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Abstract
Nowadays, truck-and-drone problems represent one of the most studied classes

of vehicle routing problems. The Flying Sidekick Traveling Salesman Problem

(FS-TSP) is the first optimization problem defined in this class. Since its definition,

several variants have been proposed differing for the side constraints related to the

operating conditions and for the structure of the hybrid truck-and-drone delivery sys-

tem. However, regardless the specific problem under investigation, determining the

optimal solution of most of these routing problems is a very challenging task, due to

the vehicle synchronization issue. On this basis, this work provides a new arc-based

integer linear programming formulation for the FS-TSP. The solution of such for-

mulation required the development of a branch-and-cut solution approach based

on new families of valid inequalities and variable fixing strategies. We tested the

proposed approach on different sets of benchmark instances. The experimentation

shows that the proposed method is competitive or outperforms the state-of-the-art

approaches, providing either the optimal solution or improved bounds for several

instances unsolved before.
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1 INTRODUCTION

A truck-and-drone system is a hybrid delivery system composed of trucks and drones. The two kinds of vehicles can serve

customers in tandem or independently. However, the drone is not completely autonomous because of its limited payload and

battery capacity. Thus, the truck acts also as a mobile depot for the drone, swapping its battery and providing the parcels to be

delivered. The system is aimed at serving all the customers minimizing the overall delivery time. The usage of such delivery

systems and the deriving routing problems represent cutting edge research topic for the Operations Research community and

related literature has grown extremely fast, as witnessed by the survey works reported in [15, 23]. In particular, a bunch of

variants of truck-and-drone routing problems has been proposed differing for the side constraints envisaging either the operating

conditions or different hybrid truck-and-drone delivery system structures. For the first case, we mention, among the others, the

variants involving multiple customers within each drone sortie [20], the dependence of the drone energy consumption on the

carried weight [16], and the presence of no-fly zones [27]. For the second case, instead, we cite the variants involving multitruck

and multidrone homogeneous and heterogeneous fleets [18, 26].

Generally speaking, a truck-and-drone system can be conceived as a two-echelon distribution system, whose main com-

plexity issue is represented by the synchronization between the two kinds of involved vehicles. Such an issue characterizes all

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided

the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2023 The Authors. Networks published by Wiley Periodicals LLC.

254 wileyonlinelibrary.com/journal/net Networks. 2023;82:254–276.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/NET
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnet.22172&domain=pdf&date_stamp=2023-07-05


BOCCIA ET AL. 255

the two-echelon distribution systems and it is declined in multiple ways depending on the specific features of the considered

vehicles. On this basis, with reference to a truck-and-drone system, we can define two different operational schemes: a drone is

launched from and recovered at the same location where the truck stops for the whole duration of the sortie; the truck launches

a drone at a location and recovers it at a different location. It is easy to understand that the drone battery capacity, or in other

words its endurance, differently affects these two operational schemes. Indeed, in the first case, the truck waits for the drone

at a location and it is always available for the recovering operation. Thus, such a scheme requires no actual synchronization

between the vehicles, but, on the other hand, it does not fully exploit the advantages of such a hybrid delivery system. Instead,

the second scheme presents opposite features. Indeed, it has the advantage of simultaneously exploiting the truck and the drone

for the delivery operations, but, on the other side, it requires a significant coordination between the two vehicles, which have to

necessarily meet at the recovery location within a time period imposed by the drone endurance.

From the routing problem perspective, the first operational scheme configures a truck-and-drone problem which partially

recalls the ideas underlying the p-median path problem [1] and the truck-and-trailer routing problem [7]. On the other side, the

second operational scheme matches the definition of the first truck-and-drone routing problem defined in the literature [17],

referred to as the Flying Sidekick Traveling Salesman Problem (FS-TSP).

In short, the FS-TSP operations and main assumptions can be summarized as follows. A set of customers must be served

by a hybrid delivery system combining a truck and a drone, both placed at a starting depot. The truck plays a twofold role: it

serves the customers met along its route and acts as a mobile depot for the drone. More in detail, the truck carries the drone to a

location where it is loaded with a package, and it takes off to serve a customer. While the drone is performing the delivery, the

truck either serves other customers or directly moves to the landing location where the drone will be picked-up after completing

the delivery. Without loss of generality, the take-off and landing locations correspond to the customer locations. Drone delivery

operations are subject to two main restrictions: limited flight range, due to its battery endurance, and limited load capacity,

since it can transport only one package at a time. For safety reasons, the drone can land only at the depot or on the top of the

truck. Therefore, the drone must hover at a landing location until the truck arrives, so requiring the synchronization of their

movements. After landing on the truck, the drone battery is replaced with a fully charged one, thus it can start a new delivery

without idle time. The set of all the operations performed by the drone (take-off, delivery, and landing), is referred to as sortie

in the literature. The objective of the system is to minimize the time required for the completion of the delivery operations.

For the sake of comprehension, Figure 1 sketches three different solutions of the FS-TSP on a small instance with one depot

and five customers, represented by square and circles, respectively. Take-off and landing nodes are highlighted in green and red,

respectively. The solid arrow indicates the movement of the truck (both with and without the drone on board), while the dashed

arrow indicates the movement of the drone in flight. The values on the arcs represent the travel times. For the sake of simplicity,

it is assumed that the two vehicles move at the same speed. The time required to complete the delivery operations corresponds

to the time when both vehicles return to the depot, after having served all the customers. It can be calculated as the sum of

two components: the routing time of the truck moving with the drone on board and the time spent by the drone to complete

each sortie. For example, in the first solution, the truck moves with the drone on board to serve customer 1 with a travel time

of 12. At node 1, the drone is launched to serve customer 2 while the truck serves customers 3 and 4. Then, the truck serves

customer 5 where it also picks-up the drone. The duration of the drone path is 21 while that of the truck is 17. Thus, because

of synchronization constraints, the duration of the drone sortie is equal to the maximum between these two values. Finally, the

two vehicles return together to the depot with a travel time of 9. Consequently, the completion time will be 12 + 21 + 9 = 42.

Coherently with these considerations, it is possible to compute the travel time of the two vehicles, the duration of the sorties,

and the delivery time for the other two solutions. It is also important to underline that the validity of such solutions depends on

the endurance of the drone. If the drone endurance is lower than the duration of a sortie, such a sortie will be unfeasible, thus

making the corresponding solution unfeasible as well. For example, if the drone endurance was equal to 20, the only feasible

solution would be the third one.

It is straight to understand that the FS-TSP represents a more complex variant of the TSP which includes synchronization

requirements. Thus, it is a NP-hard problem as well, and it is extremely difficult to optimally and/or effectively solve even on

instances with few customers. As a result of this complexity, most contributions in literature tackle the FS-TSP by heuristic

approaches [3, 9, 12], while just a few mathematical programming exact methods have been developed. Moreover, as will

be highlighted in the next section, available exact methods either suffer of dimensionality drawbacks due to the usage of an

exponential number of variables, or suffer of tightness deficiency due to the weakness of formulation constraints. In particular,

formulations characterized by path-based variables generally belong to the first class of methods while formulations using

three-index and/or time variables in combination with big-M constraints usually fall in the second one. This work is aimed at

overcoming these inconveniences by providing the following threefold methodological contribution:

• We introduce a new mixed-integer linear programming (MILP) arc-based formulation for the FS-TSP with a polynomial

number of three-index variables.
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(A) (B) (C)

FIGURE 1 Three different flying sidekick traveling salesman problem solutions. (A) Delivery time = 42; (B) Delivery time = 46; (C) Delivery time = 47.

• We present a Branch-and-Cut (B&C) algorithm for solving the FS-TSP based on new families of valid inequalities and

different variable fixing strategies. In particular, the valid inequalities are grounded on the vehicle coordination while the

variable fixings are based on drone endurance.

• We provide an extensive experimentation on the benchmark instances used by the state-of-the-art algorithms for the

FS-TSP [4, 11, 22]. The computational results show that our approach is competitive or outperforms the state-of-the-art

approaches. Indeed, it either provides the optimal solution for some instances that have never been solved before or returns

improved upper bounds to those that are still unsolved.

The remainder of the paper is organized as follows: in Section 2, we revise exact solution methods for the FS-TSP; in

Section 3, we recall the FS-TSP and we present the MILP formulation; Section 4 describes the Branch-and-Cut algorithm, the

valid inequalities, and the variable fixings; Section 5 is devoted to the computational results; finally, conclusions are given, and

perspectives on future works on this topic are discussed in Section 6.

2 LITERATURE REVIEW

The research activity on truck-and-drone delivery systems and, in particular, related routing problems have been significant in

the last few years. For a complete review on variants of the FS-TSP the interested reader is referred to [16, 19], on single-truck

multidrone to [6, 18], and on multitruck single/multidrone to [24, 26]. In this work, we focus our revision on exact solution

methods for the FS-TSP. We describe each method from a twofold perspective to evaluate its effectiveness. From a mathematical

point of view, the evaluation is based on the kinds of variables and constraints used to formulate the problem. In particular,

arc-based formulations generally present a polynomial number of two/three-index variables, while path-based formulations use

an exponential number of variables. The first kind of formulations is generally easy to implement within currently available

solver frameworks, while the second one involves the development of ad hoc solution methods. Moreover, some formulations

address the time dimension and/or the synchronization between the two vehicles by using big-M constraints that generally lead

to weak linear relaxations. From a computational point of view, we highlight the instances used for the experimentation and

briefly describe the resulting performance since the instance size and the computational burden are aspects generally used to

evaluate a solution method. On this basis, we point out that the discussed methods consider one or more of the following three

test beds for the FS-TSP:

- The set of 72 instances proposed in [17] with 10 customers and different endurance values (20 and 40 minutes)

(M10-instances).

- The set of 240 instances proposed in [17] for a different truck-and-drone problem and adapted in [11] for the FS-TSP.

These instances have 20 customers, and the endurance is set to either 20 or 40 min (M20-instances).

- The set of 300 instances proposed in [21] for a variant of the FS-TSP with up to 39 customers and an endurance equal to

20 min (POI-instances).

The first work addressing the FS-TSP is reported in [17]. In this work, the authors present for the first time the FS-TSP and

propose a MILP model to solve it which uses three-index and time variables and big-M constraints. None of the M10-instances
is solved by a commercial MILP solver within a time limit of 1800 seconds.

Starting from the MILP proposed in [17], a two- and a three-index formulation with time variables and big-M constraints

are presented in [10] and tested on the M10-instances. The best results are obtained using the two-index formulation which

solves 33 and 26 instances with a drone endurance of 20 and 40 min, respectively. The same authors successively propose an
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BOCCIA ET AL. 257

improved formulation with only two-index variables and big-M constraints in [11], able to optimally solve for the first time

all M10-instances. In addition, they test the new formulation on the M20-instances, providing the optimal solution of 58 and 2

instances with a drone endurance equal to 20 and 40 min, respectively. Recently, the same authors present a solution method

based on a branch-and-bound scheme coupled with an assignment problem in [9]. They are able to solve only the M10-instances
and a few instances with up to 19 customers of the POI-instances.

Almost contemporarily to [11], two new formulations for the FS-TSP are proposed in [25]. Two-index and time variables

characterize both formulations, but the second one uses a joint representation of the drone sortie to reduce the number of

variables. They solve to optimality: all the M10-instances; 32 M20-instances with an endurance equal to 20 min; 3 M20-instances
with an endurance equal to 40 min.

A new formulation based on an extended graph representation of the FS-TSP with path-based variables but without big-M
constraints is proposed in [4]. The authors develop a column-and-row generation approach to solve the proposed formulation.

They are able to solve all the M10-instances, and 80 and 5 M20-instances of the considering a drone endurance equal to 20 and

40 min, respectively. The same authors then extend their method in [5] and [3], including cyclic sortie and trying to use the

proposed method in combination with data science techniques, respectively.

The method currently able to optimally solve the largest FS-TSP instances is presented in [22]. The authors propose a

compact formulation considering the truck and drone as a single entity leading to an exponential number of variables. Therefore,

the authors develop a branch-and-price method to solve the formulation where the pricing problem is solved using a dynamic

programming approach. The method is tested on a modified version of the POI-instances. In particular, the authors round up

all the travel time to make them integer. The results show that the proposed method solved almost all the instances with up to

39 customers.

From this review, it is clear that our method is the only one considering an arc-based formulation with a polynomial number

of three-index variables and without time variables and big-M constraints.

3 FS-TSP DESCRIPTION AND FORMULATION

In this section, we first briefly recall the FS-TSP description as defined in [4, 11, 17, 22] and simultaneously introduce the

problem notation, then we present the proposed original formulation.

3.1 FS-TSP description and notation
The FS-TSP considers a set of customers, C, that have to be served exactly once, either by the truck or the drone. The two

vehicles depart from and return to a single depot once. The proposed formulation splits the depot into a source node, s, and a

destination node, t. Moreover, let V be the set of nodes, V = C∪{s, t}, and A the set of arcs, A = {(i, j) ∶ i ∈ C∪{s}, j ∈ C∪{t}}.
The travel time of the truck (drone) on each arc (i, j), (i, j) ∈ A, is indicated with tij(𝑑ij).

The truck has an infinite capacity and serves all the customers met along its route. Moreover, it acts as a mobile depot for

the drone providing the packages and dispatching the drone to serve the customers.

The drone can serve one customer per sortie. Therefore, a sortie is characterized by a launch node, a rendezvous node, and

a customer node. The launch and the rendezvous nodes can be either the depot or a customer node. In addition, they must be

different except if there is only one sortie starting from and ending at the depot. The duration of a sortie is limited by the drone

endurance (Dtl). The truck must collect the drone before its flight time exceeds its endurance because the drone cannot land

due to safety reasons. On this basis, it is clear that the two vehicles must be synchronized at the beginning and at the end of a

sortie. Moreover, setup times arise when the drone is launched (launch time, SL) or retrieved (recovery time, SR). We point out

that there is no launch time in the depot and that the recovery time is included in the endurance computation. For the sake of

readability, the notation is also reported in Table 1.

The objective is to minimize the duration of the delivery process, that is, the time needed by the two vehicles to serve all

the customers and return to the depot.

On the basis of this description, the FS-TSP involves three kinds of decisions: identification of the customers served by the

drone; selection of launch and rendezvous nodes for each drone sortie; definition of the truck route.

3.2 Problem formulation
To model the FS-TSP by a MILP formulation, we introduce the following sets of variables based on the previous problem

description and notation:

- yij, (i, j) ∈ A, is equal to 1 if the truck travels along the arc (i, j) (with or without the drone on board), 0 otherwise.

- xij, (i, j) ∈ A, is equal to 1 if the drone flies along the arc (i, j), 0 otherwise.
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TABLE 1 Notation used for the flying sidekick traveling salesman problem formulation.

Problem notation

Sets:
C Set of customers

{s} Tandem starting node

{t} Tandem ending node

V Set of nodes, C ∪ {s, t}
A Set of arcs

Parameters:

tij Truck travel time on the arc (i,j)

𝑑ij Drone travel time on the arc (i,j)

Dtl Drone endurance

SL Launch service time

SR Recovery service time

- 𝛾

h
ij , (i, j) ∈ A, h ∈ C, is equal to 1 if the arc (i, j) is traveled by the truck while the drone is performing the drone sortie

serving customer h, 0 otherwise.

- 𝜃

h
, h ∈ C, is equal to 1 if customer h is served by the drone, 0 otherwise.

- 𝜔

h
i , i ∈ C ∪ {s}, h ∈ C, is equal to 1 if node i is the launch node of the drone sortie serving customer h, 0 otherwise.

- 𝛿

h
j , j ∈ C ∪ {t}, h ∈ C, is equal to 1 if node j is the rendezvous node of the drone sortie serving customer h, 0 otherwise.

- 𝜎

h
, h ∈ C ∪ {t}, is a continuous variable indicating the truck waiting time at the destination node of the sortie serving

customer h. If customer h is served by the drone, then 𝜎
h = 0.

Consistently with this notation and variables, the makespan of the delivery process, that is, the objective function, can be

written as:

min

∑

(i,j)∈A
tijyij +

∑

h∈C
(SL + SR) 𝜃h −

∑

h∈C
SL 𝜔

h
s +

∑

h∈C∪{t}
𝜎

h
,

where the first term measures the duration of the truck path, the second and the third term evaluate the total launch and recovery

service time (the launch service time at the depot is equal to 0), and the fourth term assesses the total truck waiting time.

Then, the set of constraints can be divided into the following six families.

Truck routing constraints
∑

j∶(s,j)∈A
ysj =

∑

i∶(i,t)∈A
yit = 1. (1)

∑

j∶(i,j)∈A
yij =

∑

j∶(j,i)∈A
yji ≤ 1 i ∈ C. (2)

∑

i,j∈S|(i,j)∈A
yij ≤

∑

h∈S⧵{q}
(1 − 𝜃h) 2 ⊆ S ⊆ V , q ∈ S ⧵ {s, t}. (3)

They impose that there is a truck path from the origin node s to the destination node t, in any feasible solution. Constraints (3)

are the subtour elimination constraints. As in the formulation of the orienteering problem [13], given a subset of nodes S,

constraints (3) impose that the number of arcs with origin ad destination in S traveled by the truck must be less than the number

of nodes served by the truck in the subset S.

Truck path and launch/rendezvous linking constraints
∑

j∶(s,j)∈A
𝛾

h
sj = 𝜔h

s h ∈ C. (4)

∑

j∶(i,t)∈A
𝛾

h
it = 𝛿h

t h ∈ C. (5)

∑

j∶(i,j)∈A
𝛾

h
ij −

∑

j∶(i,j)∈A
𝛾

h
ji = 𝜔h

i − 𝛿h
i i, h ∈ C. (6)

They impose that there is a truck path without the drone onboard from the launch node to the rendezvous node of each

drone sortie serving customer h. The constraints (4) ensure that if a sortie includes the tandem starting node, then the launch

node of the sortie must be the starting node itself. Similarly, the constraints (5) ensure that a sortie must finish at the tandem
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BOCCIA ET AL. 259

ending node if it is part of the sortie. Lastly, the constraints (6) guarantee that a sortie must start at a launch node and end at a

rendezvous node.

Single assignment constraints

ysj + xsj ≤ 1 (s, j) ∈ A. (7)

yit + xit ≤ 1 (i, t) ∈ A. (8)

yij + xij + xji ≤ 1 i, j ∈ C|(i, j) ∈ A. (9)

∑

j∶(h,j)∈A
yhj + 𝜃h = 1 h ∈ C. (10)

Constraints (7) and (8) impose that each arc cannot be traveled by the truck and the drone simultaneously for the arcs exiting

from the starting node and for the arcs entering into the ending node, respectively. Constraints (9) impose that each arc between

two customers can not be traveled by the truck and the drone simultaneously and avoid loops in which the launch and recovery

nodes of a sortie are the same node. Constraints (10) impose that each customer must be served either by the truck or by the

drone.

Consistency constraints
∑

h∈C
𝛾

h
ij ≤ yij (i, j) ∈ A. (11)

∑

i∈V⧵{t,h}
𝜔

h
i =

∑

j∈V⧵{s,h}
𝛿

h
j = 𝜃h h ∈ C. (12)

xij ≤ 𝜃
i + 𝜃j (i, j) ∈ A. (13)

xij ≤ 𝜔
j
i + 𝛿

i
j (i, j) ∈ A. (14)

∑

j∶(i,j)∈A
xij =

∑

h∈C⧵{i}
𝜔

h
i + 𝜃i

≤ 1 i ∈ C. (15)

∑

i∶(i,j)∈A
xij =

∑

h∈C⧵{j}
𝛿

h
j + 𝜃j

≤ 1 j ∈ C. (16)

Constraints (11) ensure the consistency between the arcs traveled by the truck during a sortie and the origin-destination truck

path. Moreover, if a customer h is served by the drone (𝜃
h = 1), constraints (12) impose that the corresponding sortie must have

a launch and a rendezvous node. Constraints (13) guarantee that if the drone travels the arc (i, j), (i, j) ∈ A, then either node i
or node j is a customer served by the drone. Constraints (14) ensure that if the drone travels the arc (i, j), (i, j) ∈ A, then either

node i is the launch node of the sortie serving node j or node j is the rendezvous node of the sortie serving node i. Constraints

(15) guarantee that an arc coming out of a node i can be traveled by the drone only if the drone serves i or it is the launch node

of a sortie. Finally, constraints (16) ensure that an arc entering a node j can be traveled by the drone only if the drone serves j
or it is the rendezvous node of a sortie.

Drone endurance constraints
∑

(i,j)∈A
tij𝛾h

ij ≤ (Dtl − SR)𝜃h h ∈ C. (17)

∑

i∈V⧵{t}
𝑑ih𝜔

h
i +

∑

j∈V⧵{s}
𝑑hj𝛿

h
j ≤ (Dtl − SR)𝜃h h ∈ C. (18)

Constraints (17) impose an upper bound on the duration of the truck path of the sortie serving customer h, while constraints

(18) impose the same upper bound on the duration of the drone path of the sortie.

Waiting time constraints
∑

i∈V⧵{t}
𝑑ih𝜔

h
i +

∑

j∈V⧵{s}
𝑑hj𝛿

h
j −

∑

(i,j)∈A
tij𝛾h

ij ≤ 𝜎
h h ∈ C. (19)

Constraints (19) are needed to consider the truck waiting time in the objective function.

Based on the model just described, it is possible to highlight the main differences with the formulations previously described

in the literature review. Specifically, the proposed model differs in three main aspects: the expression of the objective function,

the subtour elimination constraints, and the constraints that ensure synchronization between the two vehicles.

Formulations that use time-variables [10, 22, 25] have such variables in each of these elements of the formulation. Specifi-

cally, the subtour elimination constraints and synchronization constraints are Big-M constraints. Therefore, these formulations

are generally characterized by a weak lower bound at the root node. In contrast to the previous ones, the formulations proposed
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260 BOCCIA ET AL.

in [11, 25] use time-variables, but these are only used for synchronization while the objective function is expressed as the sum

of travel times and waiting times at the rendezvous nodes. This still involves the presence of Big-M constraints, but in a smaller

number and therefore a better value of the lower bound.

Finally, the main difference with the formulation proposed in [4] is represented by the number of variables and constraints.

Specifically, this formulation involved the use of an exponential number of variables for the sorties, as opposed to the polynomial

order 𝛾
h
ij variables of the proposed formulation. It is clear that the presence of an exponential number of variables also entails

the presence of an exponential number of constraints to ensure consistency with the rest of the model. Such constraints are

not necessary in the proposed model, and therefore the only exponential number of constraints are the subtour elimination

constraints present also in the formulation reported in [4].

4 BRANCH-AND-CUT APPROACH, VALID INEQUALITIES AND VARIABLE
FIXINGS

The proposed formulation contains an exponential number of constraints due to the subtour elimination constraints (3). There-

fore, we developed a Branch-and-Cut (B&C) procedure that solves the problem without constraints (3) and then adds to the

formulation only the lazy constraints (3) violated each time an integer solution is found. Moreover, the B&C effectiveness is

further improved by the integration of several valid inequalities and variable fixings. The valid inequalities are introduced to

strengthen the proposed formulation, increasing the quality of the lower bound. The variable fixings are implemented to reduce

the solution space. In this section, we begin by introducing the valid inequalities, then discuss the variable fixing strategies.

Finally, we present the implementation settings for the B&C.

4.1 Valid inequalities
This subsection presents four families of valid inequalities based on the coordination of the two vehicles (i.e., the coherency

between the truck and the drone movements when operating in tandem).

4.1.1 Cut inequalities

Proposition 1. Given the graph G(V ,A) and two nodes p and q, p, q ∈ V, let Cut(p, q) be a generic cut on the
graph G between the nodes p and q, and let h, h ∈ C, be a generic customer. Then, the cut inequalities:

∑

(i,j)∈Cut(s,h)
yij ≥ 1 − 𝜃h

, (20)

and
∑

(i,j)∈Cut(h,t)
yij ≥ 1 − 𝜃h

, (21)

are valid for the FS-TSP formulation.

Proof. If the drone does not serve customer h (𝜃
h = 0), there must be a truck path from the origin node s to h and

from h to the destination node t in any feasible solution. Therefore, an arc must cross any cut from s to h and from

h to t. ▪

It is also simple to prove that constraints (20) and (21) can be used as subtour elimination constraints. Indeed, they guarantee

that the set of the arcs traveled by the truck, {(i, j) ∈ A | yij = 1}, define a connected graph and constraints (2) prevent the truck

from coming back to a previously visited node. So, any solution presenting a subtour violates at least an inequality in (20), (21),

or (2). The cut inequalities (20) and (21) are separated and added to the formulation at each node belonging to the first three

levels of the enumeration tree. The separation procedure solves the minimum cut problem [14], from the origin node s to h and

from h to the destination node t on the weighted graph G′(V ,A,W) where the weight wij on the generic arc (i, j), (i, j) ∈ A, is

given by the value of the corresponding yij variable. If the value of the minimum cut is less than 1 − 𝜃h
, then the violated cut

inequality is added to the formulation.

Proposition 2. Let h and k be two customer nodes, h, k ∈ C. Let Cut(h, k) and Cut(k, h) be a cut between the nodes
h and k and nodes k and h, respectively. The 2-cut inequality:

∑

(i,j)∈Cut(h,k)
yij +

∑

(i,j)∈Cut(k,h)
yij ≥ 1 − 𝜃h − 𝜃k

, (22)

is valid for the FS-TSP formulation.

 10970037, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22172 by D

anilo A
m

itrano - U
ni Federico Ii D

i N
apoli , W

iley O
nline L

ibrary on [10/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BOCCIA ET AL. 261

Proof. If customers h and k are not served by the drone (𝜃
h = 𝜃k = 0), then the truck either travels from h to k or it

travels from from k to h. Therefore, a cut from h to k or from k to h must be crossed by an arc traveled by the truck.▪

As the previous set of cut inequalities, the 2-cut inequalities (22) are separated and added to the formulation at each node

belonging to the first three levels of the enumeration tree. The separation procedure solves the minimum cut problem from the

k to h and from h to k on the weighted graph G′(V ,A,W) where the weight wij on the generic arc (i, j), (i, j) ∈ A, is given by the

value of the corresponding yij variable. If the value of the minimum cut is less than 1− 𝜃h − 𝜃k
, then the violated cut inequality

is added to the formulation.

Finally, the following proposition defines another family of cut valid inequalities by considering the sets of𝜔 and 𝛿 variables.

Proposition 3. Given a couple of nodes p and q, p, q ∈ V , and a customer node h, h ∈ C, the following
inequality:

∑

(i,j)∈Cut(p,q)
yij ≥ 𝜔

h
p + 𝛿h

q − 1, (23)

is valid for the FS-TSP formulation.

Proof. If customer h is served by a drone launched from node p and retrieved at node q (𝜔
h
p = 𝛿

h
q = 1), then the

truck travels from p to q. Therefore, a cut from p to q must be crossed by an arc traveled by a truck. ▪

The cut inequalities (23) are separated and added to the formulation at each node belonging to the first three levels of the

enumeration tree. The separation procedure solves the minimum cut problem from the origin node p to the destination node q on

the weighted graph G′(V ,A,W)where the weight wij on the generic arc (i, j), (i, j) ∈ A, is given by the value of the corresponding

yij variable. If the value of the minimum cut is less than 𝜔
h
p+ 𝛿h

q −1, then the violated cut inequality is added to the formulation.

4.1.2 Drone sortie inequalities

Let i-k-j be a triple of nodes in the set V , if 𝑑ik + 𝑑kj ≥ Dtl − Sr, then the sortie is infeasible and the inequality:

𝜔

k
i + 𝛿k

j ≤ 1, (24)

is valid for the FS-TSP formulation. Valid inequalities (24) are polynomial in number since the number of triple of nodes is

|V|3. As a result, these inequalities can be included at the beginning of the formulation.

4.1.3 Truck sortie inequalities

Let A′ be a subset of arcs, A′ = {(i, j), (i, j) ∈ A ∶ tij ≥ Dtl − SR}, if 𝜔
k
i = 1, then

∑
l∶(l,j)∈A′ 𝛾

k
lj = 0 for each k ∈ C and for each

l ∈ V . Therefore, the inequality:

∑

l∶(l,j)∈A
𝛾

k
lj ≤ 1 − 𝜔k

i , (25)

is valid for the FS-TSP formulation.

Likewise, if 𝛿
k
j = 1 then

∑
l∶(i,l)∈A′ 𝛾

k
il = 0 for each k ∈ C and for each i ∈ V . Therefore, the inequality:

∑

l∶(i,l)∈A
𝛾

k
il ≤ 1 − 𝛿k

j , (26)

is valid for the FS-TSP formulation.

Valid inequalities (25,26) are polynomial in number since the number of arcs is approximately |V|2. As a result, these

inequalities can be included as user cuts at the beginning of the formulation.

Let P(i, j) be a path from i to j, (P(i, j) = {(i, s1), (s1, s2), ..., (sn−1, j)}, and D(P(i, j)) be its track travel time, D(P(i, j)) =∑
(i,j)∈P(i,j) tij. If D(P(i, j)) > Dtl − SR then the inequalities:

∑

(i,j)∈P(i,j)
𝛾

k
ij ≤ |P(i, j)| − 1 k ∈ C, (27)

are valid for the FS-TSP formulation.

Valid inequalities (27) are exponential in number since the number of possible paths is exponential to the number of nodes.

Therefore, we add to the formulation only those for which |P(i, j)| ≤ 2, where |P(i, j)| denotes the number of arcs in the path

P(i, j).
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262 BOCCIA ET AL.

4.1.4 Variable upper bounds

Let (i, k) and (k, j) be two arcs traveled by the drone from the launch node i to the customer k and from the customer k to the

rendezvous node j, then the variable upper bounds:

𝜔

k
i ≤ xik (i, k) ∈ A, (28)

and

𝛿

k
j ≤ xkj (k, j) ∈ A, (29)

are valid for the FS-TSP formulation. Variable upper bounds (28) and (29) are polynomial in number since they are related to

the number of arcs. As a result, these inequalities can be included at the beginning of the formulation.

4.2 Variable fixing strategies
This subsection presents two families of variable fixings based on the drone endurance. In particular, for each arc (i, j), (i, j) ∈ A,
we can set:

xij = 0 (i, j) ∈ A ∶ 𝑑ij > Dtl − SR, (30)

and

𝛾

k
ij = 0 k ∈ C, (i, j) ∈ A ∶ tij > Dtl − SR, (31)

Moreover, if the triangular inequality with respect to the drone travel times and the truck travel times holds and 𝑑ij = 𝑑ji ≤ tij = tji,
for each arc (i, j), (i, j) ∈ A, we can set to zero also other 𝛾

k
ij variables with tij ≤ Dtl−SR by considering the following proposition.

Proposition 4. If 𝑑ik + 𝑑kj > 2 × (Dtl − SR) − tij, then 𝛾k
ij = 0 in any feasible solution.

Proof. Any sortie where the truck travels the arc (i, j) cannot be in any feasible solution.

Case 1: Sortie i-k-j.
If 𝑑ik + 𝑑kj + tij > 2 × (Dtl − SR), then either 𝑑ik + 𝑑kj > Dtl − SR or tij > Dtl − SR violate an endurance

constraint.

Case 2: Sortie p-k-q with p ≠ i or q ≠ j.
If the truck travels the arc (i, j), since the triangular inequality holds, the truck time of the sortie is greater

than or equal to tpi + tij + tjq while the drone time of the sortie is equal to 𝑑pk + 𝑑kq. If 𝑑ij ≤ tij for each

(i, j), (i, j) ∈ A, the sum of the truck time and the drone time of the sortie 𝑑pk + tpi + tij + tjq + 𝑑kq can be

decreased by considering the sum 𝑑ik + tij + 𝑑kj. So, as in Case 1, the sortie is not feasible. ▪

4.3 B&C implementation settings
The implementation of the B&C is based on a classical framework, envisaging the solution of a relaxed problem and the

introduction of violated cuts. Thus, it starts with the solution of the linear programming relaxation obtained considering:

• the set of x, y, 𝛾 , 𝜃, 𝛿, and 𝜔 variables;

• the subset of truck routing constraints (1) and (2);

• the truck path and launch/rendezvous linking constraints (4)–(6);

• the single assignment constraints (7)–(10);

• the consistency constraints (11)–(16);

• the drone endurance constraints (17) and (18);

• the waiting time constraints (19).

The relaxation is eventually strengthened with the integration of the the valid inequalities (24), (25), (26), (28), and (29),

the subset of the valid inequalities (27) with |Pij| ≤ 2, the variable fixing strategies (30) and (31). Then, at each node of

the first three levels of the enumeration tree we separate the valid inequalities (20–23) by using a max flow separation pro-

cedure for both integer and fractional solutions [2]. These cuts are separated if the violation exceeds a threshold equal to

0.01. Successively, at each other node of the enumeration tree, if an integer solution is found, we separate the truck routing

constraints (3).
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BOCCIA ET AL. 263

5 COMPUTATIONAL RESULTS

This section presents and discusses the computational results of the experimentation performed to evaluate and validate the

proposed formulation and the B&C algorithm. The B&C algorithm has been coded in C language using Cplex 12.7 with default

setting as MILP solver, imposing a computation time limit of 1 hour. The experiments are performed on an Intel(R) Core(TM)

i7-8700, 3.20 GHz, 16.00 GB of RAM.

The experimentation results are presented in two different subsections. The first subsection shows the impact of valid

inequalities and variable fixing strategies on the performance of the B&C algorithm. In the second subsection, the performance

of the proposed B&C algorithm is assessed by comparing it with state-of-the-art solution approaches for the FS-TSP.

5.1 Impact of valid inequalities and variable fixing strategies
In this subsection, we assess the impact of variable fixing strategies and valid inequalities from different perspectives: number

of instances optimally solved, gap, running time and quality of the continuous relaxation at the root node. To this end, we tested

three different settings:

• MILP: this setting involves solving the MILP formulation as described in Section 3.

• MILP-PVI: this setting involves solving the MILP formulation integrated with all the polynomial valid inequalities and

variable fixing strategies, that is, constraints (24)–(31). This setting considers all the inequalities that can be added upfront

to the model.

• B&C: this setting involves solving the MILP formulation integrated with valid inequalities and variable fixing strategies.

This setting considers all the proposed improvements, including the ones requiring a separation procedure, i.e., constraints

(20)–23).

These three settings are tested on the M10- and M20-instances described in Section 2. We emphasize that we do not consider

the POI-instances for evaluating the impact of the variable inequalities and variable fixing strategies. This is because, for the

FS-TSP, the travel time of these instances is rounded up. Therefore, the integer nature of the travel time of these instances can

lead to some bias in the results.

5.1.1 Results on M10-instances
The three settings are able to solve all the instances within the time limit. Therefore, Table 2 provides a comparison of the

different settings in terms of running times on the M10-instances. The instances are grouped based on three different criteria:

the position of the depot (Dep), the speed of the drone (s
𝑑
), and the drone endurance. For the depot position, the letter “a”

indicates that the depot is located near the center of gravity of the customers, while “b,” “c,” and “d” represent the following (x,

y) coordinates: (4.0, 2.7), (4.0, 0.0), and (4, −2.7), respectively. For each instance group, we indicate the number of instances

in the column “# Ins.” Then, for each setting we report the average and the maximum running time in the columns “Avg time”

and “Max time,” respectively.

The results demonstrate that all three settings can solve each instance of this test bed within a matter of seconds. Furthermore,

it is observed that the running times of the two settings that incorporate the proposed enhancements (MILP-PVI and B&C) are

either comparable or slightly higher than those of the basic setting (MILP). This can be attributed to the fact that the formulation

associated with the MILP setting is already efficient for these small instances, and therefore, the valid inequalities and variable

TABLE 2 Impact of valid inequalities and variable fixing strategies on running times for M10-instances.

MILP MILP - PVI B&C

# Ins Avg time Max time Avg time Max time Avg time Max time

Dep = a 18 1.52 3.52 2.56 6.58 2.2 4.74

Dep = b 18 1.29 2.60 2.20 4.75 2.00 3.60

Dep = c 18 1.15 2.26 1.63 4.93 1.69 3.30

Dep = d 18 1.24 3.59 1.44 3.14 1.61 3.72

s
𝑑
= 15 24 1.04 2.13 1.40 3.06 1.55 3.72

s
𝑑
= 25 24 1.63 3.59 2.28 6.58 2.20 3.42

s
𝑑
= 35 24 1.23 2.74 2.22 4.93 1.88 4.74

Dtl = 20 36 1.3 3.59 2.41 6.58 1.34 3.42

Dtl = 40 36 1.30 2.39 1.53 4.93 2.42 4.74

All 72 1.30 3.59 1.97 4.93 1.88 4.74
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264 BOCCIA ET AL.

TABLE 3 Impact of valid inequalities and variable fixing strategies on root node relaxation for M10-instances.

MILP MILP - PVI B&C

# Ins Avg RGap Max Rgap Avg Rgap Max Rgap Avg Diff Max Diff Avg Rgap Max Rgap Avg Diff Max Diff

Dep = a 18 32.49 40.19 31.86 40.19 0.99 11.95 10.60 21.12 32.90 54.66

Dep = b 18 33.52 43.88 33.01 43.88 0.83 9.13 9.48 24.32 37.23 60.31

Dep = c 18 29.17 42.87 28.38 42.87 1.20 11.42 7.22 24.30 32.10 59.55

Dep = d 18 23.96 35.56 23.07 35.56 1.20 5.49 6.18 16.32 23.96 40.76

v
𝑑
= 15 24 31.30 42.87 29.97 42.87 2.07 11.95 8.43 24.30 33.99 59.55

v
𝑑
= 25 24 30.52 43.88 30.09 43.88 0.57 5.47 10.99 24.32 28.96 52.39

v
𝑑
= 35 24 27.55 37.87 27.18 37.87 0.51 4.66 5.69 14.90 31.69 60.31

Dtl = 20 36 30.59 43.88 29.74 43.88 1.35 11.95 7.51 24.32 34.29 59.87

Dtl = 40 36 28.98 42.87 28.42 42.87 0.75 5.47 9.23 24.30 28.81 60.31

All 72 29.79 43.88 29.08 43.88 1.05 11.95 8.37 24.32 31.55 60.31

fixing strategies only augment the size of the formulation that needs to be solved, without having any other significant impact.

However, the B&C setting displays superior performance to the MILP-PVI setting, demonstrating that the combination of all

the enhancements produces better outcomes in terms of running times, even for the small instances, than just the polynomial

inequalities.

Furthermore, analyzing the variation of the computation times depending on the instance characteristics, we can observe

that all settings have similar trends. Indeed, concerning the depot position, the “a” position, corresponding to the instance

center of gravity, is the group of instances that, on average, require more time. This can be explained by considering that a

baricentric position of the depot does not address the possible vehicle routes compared to a more specific position. Regarding

the drone speed, the most complex instances are those in which the drone has a speed of 25 km/h. It should be noted that for all

these instances, the truck speed is always 25 km/h. Therefore, instances where the two vehicles have similar speeds are more

complex, as they cannot prefer one vehicle over the other for deliveries. Finally, regarding the last criterion, a higher endurance

corresponds to higher computation times since the solution space is larger.

Table 3 presents a comparison of the different settings in terms of continuous relaxation at the root node. Specifically,

we solve the corresponding continuous relaxation for each setting to obtain a lower bound for the problem. The percentage

gap at the root node RGap is then computed as (BUB − LB)/LB ⋅ 100, where BUB is the best upper bound known and LB
is the lower bound obtained by the continuous relaxation. The columns “Avg RGap” and “Max RGap” show the average and

maximum RGap for each setting. For the MILP-PVI and B&C settings, we also compute the percentage difference between

the LB obtained with these settings and the one obtained with the MILP setting. This percentage difference is calculated as

(LB − LBMILP)/LBMILP⋅100, where LB is the lower bound computed with the MILP-PVI or B&C setting, while LBMILP is the

lower bound obtained with the MILP setting. The average and maximum difference percentage are reported in the columns

“Avg Diff” and “Max Diff,” respectively.

The results regarding the root node relaxation demonstrate that both the MILP-PVI and B&C settings lead to an improvement

of the lower bound, even on the small instances. Specifically, it can be observed that, on average, the MILP-PVI setting improves

the lower bound by approximately 1%, with some instances showing improvements of up to 12%. As expected, the B&C setting

yields even more significant improvements, with an average increase in lower bound of around 31% and a maximum increase

of approximately 60%. Furthermore, it is worth noting that, for the B&C setting, the average Rgap is below 10%, which is lower

than the average Rgap of the other two settings, and the maximum Rgap is even lower than the average Rgap of the other settings.

5.1.2 Results on M20-instances
Table 4 presents a comparison of the different settings in terms of number of instances optimally solved, gap, and running times

on the M20-instances. The instances are grouped based on two criteria: the position of the depot (Dep) and the drone endurance.

The letter “C” indicates that the depot is located near the center of gravity of the customers, while “E” and “O” represent the

average of the customer x-coordinate with y-coordinate of zero and the southwest corner of the region (0,0), respectively. The

column “# Ins” indicates the number of instances in each group. For each setting, we report the number of instances optimally

solved within the time limit (“# Opt”), the average and maximum percentage gap (“Avg Gap” and “Max Gap”), and the average

running time (“Avg time”). The percentage gap is calculated as (UB − LB)/LB⋅100, where UB and LB represent the upper and

lower bounds, respectively, obtained by the different settings.

The results indicate that the running times of the two settings incorporating the proposed enhancements (MILP-PVI and

B&C) are significantly lower than those of the basic setting (MILP). Specifically, the average running times of MILP-PVI and
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BOCCIA ET AL. 265

TABLE 4 Impact of valid inequalities and variable fixing strategies on number of instances optimally solved, gap, and running times for M20-instances.

MILP MILP - PVI B&C

# Ins # Opt Avg Gap Max Gap Avg time # Opt Avg Gap Max Gap Avg time # Opt Avg Gap Max Gap Avg time

Dep = C 80 77 0.12 4.15 466.87 79 0.02 1.80 270.73 80 0.00 0.00 190.31

Dep = E 80 72 0.58 14.33 891.21 75 0.36 13.98 544.87 76 0.28 10.30 441.54

Dep = O 80 77 0.12 4.03 541.46 78 0.04 2.19 380.78 79 0.01 0.91 287.49

Dtl = 20 120 117 0.09 4.43 265.58 119 0.05 6.47 93.91 119 0.04 5.31 77.43

Dtl = 40 120 109 0.46 14.33 980.11 113 0.23 13.98 703.68 116 0.15 10.3 535.46

All 240 226 0.27 14.33 622.85 232 0.14 13.98 398.8 235 0.10 10.30 306.44

TABLE 5 Impact of valid inequalities and variable fixing strategies on root node relaxation for M20-instances.

MILP MILP - PVI B&C

# Ins Avg RGap Max Rgap Avg RGap Max Rgap Avg diff Max diff Avg RGap Max Rgap Avg diff Max diff

Dep = C 80 34.66 57.81 31.91 54.83 4.38 14.71 14.78 34.93 32.14 97.60

Dep = E 80 44.09 58.61 41.95 56.44 3.95 17.44 22.87 42.91 39.78 93.22

Dep = O 80 40.17 59.22 38.11 57.66 3.71 16.23 19.12 39.07 39.78 96.13

Dtl = 20 120 38.83 58.61 36.73 56.33 3.67 17.44 16.42 42.91 39.06 96.13

Dtl = 40 120 40.45 59.22 37.91 57.66 4.36 15.08 21.43 39.07 34.01 97.60

All 240 39.64 59.22 37.32 57.66 4.02 17.44 18.92 42.91 36.54 97.60

B&C are about 60% and 50% of the average running time of the MILP setting, respectively. This is due to the fact that while MILP
setting can optimally solve 226 out of 240 instances, the MILP-PVI and B&C settings solve 232 and 235 instances within the

time limit, respectively. Furthermore, all the settings have an average gap lower than 0.30%. However, the MILP-PVI and B&C
settings have an average gap that is half and one-third of the MILP setting, respectively. Finally, with regard to the maximum

percentage gap, it can be observed that MILP-PVI yields a slight decrease in the maximum percentage gap compared to the

MILP setting. On the other hand, the B&C setting reduces the maximum percentage gap by about 4%.

Analyzing the variation in the number of instances optimally solved, percentage gap, and computation times depending on

the instance characteristics, we can observe that all settings exhibit similar trends on the M20-instances. Regarding the depot

position, the “E” position, which corresponds to the bottom side of the instance, requires, on average, more time and has the

lowest number of instances optimally solved. However, it is worth noting that only eight instances out of 80 are not solved by

the MILP setting, while the B&C setting is unable to solve just four instances of this group. As for the drone endurance, a higher

endurance leads to higher computation times and a larger number of instances that are not optimally solved within the time

limit, similar to the previous instances. However, unlike the depot position, the drone endurance has a more significant impact

on the performance of all settings.

Table 5 compares the different settings in terms of continuous relaxation at the root node for the M20-instances. For

each setting, we provide the average and maximum percentage root gap, as well as the average and maximum percentage

difference.

The root node relaxation results indicate that both the MILP-PVI and B&C settings provide a significant improvement in the

lower bound for the M20-instances. On average, the MILP-PVI setting leads to a 4% improvement in the lower bound, with some

instances showing improvements of up to 18%. Similarly, as observed in the M10-instances, the B&C setting demonstrates more

significant improvements, with an average increase in the lower bound of around 36% and a maximum increase of approximately

97%. It is worth noting that the average Rgap for the B&C setting is below 20%, which is lower than the average Rgap for the

other two settings, while the maximum Rgap is comparable to the average Rgap for the other settings.

5.2 Comparison with the state-of-the-art solvers for the FS-TSP
The results of the comparison with state-of-the-art solution approaches are presented in the following three sub-sections, one

for each of the test beds described in Section 2. Specifically, the performance of the proposed B&C method is evaluated by

comparing it with the state-of-the-art solution approaches for each test bed. We would like to note that the results will be

presented in an aggregated form for the sake of readability. Nevertheless, detailed results can be found in the Appendix for those

interested.
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266 BOCCIA ET AL.

TABLE 6 Comparison of the speed-up with respect to DMN22 and BMS21.

Speed-up B&C versus DMN21 Speed-up B&C versus BMS21

# Ins # Faster Average Min Max # Faster Average Min Max

Dep = a 18 18 640.46 1.28 6448.85 18 190.39 2.03 1254.99

Dep = b 18 18 119.43 1.10 691.19 18 71.28 1.64 383.96

Dep = c 18 17 33.01 0.48 172.50 18 40.20 1.82 260.01

Dep = d 18 18 28.71 1.57 102.26 17 42.36 0.68 220.85

s
𝑑
= 15 24 24 153.34 1.10 1240.90 23 166.44 0.68 1254.99

s
𝑑
= 25 24 23 357.05 0.48 6448.85 24 69.63 2.58 592.12

s
𝑑
= 35 24 24 105.82 1.74 1112.39 24 22.10 1.43 108.46

Dtl = 20 36 36 36.81 1.10 287.46 35 24.44 0.68 195.81

Dtl = 40 36 35 374.00 0.48 6448.85 36 147.68 1.43 1254.99

All 72 71 205.40 0.48 6448.85 71 86.06 0.68 1254.99

The state-of-the-art solution approaches for the M10-instances and the M20-instances are represented by the

Column-and-Row Generation method proposed in [4] and the Branch-and-Cut method proposed in [11], which we will refer to

as BMS21 and DMN22, respectively. On the other hand, the state-of-the-art approach for the FS-TSP on the POI-instances is

represented by the solution method proposed in [22], which we will refer to as RR21.

It is important to note that the results related to BMS21, DMN22, and RR21 are taken from [4], [11], and [22], respectively.

Therefore, a direct comparison in terms of running time is not possible since the different solution methods were tested on

different computing environments. However, it is worth mentioning that the CPU used in this work is similar to the one used

in RR21, and slightly better than those used in DMN22 and BMS21, as indicated by a study reported in [8]. This study ranks

processors based on single-thread performance, with a range of scores from 77 to 126 045. In particular, the marks of the CPU

used for the B&C, DMN22, BMS21, and RR21 are 12958, 1843, 3275, and 11490, respectively.

5.2.1 Results on M10-instances
All the methods considered for the M10-instances were able to obtain the optimal solution for all the instances in this set. Thus,

the only way to compare their performance is in terms of running times. To this end, we computed the speed-up related to the

B&C approach in comparison to DMN22 and BMS21. The speed-up is computed by calculating the ratio of the running time

of the literature method and our running time. A speed-up lower than 1 indicates that the B&C approach is slower than the

literature method, while a speed-up greater than 1 means that it results in the same running time or is faster.

Table 6 reports the results of this comparison. We grouped the instances based on the depot location, drone speed, and drone

endurance. For each group, we indicate the number of instances (“# Ins”). Then, for each literature method, we indicate the

number of instances that our B&C approach solves faster (“# Faster”), the average, the minimum, and the maximum speed-up

achieved.

The results show that the B&C is significantly faster than the two literature approaches. In fact, we can observe that on

average with respect to DMN22, the B&C shows a speed-up of about 200. Furthermore, we can also observe that the B&C is

slower than DMN22 only on one instance, where DMN22 is twice as fast. However, on the instance where DMN22 performs

worse, the B&C is about 6000 times faster. Similar considerations can be made for the comparison with BMS21. In summary, we

can observe that the average speed-up is about 80 while the maximum speed-up is about 1200. In conclusion, although a direct

comparison is not possible due to the different environments used for the tests, the speed-up values are so high that they cannot

be justified only by the different computing power involved, demonstrating the effectiveness of the proposed solution method.

5.2.2 Results on M20-instances
The state-of-the-art solution approaches are not capable of obtaining the optimal solution for all the M20-instances within the

given time limit of 1 h. Furthermore, the running times of DMN22 are not available for this set of instances, making it impossible

to compare the running times of the three solution methods. Hence, we assess the methods based on the percentage optimality

gap. Specifically, in Table 7, we provide the number of optimal solutions achieved, along with the average and maximum

percentage gap of the two literature approaches. For each instance, we select the best result among DMN22 and BMS21. To avoid

redundancy, we do not report again the gap for our B&C present the number of instances where our B&C approach exhibits a

higher, equal, or lower gap in the columns “# Worse,” “# Equal,” “# Better,” respectively.
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BOCCIA ET AL. 267

TABLE 7 Comparison of quality of the solution with respect to DMN22 and BMS21.

DMN22/BMS21 B&C versus DMN22/BMS21

# Ins # Opt Avg Gap Max Gap # Worse # Equal # Better

Dep = C 80 27 10.42 39.00 0 27 53

Dep = E 80 20 11.24 45.63 1 20 59

Dep = O 80 41 10.15 49.66 0 41 39

Dtl = 20 120 82 2.54 23.99 1 82 37

Dtl = 40 120 6 18.67 49.66 0 6 114

All 240 88 10.60 49.66 1 88 151

TABLE 8 Comparison with RR21 in terms of number of instances optimally solved, gap, and running time.

RR21 B&C

#Ins # Opt Avg Gap Max Gap Avg time # Opt Avg gap Max gap Avg time

|C| = 9 75 75 0.00 0.00 0.13 75 0.00 0.00 0.18

|C| = 19 75 75 0.00 0.00 3.18 75 0.00 0.00 6.07

|C| = 29 75 75 0.00 0.00 92.29 74 0.03 2.38 198.94

|C| = 39 75 61 5.48 51.01 1475.88 57 0.58 6.22 1482.69

𝛼 = 1 100 94 0.88 33.57 405.01 97 0.05 1.85 238.75

𝛼 = 2 100 98 0.82 43.51 279.89 94 0.16 6.22 424.72

𝛼 = 3 100 94 2.42 51.01 493.70 90 0.25 5.43 602.43

All 300 286 1.37 51.01 392.87 281 0.15 6.22 421.97

The results show how, even considering the best result between the two state-of-the-art approaches, the results of our B&C
approach are significantly better. In fact, we can observe that the average percentage gap is 10.60, which is higher than the

maximum gap of our B&C approach. Moreover, by comparing the instances where the B&C approach obtains a lower gap, it

can be noticed that in 151 out of 240 instances, our B&C approach outperforms the literature approaches, which is about 60% of

the instances. Furthermore, it can be observed that only in one instance, the literature approaches perform better than our B&C
approach. Finally, considering the different characteristics of the instances, it can be observed that the main improvement is

related to the ability of the B&C approach to solve instances with a drone endurance of 40. In fact, in 114 out of 120 instances,

the B&C approach obtains a lower gap.

5.2.3 Results on POI-instances
The POI-instances can be grouped on the basis of two different features: the number of customer and the ratio between the drone

and the truck speed (𝛼). Table 8 shows the comparison between RR21 and the B&C on the different subsets of POI-instances.

For each subset, we report the number of instances. Then, for each solution method we report the number of instances solved

to optimality within the time limit, the average and the maximum percentage gap, and the average running time.

The performance comparison of the two methods based on instance characteristics reveals that their performance tends to

decrease with an increase in the number of clients and drone speed. In the former case, the instance size increases, while in

the latter case, the solution space grows as more clients can be served by the drone since the endurance is fixed at 20 for all

speeds. Furthermore, the results demonstrate that the two approaches yield similar results in terms of the number of optimal

solutions. Specifically, RR21 solves 286 out of 300 instances, while the B&C solves 281. However, the B&C generally produces

significantly lower gaps than RR21 in terms of percentage. In particular, the average and maximum gaps are 0.15% and 6.22%,

respectively, for the B&C, while they are 1.37% and 51.01% for RR21.

Based on these results, we can conclude that the proposed B&C is more robust than RR21. Although the B&C solves, on

average, slightly fewer instances to optimality than RR21, the instances that the B&C is unable to solve have significantly lower

gaps compared to RR21, which presents particularly high gaps for unsolved instances. To further support this conclusion, we

reported a detailed comparison on the unsolved instances by RR21 and B&C in Tables 9 and 10, respectively.

From Table 9, we can observe that, on the instances unsolved by RR21, its average gap is equal to 29.37% while our B&C
determines an average gap of 0.84%. On the other hand, as shown in Table 10, on the instances unsolved by the B&C, its average

gap is 2.40% while the one of RR21 is 10.53%. Therefore, on average, our B&C performs significantly better than RR21 on both

subsets of unsolved instances.

 10970037, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22172 by D

anilo A
m

itrano - U
ni Federico Ii D

i N
apoli , W

iley O
nline L

ibrary on [10/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



268 BOCCIA ET AL.

TABLE 9 Results on POI-instances unsolved by RR21.

RR21 B&C

Id UB % Gap UB %Gap

poi-40-11-1 266 0.75 266 0.00

poi-40-13-3 363 42.15 210 0.95

poi-40-15-3 346 33.53 231 4.33

poi-40-17-3 359 32.59 242 0.00

poi-40-18-1 391 25.32 297 1.68

poi-40-22-3 339 34.22 224 0.00

poi-40-23-1 395 26.84 302 0.00

poi-40-23-2 395 38.48 244 0.00

poi-40-25-1 417 33.57 281 0.00

poi-40-3-2 416 43.51 235 0.00

poi-40-3-3 416 48.08 216 3.24

poi-40-4-1 284 0.35 288 0.00

poi-40-7-1 271 0.74 271 0.00

poi-40-7-3 396 51.01 194 1.55

TABLE 10 Results on POI-instances unsolved by B&C.

RR21 B&C

Id UB % Gap UB %Gap

poi-30-20-3 168 0.00 168 2.38

poi-40-1-2 213 0.00 214 0.93

poi-40-13-3 363 42.15 210 0.95

poi-40-15-1 279 0.00 279 1.43

poi-40-15-3 346 33.53 231 4.33

poi-40-16-1 270 0.00 270 1.85

poi-40-16-2 210 0.00 210 0.95

poi-40-18-1 391 25.32 297 1.68

poi-40-18-2 239 0.00 241 6.22

poi-40-18-3 221 0.00 221 5.43

poi-40-21-3 218 0.00 218 1.38

poi-40-24-2 215 0.00 215 2.33

poi-40-25-3 190 0.00 190 1.05

poi-40-3-3 416 48.08 216 3.24

poi-40-4-2 234 0.00 234 1.71

poi-40-5-3 203 0.00 205 3.41

poi-40-6-2 192 0.00 192 3.65

poi-40-6-3 181 0.00 181 1.10

poi-40-7-3 396 51.01 194 1.55

6 CONCLUSIONS

In this study, we propose an original MILP formulation for the FS-TSP, which unlike the ones present in the literature, uses a

polynomial number of variables and does not use big-M constraints.

We solve the proposed formulation through a B&C approach integrated with drone endurance based variable fixing strategies

and four different families of valid inequalities based on the vehicle coordination.

Computational results on different sets of benchmark instances confirm the robustness of the proposed MILP formulation

and the effectiveness of the B&C. Indeed, the experimentation shows that the proposed method is competitive or outperforms

the state-of-the-art approaches, providing either the optimal solution or improved bounds for several instances unsolved before.

Future research directions naturally include the extension of the proposed formulation to different variants of the FS-TSP.

Moreover, we are interested in developing a matheuristic framework that includes the proposed formulation to solve larger and
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BOCCIA ET AL. 269

harder instances. Finally, we will investigate the possibility of combining the proposed solution approach with machine learning

and data science techniques to be able to compute good solutions with a limited computational burden.
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APPENDIX

This appendix contains the detailed results of the comparison of the proposed B&C with the state-of-the-art approaches for the

FS-TSP.

A.1 M10-instances

Tables A1 and A2 report the results for the instances with a Dtl equal to 20 and 40 min, respectively. For each instance, we

report the objective function value of the optimal solution and the running times of each solution method.

Concerning the results on the instances with Dtl equal to 20 min, we can observe that the proposed B&C is faster than the

other two methods. Indeed, it shows an average computation Time of 1.34 seconds. On the other hand, the other two approaches

are more than 10 times slower than the proposed one, with an average computation time equal to 45.27 and 75.56 s for BMS21
and DMN22, respectively. Moreover, our approach performs better than the others, even in the worst-case scenario, that is, by

considering the largest computation time required to solve an instance. In particular, the largest computation time for the B&C
is 3.42 s versus the 329.71 s for BMS21 and the 707.32 s for DMN22.

Concerning, instead, the instances with Dtl equal to 40 min, we can observe that the performance of the B&C seems to be

unaffected by the larger Dtl. Indeed, the average and the largest computation times are similar to the previous ones. In particular,

the average and the largest computation times are slightly larger (2.42 and 4.74 s, respectively). Instead, the performance of the

other two solution methods decreases when the Dtl increases. Indeed, on the one hand, the average and the largest computation

times for BMS21 are 361.08 and 2762.93 s, respectively. On the other hand, DMN22 shows an average computation time of

975.44 and a largest computation time of about 4 hours. In conclusion, the B&C outperforms the state-of-the-art algorithms on

the M10-instances, being faster than the other approaches by about a couple of orders of magnitude.

TABLE A1 Results on M10-instances instances with Dtl = 20.

DMN22 BMS21 B&C DMN22 BMS21 B&C DMN22 BMS21 B&C
Id OPT Time Time Time Id OPT time time time Id OPT time time time

M37V1 57.45 1.23 3.80 0.96 M40V1 49.43 4.03 12.14 0.81 M43V1 69.59 0.53 0.3 0.15

M37V2 53.79 0.79 1.96 0.72 M40V2 51.71 12.09 27.93 0.84 M43V2 72.15 0.58 0.3 0.18

M37V3 54.66 6.21 2.78 0.41 M40V3 57.1 6.9 9.11 0.91 M43V3 77.34 0.43 0.24 0.12

M37V4 67.46 5.09 1.03 0.33 M40V4 69.9 1.98 11.26 0.80 M43V4 90.14 0.53 0.23 0.34

M37V5 51.78 406.43 190.25 3.42 M40V5 45.46 132.01 70.81 2.45 M43V5 58.71 282.87 192.68 0.98

M37V6 48.6 128.31 80.29 2.65 M40V6 44.51 9.48 35.44 1.31 M43V6 59.09 69.65 55.03 1.54

M37V7 49.58 18.38 32.77 2.36 M40V7 49.9 5.27 7.78 1.15 M43V7 65.52 8.98 7.7 1.24

M37V8 62.38 43.12 35.87 1.99 M40V8 62.7 5.84 8.97 0.93 M43V8 84.81 103.32 20.98 1.66

M37V9 43.48 361.49 329.71 3.04 M40V9 42.53 14.47 9.57 1.25 M43V9 46.93 707.32 239.28 2.94

M37V10 41.91 211.62 170.37 2.03 M40V10 43.08 3.64 3.78 2.05 M43V10 47.93 72.36 51.35 2.69

M37V11 42.9 37.47 16.02 1.45 M40V11 49.2 1.19 1.26 0.68 M43V11 57.38 11.91 5.52 0.85

M37V12 56.85 38.31 25.85 1.44 M40V12 62 1.12 1.13 0.62 M43V12 69.2 5.28 2.09 0.78

TABLE A2 Results on M10-instances with Dtl = 40.

DMN22 BMS21 B&C DMN22 BMS21 B&C DMN22 BMS21 B&C
Id OPT Time Time Time Id OPT Time Time Time Id OPT Time Time Time

M37V1 50.50 2731.91 2762.93 2.20 M40V1 46.89 252.66 365.46 3.16 M43V1 57.01 2312.62 1643.65 2.35

M37V2 47.31 284.46 550.88 1.43 M40V2 46.42 70.15 123.30 2.31 M43V2 58.05 1446.23 792.02 2.24

M37V3 53.69 190.49 618.77 2.38 M40V3 53.93 150.67 502.94 3.20 M43V3 69.40 219.80 222.88 2.33

M37V4 67.46 148.43 568.48 2.57 M40V4 68.40 252.36 608.64 3.72 M43V4 83.70 224.88 397.32 2.82

M37V5 45.84 644.23 369.05 2.75 M40V5 43.53 53.75 48.96 2.62 M43V5 52.09 15702.75 1441.79 2.43

M37V6 44.60 253.15 178.55 3.17 M40V6 44.08 40.61 13.23 1.92 M43V6 52.33 1921.06 374.47 2.78

M37V7 47.62 267.10 349.93 3.30 M40V7 49.23 1.13 6.05 2.35 M43V7 61.88 452.45 77.90 2.62

M37V8 60.42 241.61 299.12 2.36 M40V8 62.03 6.76 5.62 1.83 M43V8 73.73 123.31 56.58 2.86

M37V9 42.42 1167.62 62.31 2.08 M40V9 42.53 5.50 7.63 1.25 M43V9 46.93 5271.24 362.06 4.74

M37V10 41.91 406.15 76.01 2.22 M40V10 43.08 5.53 4.94 2.34 M43V10 47.93 169.56 82.85 3.61

M37V11 42.90 51.09 9.15 2.44 M40V11 49.20 3.38 1.70 0.80 M43V11 56.40 11.37 3.30 1.82

M37V12 55.70 26.62 6.69 2.20 M40V12 62.00 1.16 0.88 0.62 M43V12 69.20 4.21 2.94 1.17
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A.2 M20-instances

The two literature algorithms are not able to solve to optimality several instances even with Dtl equal to 20. Therefore, we

report the best upper bound and best percentage optimality gap among the two methods for each instance. Then, we report the

upper bound, the percentage gap, and the computation time obtained by our B&C. The percentage optimality gap is calculated

as%Gap = (UB−LB)∕LB ⋅100. We highlight that we do not report a detailed comparison of the running times of the different

solution methods since the running times are not available in [11] for DMN22.

The results on the M20-instances with Dtl equal to 20 and 40 min are reported in Tables A3 and A4, respectively.

As shown in Table A3, the two literature approaches can solve only 82 out of 120 instances to optimality. Instead, our

approach solves to optimality almost all the instances (119 out of 120). Clearly, our approach shows better performance also in

terms of average and maximum optimality gap. Indeed, our optimality gap is equal to 0.04% versus the 2.54% of BMS21/DMN22.

TABLE A3 Results on M20-instances with Dtl = 20.

DMN22/BMS21 DMN22/BMS21 DMN22/BMS21

Best Best B&C Best Best B&C Best Best B&C

Id UB % Gap UB %Gap Time Id UB % Gap UB % Gap Time Id UB % Gap UB %Gap Time

4847 267.05 0.00 267.05 0.00 5.39 5025 131.43 0.00 131.43 0.00 9.87 5154 123.34 9.84 121.90 0.00 49.95

4849 248.30 0.00 248.30 0.00 0.84 5027 114.31 0.00 114.31 0.00 14.32 5156 124.46 0.00 124.46 0.00 21.18

4853 232.87 0.00 232.87 0.00 1.01 5030 116.1 0.00 116.10 0.00 44.69 5159 145.79 0.00 145.79 0.00 18.46

4856 253.33 0.00 253.33 0.00 1.47 5032 117.55 1.88 117.55 0.00 13.28 5201 148.02 0.00 148.02 0.00 9.25

4858 240.63 0.00 240.63 0.00 1.39 5034 105.10 1.18 105.10 0.00 42.98 5203 138.59 0.00 138.59 0.00 21.24

4902 242.32 0.00 242.32 0.00 1.25 5036 124.33 3.65 124.33 0.00 22.99 5205 134.78 0.00 134.78 0.00 49.77

4907 239.28 0.00 239.28 0.00 0.91 5039 130.91 3.67 130.91 0.00 7.50 5207 121.47 0.00 121.47 0.00 23.18

4909 222.88 0.00 222.88 0.00 1.15 5041 125.32 7.77 125.32 0.00 10.83 5209 135.92 0.00 135.92 0.00 15.72

4912 267.62 0.00 267.62 0.00 0.87 5044 121.87 11.51 120.77 0.00 25.80 5212 137.67 0.00 137.67 0.00 18.77

4915 259.39 0.00 259.39 0.00 0.66 5047 112.85 0.00 112.85 0.00 9.61 5214 126.25 0.00 126.25 0.00 27.93

4917 173.97 0.00 173.97 0.00 3.60 5049 197.66 0.00 197.76 0.00 3.31 5216 101.07 18.27 101.07 0.00 46.56

4920 170.05 0.00 170.05 0.00 4.92 5051 180.62 0.00 180.62 0.00 9.92 5218 115.82 4.14 115.62 0.00 27.93

4922 169.60 0.00 169.60 0.00 2.66 5053 176.51 0.00 176.51 0.00 2.01 5220 119.04 0.00 119.04 0.00 28.49

4924 159.57 0.00 159.57 0.00 2.56 5055 177.29 0.00 177.29 0.00 4.23 5223 94.59 3.64 94.59 0.00 42.48

4926 155.98 0.00 155.98 0.00 13.54 5057 180.7 0.00 180.70 0.00 6.02 5225 129.72 0.00 129.72 0.00 12.36

4928 166 0.00 166.00 0.00 18.64 5059 150.82 0.00 150.82 0.00 5.64 5227 116.19 0.00 116.19 0.00 75.77

4931 172.49 0.00 172.49 0.00 14.91 5102 165.49 0.00 165.49 0.00 5.24 5229 94.26 13.69 92.87 0.00 70.17

4933 159.39 0.00 159.39 0.00 13.83 5104 181.61 0.00 181.61 0.00 4.93 5231 98.93 0.00 98.36 0.00 38.46

4935 176.69 0.00 176.69 0.00 18.86 5106 158.49 0.00 158.49 0.00 12.78 5233 111.62 7.85 111.62 0.00 29.04

4937 173.55 0.00 172.50 0.00 5.51 5108 172.12 0.00 172.12 0.00 1.96 5235 118.89 0.00 118.89 0.00 12.20

4939 201.03 0.00 201.03 0.00 5.34 5110 135.43 0.00 135.43 0.00 17.93 5238 79.39 10.33 78.93 0.00 562.17

4941 253.08 0.00 253.08 0.00 1.27 5112 131.23 0.00 131.23 0.00 13.20 5240 87.46 11.84 84.51 0.00 183.79

4944 247.03 0.00 247.03 0.00 2.98 5115 127.39 0.00 127.39 0.00 19.19 5242 85.65 3.25 85.65 0.00 10.29

4946 237.21 0.00 237.21 0.00 1.36 5117 130.36 10.31 130.36 0.00 46.49 5244 86.81 0.00 86.81 0.00 33.92

4948 258.06 0.00 258.06 0.00 1.38 5119 118.97 0.00 118.97 0.00 28.65 5246 74.56 5.12 74.19 5.31 3600

4950 240.99 0.00 240.99 0.00 1.44 5121 131.84 8.90 131.19 0.00 25.25 5248 83.1 23.36 83.10 0.00 1760.19

4952 218.09 0.00 218.09 0.00 4.77 5123 121.95 1.61 121.95 0.00 16.46 5250 81.93 0.00 81.93 0.00 42.83

4954 261.06 0.00 261.06 0.00 1.40 5125 130.96 7.38 130.96 0.00 13.52 5252 86.38 2.42 86.15 0.00 110.90

4957 252.28 0.00 252.28 0.00 1.20 5127 132.24 0.00 132.24 0.00 7.97 5255 82.5 2.83 82.50 0.00 89.69

4959 249.92 0.00 249.92 0.00 1.11 5130 126.49 9.37 126.49 0.00 45.19 5257 79.43 23.99 78.27 0.00 329.14

5001 115.5 0.00 115.50 0.00 17.58 5132 106.36 14.92 106.36 0.00 50.90 5306 100.46 0.00 100.46 0.00 19.14

5003 173.54 3.47 172.73 0.00 8.03 5134 102.57 0.76 102.57 0.00 21.86 5310 92.41 0.00 92.41 0.00 47.10

5006 155.39 0.00 155.39 0.00 5.90 5136 98.91 0.00 98.91 0.00 32.02 5312 83.59 0.00 83.59 0.00 20.19

5008 159.74 0.00 159.74 0.00 5.87 5138 91.83 3.81 91.61 0.00 73.10 5321 101.49 0.00 101.49 0.00 11.89

5010 145.48 0.00 145.48 0.00 15.00 5141 95.53 16.82 95.53 0.00 68.49 5324 104.03 8.98 101.55 0.00 77.96

5012 172.4 0.00 171.38 0.00 8.02 5143 97.69 0.00 97.69 0.00 26.96 5330 118.45 0.00 118.45 0.00 7.55

5015 172.67 0.00 172.67 0.00 3.43 5145 95.09 5.89 95.09 0.00 43.67 5334 102.02 0.00 102.02 0.00 26.40

5017 166.47 7.13 166.47 0.00 8.86 5148 90.58 7.12 90.58 0.00 52.35 5336 104.46 0.00 104.46 0.00 12.53

5020 155.92 0.00 155.92 0.00 3.46 5150 82.19 9.99 82.19 0.00 172.37 5345 114.19 0.00 114.19 0.00 7.88

5022 146.21 3.41 146.21 0.00 13.71 5152 90.58 14.38 90.58 0.00 384.83 5351 115.21 0.44 115.10 0.00 53.96
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TABLE A4 Results on M20-instances with Dtl = 40.

DMN22/BMS21 DMN22/BMS21 DMN22/BMS21

Best Best B&C Best Best B&C Best Best B&C

Id UB % Gap UB %Gap Time Id UB % Gap UB % Gap Time Id UB % Gap UB %Gap Time

4847 255.60 10.70 255.60 0.00 51.14 5025 119.20 32.26 118.43 0.00 533.62 5154 106.64 20.26 104.28 0.00 296.76

4849 225.15 22.37 225.15 0.00 108.81 5027 112.15 11.51 111.81 0.00 333.10 5156 108.92 16.20 107.12 0.00 120.46

4853 218.60 18.68 211.38 0.00 115.55 5030 102.69 10.35 100.64 0.00 3490.25 5159 125.41 17.76 120.02 0.00 158.89

4856 237.03 21.12 234.63 0.00 113.71 5032 106.69 12.01 103.06 0.00 204.23 5201 140.30 19.87 140.30 0.00 813.36

4858 215.63 13.81 215.63 0.00 52.83 5034 102.63 0.71 102.16 0.00 168.37 5203 124.20 16.32 124.06 0.00 359.09

4902 226.62 23.27 223.84 0.00 48.92 5036 112.30 1.06 112.10 0.00 88.98 5205 119.79 40.06 117.68 0.00 329.91

4907 196.66 17.33 192.87 0.00 41.95 5039 126.96 35.76 115.85 10.30 3600 5207 113.90 30.37 113.90 0.00 318.79

4909 216.04 7.95 216.04 0.00 48.41 5041 114.55 17.12 113.88 0.00 276.09 5209 123.69 49.66 121.24 0.91 3600

4912 238.04 1.83 238.04 0.00 51.64 5044 115.94 15.51 115.09 0.00 510.86 5212 135.82 22.84 133.06 0.00 443.64

4915 234.42 13.26 229.03 0.00 39.29 5047 106.11 20.30 103.86 0.00 354.80 5214 123.03 42.11 121.85 0.00 282.34

4917 165.31 2.17 165.31 0.00 29.56 5049 183.51 20.39 180.71 0.00 1065.02 5216 93.31 14.51 91.94 0.00 146.80

4920 161.89 6.22 157.03 0.00 131.76 5051 165.69 15.32 162.52 0.00 803.47 5218 97.61 21.93 96.06 0.00 161.47

4922 168.10 14.46 164.10 0.00 133.30 5053 145.54 26.26 145.42 0.00 115.44 5220 118.79 16.38 114.93 0.00 171.70

4924 158.98 3.92 158.98 0.00 93.41 5055 172.30 9.87 171.64 0.00 77.22 5223 93.64 22.49 91.22 0.00 503.58

4926 152.24 45.63 151.19 0.00 305.57 5057 173.67 10.18 172.88 0.00 479.58 5225 126.57 7.85 123.58 0.00 84.26

4928 153.88 40.19 146.76 5.00 3600 5059 134.83 14.06 134.83 0.00 261.99 5227 105.30 18.49 101.74 0.00 149.88

4931 166.68 11.64 165.22 0.00 162.10 5102 164.01 19.12 163.77 0.00 124.13 5229 94.26 17.15 88.67 0.00 70.36

4933 157.19 25.17 155.13 0.00 401.80 5104 178.67 17.80 176.70 0.00 104.39 5231 99.17 29.33 94.02 0.00 1583.46

4935 160.97 22.86 155.77 0.00 1860.91 5106 144.37 33.42 141.77 0.00 196.89 5233 108.03 16.81 107.9 0.00 138.11

4937 159.44 8.93 159.18 0.00 490.75 5108 162.21 10.00 162.21 0.00 935.15 5235 98.96 19.80 98.96 0.00 357.60

4939 180.92 14.17 179.10 0.00 2986.07 5110 129.07 22.71 126.20 0.00 1322.61 5238 79.09 17.67 77.99 0.00 281.27

4941 241.90 4.71 241.90 0.00 26.95 5112 129.56 24.30 123.13 0.00 287.31 5240 83.27 31.17 81.02 0.00 134.01

4944 233.75 0.00 233.75 0.00 54.47 5115 126.90 21.09 123.08 0.00 3115.85 5242 85.65 6.77 84.52 0.00 81.70

4946 220.39 0.00 220.39 0.00 75.87 5117 124.10 27.64 118.87 0.00 505.66 5244 85.55 36.27 85.32 0.00 33.78

4948 244.13 0.91 244.13 0.00 18.35 5119 114.18 28.82 112.03 0.00 223.39 5246 63.74 18.28 63.25 0.00 125.96

4950 225.61 0.00 225.61 0.00 28.95 5121 118.22 7.72 118.22 0.00 144.85 5248 83.97 39.64 77.55 0.00 199.20

4952 211.67 6.97 210.67 0.00 346.84 5123 115.40 18.73 113.75 0.00 229.14 5250 81.73 24.78 81.73 0.00 2120.91

4954 240.59 9.46 239.67 0.00 40.83 5125 120.17 25.42 118.86 0.00 592.08 5252 85.33 15.15 85.33 1.94 3600

4957 231.61 9.78 225.85 0.00 88.06 5127 125.95 13.07 124.57 0.00 219.70 5255 72.76 27.81 71.13 0.00 345.29

4959 231.95 0.00 231.95 0.00 36.42 5130 120.53 25.07 119.01 0.00 405.15 5257 79.35 27.36 75.17 0.00 753.53

5001 114.09 4.37 114.09 0.00 129.04 5132 107.47 25.96 102.77 0.00 471.40 5306 72.37 17.01 72.37 0.00 353.28

5003 166.92 5.21 162.39 0.00 40.76 5134 102.13 6.27 101.24 0.00 117.72 5310 91.87 41.22 88.33 0.00 2028.71

5006 135.92 12.90 135.92 0.00 94.63 5136 93.24 0.00 93.24 0.00 111.43 5312 82.20 39.29 82.20 0.00 90.37

5008 155.42 19.72 152.11 0.00 249.34 5138 87.76 18.90 87.53 0.00 645.75 5321 79.60 6.69 79.60 0.00 92.65

5010 135.72 19.88 133.85 0.00 377.62 5141 96.13 22.29 92.44 2.49 592.25 5324 91.68 41.47 79.75 0.00 1108.16

5012 160.20 22.70 154.34 0.00 232.78 5143 97.61 15.01 93.87 0.00 463.49 5330 96.35 31.96 96.35 0.00 632.45

5015 158.97 15.27 154.38 0.00 300.89 5145 88.13 0.00 88.13 0.00 71.65 5334 89.68 7.45 88.89 0.00 98.94

5017 157.33 18.69 156.18 0.00 189.40 5148 91.54 9.25 865.29 0.00 128.27 5336 87.41 43.82 86.39 0.00 3080.09

5020 146.01 26.95 141.92 0.00 146.23 5150 77.99 9.01 77.42 0.00 160.82 5345 101.45 21.97 99.63 0.00 83.02

5022 133.36 39.00 128.16 0.00 1657.48 5152 80.82 23.49 79.17 0.00 163.00 5351 96.86 44.29 90.10 0.00 221.93

Furthermore, the maximum gap obtained by our B&C and the other two methods are 5.31% and 23.99%, respectively. Moreover,

considering the 37 instances solved to optimality for the first time in literature by our B&C, we can observe that our algorithm

determined a new upper bound on 13 of them and proved the optimality of the previously known upper bound on the other 24.

For the sake of completeness, we point out that our approach is faster than BMS21 also on this set of instances with an average

running time equal to 77.43 and 1765.25 s, respectively.

Considering the results on the instances with Dtl equal to 40 min, we can observe that the state-of-the-art algorithms can

optimally solve just 6 instances out of 120 with an average and maximum optimality gap equal to 18.66% and 49.66%, respec-

tively. On the other hand, the performance of the B&C seems again to be not significantly affected by the larger Dtl. Indeed, it

is able to solve 115 instances with an average and maximum optimality gap equal to 0.15% and 10.30%, respectively.
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BOCCIA ET AL. 273

Concerning the 109 instances solved to optimality for the first time in literature by our B&C, we can observe that it deter-

mined a new upper bound for 87 instances and proved the optimality of the previously known upper bound for the other 22.

Finally, concerning the five instances that are still open, the B&C improves the best known upper bound for almost all of them

(four out of five).

In terms of computation times, a comparison with BMS21 is possible but not significant since it is not able to solve almost all

the instances within the time limit of 1 h. Nevertheless, for the sake of completeness, we highlight that the average computation

times for BMS21 is 3509.08 s. On the other hand, the average computation times of our B&C is 535.46 seconds.

Based on these results, it is clear that the proposed B&C could be considered the new state-of-the-art algorithm also for the

M20-instances.

TABLE A5 Results on POI-instances with |C| = 9.

RR21 B&C RR21 B&C

Id UB Time % Gap UB Time %Gap Id UB Time % Gap UB Time % Gap

poi-10-1-1 173 0.07 0.00 173 0.13 0.00 poi-10-20-3 128 0.1 0.00 128 0.11 0.00

poi-10-1-2 166 0.07 0.00 166 0.07 0.00 poi-10-21-1 132 0.12 0.00 132 0.06 0.00

poi-10-1-3 166 0.1 0.00 166 0.24 0.00 poi-10-21-2 79 0.22 0.00 79 0.31 0.00

poi-10-10-1 175 0.12 0.00 175 0.08 0.00 poi-10-21-3 78 0.24 0.00 78 0.25 0.00

poi-10-10-2 138 0.16 0.00 138 0.28 0.00 poi-10-22-1 153 0.12 0.00 153 0.13 0.00

poi-10-10-3 110 0.3 0.00 110 0.27 0.00 poi-10-22-2 150 0.14 0.00 150 0.39 0.00

poi-10-11-1 169 0.09 0.00 169 0.10 0.00 poi-10-22-3 147 0.15 0.00 147 0.18 0.00

poi-10-11-2 154 0.09 0.00 154 0.08 0.00 poi-10-23-1 182 0.12 0.00 182 0.06 0.00

poi-10-11-3 140 0.15 0.00 140 0.13 0.00 poi-10-23-2 182 0.13 0.00 182 0.07 0.00

poi-10-12-1 182 0.1 0.00 182 0.08 0.00 poi-10-23-3 182 0.15 0.00 182 0.12 0.00

poi-10-12-2 171 0.13 0.00 171 0.28 0.00 poi-10-24-1 168 0.09 0.00 168 0.09 0.00

poi-10-12-3 169 0.12 0.00 169 0.37 0.00 poi-10-24-2 122 0.12 0.00 122 0.23 0.00

poi-10-13-1 170 0.1 0.00 170 0.09 0.00 poi-10-24-3 118 0.12 0.00 118 0.25 0.00

poi-10-13-2 149 0.1 0.00 149 0.22 0.00 poi-10-25-1 169 0.13 0.00 169 0.15 0.00

poi-10-13-3 100 0.19 0.00 100 0.38 0.00 poi-10-25-2 164 0.11 0.00 164 0.34 0.00

poi-10-14-1 162 0.12 0.00 162 0.10 0.00 poi-10-25-3 148 0.1 0.00 148 0.31 0.00

poi-10-14-2 138 0.14 0.00 138 0.22 0.00 poi-10-3-1 178 0.14 0.00 178 0.08 0.00

poi-10-14-3 106 0.17 0.00 106 0.31 0.00 poi-10-3-2 177 0.1 0.00 177 0.14 0.00

poi-10-15-1 195 0.13 0.00 195 0.09 0.00 poi-10-3-3 165 0.08 0.00 165 0.10 0.00

poi-10-15-2 179 0.15 0.00 179 0.16 0.00 poi-10-4-1 178 0.13 0.00 178 0.10 0.00

poi-10-15-3 143 0.14 0.00 143 0.16 0.00 poi-10-4-2 149 0.09 0.00 149 0.29 0.00

poi-10-16-1 174 0.11 0.00 174 0.07 0.00 poi-10-4-3 145 0.29 0.00 145 0.32 0.00

poi-10-16-2 151 0.1 0.00 151 0.07 0.00 poi-10-5-1 150 0.09 0.00 150 0.09 0.00

poi-10-16-3 113 0.12 0.00 113 0.12 0.00 poi-10-5-2 147 0.09 0.00 147 0.14 0.00

poi-10-17-1 201 0.1 0.00 201 0.06 0.00 poi-10-5-3 147 0.14 0.00 147 0.42 0.00

poi-10-17-2 185 0.1 0.00 185 0.09 0.00 poi-10-6-1 178 0.11 0.00 178 0.11 0.00

poi-10-17-3 129 0.13 0.00 129 0.12 0.00 poi-10-6-2 153 0.11 0.00 153 0.13 0.00

poi-10-18-1 166 0.1 0.00 166 0.07 0.00 poi-10-6-3 148 0.21 0.00 148 0.52 0.00

poi-10-18-2 141 0.11 0.00 141 0.10 0.00 poi-10-7-1 158 0.12 0.00 158 0.09 0.00

poi-10-18-3 135 0.24 0.00 135 0.24 0.00 poi-10-7-2 131 0.12 0.00 131 0.42 0.00

poi-10-19-1 174 0.12 0.00 174 0.09 0.00 poi-10-7-3 123 0.26 0.00 123 0.70 0.00

poi-10-19-2 163 0.1 0.00 163 0.10 0.00 poi-10-8-1 133 0.1 0.00 133 0.18 0.00

poi-10-19-3 159 0.1 0.00 159 0.20 0.00 poi-10-8-2 113 0.12 0.00 113 0.18 0.00

poi-10-2-1 175 0.1 0.00 175 0.08 0.00 poi-10-8-3 97 0.37 0.00 97 0.20 0.00

poi-10-2-2 162 0.1 0.00 162 0.15 0.00 poi-10-9-1 189 0.1 0.00 189 0.07 0.00

poi-10-2-3 162 0.14 0.00 162 0.21 0.00 poi-10-9-2 168 0.11 0.00 168 0.10 0.00

poi-10-20-1 155 0.07 0.00 155 0.09 0.00 poi-10-9-3 159 0.17 0.00 165 0.26 0.00

poi-10-20-2 140 0.1 0.00 140 0.16 0.00
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A.3 POI-instances

The POI-instances can be grouped into four different subsets, of 75 instances each, on the basis of the number of customers

(9, 19, 29, and 39 customers). Tables A5,A6,A7, and A8 report the detailed results of the comparison of our method with

RR21 on the four different subsets. To be more precise, each table corresponds to a subset of instances with the same number

of customers. Then, for each instance, each table shows the upper bound, the running time, and the percentage optimality gap

corresponding to each solution method.

Concerning the results on the instance with 9 customers reported in Table A5, we can observe that both methods are able to

optimally solve all the instances. Moreover, the two solution methods show similar performance also in terms of running times.

Indeed, RR21 and B&C show an average running time of 0.13 and 0.18 s, respectively.

The two methods behave similarly also on the subset of instances with 19 customers, as can be observed from Table A6.

Indeed, both methods get the optimal solution on all the instances with an average running time of 3.18 and 6.07 seconds for

RR21 and B&C, respectively.

TABLE A6 Results on POI-instances with |C| = 19.

RR21 B&C RR21 B&C

Id UB Time % Gap UB Time %Gap Id UB Time % Gap UB Time % Gap

poi-20-1-1 226 0.4 0.00 226 1.06 0.00 poi-20-20-3 184 2.02 0.00 184 4.47 0.00

poi-20-1-2 212 0.71 0.00 212 3.39 0.00 poi-20-21-1 205 0.27 0.00 205 1.15 0.00

poi-20-1-3 185 3.67 0.00 185 9.70 0.00 poi-20-21-2 179 0.99 0.00 179 5.04 0.00

poi-20-10-1 213 0.23 0.00 213 1.42 0.00 poi-20-21-3 166 5.93 0.00 166 23.09 0.00

poi-20-10-2 188 2.05 0.00 188 5.61 0.00 poi-20-22-1 235 0.68 0.00 235 1.51 0.00

poi-20-10-3 178 1.27 0.00 178 4.44 0.00 poi-20-22-2 198 7.09 0.00 198 8.11 0.00

poi-20-11-1 205 0.32 0.00 205 1.18 0.00 poi-20-22-3 167 2.91 0.00 167 10.30 0.00

poi-20-11-2 180 1.08 0.00 180 3.20 0.00 poi-20-23-1 227 1.11 0.00 228 4.51 0.00

poi-20-11-3 175 3.17 0.00 175 10.74 0.00 poi-20-23-2 207 3.08 0.00 207 8.23 0.00

poi-20-12-1 225 15.03 0.00 225 2.91 0.00 poi-20-23-3 169 10.15 0.00 169 6.43 0.00

poi-20-12-2 172 7.96 0.00 172 2.86 0.00 poi-20-24-1 234 1.2 0.00 234 3.19 0.00

poi-20-12-3 158 3.46 0.00 158 6.96 0.00 poi-20-24-2 154 0.94 0.00 154 5.24 0.00

poi-20-13-1 208 0.41 0.00 208 0.88 0.00 poi-20-24-3 128 3.89 0.00 128 10.29 0.00

poi-20-13-2 200 3.51 0.00 200 3.88 0.00 poi-20-25-1 230 0.55 0.00 230 2.15 0.00

poi-20-13-3 162 11 0.00 169 5.06 0.00 poi-20-25-2 185 2.43 0.00 185 3.44 0.00

poi-20-14-1 189 1.12 0.00 189 2.96 0.00 poi-20-25-3 170 4.71 0.00 171 10.00 0.00

poi-20-14-2 174 16.54 0.00 174 12.08 0.00 poi-20-3-1 255 0.6 0.00 255 2.46 0.00

poi-20-14-3 159 8.84 0.00 159 23.85 0.00 poi-20-3-2 221 1.41 0.00 221 2.58 0.00

poi-20-15-1 251 1.12 0.00 251 2.80 0.00 poi-20-3-3 198 0.8 0.00 198 7.98 0.00

poi-20-15-2 170 1.67 0.00 170 2.58 0.00 poi-20-4-1 228 0.78 0.00 228 1.24 0.00

poi-20-15-3 157 7.3 0.00 157 6.35 0.00 poi-20-4-2 166 5.24 0.00 166 5.90 0.00

poi-20-16-1 212 0.49 0.00 212 1.48 0.00 poi-20-4-3 146 8.66 0.00 146 6.69 0.00

poi-20-16-2 172 1.1 0.00 172 2.99 0.00 poi-20-5-1 217 2.1 0.00 217 3.09 0.00

poi-20-16-3 171 3.22 0.00 171 4.35 0.00 poi-20-5-2 166 5.91 0.00 166 5.60 0.00

poi-20-17-1 192 2.23 0.00 192 2.79 0.00 poi-20-5-3 153 10.33 0.00 153 11.73 0.00

poi-20-17-2 137 1.34 0.00 137 11.97 0.00 poi-20-6-1 208 0.86 0.00 208 1.49 0.00

poi-20-17-3 134 6.41 0.00 134 15.82 0.00 poi-20-6-2 144 1.19 0.00 144 6.68 0.00

poi-20-18-1 223 0.57 0.00 225 2.60 0.00 poi-20-6-3 130 3.46 0.00 130 11.69 0.00

poi-20-18-2 201 1.05 0.00 201 6.84 0.00 poi-20-7-1 220 0.76 0.00 220 3.54 0.00

poi-20-18-3 178 2.82 0.00 178 22.70 0.00 poi-20-7-2 200 1.07 0.00 200 2.41 0.00

poi-20-19-1 215 1.12 0.00 215 1.04 0.00 poi-20-7-3 200 4.27 0.00 200 8.16 0.00

poi-20-19-2 155 0.92 0.00 155 4.25 0.00 poi-20-8-1 217 1.56 0.00 217 3.66 0.00

poi-20-19-3 146 1.8 0.00 146 7.61 0.00 poi-20-8-2 196 3.19 0.00 196 5.15 0.00

poi-20-2-1 233 0.75 0.00 233 1.83 0.00 poi-20-8-3 178 4.05 0.00 178 14.23 0.00

poi-20-2-2 195 2.27 0.00 196 4.69 0.00 poi-20-9-1 188 0.3 0.00 188 2.19 0.00

poi-20-2-3 172 3.93 0.00 172 6.86 0.00 poi-20-9-2 167 2.79 0.00 167 10.26 0.00

poi-20-20-1 208 0.65 0.00 208 2.33 0.00 poi-20-9-3 158 7.12 0.00 158 13.27 0.00

poi-20-20-2 186 2.25 0.00 186 3.82 0.00
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TABLE A7 Results on POI-instances with |C| = 29.

RR21 B&C RR21 B&C

Id UB Time % Gap UB Time %Gap Id UB Time % Gap UB Time % Gap

poi-30-1-1 246 21.16 0.00 246 14.66 0.00 poi-30-20-3 168 482.93 0.00 168 3600 2.38

poi-30-1-2 204 110.71 0.00 204 129.05 0.00 poi-30-21-1 233 6.53 0.00 233 11.25 0.00

poi-30-1-3 185 21.82 0.00 185 321.78 0.00 poi-30-21-2 213 90.81 0.00 213 128.80 0.00

poi-30-10-1 248 47.25 0.00 248 36.72 0.00 poi-30-21-3 201 28.63 0.00 201 199.27 0.00

poi-30-10-2 204 74.63 0.00 204 543.56 0.00 poi-30-22-1 255 5.38 0.00 255 13.30 0.00

poi-30-10-3 189 175.5 0.00 189 379.35 0.00 poi-30-22-2 217 101.55 0.00 217 43.38 0.00

poi-30-11-1 249 60.31 0.00 249 38.03 0.00 poi-30-22-3 209 160.06 0.00 209 107.71 0.00

poi-30-11-2 200 73.34 0.00 200 106.18 0.00 poi-30-23-1 232 181.92 0.00 232 99.48 0.00

poi-30-11-3 189 139.91 0.00 189 124.91 0.00 poi-30-23-2 197 709.05 0.00 197 133.59 0.00

poi-30-12-1 258 1.88 0.00 258 19.63 0.00 poi-30-23-3 180 39.12 0.00 180 264.68 0.00

poi-30-12-2 190 16.21 0.00 190 66.34 0.00 poi-30-24-1 219 21.66 0.00 219 20.64 0.00

poi-30-12-3 180 73.77 0.00 180 527.78 0.00 poi-30-24-2 185 37.68 0.00 185 345.63 0.00

poi-30-13-1 256 21.42 0.00 256 10.76 0.00 poi-30-24-3 177 63.39 0.00 177 443.47 0.00

poi-30-13-2 205 52.99 0.00 205 61.21 0.00 poi-30-25-1 259 2.39 0.00 259 23.12 0.00

poi-30-13-3 199 181.04 0.00 199 386.96 0.00 poi-30-25-2 234 46.16 0.00 234 84.33 0.00

poi-30-14-1 229 7.17 0.00 229 8.06 0.00 poi-30-25-3 227 197.12 0.00 227 290.78 0.00

poi-30-14-2 186 117.55 0.00 186 55.74 0.00 poi-30-3-1 224 75.84 0.00 224 31.92 0.00

poi-30-14-3 177 200.46 0.00 177 246.43 0.00 poi-30-3-2 192 39.39 0.00 192 42.93 0.00

poi-30-15-1 214 57.29 0.00 214 26.37 0.00 poi-30-3-3 192 245.5 0.00 192 55.33 0.00

poi-30-15-2 189 73.75 0.00 189 112.67 0.00 poi-30-4-1 260 6.67 0.00 260 34.37 0.00

poi-30-15-3 184 44.88 0.00 184 141.59 0.00 poi-30-4-2 206 25.13 0.00 206 378.35 0.00

poi-30-16-1 246 4.99 0.00 246 11.58 0.00 poi-30-4-3 158 25.69 0.00 158 156.68 0.00

poi-30-16-2 202 50.72 0.00 202 74.26 0.00 poi-30-5-1 230 9.56 0.00 230 14.32 0.00

poi-30-16-3 196 83.64 0.00 196 101.33 0.00 poi-30-5-2 193 54.89 0.00 193 311.91 0.00

poi-30-17-1 255 33.82 0.00 255 22.71 0.00 poi-30-5-3 188 80.25 0.00 188 217.22 0.00

poi-30-17-2 192 26.28 0.00 192 47.16 0.00 poi-30-6-1 251 101.66 0.00 251 35.21 0.00

poi-30-17-3 174 32.11 0.00 174 102.18 0.00 poi-30-6-2 208 76.1 0.00 208 256.35 0.00

poi-30-18-1 257 28.8 0.00 257 32.05 0.00 poi-30-6-3 194 125.45 0.00 194 52.24 0.00

poi-30-18-2 219 159.4 0.00 219 46.71 0.00 poi-30-7-1 211 12.19 0.00 211 18.97 0.00

poi-30-18-3 179 53.9 0.00 179 954.68 0.00 poi-30-7-2 190 14.73 0.00 190 116.52 0.00

poi-30-19-1 232 6.59 0.00 232 32.95 0.00 poi-30-7-3 182 72.03 0.00 182 148.21 0.00

poi-30-19-2 203 9.2 0.00 203 149.00 0.00 poi-30-8-1 239 5.93 0.00 239 11.02 0.00

poi-30-19-3 202 53.92 0.00 202 63.95 0.00 poi-30-8-2 200 14.55 0.00 200 111.55 0.00

poi-30-2-1 263 55.31 0.00 263 27.75 0.00 poi-30-8-3 195 109.96 0.00 195 256.07 0.00

poi-30-2-2 200 78.26 0.00 200 105.56 0.00 poi-30-9-1 259 66.9 0.00 259 25.39 0.00

poi-30-2-3 180 120.08 0.00 180 214.48 0.00 poi-30-9-2 210 154.03 0.00 210 185.48 0.00

poi-30-20-1 228 16.14 0.00 228 39.31 0.00 poi-30-9-3 193 886.05 0.00 193 498.22 0.00

poi-30-20-2 178 158.56 0.00 178 768.54 0.00

Concerning the instances instead with 29 customers, we can observe from Table A7 that RR21 is still able to solve to

optimality all the instances. At the same time, our B&C is able to solve 74 out of 75 instances. However, the maximum optimality

gap is equal to 2.38%. In terms of running time, we can observe that the average running time is equal to 92.29 s for RR21 and

198.94 s for B&C (including the unsolved instance within the time limit).

Finally, we can observe from Table A8 that none of the two algorithms is able to optimally solve all the 75 instances with

39 customers within the time limit. In particular, RR21 is able to solve 61 instances while our B&C determines the optimal

solution on 57 instances. However, despite solving fewer instances to optimality, the B&C shows a lower average percentage

gap (0.58%) than RR21 (5.48%). Moreover, the B&C performs better than RR21 also in terms of the largest percentage gap

(6.22% vs. 51.01%). Instead, the running times are similar, with an average running time of 1475.88 and 1482.69 s for RR21
and B&C, respectively.
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TABLE A8 Results on POI-instances with |C| = 39.

RR21 B&C RR21 B&C

Id UB Time % Gap UB Time %Gap Id UB Time % Gap UB Time % Gap

poi-40-1-1 283 1364.79 0.00 283 115.45 0.00 poi-40-20-3 216 2545.92 0.00 216 719.56 0.00

poi-40-1-2 213 563.64 0.00 214 3600 0.93 poi-40-21-1 269 2148.13 0.00 269 117.65 0.00

poi-40-1-3 194 3267.08 0.00 194 1002.15 0.00 poi-40-21-2 227 309.95 0.00 227 3077.10 0.00

poi-40-10-1 259 403.45 0.00 259 216.47 0.00 poi-40-21-3 218 802.95 0.00 218 3600 1.38

poi-40-10-2 220 74.69 0.00 220 402.12 0.00 poi-40-22-1 286 50.98 0.00 286 163.69 0.00

poi-40-10-3 218 696.9 0.00 218 971.05 0.00 poi-40-22-2 243 413.37 0.00 243 1017.52 0.00

poi-40-11-1 266 3600 0.75 266 351.62 0.00 poi-40-22-3 339 3600 34.22 224 1302.18 0.00

poi-40-11-2 222 527.99 0.00 222 513.92 0.00 poi-40-23-1 395 3600 26.84 302 609.36 0.00

poi-40-11-3 210 378.64 0.00 210 328.44 0.00 poi-40-23-2 395 3600 38.48 244 480.90 0.00

poi-40-12-1 262 35.93 0.00 262 47.25 0.00 poi-40-23-3 230 1297.49 0.00 230 546.49 0.00

poi-40-12-2 222 1405.59 0.00 222 1164.56 0.00 poi-40-24-1 244 3227.38 0.00 244 1726.32 0.00

poi-40-12-3 209 2534 0.00 209 1162.17 0.00 poi-40-24-2 215 125.84 0.00 215 391.89 0.00

poi-40-13-1 266 988.14 0.00 266 1408.90 0.00 poi-40-24-3 212 1537.43 0.00 212 1076.67 0.00

poi-40-13-2 222 326.15 0.00 222 363.11 0.00 poi-40-25-1 417 3600 33.57 281 1478.26 0.00

poi-40-13-3 363 3600 42.15 210 3600 0.95 poi-40-25-2 210 361.2 0.00 210 667.90 0.00

poi-40-14-1 287 64.94 0.00 287 104.26 0.00 poi-40-25-3 190 2450.66 0.00 190 3600 1.05

poi-40-14-2 229 673.8 0.00 229 1686.05 0.00 poi-40-3-1 282 438.14 0.00 282 51.12 0.00

poi-40-14-3 210 254.43 0.00 210 1063.50 0.00 poi-40-3-2 416 3600 43.51 235 1412.65 0.00

poi-40-15-1 279 215.33 0.00 279 3600 1.43 poi-40-3-3 416 3600 48.08 216 3600 3.24

poi-40-15-2 234 302.24 0.00 234 550.87 0.00 poi-40-4-1 284 3600 0.35 288 1132.86 0.00

poi-40-15-3 346 3600 33.53 231 3600 4.33 poi-40-4-2 234 933.35 0.00 234 3600 1.71

poi-40-16-1 270 1918.15 0.00 270 3600 1.85 poi-40-4-3 210 565.64 0.00 210 1602.15 0.00

poi-40-16-2 210 952.09 0.00 210 3600 0.95 poi-40-5-1 285 810.61 0.00 285 508.73 0.00

poi-40-16-3 201 229.68 0.00 201 3202.26 0.00 poi-40-5-2 231 2302.31 0.00 231 1401.09 0.00

poi-40-17-1 285 187.93 0.00 285 752.74 0.00 poi-40-5-3 203 450.09 0.00 203 3600 3.41

poi-40-17-2 246 79.75 0.00 246 707.20 0.00 poi-40-6-1 240 2325.71 0.00 240 921.17 0.00

poi-40-17-3 359 3600 32.59 242 1142.52 0.00 poi-40-6-2 192 1270.8 0.00 192 3600 3.65

poi-40-18-1 391 3600 25.32 297 3600 1.68 poi-40-6-3 181 1351.85 0.00 181 3600 1.10

poi-40-18-2 239 487.04 0.00 241 3600 6.22 poi-40-7-1 271 3600 0.74 271 593.41 0.00

poi-40-18-3 221 68.9 0.00 221 3600 5.43 poi-40-7-2 206 506.34 0.00 206 2602.22 0.00

poi-40-19-1 236 560.59 0.00 236 715.17 0.00 poi-40-7-3 396 3600 51.01 194 3600 1.55

poi-40-19-2 204 2748.63 0.00 204 400.35 0.00 poi-40-8-1 277 494.89 0.00 277 594.32 0.00

poi-40-19-3 204 2452.33 0.00 204 260.69 0.00 poi-40-8-2 228 628.96 0.00 228 622.08 0.00

poi-40-2-1 269 60.64 0.00 269 175.37 0.00 poi-40-8-3 220 972.64 0.00 220 667.60 0.00

poi-40-2-2 218 1092.7 0.00 218 1128.46 0.00 poi-40-9-1 289 422.85 0.00 289 202.98 0.00

poi-40-2-3 204 834.17 0.00 204 2146.83 0.00 poi-40-9-2 226 924.52 0.00 226 924.76 0.00

poi-40-20-1 262 2285.6 0.00 262 363.29 0.00 poi-40-9-3 208 1252.64 0.00 208 503.69 0.00

poi-40-20-2 220 1332.06 0.00 220 398.77 0.00
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