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Abstract
Purpose: We developed a 3D vision transformer-based neural network to recon-
struct electrical properties (EP) from magnetic resonance measurements.
Theory and Methods: Our network uses the magnitude of the transmit mag-
netic field of a birdcage coil, the associated transceive phase, and a Canny edge
mask that identifies the object boundaries as inputs to compute the EP maps.
We trained our network on a dataset of 10 000 synthetic tissue-mimicking phan-
toms and fine-tuned it on a dataset of 11 000 realistic head models. We assessed
performance in-distribution simulated data and out-of-distribution head mod-
els, with and without synthetic lesions. We further evaluated our network in
experiments for an inhomogeneous phantom and a volunteer.
Results: The conductivity and permittivity maps had an average peak nor-
malized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms,
respectively. For the realistic heads, the average PNAE for the conductivity and
permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions
was accurately identified, with reconstructed conductivity and permittivity val-
ues within 15% and 25% of the ground-truth, respectively. The conductivity and
permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs
with respect to probe-measured values, respectively. The in vivo EP reconstruc-
tion truthfully preserved the subject’s anatomy with average values over the
entire head similar to the expected literature values.
Conclusion: We introduced a new learning-based approach for reconstructing
EP from MR measurements obtained with a birdcage coil, marking an impor-
tant step towards the development of clinically-usable in vivo EP reconstruction
protocols.
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1 INTRODUCTION

Electrical properties (EP) govern the interactions between
electromagnetic (EM) fields and biological tissues.1,2 Rel-
ative permittivity ϵr reflects how a tissue stores electrical
energy in an electric field. Electric conductivity 𝜎e mea-
sures the ability of the tissue to conduct electrical current.
The detailed interactions between these properties and
external EM field sources can be modeled with Maxwell’s
or Helmholtz’s equations.3 Combined with 3D full-wave
EM simulations, access of the EP distribution in tis-
sue4,5 could enable precise estimation of the local specific
absorption rate, which is especially useful at ultra-high
field MRI.6 Knowledge of tissue EP could also be used
to improve radiofrequency (RF) or thermal-based treat-
ments.7–9 Finally, EP could be utilized as biomarkers for
diagnosis and treatment monitoring.10–13

Traditional MR-based EP reconstruction methods
solve the differential form of Helmholtz equation using a
few simplifying assumptions14 for the transmit magnetic
field (B1), such as a negligible B1z component. With this
assumption, one can solve the Helmholtz equation using
only the right circularly polarized component of the trans-
mit field B(+)

1
(
= B1x + iB1y

)
.15 The advantage is that the

absolute value of B(+)
1 can be measured in MRI,16 while

its phase can be approximated as half of the measured
transceive phase17 when transmission and reception are
performed in quadrature and anti-quadrature mode with
a birdcage coil.18 These assumptions hold mainly for the
central region of a homogeneous sample and at lower
MRI field strengths (≤ 1.5 T),19 but have been used to
map EP at higher field strengths, yielding sub-optimal EP
reconstructions.20 Instead, MR-based EP reconstruction
methods that rely on the iterative inversion of the integral
form of Maxwell’s equations21–23 do not rely on the above
assumptions and can lead to more accurate EP reconstruc-
tions. However, integral methods are slow and can require
days to converge even for the coarse voxel resolutions.
In addition, the performance of these methods depends
on how closely the experimental coil can be modeled in
simulation.

Learning-based methods are emerging as a new trend
in the EP reconstruction community. The method detailed
in Reference 24 introduced neural networks into the EP
reconstruction field. It leverages a conditional generative
adversarial network,25 using the B(+)

1 map, the transceive
phase, and a pseudo-Spin Echo MRI image (to provide
tissue contrast information) as the input to compute EP
maps. The model was trained using slices from 20 numer-
ical realistic head models. The studies in References 26,27
introduced machine learning EP reconstruction methods
that utilizes the correlations between EP, water content,
and T1 relaxation times. In Reference 28, T2-weighted

spin echo images were employed alongside transceive
phase maps as inputs to a neural network (NN) to recon-
struct 𝜎e. Another study performed 𝜎e reconstruction for
the pelvic region using a convolutional neural network
(CNN) and roughly 200 models.29 While these methods
pioneered the use of NN for MR-based EP reconstruction,
they all suffer from limited performance when applied to
anatomies that differ from those in the training datasets.
The work in Reference 30 highlights several underlying
issues responsible for this limitation. Firstly, there is lim-
ited availability of diverse and realistic tissue models,
resulting in NNs being trained on relatively small datasets
of a few hundred volumes, which are insufficient to fully
capture the anatomical variability of actual tissue struc-
tures. Secondly, these NNs are often two-dimensional to
prevent memory overflows, making it difficult to preserve
the inherently three-dimensional nature of Maxwell’s
equations. Thirdly, incorporating MR images alongside
B(+)

1 maps as additional NN inputs to provide anatomical
context can lead to the networks learning correlations
between relaxation times and EP, potentially overshadow-
ing the direct influence of EP on the distribution of the
measured magnetic fields.

In this work, we simulated the EM fields of roughly
10 000 synthetic tissue-mimicking phantoms and roughly
11 000 realistic numerical head models to train a novel
NN for EP reconstruction. We employed a birdcage coil to
simulate the synthetic training set, which means that the
network is optimized for data generated using this type
of coil and would need to be retrained if the geometry of
the coil used in experiments were considerably different.
To incorporate anatomical information as input to the
network, instead of including MR images, we generated
a binary mask of tissue boundaries using Canny edge
detection.31 A preliminary version of this work was pre-
sented at the 2024 meeting of the International Society for
Magnetic Resonance in Medicine.32 The PyTorch code for
our model and the generation of the Canny edge masks
is available at https://github.com/GiannakopoulosIlias
/vision-transformer-network-for-mr-electrical-properties
-tomography.

2 METHODS

2.1 Dataset

2.1.1 Simulated data

We generated 10 160 tissue-mimicking phantoms, dis-
cretized with a voxel resolution of 5 mm3. The phantoms
had either an ellipsoidal (8160) or a cylindrical geom-
etry (2000). The ellipsoids had random lengths for the
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principal semi-axes, which were constrained to be at least
7, 7, and 8.5 cm and at most 9.5, 12, and 11.5 cm in the x,
y, and z directions, respectively. Inside every ellipsoid, we
randomly placed either 0, 1, or 23 smaller ellipsoids, vary-
ing in both size and position. To introduce inhomogeneity,
each ellipsoid was randomly assigned tissue-mimicking
EP, ranging from 11 to 120 for the relative permittivity and
0.07 to 2.5 S/m for the electric conductivity. The cylindrical
phantoms had random length (between 17 and 23 cm) and
radius (between 7 and 9.5 cm). They were either homo-
geneous or inhomogeneous with an additional cylindrical
compartment, using random EP values in the same range
as for the ellipsoids. The inner cylindrical compartment
had the same length as the phantom, whereas its position
and radius varied. All models were enclosed in the same
cuboid domain of dimensions 19 × 23.5 × 23 cm3 that
corresponded to 38 × 47 × 46 voxels. This dataset will be
referred to as synthetic phantoms.

To generate a dataset of realistic heads, we used six
numerical human head models: Duke and Ella (Founda-
tion for Research on Information Technologies in Soci-
ety, Switzerland,33), Naomi and Norman (National Radi-
ological Protection Board, UK,34), and Male and Female
(Remcom, The Pennsylvania State University,35). For data
augmentation, all models were stretched in x, y, and z
directions as in Reference 36. As a result, we obtained
216 unique variations for each model, except for Norman
which had 120 variations. To further enlarge our dataset
and introduce additional diversity in the anatomies, we
performed structural deformations to all these variations,
except for the 216 derived from Duke. In particular, we
shifted all homogeneous regions within the head (e.g.,
cerebrospinal fluid, cerebellum, etc.) by one, two, or three
voxels in the x, y, and z directions (the amount of shift in
each direction was chosen randomly). The gaps resulting
from the shifting were filled with a randomly selected EP
value from the original models. As a result, each homoge-
neous region was reassembled into a new inhomogeneous
region that included the original EP values and a layer
with a different EP value. When the randomly shifted areas
overlapped with one another, we randomly included only
one of them. We performed 10 structural deformations
for each head. In addition, we included synthetic uniform
lesions in 240 of the deformed heads, using literature val-
ues for their EP.37 The total number of variations for Ella,
Naomi, Norman, Male, and Female, including stretching
and structural deformations, was 11, 040. We also gen-
erated two variations of the Duke head with synthetic
lesions but without structural deformation. All models
were enclosed within the same domain as the synthetic
phantoms and were discretized using the same voxel res-
olution (5 mm3). Head models larger than the computa-
tional domain were cropped to fit into it. The final dataset

had 11 256 head models and will be referred to as realistic
heads.

We modeled a 3 tesla (T) high-pass birdcage coil based
on an in-house coil.38 The coil had a radius of 12.3 cm, 8
legs, a length of 22 cm, and a copper width of 1 cm. It was
discretized using 2990 triangular elements. The capacitor
values were set to 11.634 pF, following.39 We simulated the
B(+)1 in quadrature mode and the B(−)1 (receive sensitivity)
in anti-quadrature mode for all phantoms and heads using
our in-house fast full-wave EM simulator.5 In particular,
we utilized first-order, piecewise polynomials40 to approxi-
mate the fields and improve the accuracy of the simulation.
The simulation for each case required at most 40 sec-
onds using an NVIDIA A100 PCIe GPU with 40 GB of
memory in MATLAB 9.10. All data for this work were gen-
erated in less than 10 days. The complex B(+)1 and B(−)1 were
corrupted with independent and identically distributed
Gaussian noise. The peak SNR was chosen randomly and
ranged between 50 and 200. We computed the transceive
phase as the sum of the phases of B(+)1 and B(−)1 , divided
by 2. For each case, we computed edge masks outlining
the boundaries between different compartments by apply-
ing a Canny edge detection filter31 on every axial plane of
the ground-truth 3D conductivity map. We assembled all
edge masks to a 3D volumetric mask. In our implemen-
tation of the Canny algorithm, we set the low threshold
to 0.01, the high threshold to 0.05, the kernel size to 1
(due to the coarse resolution), and the 𝜎 (standard devi-
ation of the Gaussian kernel) to 1.5. These parameters
were found to be the most effective in preserving relevant
edges for our datasets. The algorithm proceeds through the
standard Canny steps: applying Gaussian smoothing, com-
puting gradient magnitudes and directions using Sobel fil-
ters, performing non-maximum suppression to thin edges,
and finally, applying double thresholding followed by edge
tracking via hysteresis to produce the edge map.

2.1.2 Phantom experiment

We collected experimental data using a 3T scanner (MAG-
NETOM Biograph mMR, Siemens Healthineers, Erlangen,
Germany) and an in-house head birdcage coil loaded with
an inhomogeneous cylindrical phantom with two com-
partments. The geometry of the coil was similar to the
design used in the simulation. The phantom was 21.5 cm
long and had a radius of 6.875 cm. The inner compart-
ment was also a cylinder of the same length with a radius
3.1 cm and it was displaced from the center by roughly
0.5 cm. The EP of the outer and inner compartments were
similar to those of white matter (WM) and cerebral spinal
fluid (CSF), respectively. Both mixtures were constructed
using the method in Reference 41 and the EP values
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(WM ϵr = 64, WM 𝜎e = 0.67 S/m, CSF ϵr = 72, CSF 𝜎e =
1.97 S/m) were confirmed with a dielectric probe (Agilent
Technologies, Santa Clara, CA). We used the double-angle
method (DAM)42 to generate maps of the |B(+)1 |. In par-
ticular, we performed multi-slice scanning at 2 × 2 × 2
mm3 voxel resolution and resized to 5 mm voxel isotropic
resolution to match the computational domain of the sim-
ulated data. We applied the Canny filter to one of the two
gradient echo MR images used in DAM to generate the
edge mask. We computed the transceive phase map using
the RF_map pulse sequence,43 which is based on a spin
echo acquisition, yielding better performance than gradi-
ent echo for the transceive phase reconstructions.44 For
the RF map acquisition, we scanned at 1 mm2 pixel resolu-
tion. Each slice was 5 mm thick, with 5 mm gaps between
slices to avoid cross-talk. We interpolated between the
missing slices. Finally, we resized to 5 mm voxel isotropic
resolution.

2.1.3 In vivo experiment

We imaged a human volunteer without known brain
pathologies using the same birdcage coil and scanner. The
study was conducted following institutional and national
ethical standards, and informed consent was obtained
from the participant before imaging. We acquired two sets
of |B(+)1 | maps using the RF_map sequence43 scanning at
1 mm2 pixel resolution. Each slice was 5 mm thick, with
5 mm gaps between slices to avoid cross-talk. We interpo-
lated between the missing slices. The scan time was 10 min
for each sequence. We also generated the corresponding
transceive phases to assess repeatability. We also acquired
a 3D MPRAGE45 dataset (1 × 1 × 5 mm3 voxel resolution,
and 15 min scan time), which provided brain images with
sharper internal edges than the RF_map sequence. The
MPRAGE images were regridded to match the images of
the RF_map acquisitions46 to ensure that they aligned
with the |B(+)1 | map and the transceive phase. We inter-
polated the data to 5 mm3 isotropic voxel resolution. We
created three distinct input configurations for the network:
Configuration C1 used the |B(+)1 | map and the transceive
phase from the first RF_map acquisition and the Canny
edge mask generated from images of the same RF_map
acquisition; configuration C2 used the |B(+)1 | map and
the transceive phase from the first RF_map acquisition
and the Canny edge mask generated from the MPRAGE
images registered to the images of the first RF_map acqui-
sition; and configuration C3 used the |B(+)1 | map and the
transceive phase from the second RF_map acquisition
and the Canny edge mask generated from the MPRAGE
images registered to the images of the second RF_map
acquisition.

2.2 Network architecture

The |B(+)1 |, the transceive phase, and the edge mask were
used as the input to the neural network. The output of
the network was the predicted volumetric maps of the
relative permittivity and conductivity. The |B(+)1 | and
transceive phase maps were normalized by their respective
maximum value. The EP were normalized by dividing
them by 135 (for the relative permittivity) and 2.8 S/m
(conductivity), respectively, so they would range between
0 and 1. Our network’s architecture (Figure 1) consisted of
three 3D TransUNets47 connected sequentially through 64
channels. TransUNets rely on convolutions for the analysis
and synthesis steps, like UNets, and also employ a vision
transformer to connect them. We used two pooling layers
for the 3D TransUNets. The convolutions in the convo-
lutional blocks of the network were followed by instance
normalization (IN), Gaussian error linear unit (GELU)
activation functions,48 and dropout.49 The dropout proba-
bility was set to 0.1 through the network. We implemented
a residual connection in all convolutional blocks. We
incorporated 6 vision transformer layers, each equipped
with 16 heads per transformer. We also included a Feature
Wise Linear Modulation (FiLM) layer50 after the first con-
volution block of each TransUNet. The parameters of the
FiLM’s affine transformation (𝛽 and 𝛾) were learned using
a FiLM generator network. The FiLM generator network
consisted of a set of four convolutional blocks, followed
by average pooling to retrieve 𝛽 ∈ R

64×3 and 𝛾 ∈ R
64×3 (3

is used to separate the parameters for each cascade). The
architecture of each block was a convolution followed by
IN, ReLU with 0.2 slope coefficient,51 and dropout. The
input to the FiLM generator was the Canny edge mask.
The network was trained end-to-end.

2.2.1 Model ablations

We performed an ablation study to evaluate the perfor-
mance of our proposed model. In particular, we imple-
mented a model with a single 3D UNet, one with a single
3D TransUNet, and one with three 3D TransUNets con-
nected sequentially. For all three architectures, we used
IN instead of FiLM. The hyperparameters and the train-
ing and testing conditions were the same for all mod-
els. We compared the results with those of our proposed
architecture.

2.3 Training and validation

We split the synthetic phantoms’ dataset into 8065 (train-
ing), 1463 (validation), and 632 (testing). Figure 2 (top)
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GIANNAKOPOULOS et al. 1121

F I G U R E 1 (A) Overall network architecture used for the synthetic phantoms. The inputs are the magnitude of the 3D B(+)1 , the 3D
transceive phase map, and the 3D edge mask (only middle axial slice is shown). The 2 outputs are the corresponding maps of relative
permittivity and conductivity. The three inputs are passed to Cascade #1. The edge mask is also passed to the FiLM Generator network. Each
Cascade is a TransUNet. The numbers show the input and output channels of each sub-network. (B) Detailed architecture of each cascade.
Yellow and green layers represent convolutions with kernel size 3 × 3 × 3 and 1 × 1 × 1, respectively. Red and orange layers represent
transpose convolutions and average pooling with kernel size 2 × 2 × 2. Cyan, magenta, and blue layers represent instance normalization,
dropout, and GELU activation functions, respectively. The pink layer represents the affine transformation based on the FiLM 𝛽 and 𝛾
parameters. The green and red circles represent residual connections and concatenations, respectively. The transformer, shown in black, is
equipped with 16 attention heads.

F I G U R E 2 Simulations and ground truth EP for two representative cases from the synthetic phantoms (top) and realistic heads (bottom)
training datasets. The magnitude of the coil’s transmit field

(
|B(+)1 |

)
, the transceive phase, and the edge mask were used as inputs to the neural

network. Ground truth relative permittivity and electric conductivity were used as outputs. Data are shown for a representative axial slice.
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1122 GIANNAKOPOULOS et al.

shows data from a representative synthetic phantom. the
network was trained for 100 epochs using the adamW opti-
mizer52 and a cyclical learning rate (lr) policy53 with an
initial lr of 0.01. We then fine-tuned the network on the
realistic heads dataset. In particular, we used the final
weights of the first training as initial weights to retrain
the network and included an additional TransUNet (two
input and two output channels) after Cascade #3 (Figure 1)
to further boost performance. We did not include a FiLM
layer for the additional TransUNet. We did not freeze any
weights when fine-tuning. Ella, Naomi, Norman, Male,
and Female and their variations were used for fine-tuning
(11 040 data), while the Duke models were split into 108
cases for validation, and 108 cases (plus the 2 cases with
the lesions) for testing, avoiding data leakage (Figure 2).
For fine-tuning, we trained for 100 epochs and reduced the
initial learning rate to 0.003.54 We used a batch size of 4 for
training and 1 for validation. The network was written in
PyTorch Lightning and was trained using a single NVIDIA
V100 PCIe GPU with 32 GB of memory. The initial train-
ing required roughly 5 days, and the fine-tuning roughly
6 days. The loss function was the equally weighted sum
of the mean squared error (MSE) value for the 𝜎e and the
MSE value for the ϵr. We also recorded the structural sim-
ilarity index measure (SSIM)55 scores for both EP during
validation. The three ablated models were trained using
the synthetic phantoms dataset.

2.4 Evaluation

For evaluation, we selected the network state that exhib-
ited the lowest validation MSE to mitigate the risk of
assessing performance with a network potentially over-
fitting the training dataset. We computed the SSIM and
the peak normalized absolute error (PNAE) for the test
dataset. The PNAE was defined as |y − x|∕max{x}, where
x is the ground-truth, and y is the prediction, and ⋅
indicates averaging. For the phantom experiment, we

treated the probe-measured EP values as ground-truth.
For the in vivo experiment, since there was no avail-
able ground-truth, we qualitatively compared the recon-
structed conductivity against the one obtained with
H-EPT (Helmholtz-EPT)56 available from the open-source
EPTlib.57 We used Savitzky–Golay filters58 with a kernel
size of 1, 2, and 3 and ellipsoid shape to compute numerical
derivatives.

3 RESULTS

3.1 Network validation and testing

Figure 3 presents the MSE and SSIM throughout the vali-
dation for both the network trained on the synthetic phan-
toms and the network fine-tuned on the realistic heads.
The observed MSE oscillations with the synthetic phantom
dataset during the early training phase were expected due
to high lr. During fine-tuning, the lr was smaller, there-
fore the oscillations were reduced. Since only the MSE was
used for training, the oscillations in the SSIM reflect the
fundamental differences between SSIM and MSE.59 The
larger SSIM oscillations during fine-tuning as opposed to
the original training were expected since the Duke’s vari-
ations used for validation were out-of-distribution (OOD)
examples.

The mean and standard deviation (SD) of the PNAE
(SSIM) for the ϵr and 𝜎e of the synthetic phantoms dataset
were 1.7% ± 1.7% (0.94 ± 0.05) and 1.3% ± 1.6% (0.93 ±
0.09), respectively. For the realistic heads, the PNAE and
SSIM for 𝜎e were 1.8% ± 0.4% and 0.93 ± 0.01, respectively.
The corresponding values for ϵr were 2.7% ± 0.5% and
0.86 ± 0.03, respectively. Figure 4 shows histograms for the
PNAE and SSIM value distributions for all volumes in the
test datasets.

Figure 5 presents the reconstructed EP and associated
PNAE for the middle axial slice of two representa-
tive cases from the synthetic phantoms test dataset.

F I G U R E 3 Average MSE (left) and
SSIM (right) validation error for both the
network trained on synthetic phantoms and
the network fine-tuned on realistic heads.
The loss function used for training was the
equally weighted sum of the MSE value for
the conductivity and the MSE value for the
relative permittivity.
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GIANNAKOPOULOS et al. 1123

F I G U R E 4 Histograms of the PNAE
(left) and SSIM (right) for (top) the network
trained and tested on synthetic phantoms
and (bottom) the network fine-tuned on
realistic heads and tested only on Duke’s
variations. The results account for all
volumes in the test datasets.

F I G U R E 5 (Left) Relative permittivity
and (right) conductivity maps for the middle
axial slice of two representative examples from
the synthetic phantoms test dataset. PNAE
maps of the reconstructed EP (middle) with
respect to the ground-truth (top) are plotted at
the bottom. Single voxel regions are preserved
in the reconstructions (white arrow). The
PNAE increases near boundaries for ϵr (blue
arrow). A checkerboard-like artifact is visible in
the middle of the phantoms (green arrow).

The reconstructed EP have excellent qualitative similarity
with the ground truth values. Blurring can be observed
across certain boundaries, and a checkerboard-like arti-
fact appeared at the center of the field of view for some
reconstructions (evident in the first example).

Figure 6 shows the results of the fine-tuned network
for two representative examples from the realistic heads
test dataset. While the internal structure of the brain is
retained in the EP maps, a degree of blurring can be
observed between WM and GM. Higher errors were found
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1124 GIANNAKOPOULOS et al.

F I G U R E 6 (Left) Relative permittivity
and (right) conductivity maps for an axial slice
through the brain of two representative
examples from the realistic heads test dataset.
The PNAE maps of the reconstructed EP
(middle) with respect to the ground-truth (top)
are presented at the bottom. The PNAE is
higher near boundaries, but the internal
structures of the head are preserved in the
reconstructions. The white arrow indicates a
region where blurring between WM and GM
occurs in the reconstructions. A region of high
PNAE between the brain and the skull is
indicated with the blue arrow.

in regions between the brain and skull, particularly where
the EP values are small.

Figure 7 shows the reconstructed EP maps for the two
variations of Duke with the synthetic lesions. While the
network successfully detected the lesions, it underesti-
mated their EP. Specifically, ϵr in the vicinity of the small
lesion was 62 ± 5, compared to the ground truth value of
68, while the reconstructed 𝜎e was 0.94 ± 0.42 S/m, com-
pared to the ground truth value of 1.1 S/m. Note that the
large SD for 𝜎e is attributable to errors at the boundary
of the lesion, where the network incorrectly interpreted
some voxels as part of the adjacent CSF tissue. For the
large lesion, ϵr was 60 ± 2 and 𝜎e was 0.72 ± 0.09 S/m,
compared with ground truth values of 80 and 0.8 S/m,
respectively.

3.2 Phantom experiment

Figure 8 shows experimental results for the
two-compartments cylindrical phantom. The recon-
structed EP maps preserve the expected homogeneity
across the two compartments. The conductivity was
1.58 ± 0.11 S/m and 0.55 ± 0.06 S/m for the CSF- and
WM-mimicking compartments, respectively. The relative

permittivity was 74 ± 5.7 and 60 ± 1.3 for the two com-
partments. The relative difference with respect to the
probe-measured values was 20% and 18.3% for the average
conductivity in the CSF and WM compartments, respec-
tively. For the permittivity, the differences were 3% for the
CSF compartment and 5.7% for the WM compartment.

3.3 In vivo experiment

Figure 9 presents a qualitative comparison between the EP
reconstructed using the C1, C2, and C3 input configura-
tions for representative sagittal, coronal, and axial slices
through the brain of the volunteer. The average EP val-
ues and the corresponding SD in the entire head for the
C1, C2, and C3 configurations were 0.62 ± 0.37 S/m (C1),
0.62 ± 0.36 S/m (C2), and 0.61 ± 0.47 S/m (C3) for 𝜎e, and
48 ± 13 (C1), 48 ± 13 (C2), and 47.39 ± 13 (C3) for ϵr. For
comparison, the corresponding values averaged across all
Duke variations in the test dataset were 0.61 ± 0.47 S/m for
𝜎e and 45 ± 19 for ϵr.

Figure 10 shows conductivity maps reconstructed from
the same in vivo data using H-EPT at 5 mm voxel isotropic
resolution. We tested three different Savitzky–Golay (SG)
kernel sizes for each method.
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GIANNAKOPOULOS et al. 1125

F I G U R E 7 (Left) Duke’s head with a large (top) and small (bottom) homogeneous synthetic lesion inserted in the brain; associated
relative permittivity (middle) and conductivity (right) maps for a representative axial cut through the lesions. The reconstructed relative
permittivity of the smaller lesion had a 9% average relative error with respect to ground-truth (within the lesion), whereas the reconstruction
error for the larger lesion was 25%. For the conductivity, the error was 15% and 10% for the small and large lesions, respectively. The lesions
are contoured with dotted white lines for enhanced visualization.

F I G U R E 8 Experimental phantom
results. The three inputs of the neural network
(normalized |B+1 | map in dB, MR image
obtained with the DAM, and corresponding
Canny edge mask) are shown for a
representative axial cut (left). Probe measured
ground-truth, reconstructed EP, and PNAE are
shown for relative permittivity (middle) and
conductivity (right). The reconstruction
preserves the homogeneity of both
compartments. The relative permittivity for
both compartments was close to the
ground-truth. The average conductivity was
underestimated by up to 25% in comparison to
the probe-measured value.
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1126 GIANNAKOPOULOS et al.

F I G U R E 9 In vivo results. (A) Normalized |B(+)1 | maps in dB, (B) MR images, Canny edge masks, (C) reconstructed relative
permittivity, and (D) conductivity for each input configuration. EP maps are shown for representative coronal, sagittal, and axial planes.

F I G U R E 10 Conductivity reconstructions using the H-EPT
for 5 mm voxel isotropic resolution for the in vivo experiment. The
results are presented for the same axial plane as in Figure 9 and for
three different Savitzky–Golay (SG) kernel sizes (1, 2, and 3).

3.4 Model ablations

For the synthetic phantoms test dataset, the single UNet
with IN achieved 0.849 ± 0.093 SSIM for ϵr and 0.901 ±
0.102 for 𝜎e. The single TransUNet using IN improved
the SSIM to 0.906 ± 0.057 for ϵr and 0.915 ± 0.106 for 𝜎e.
The model using a cascade of three TransUNets with IN
achieved 0.918 ± 0.090 SSIM for ϵr and 0.945 ± 0.090 for
𝜎e. Our proposed model that incorporates FiLM in the
architecture with three TransUNets yielded 0.939 ± 0.046
SSIM for ϵr and 0.930 ± 0.091 for 𝜎e.

For the phantom experiment, the architecture with a
cascade of three TransUNets with IN achieved SSIM equal
to 0.508 for ϵr and 0.913 for 𝜎e, whereas the same archi-
tecture using FiLM instead of IN achieved 0.77 for ϵr and
0.965 for 𝜎e.

4 DISCUSSION

We introduced a novel NN architecture to compute
EP maps from MR measurements and evaluated its

performance in simulations and experiments. The inte-
gration of edge masksgenerated using Canny filtering is
a robust way to provide anatomical information without
including MR images directly as input to the network.
This training strategy prevents the network from learn-
ing nonphysical correlations between particular MR image
contrasts and EP maps,30 therefore, ensuring that the net-
work learns the EP distribution only from magnetic field
measurements, to which they are related by Maxwell’s
equations. Further, the inclusion of Canny edge masks
as additional inputs enhances boundary preservation
between tissues as shown in Reference 32. For simulated
data, we derived edge masks from the available ground
truth conductivity maps. For phantom and in vivo exper-
iments, the masks were produced by applying the Canny
filter to actual MR images, without any manual processing.

The main component of our architecture is the Tran-
sUNet.47 TransUNet combines the strengths of vision
transformers60 and the expressive power of CNNs.61 This
hybrid model enables capturing both global (vision trans-
former) and local (convolutions) information from the
input tensors. In particular, vision transformers are capa-
ble of learning the global interactions between EP and
the input magnetic field maps, resulting in improved
reconstruction performance over purely CNN-based mod-
els that rely solely on local interactions.62 Our findings
are consistent with findings in MRI reconstruction, where
transformers and attention-based techniques have demon-
strated notable performance improvements.63–66 The CNN
components of TransUNets can learn the local boundaries
between tissues through the utilization of the Canny edge
masks, further boosting the model’s capability to accu-
rately reconstruct EP maps. In particular, the use of a
TransUNet instead of a UNet improved the SSIM scores for
the case of the synthetic phantoms dataset by 0.057 for ϵr
and by 0.014 for 𝜎e. The use of a cascaded architecture with
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GIANNAKOPOULOS et al. 1127

three TransUNet instead of a single one was implemented
to increase the overall learning capacity of the model fol-
lowing the work in Reference 67. In fact, for the model
with three TransUNets, the SSIM for the synthetic phan-
toms test improved by 0.012 for ϵr and by 0.03 for 𝜎e. FiLM,
as an adaptive normalization technique, modulates feature
maps across network layers, allowing the network to more
effectively control and guide information.50 This adaptive
capability is particularly beneficial in handling variations
and unexpected inputs, which are common in experimen-
tal measurements (OOD data). When we replaced the IN
with FiLM in our ablation study, the SSIM for the phan-
tom experiment improved by 0.262 for ϵr and 0.059 for 𝜎e.
We used the Canny edge masks as the input to the FiLM
generator to better preserve the anatomical information
during training; although different inputs could also be
used, such as a segmentation mask. Other normalization
techniques such as Adaptive Instance Normalization,68

might help improve our network’s performance and they
will be explored in future work.

NN architectures that do not integrate prior knowl-
edge of the physical laws are prone to overfitting, espe-
cially when trained on small datasets. To address this,
we trained our network using two large datasets (8000
synthetic phantoms and 11 000 head models) generated
using random augmentations to ensure robust generaliza-
tion during inference with previously unseen data. Our
network was first trained on the synthetic phantoms and
then fine-tuned on the realistic heads. We followed this
strategy because the synthetic phantoms had a simpler
interior structure, which allowed the network to initially
learn in a more controlled and less complex environment.
Fine-tuning enabled the network to adapt its learned pat-
terns to the more complex internal structures of the realis-
tic heads.69 The network provided excellent EP reconstruc-
tions for both simulated phantoms (Figure 5) and OOD
numerical head models (Figure 6) that were not included
in the training dataset. Moreover, the network’s perfor-
mance remained consistent for all simulated test data, as
shown by the histograms of Figure 4. Specifically, the SD
of the PNAE and SSIM was less than 2% and 0.09, respec-
tively, for all cases. A small degree of blurring occurred
between the boundaries of WM and GM (Figure 6). This
effect was anticipated, since these fine anatomical details
minimally affect the B(+)1 and B(−)1 field distributions and
can be challenging to detect with the Canny edge masks
at a voxel resolution of 5 mm3. The reconstruction quality
was worse for the permittivity compared to the conduc-
tivity for the realistic heads dataset, which was reported
also in previous work.15 The observed checkerboard-like
artifact in the central region of the sample for some cases
(visible, e.g., in Figure 5) can be attributed to the use of
transpose convolutions in the TransUNets.70 Future work

will focus on different techniques71 to avoid the emergence
of this artifact.

The network was successful in locating synthetic
lesions in OOD cases. Although the shape of the pathol-
ogy was accurately reconstructed (Figure 7), the EP of the
lesions were underestimated. Since the network was pre-
dominantly fine-tuned on healthy tissue data (only ∼2%
of the cases in the realistic heads dataset had pathologies),
it tends to reconstruct values typical of healthy brain tis-
sues, even in areas where pathologies are present. This
can explain the observed underestimation of the EP values
for the lesions. Future work will focus on overcoming this
issue by including a larger number of head models with
realistic lesions as in Reference 72.

Our approach yielded greater EP uniformity within
phantom compartments (Figure 8) compared to previ-
ous methods,73 where EP reconstructions were often cor-
rupted by noise amplifications associated with numerical
derivatives. The observed error in the permittivity was
small and within the accuracy and repeatability of dielec-
tric probe measurements. The observed error was larger
for conductivity. This will be addressed in future work by
better modeling the experimental variability in the simu-
lated training set.

The in vivo EP maps did not show artifacts that are typ-
ically observed with other approaches.15 In Figure 9C,D,
both input configurations C2 and C3 yielded EP recon-
structions that preserved the anatomy of the brain, while
the reconstructions based on C1 did not preserve the struc-
ture of the choroid plexus, highlighting the importance of
good edge masks for network performance. On the other
hand, the different B(+)1 maps (Figure 9A) used for C2
and C3 had a negligible effect on the quality of the EP
reconstruction. We assessed the repeatability of our net-
work by comparing the average in vivo EP for the three
input configurations. Both the mean and the SD values
over the entire head were in the same range for all three
configurations and were similar to the values for Duke’s
head, which, although cannot be assumed as the ground
truth, are based on established literature values. The SD
of the estimated EP values were lower compared to the
SD of the EP for the Duke model. These differences could
be attributed to the interpolation into a coarse resolution
of the in vivo data, which could have resulted in certain
regions being removed due to partial volume effects.74 This
could be the case of the CSF, which can be as small as 1.2
mm in specific regions in the head while having an impact
on the overall SD due to its high EP values. We anticipate
better matching between in vivo and simulated data by
training our network with data of finer spatial resolutions,
for example at 2 mm instead of 5 mm voxel isotropic reso-
lution. Although generating such a dataset would require
approximately two months of simulation time, it would
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1128 GIANNAKOPOULOS et al.

allow (a) higher accuracy of the simulated magnetic fields,
(b) capacity for deeper TransUNets with 4 pooling layers
per cascade instead of 2, and (c) sharper Canny edge masks
for better preservation of the anatomy.

The quality of the reconstruction with our network
was superior compared to the H-EPT (Figure 10) imple-
mentation provided in Reference 57. In particular, the
H-EPT reconstructions with a SG kernel equal to 1 or 2
appeared noisy with a few values in the brain anatomy
approaching 0, while larger SG kernel led to blurred recon-
structions to the point that different tissues were not easily
distinguishable in the EP maps. Other deep learning-based
methods, such as the ones presented in References 24,28,
yielded accurate EP reconstructions. However, both tech-
niques strongly rely on the contrast in MR images, which
is not directly associated with EP, whereas our network
learns the EP distribution from magnetic field measure-
ments, which are related to the underlying conductivity
and permittivity via Maxwell’s equations.

The network proposed here could be alternatively
used as an initial guess generator for other EP recon-
struction methods21,23 that rely on iterative optimization
strategies as in Reference 75, to considerably reduce their
iteration count, thus making them feasible for real-time
reconstructions. In addition, approaches like the one pre-
sented in Reference 76 could allow weight initialization
for physics-informed models77,78 using the reconstructions
produced from our proposed supervised network.

One particular constraint of our approach is that it
used a local birdcage coil for MR excitation in the training
datasets. If samples were scanned with a different coil, for
example, the scanner body coil or a multi-channel transmit
array, the accuracy of the reconstructed EP maps would
worsen unless the network is re-trained with data gener-
ated using the new coil setup. Alternatively, the Barlow
twins method for redundancy reduction79 offers a solution
to this problem and could potentially enforce the network
to learn the same EP reconstructions from magnetic field
maps acquired through different coils. Such an approach
could broaden the network’s adaptability to different coil
configurations and will be explored in future work.

5 CONCLUSION

We introduced a novel NN, based on vision transform-
ers and FiLM, to reconstruct EP from MR measurements
obtained with a head birdcage coil. The use of Canny
edge masks as input improved the NN ability to pre-
serve boundaries between compartments with different
EP, reducing blurring in the reconstructed EP maps. We
demonstrated excellent results for numerical simulations
with OOD realistic brain models along with promising in

vivo reconstructions. Our approach is a promising direc-
tion towards clinically-usable in vivo EP reconstructions.
Future work will focus on refining the resolution of our
datasets and improving the network’s architecture to
further boost performance.
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