Quaternary foraminiferal, molluscan and ostracod assemblages from a core succession in the Trigno River mouth area (Central Adriatic Sea, Italy). Bollettino della Società Paleontologica Italiana 52 (3), 197–205.
- de Kaenel, E., Siesser, W.G., Murat, A., 1999. Pleistocene calcareous nannofossil biostratigraphy and the western Mediterranean sapropels, Sites 974 to 977 and 979. In: Zahn, R., Comas, M.C., Klaus, A. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 161, pp. 159–183.
- Didié, C., Bauch, H.A., 2002. Implications of upper Quaternary stable isotope records of marine ostracodes and benthic foraminifers for paleoecological and paleoceanographical investigations. In: Holmes, J.A., Chivas, A. (Eds.), The Ostracoda: Applications in Quaternary Research, AGU Geophysical Monograph Series, vol. 131, pp. 279–299.
- Elofson, O., 1941. Zur Kenntnis der marinen Ostracoden Schwedens, mit besonderer Berücksichtigung des Skageraks. Zoologiska Bidrag fran Uppsala 19, 215–534.
- Fagerstrom, J.A., 1964. Fossil communities in Paleoecology: their recognition and significance. Geological Society of America Bulletin 75, 1197–1216.
- Faranda, C., Cipollari, P., Cosentino, D., Gliozzi, E., Pipponzi, G., 2008. Late Miocene ostracod assemblages from eastern Mediterranean coral reef complexes (central Crete, Greece). Revue de micropaléontologie 51, 287–308.
- Gibbard, P.L., Head, M.J., 2010. The newly-ratified definition of the Quaternary System/Period and redefinition of the Pleistocene Series/Epoch, and comparison of proposals advanced prior to formal ratification. Episodes 33, 152–158.
- Gibbard, P.L., Head, M.J., Walker, M.J.C., 2010. Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. Journal of Quaternary Science 25 (2), 96–102.
- Greco, A., Ruggieri, G., Sprovieri, R., 1974. La sezione Calabriana di Monasterace (Calabria). Bollettino della Società Geologica Italiana 93, 151–179.
- Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4 (1).
- Joannin, S., Bassinot, F., Combourieu Nebout, N., Peyron, O., Beaudouin, C., 2011. Vegetation response to obliquity and precession forcing during the Mid Pleistocene transition in Western Mediterranean region (ODP Site 976). Quaternary Science Reviews 30, 280–297.
- Kempf, E.K., Nink, C., 1993. Henryhowella asperrima (Ostracoda) aus der Typusregion (Miozän: Badenian; Wiener Becken). In: Sonderver. Geologisches Institut der Universität Köln, Sonderveröffentlichungen, 70, pp. 95–114.
- Lachenal, A.M., 1989. Écologie des ostracodes du domaine méditerranéen: application au Golfe de Gabès (Tunisie orientale). In: Les variations du niveau marin depuis 30000 ans, vol. 108. Documents des Laboratoires de Géologie de Lyon, p. 239.
- Langereis, C.G., Dekkers, M.J., de Lange, G.J., Paterne, M., van Santvoort, P.J.M., 1997. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophysical Journal International 129, 75–94.
- Laskar, J., Joutel, F., Boudin, F., 1993. Orbital, precessional, and insolation quantities for the Earth from -20 Myr to +10 Myr. Astronomy and Astrophysics 270, 522-533.
- Lourens, L.J., 2004. Revised tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and implications for the δ 180, tephra, calcareous nannofossil,

and geomagnetic reversal chronologies of the past 1.1 Myr. Paleoceanography 19, 1–20.

- Maiorano, P., Aiello, G., Barra, D., Di Leo, P., Joannin, S., Lirer, F., Marino, M., Pappalardo, A., Capotondi, L., Ciaranfi, N., Stefanelli, S., 2008. Paleoenvironmental changes during sapropel 19 (i-cycle 90) deposition: evidences from geochemical, mineralogical and micropaleontological proxies in the mid-Pleistocene Montalbano Jonico land section (southern Italy). Palaeogeography, Paleoclimatology, Paleoecology 257, 308–334.
- Maiorano, P., Capotondi, L., Ciaranfi, N., Girone, A., Lirer, F., Marino, M., Pelosi, N., Petrosino, P., Piscitelli, A., 2010. Vrica-Crotone and Montalbano Jonico sections: a potential unit-stratotype of the Calabrian Stage. Episodes 33 (4), 218–233.
- Majoran, S., Agrenius, S., 1995. Preliminary observations on living Krithe praetexta praetexta (Sars, 1866), Sarsicytheridea bradii (Norman, 1865) and other marine ostracods in aquaria. Journal of Micropalaeontology 14, 96.
- Marino, M., Bertini, A., Ciaranfi, N., Aiello, G., Barra, D., Gallicchio, S., Girone, A., La Perna, R., Lirer, F., Maiorano, P., Petrosino, P., Toti, F., 2015. Paleoenvironmental and climatostratigraphic insights for Marine isotope stage 19 (Pleistocene) at the Montalbano Jonico section, South Italy. Quaternary International 383, 104–115.
- McKenzie, K.G., Majoran, S., Emami, V., Reyment, R.A., 1989. The Krithe problem First test of Peypouquet's hypothesis, with a redescription of Krithe praetexta praetexta (Crustacea, Ostracoda). Palaeogeography, Paleoclimatology, Paleoecology 74, 343–354.
- Mistretta, F., 1967. Ostracodi dei generi *Eucytherura, Hemicytherura e Kangarina* nel Siciliano di Acqua dei Corsari (Palermo). Rivista mineraria siciliana 18 (103–105), 55–65.
- Müller, G.W., 1894. Die Ostracoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. In: Fauna und Flora des Golfes von Neapel und der angrenzenden Meeres-Abschnitte, Herausgegeben von der Zoologischen Station zu Neapel, vol. 21 (1–8), pp. 1–404.
- Murat, A., 1999. Pliocene–Pleistocene occurrence of sapropels in the western Mediterranean Sea and their relation to eastern Mediterranean sapropels. In: Zahn, R., Comas, M.C., Kraus, A. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 161, pp. 519–527.
- Olausson, E., 1961. Studies of Deep Sea Cores. In: Reports of the Swedish Deep-sea Expedition 1947–1948, vol. 8 (6), pp. 336–391.
- Peypouquet, J.P., 1977. Les ostracodes et la connaissance des paleomilieux profonds. Thèse de Doctorat d'Etat ès Sciences. In: Application au Cenozoique de l'Atlantique nord-oriental. Université de Bordeaux, pp. 1–443.
- Peypouquet, J.P., Nachite, D., 1984. Les Ostracodes en Méditerranée nord-occidentale. Ecomed, Association Française des Techniciens du Pétrole, Paris, pp. 151–169.
- Pucci, A., 1955. Ostracodi pleistocenici della Valle del Tronto. Giornale di Geologia (serie 2) 25, 163–172.
- Puri, H.S., Bonaduce, G., Gervasio, A.M., 1969. Distribution of Ostracoda in the Mediterranean. In: Neale, J.W. (Ed.), The Taxonomy, Morphology and Ecology of Recent Ostracoda. Oliver and Boyd, pp. 358–411.
- Puri, H.S., Bonaduce, G., Malloy, J., 1964. Ecology of the Gulf of Naples. Pubblicazioni della Stazione Zoologica di Napoli 33 (Suppl.), 88–199.
- Reale, V., Monechi, S., 2005. Distribution of the Calcareous Nannofossil Reticulofenestra asanoi within the Early-middle Pleistocene Transition in the Mediterranean Sea and Atlantic Ocean: Correlation with Magneto- and Oxygen Isotope Stratigraphy. In: Geological Society, London, Special Publications 247, pp. 117–130.
- Rome, D.R., 1964. Ostracodes des environs de Monaco, leur distribution en profondeur, nature des fonds marins explorés. In: Ostracods as ecological and palaeoecological indicators. Simposio intenazionale sotto gli auspici della Fondazione Antonio e Rinaldo Dohrn presso la Stazione Zoologica di Napoli, 10–19 Giugno 1963. Pubblicazioni della Stazione Zoologica di Napoli, vol. 33 (Suppl.), pp. 200–212.

- Ruggieri, G., 1950. Gli ostracodi delle sabbie grigie quaternarie (Milazziano) di Imola. Parte I. Giornale di Geologia (serie 2) 21, 1–57.
- Ruggieri, G., 1952. Gli ostracodi delle sabbie grigie quaternarie (Milazziano) di Imola. Parte II. Giornale di Geologia (serie 2) 22, 1–65.
- Ruggieri, G., 1953. Età e faune di un terrazzo marino sulle coste ioniche della Calabria. Giornale di Geologia 23, 20–168.
- Ruggieri, G., 1975. Revisione della ostracofauna marina quaternaria di Imola (Bologna). Revista Española de Micropaleontologia 6 (3), 419–446.
- Ruggieri, G., 1976. Contributo alla conoscenza del genere Aurila (Ostracoda, Podocopa) con particolare riguardo ai suoi rappresentanti nel Pleistocene italiano. Bollettino della Società Paleontologica Italiana 14 (1), 27–46.
- Ruggieri, G., 1978. Due ostracofaune dell'Emiliano (Pleistocene inferiore) argilloso del Subappenino di Faenza. Bollettino della Società Paleontologica Italiana 17, 3–14.
- Ryan, W.B.F., 1972. Stratigraphy of Late Quaternary sediments in the Eastern Mediterranean. In: Stanley, D.J. (Ed.), The Mediterranean Sea. Dowden, Hutchinson and Ross, Stroudsburg, PA, pp. 149–169.
 Schornikov, E.I., 1969. Podklass Ostracoda, ili rakushkovye rachki, Ostracoda
- Schornikov, E.I., 1969. Podklass Ostracoda, ili rakushkovye rachki, Ostracoda Latreille, 1816. Opredelitel fauny Chernogo i Azovogo Morey 2, pp. 163–259.
- Seguenza, G., 1880. Le formazioni terziarie della provincia di Reggio (Calabria). Atti della Reale Accademia Nazionale dei Lincei s 3 (6), 3–446.
- Sgarrella, F., Moncharmont Zei, 1993. Benthic Foraminifera of the Gulf of Naples (Italy): systematics and autecology. Bollettino della Società Paleontologica Italiana 32 (2), 145–264.
- Sissingh, W., 1972. Late Cenozoic Ostracoda of the South Aegean Island Arc. In: Utrecht Micropaleontological Bulletins 7, p. 187.
- Stefanelli, S., 2004. Cyclic changes in oxygenation based foraminiferal microhabitats: early–Middle Pleistocene, Lucania Basin (southern Italy). Journal of Micropaleontology 23, 81–95.
- Uffenorde, H., 1972. Öekologie und jahreszeitliche Verteilung rezenter bentonischer Ostracoden des Limski kanal bei Rovinj (nördliche Adria). Göttinger Arbeiten zur Geologie und Paläontologie 13, 1–121.
- Uliczny, F., 1969. Hemicytheridae un Trachyleberididae (Ostracoda) aus dem Pliozän der insel Kephallinia (Westgriechenland). In: Dissertation zur Erlangung der Doktorwürde der Hohen Narturwissenschaftlichen Fakultät der Ludwig-Maximilians Universität zu München, pp. 1–152.
- van Harten, D., 1987. Ostracodes and the early Holocene, anoxic event in the Eastern Mediterranean: evidence and implications. Marine Geology 75, 263–269.
- van Harten, D., 1995. Differential food-detection: a speculative reinterpretation of vestibule variability in *Krithe* (Crustacea: Ostracoda). In: Ríha, J. (Ed.), Ostracoda and Biostratigraphy. Balkema, Rotterdam, pp. 33–36.
- Wei, K.-Y., Chiu, T.-C., Chen, Y.-G., 2003. Toward establishing a maritime proxy record of the East Asian summer monsoons for the late Quaternary. Marine Geology 201, 67–79.
- Whatley, R.C., 1990. Ostracoda and global events. In: Whatley, R.C., Maybury, C. (Eds.), Ostracoda and Global Events. Chapman and Hall, London, pp. 3–24.
- Whatley, R.C., 1991. The platycopid signal: a means of detecting kenoxic events using Ostracoda. Journal of Micropalaeontology 10 (2), 181–185.
- Whatley, R.C., 1988. Population structure of ostracods: some general principles for the recognition of palaeoenvironments. In: De Deccker, P., Colin, J.P., Peypouquet, J.P. (Eds.), Ostracoda in the Earth Sciences. Elsevier, Amsterdam, pp. 245–256.
- Whatley, R.C., Masson, D.G., 1979. The ostracod genus *Cytheropteron* from the Quaternary and recent of Great Britain. Revista española de micropaleontología 11 (2), 223–277.
- Whatley, R.C., Zhao, Q., 1993. The Krithe problem: a case history of the distribution of Krithe and Parakrithe (Crustacea, Ostracoda) in the South China Sea. Palaeogeography, Paleoclimatology, Paleoecology 103, 281–297.