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HVAC System Performance in Educational Facilities:
A Case Study on the Integration of Digital Twin Technology
and loT Sensors for Predictive Maintenance

Antonio Salzano, Ph.D., P.E."; Stefano Cascone, Ph.D., P.E.2%; Enrico P. Zitiello, P.E.>;
and Maurizio Nicolella, Ph.D., P.E.*

Abstract: This research paper delves into the pivotal role of Digital Twin technology and Internet of Things (IoT) sensors in revolutionizing
predictive maintenance for HVAC systems within educational environments, exemplified by a comprehensive case study at the Papa
Giovanni XXIII school in Nichelino, Italy. Marking a significant departure from traditional building information modeling practices, Digital
Twin technology introduces a real-time, dynamic representation of building systems, enabling proactive rectification of system inefficiencies
and failures to improve building performance, occupant well-being, and sustainability. This study showcases the pioneering implementation
of Digital Twin technology integrated with IoT sensors, leveraging Autodesk Tandem to offer invaluable insights into system health and
optimal maintenance timing. The integration facilitated comprehensive system monitoring and analysis, leading to significant outcomes. Spe-
cifically, the implementation resulted in a 15% reduction in energy consumption and a 20% improvement in system reliability. Additionally,
there was a notable decrease in unplanned maintenance interventions, highlighting the efficacy of predictive maintenance strategies enabled
by Digital Twin technology. These findings validate the practical applicability of Digital Twin technology in enhancing HVAC system per-
formance and operational efficiency. The study underscores the transformative potential of this digital leap in the construction sector’s on-
going evolution toward greater digitalization. By addressing technological complexities and substantial initial investments, this research
paves the way for future advancements in smart building technologies, making a crucial contribution to the emerging discourse on Digital
Twins in construction. DOI: 10.1061/JAEIED.AEENG-1855. © 2025 American Society of Civil Engineers.
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Introduction

Over past decades, the construction industry has embarked on a
profound shift toward digitalization, with the objective of enhanc-
ing the efficiency, sustainability, and comfort of built environments
(Watson 2011). Leading this transformative journey is building in-
formation modeling (BIM), a revolutionary approach that has fun-
damentally changed design, construction, and maintenance
practices by encapsulating the physical and functional characteris-
tics of buildings (Bynum et al. 2013; Saieg et al. 2018). However, it
is the advent of Digital Twin technology—significantly augmented
by the Internet of Things (IoT)—that represents a groundbreaking
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leap forward from BIM’s capabilities. This innovative approach of-
fers a dynamic and interactive model that reflects the real-time sta-
tus of building systems, heralding a new era in predictive
maintenance strategies designed to proactively address system inef-
ficiencies and failures, thereby optimizing building performance
and enhancing occupant well-being (Boje et al. 2020).

The necessity for maintaining optimal indoor environments is
particularly pronounced in educational settings, where there is an
undeniable link between the health and comfort of occupants and
their learning outcomes. HVAC systems are critical in this context,
because they significantly influence a building’s energy consump-
tion and operational costs (Lee et al. 2012; Wang et al. 2015). Tra-
ditional maintenance strategies, which are mostly reactive or based
on scheduled checks, often result in inefficiencies, unexpected fail-
ures, and significant operational disruptions. In contrast, predictive
maintenance—enabled by Digital Twin technology and informed
by real-time data analytics—takes a proactive stance. This innova-
tive strategy not only improves system reliability and efficiency but
also promotes energy conservation and aligns with broader sustain-
ability goals (Mi et al. 2021).

Despite the clear advantages of Digital Twin technology, its adop-
tion within the construction sector, particularly for predictive main-
tenance purposes, is confronted with significant challenges. These
include the technology’s inherent complexity, the substantial initial
investments required, and a general lack of expertise among industry
professionals. Furthermore, the historically slow pace of digital
transformation within the sector amplifies these challenges, high-
lighting the urgent need for convincing, tangible demonstrations of
Digital Twins’ utility in building management (Opoku et al. 2023).
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This study seeks to bridge a critical gap in the research by show-
casing a pioneering application of Digital Twin technology in the
Papa Giovanni XXIII school in Nichelino, Italy. This case study
not only demonstrates the practical feasibility and advantages of
employing Digital Twins (DT) but also elaborates on the integra-
tion process of IoT sensors for comprehensive system monitoring.
By analyzing key operational parameters—such as airflow rate, air
velocity, and temperature—during periods of suboptimal perfor-
mance, the research provides essential insights into the system’s
health and identifies the most opportune moments for maintenance.
Utilizing Autodesk Tandem for data simulation and analysis, this
study underlines the potential of Digital Twins to streamline main-
tenance processes, reduce operational interruptions, and ensure
continuous system operation.

Moreover, this investigation explores the broader implications
of predictive maintenance within the field of architectural engineer-
ing, examining its impact on building sustainability, occupant com-
fort, and life-cycle cost management. Additionally, by identifying
the barriers to the widespread adoption of Digital Twins in the con-
struction industry, this research suggests strategies to overcome
these obstacles, paving the way for further advancements in
smart building technologies.

Therefore, this study contributes to the nascent but rapidly
growing body of literature on Digital Twins in construction, offer-
ing an in-depth analysis of their practical application, benefits, and
future potential. Because buildings play a crucial role in our daily
lives, ensuring the health and efficiency of their systems is para-
mount. Through the lens of the Papa Giovanni XXIII school case
study, this research illuminates the transformative impact of Digital
Twin technology, marking a significant milestone in the digital
evolution of the construction sector.

Literature Review

Digital Twin Technology in Construction

The integration of Digital Twin technology into the construction in-
dustry represents a pivotal shift, marking a significant evolution
from its aerospace and manufacturing origins toward enhancing ef-
ficiency, sustainability, and operational excellence in construction
projects. This section reviews critical contributions to the literature,
highlighting the diverse roles and transformative potential of
Digital Twin technology in the construction domain.

A comprehensive review reveals the essential contributions and
dimensions of Digital Twin technology that align with this transfor-
mative journey. Notably, the role of Digital Twins in smart con-
struction and digital urban planning emerges as a key area with
the potential to streamline processes and manage the complexities
associated with building and urban infrastructure operations (Fuller
et al. 2020).

Salem and Dragomir (2022) explored the utility of Digital
Twins in facilitating smart construction practices and the develop-
ment of digital cities, illustrating the progression from virtual mod-
els to sophisticated systems integrating artificial intelligence (Al),
machine learning, and comprehensive life-cycle management.
This evolution is crucial for enhancing construction project man-
agement outcomes by automating operations and deepening the
understanding of project dynamics. Similarly, Shah (2023) investi-
gated the multifaceted applications of Digital Twin technology
across civil engineering and construction disciplines. From infra-
structure development to structural health monitoring and improv-
ing energy efficiency, Shah highlighted how Digital Twins acted as
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a unifying platform to address the sector’s challenges, fostering ef-
ficiency and sustainability.

Khallaf et al. (2022) conducted a systematic examination of
Digital Twins’ applications within construction, identifying their
benefits across life-cycle analysis, facility management, and disas-
ter response. Their findings underscore the technology’s ability to
enhance stakeholder engagement, reduce operational costs, and au-
tomate key functions such as energy demand management. This
foundational research opens new directions for leveraging Digital
Twins’ potential further. In contrast, Shahzad et al. (2022) focused
on the integration of Digital Twins in built environments, empha-
sizing the synergy between Digital Twins and other digital technol-
ogies. Their analysis shed light on both the challenges and the
opportunities presented by Digital Twins in the construction and
maintenance of built assets, providing valuable insights into the
digital transformation of asset delivery and operation.

Hou et al. (2020) highlighted the application of Digital Twin
technologies in enhancing construction workforce safety, pointing
out the effectiveness of Digital Twins in mitigating safety risks and
the industry’s hesitancy in adopting such technologies. This gap
highlights the need for innovative approaches and strategic imple-
mentation plans to encourage the widespread acceptance and appli-
cation of Digital Twins in construction safety protocols.

This evolution is further enriched by the integration of BIM pro-
cesses and the Leadership in Energy and Environmental Design
(LEED) certification system, emphasizing a growing focus on sus-
tainable building practices within the Architecture, Engineering,
and Construction (AEC) sector. Di Gaetano et al. (2023) introduced
an innovative approach to integrating BIM with LEED certifica-
tion, aimed at enhancing sustainable design strategies within the
AEC sector. Meanwhile, Cascone (2023) analyzed the synergies
between LEED certification and BIM, particularly in sustainable
development and parametric design contexts. This research out-
lined various integration methods between LEED and BIM at the
early design phase, highlighting the potential for automating
LEED certification within BIM processes.

Despite challenges such as high implementation costs, techno-
logical complexities, and a pronounced skills gap involved in the
adoption of Digital Twin technology in the construction industry,
the body of literature signals an optimistic shift toward overcoming
these barriers. As technology costs decrease and digital proficiency
within the sector rises, ongoing research and development efforts
are increasingly poised to foster a more cohesive, efficient, and sus-
tainable construction landscape.

loT Sensors in Building Maintenance

The integration of IoT technology into the realm of building main-
tenance signifies a transformative leap toward practices that are not
only more efficient but also cost-effective and centered around the
needs of occupants. The emerging literature underlines the crucial
role of IoT in shifting building maintenance from traditional, reac-
tive models to proactive and predictive paradigms (Kumar et al.
2021). This shift is particularly emphasized through the integration
of ToT sensors with advanced analytics and digital technologies,
highlighting a significant move toward smarter building manage-
ment practices.

Casini (2022) delved into the strategic significance of IoT de-
vices in the optimization of building operations and maintenance
(O&M). His research points to a notable reduction in energy con-
sumption and maintenance costs, underscoring the synergistic po-
tential of Digital Twin technology, IoT, BIM, and AI This
ensemble is portrayed as a cornerstone for the future of O&M,
with extended reality (XR) technologies spotlighted for their ability
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to enhance smart building management and support informed
decision-making, particularly within the ambit of smart cities.

Lawal and Rafsanjani (2022) provided a comprehensive overview
of IoT’s applications across a variety of settings, from residential to
commercial, sorting studies into domains such as home automation,
intelligent energy management, and healthcare facility optimization.
They illuminated key challenges in [oT’s implementation, including
issues related to technology integration, data management, and pri-
vacy concerns, and advocated for targeted research efforts to sur-
mount these barriers. This highlights the imperative to fully
leverage IoT’s potential in fostering better building environments.

Harkonen et al. (2023) explored the concept of building smart-
ness and the significant impact of IoT on enabling interoperable
building automation systems. They acknowledged the power of
IoT to enhance building intelligence but also cautioned against po-
tential inconsistencies. Their recommendation for the specification
of technical building systems aimed to address these performance
gaps, underscoring the importance of clarity in schematics for im-
proving building efficiency and sustainability.

Yaici et al. (2021) concentrated on the utilization of IoT applica-
tions to optimize building energy usage and mitigate greenhouse gas
emissions, with a special focus on heating systems. Their analysis of
ToT’s core components—sensors, actuators, and control strategies—
revealed the technology’s promise in substantially reducing energy
consumption while simultaneously elevating user comfort.

Hannan et al. (2018) investigated the nascent field of the Internet
of Energy (IoE), built upon IoT technologies, as a transformative
agent in building energy management systems (BEMS). They dis-
cussed traditional BEMS limitations and the potential of IoE solu-
tions to surpass these challenges through the use of advanced
controllers and technologies. The review advocated for a focus
on sophisticated IoE solutions to further BEMS advancements,
identifying technical challenges such as data loss and network is-
sues and suggesting avenues for future improvement.

In conclusion, this literature review section emphasizes the piv-
otal role of ToT technology in evolving building maintenance prac-
tices. Despite challenges such as data integration, security
concerns, and the need for interoperability, the literature strongly
suggests a future where IoT-enabled smart buildings achieve un-
precedented levels of efficiency, sustainability, and occupant satis-
faction. This transition from theoretical exploration to practical
application within the architectural engineering domain lays the
groundwork for an in-depth examination of predictive maintenance
strategies, further enriching the discourse on smart building tech-
nologies and their impact on creating sustainable and occupant-
focused built environments.

Predictive Maintenance in Architectural Engineering

The field of architectural engineering is witnessing a paradigm shift
toward predictive maintenance, driven by the synergistic integra-
tion of IoT sensor data, Digital Twin technology, and advanced an-
alytics (Villa et al. 2021). This transformative approach signifies a
departure from traditional maintenance practices, moving toward a
model that is informed by data. This shift enables the early detec-
tion of system issues, enhances system performance, and extends
the operational lifespan of building infrastructure, marking a new
era in building management strategies.

Coupry et al. (2021) investigated the application of DT and XR
devices within the context of smart buildings to streamline mainte-
nance procedures. Their study highlighted the potential of leverag-
ing DT with XR technologies to enhance maintenance operations,
despite acknowledging the hurdles in implementation. This integra-
tion of BIM-based Digital Twins with XR technologies was
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identified as a promising predictive maintenance paradigm, poten-
tially revolutionizing operations within smart buildings.

Hosamo and Hosamo (2022) delved into the fusion of Digital
Twin technology with 3D laser scanning techniques for bridge
maintenance, illustrating a significant step toward predictive main-
tenance. This innovative integration provided a comprehensive, in-
teractive representation of physical structures, enabling early
problem identification and facilitating strategic maintenance plan-
ning. Such an approach represents a substantial advancement in
the maintenance of civil infrastructure, employing Digital Twin
technology to improve operational insights and support informed
decision-making.

Casini (2022) examined the convergence of XR with Digital
Twin technology and IoT devices during the operation and mainte-
nance phases of smart buildings. The study posited that the combi-
nation of XR, DT, and IoT can significantly enhance maintenance
efficiency, promote proactive maintenance practices, and enable pre-
dictive functionality. This interdisciplinary approach highlighted the
transformative impact of these technologies in optimizing building
operations and life-cycle management, showcasing a path toward
more efficient and proactive building maintenance strategies.

Aivaliotis et al. (2019) proposed a requirement-driven roadmap
for automating predictive maintenance via the standardization of
Digital Twin technologies. They identified Digital Twins as a
key solution to the challenges of scalability and explainability in-
herent in traditional predictive maintenance methodologies. The
authors advocated for focused research efforts to develop a cohe-
sive framework for predictive maintenance with Digital Twins,
aiming to streamline these processes across the industry and en-
hance the efficacy of maintenance strategies.

Hosamo et al. (2022) explored the application of Digital Twin
technology within the Architecture, Engineering, Construction,
and Facility Management (AEC-FM) industry, emphasizing the
blending of physical and digital realms. They presented an over-
view of current trends, identified existing gaps, and suggested a
conceptual framework for Digital Twins in building management,
laying the groundwork for future research in this area.

This literature review elucidates the transformative impact of
predictive maintenance in architectural engineering, facilitated by
the integration of IoT, Digital Twin technology, and advanced an-
alytics. This convergence not only facilitates the early detection of
issues and optimization of system performance but also contributes
to the extension of infrastructure lifespan. By transitioning from
theoretical exploration to practical application, this section under-
scores the study’s narrative, bridging the gap between cutting-edge
technology and its application in enhancing sustainability, effi-
ciency, and occupant comfort within built environments.

Research Gap

While the potential of Digital Twin technology and IoT sensors to
revolutionize building maintenance is widely recognized, empirical
studies that detail their application in real-world construction pro-
jects are notably lacking. This is especially true for studies focusing
on the optimization of HVAC systems within educational environ-
ments. This existing gap in the literature highlights a disconnect be-
tween theoretical advancements and their practical applications,
underscoring the need for empirical research that demonstrates
the real-world efficacy of these technologies. This study seeks to
bridge this gap by providing an in-depth analysis of the Papa
Giovanni XXIII school case. Through this analysis, it contributes
valuable insights into the discourse on smart building technologies,
advocating for the development of more efficient, sustainable, and
occupant-centered built environments.
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Fig. 1. Flowchart of control strategies.

Methodology

To illustrate the advanced control strategies employed in the sys-
tem, a flowchart (Fig. 1) that outlines the decision-making pro-
cesses and interactions among the digital model, IoT sensors, and
control mechanisms is incorporated. This flowchart provides a vi-
sual representation of how data are processed and utilized to
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optimize system performance through predictive maintenance
strategies.

Study Design

This research adopts a case study methodology to investigate the
implementation of Digital Twin technology and IoT sensors for
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predictive maintenance, specifically targeting HVAC systems in
educational settings. This methodological approach is chosen for
its ability to provide nuanced insights into the intricate relationships
among innovative technology, system performance, and strategic
maintenance within the authentic context of a school environment.

The Papa Giovanni XXIII school in Nichelino, Italy, was se-
lected as the case study location based on several criteria: its recent
incorporation of advanced HVAC systems, its commitment to fos-
tering an optimal learning environment, and its geographical loca-
tion in Climate zone E, which is characterized by specific heating
demands. These factors collectively presented a distinctive oppor-
tunity to scrutinize HVAC system performance during critical heat-
ing periods, crucial for maintaining conducive indoor conditions.

In selecting IoT sensors for the study, considerations were made
for accuracy, low energy consumption, seamless connectivity op-
tions (including Wi-Fi and Bluetooth), and compatibility with the
school’s existing HVAC infrastructure. This careful selection en-
sured that the installation process caused minimal disruption and
that data collection was efficient and effective.

Key performance indicators (KPIs) such as energy consump-
tion, temperature consistency, and airflow rates were identified as
critical measures of system efficiency. These KPIs were systemati-
cally measured and analyzed to evaluate and enhance the HVAC
system’s performance throughout the study’s predictive mainte-
nance process.

The primary objective of this case study is to assess the impact
of integrating Digital Twin technology and IoT sensors on optimiz-
ing HVAC system maintenance. Expected outcomes include dem-
onstrating real-time KPI monitoring through Digital Twin
technology and evaluating the role of a predictive maintenance
strategy in enhancing system reliability, reducing downtime, and
improving energy efficiency.

The investigation covered the heating season from late October
to early April 2023, a period strategically chosen to capture the op-
erational dynamics of the HVAC system under peak demand. This
time frame was critical for understanding the system’s maintenance
requirements and identifying performance challenges, providing
essential insights for the study’s objectives.

Digital Twin Implementation

Numerical Models in the Digital Twin
The implementation of the Digital Twin at the Papa Giovanni
XXIII school involves the use of several advanced numerical mod-
els to simulate and predict the performance of the HVAC system.
These models are critical for processing the data collected from
IoT sensors and enabling predictive maintenance.
Thermodynamic models play a central role in simulating the
heat transfer processes within the HVAC system. These models
take into account various physical parameters such as temperature,
humidity, air velocity, and heat flux. By applying the principles of
thermodynamics, these models predict how heat is absorbed,
stored, and released within the system’s components, including
heat exchangers, ducts, and indoor spaces. Analyzing the thermal
dynamics allows for the identification of inefficiencies in heat

Table 1. Key parameters in numerical models

exchange processes, helping to optimize heating and cooling cy-
cles. For instance, if the thermodynamic model detects consistent
overcooling in a specific zone, it can adjust the system’s operation
to prevent energy wastage, while maintaining comfort.

Another crucial component is the computational fluid dynamics
(CFD) models, which simulate the airflow patterns within the
HVAC ductwork and the spaces served by the system. These mod-
els consider factors such as airflow rate, pressure drops, turbulence,
and the physical layout of the ductwork and rooms. CFD models
provide detailed insights into airflow distribution, enabling the
identification of potential blockages, leaks, or imbalances. This in-
formation is essential for ensuring uniform temperature distribution
and adequate ventilation throughout the building. For example, if
the CFD model reveals reduced airflow in a particular duct, main-
tenance can be scheduled to inspect and clear any obstructions, thus
improving system efficiency and indoor air quality.

Predictive maintenance models are integral to the Digital Twin
implementation. These models use machine learning algorithms to
analyze historical and real-time data from IoT sensors. Techniques
such as regression analysis, neural networks, and anomaly detec-
tion algorithms are employed to identify patterns indicative of po-
tential system failures. By analyzing data trends and detecting
anomalies, predictive maintenance models generate alerts for main-
tenance needs before failures occur. For instance, if an unusual vi-
bration pattern is detected in a fan, the predictive maintenance
model can trigger an alert to inspect and repair the fan before it
fails, thereby preventing unplanned downtime and extending the
system’s lifespan.

Energy consumption models are utilized to predict the HVAC
system’s energy usage based on operational parameters and exter-
nal conditions. These models incorporate historical energy usage
data, real-time sensor inputs, and factors such as occupancy pat-
terns, weather conditions, and system load. By monitoring and op-
timizing energy usage, these models identify periods of high
consumption and potential energy-saving opportunities. They
help implement strategies like demand response, wherein the sys-
tem reduces energy consumption during peak demand periods
without compromising comfort. For instance, if the energy con-
sumption model predicts a spike in energy usage due to an upcom-
ing heatwave, it can preemptively adjust the system’s operation to
mitigate the impact on energy bills.

Table 1 provides an overview of the essential parameters for
each model, offering insight into the data inputs that drive the sim-
ulations. Table 2 summarizes the impact of predictive maintenance
on system performance, showing how early interventions have im-
proved reliability and efficiency.

Implementation Process and Challenges

Autodesk’s Tandem was selected as the foundational software for
developing the school’s HVAC system Digital Twin. This choice
was driven by Tandem’s robust capabilities for seamless integration
with BIM data, its user-friendly interface for assimilating IoT data,
and its analytical prowess. Particularly, Tandem’s ability to visually
represent operational data played a crucial role in deepening the

Model Key parameters

Description

Thermodynamic model
CFD model
Predictive maintenance model

Energy consumption model

Temperature, humidity, heat flux
Airflow rate, pressure, turbulence
Vibration, noise levels, operating time

Historical energy data, real-time sensor inputs

Simulates heat transfer processes
Analyzes airflow patterns within the HVAC ductwork
Detects anomalies indicative of potential failures

Predicts and optimizes energy usage
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Table 2. Summary of predictive maintenance outcomes

Date Issue detected Action taken
January 15, 2023 High vibration Fan inspection
February 10, 2023 Reduced airflow Duct cleaning
March 5, 2023 High energy usage System optimization

understanding of the HVAC system’s performance, thereby facilitat-
ing a more informed approach to maintenance decision-making.

The project encountered significant hurdles related to sensor in-
tegration and data synchronization, particularly with existing sen-
sors not initially compatible with the Digital Twin framework.
Through the development of custom adapters and the implementa-
tion of enhanced data algorithms, the project team successfully
achieved accurate synchronization between real-time sensor data
and the Digital Twin model, ensuring the reliability and integrity
of the system’s data feed.

Recognizing the critical importance of safeguarding sensitive
information within an educational setting, the project implemented
robust measures including end-to-end encryption for data transmis-
sion and stringent access controls. These measures were meticu-
lously designed to protect the privacy and security of collected
data, adhering to the highest standards of data protection.

Strategic placement of IoT sensors within the HVAC ductwork
was critical to capturing essential data points indicative of system
health, such as airflow rate, temperature, and velocity. This strate-
gic sensor placement was informed by a thorough analysis of the
HVAC system’s layout, ensuring that data collection points were
optimally located to provide valuable insights into system
performance.

The mapping of real-time sensor data onto the Digital Twin
model in Tandem enabled a dynamic visualization of the HVAC
system’s condition. To process these data, advanced analytics
and machine learning algorithms were employed, utilizing sophis-
ticated techniques to identify deviations from performance base-
lines. These deviations were analyzed as potential indicators of
maintenance needs, guiding the predictive maintenance strategy.

The overarching goal of this Digital Twin deployment was to es-
tablish a predictive maintenance framework that could preemp-
tively identify potential system failures and optimize maintenance
schedules. This strategic framework aimed to reduce downtime,
improve energy efficiency, and extend the lifespan of HVAC com-
ponents by adopting a proactive and data-driven approach to
maintenance.

Predictive Maintenance Strategy

The adoption of a predictive maintenance model for the HVAC sys-
tem at the Papa Giovanni XXIII school signifies a strategic depar-
ture from traditional, reactive maintenance approaches. This new
model, powered by the synergistic use of Digital Twin technology
and IoT insights, focuses on proactive measures to anticipate and
resolve system issues before they escalate.

Table 3. Baseline benchmarks for real-time monitoring and anomaly detection

Establishing Baseline Performance Metrics

To establish initial baseline performance metrics, a two-pronged
approach was employed: analyzing manufacturer specifications
and historical system performance data. This foundational step
was crucial in creating a benchmark against which real-time oper-
ational data could be compared, facilitating the early detection of
anomalies.

Manufacturer specifications provide the ideal performance pa-
rameters for the HVAC system components. These specifications
include data on optimal operating temperatures, airflow rates, en-
ergy consumption, pressure levels, and efficiency ratings.

For a particular HVAC unit, the manufacturer might specify:
Optimal operating temperature: 22°C

Airflow rate: 500 m*h

Energy consumption: 1.2 kW-h/h

Pressure level: 150 Pa

Efficiency rating: 85%

These parameters were used as reference points to determine the
expected performance of the HVAC system under normal operat-
ing conditions.

Historical performance data were collected from the existing
building management system (BMS) and IoT sensors previously
installed in the HVAC system. These data included records of tem-
perature, humidity, energy consumption, airflow rates, and system
failures over a specified period.

Data collected over a 6-month period included:

Average operating temperature: 21.5°C

Average airflow rate: 480 m*/h

Average energy consumption: 1.3 kW-h/h

Average pressure level: 145 Pa

Recorded system failures: two incidents of compressor failure
The first step involved gathering all relevant data from both
manufacturer specifications and historical records. These data
were then organized and cleaned to ensure accuracy and
consistency.

The next step was to compare the historical data against the
manufacturer specifications. This comparison helped identify devi-
ations from the expected performance. For instance, if the average
energy consumption recorded was higher than the manufacturer’s
specified value, it indicated potential inefficiencies.

Statistical methods were applied to analyze the historical data.
Techniques such as mean, median, standard deviation, and regres-
sion analysis were used to understand the normal operating range
and identify any outliers.

Using the insights from the comparative and statistical analyses,
baseline performance metrics were established. These baselines
represented the expected range of performance parameters under
normal conditions (Table 3).

Nk v

Nk W -

Machine Learning Models for Predictive Maintenance

The integration of machine learning models with the Digital Twin
and IoT sensors is crucial for the predictive maintenance strategy.
These models analyze historical and real-time data to predict poten-
tial system failures and optimize maintenance schedules. The

Parameter Manufacturer specification Historical data Baseline metric
Operating temperature (°C) 22 21.5 21.5-22.5
Airflow rate (m*/h) 500 480 470-510
Energy consumption (kW-h/h) 1.2 1.3 1.1-1.3
Pressure level (Pa) 150 145 140-160
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machine learning models employed include regression analysis,
neural networks, and anomaly detection algorithms.

Regression analysis helps predict future system performance
based on historical data. This technique identifies trends and poten-
tial deviations from expected behavior, allowing for the detection
of anomalies that may indicate maintenance needs. A regression
model analyzes past data to predict energy consumption based on
temperature and occupancy patterns. Deviations from the predicted
energy usage can trigger maintenance alerts.

Neural networks are employed to analyze complex patterns in
the operational data. These models are particularly effective in han-
dling multivariate data and learning from diverse inputs. Neural
networks iteratively improve their predictive accuracy by adjusting
weights based on feedback from real-time data. A neural network
model is trained on historical data to recognize normal operating
patterns. If the model detects an unusual vibration pattern in a
fan, it can predict potential failure and generate an alert.

Anomaly detection algorithms identify data points that deviate
significantly from the established baselines. These algorithms are
essential for detecting early signs of system degradation or failure.
An anomaly detection algorithm monitors real-time sensor data for
unusual temperature spikes or drops, signaling potential issues with
the HVAC system.

Interaction with the Digital Twin and IoT Sensors

The Digital Twin acts as a dynamic representation of the HVAC

system, integrating real-time data from IoT sensors with the predic-

tive capabilities of machine learning models. Here is how the inter-
action works.

1. IoT sensors continuously collect data on parameters such as
temperature, humidity, airflow rate, and energy consumption.
These data are transmitted in real time to the Digital Twin plat-
form, Autodesk Tandem, which assimilates and visualizes the
information.

2. The Digital Twin provides a real-time view of the HVAC sys-
tem’s condition, allowing for continuous monitoring. Machine
learning models analyze these real-time data, comparing it
against the established baselines to detect anomalies. For exam-
ple, real-time data from temperature sensors are fed into the neu-
ral network model, which evaluates the data against historical
patterns. If an anomaly is detected, the model generates a predic-
tive alert.

3. When the machine learning models identify deviations from
normal operating conditions, predictive alerts are generated.
These alerts inform the maintenance team of potential issues,
enabling timely and precise interventions. The Digital Twin
logs all maintenance actions, creating a comprehensive database
for refining future maintenance strategies and predictive models.
For instance, if the energy consumption model predicts an un-
usual increase in energy usage due to an upcoming heatwave,
the system can preemptively adjust its operation to mitigate
the impact, scheduling maintenance to ensure optimal
performance.

4. The maintenance strategy is not static; it evolves through ongo-
ing refinement. Adjustments to the machine learning models are
informed by real-time system feedback, accommodating sea-
sonal variations and other dynamic factors. This continuous
learning process substantially improves maintenance predic-
tion accuracy. For example, during winter, the system might
experience different operational stresses compared with sum-
mer. The machine learning models adjust their predictions
based on seasonal data, ensuring accurate maintenance schedul-
ing year-round.
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Detail on Data Analysis Techniques

The implementation of the Digital Twin for the school’s HVAC
system leverages a sophisticated array of data analysis tools and al-
gorithms within Autodesk’s Tandem platform. These tools trans-
form raw sensor data into actionable insights, enabling predictive
maintenance strategies that are both dynamic and effective. Two
primary analytical techniques are utilized—regression analysis
and neural networks.

Regression Analysis

Regression analysis is a statistical method used to predict system
performance trends based on historical data. This technique helps
identify potential deviations that may indicate maintenance
needs. The specific type of regression analysis used can vary, but
common approaches include linear regression, multiple regression,
and polynomial regression.

Linear regression establishes a relationship between a depen-
dent variable (e.g., energy consumption) and one or more indepen-
dent variables (e.g., temperature, humidity). The model fits a linear
equation to the observed data, enabling predictions based on the
identified trend. To predict energy consumption, the model used
the equation

E=py+pT+p,H+e¢ 1)

where E=energy consumption; 7' =temperature; H=humidity;
Bo =intercept; B; and B, = coefficients; and &= error term.
Multiple regression extends linear regression by incorporating
multiple independent variables. This approach is particularly useful
for understanding how various factors collectively influence system
performance. The multiple regression model predicted energy con-
sumption based on temperature, humidity, and occupancy levels

E=py+5T+p,H+P;0+¢ 2)

where O = occupancy levels.

Polynomial regression models the relationship between depen-
dent and independent variables as an nth-degree polynomial. This
is useful for capturing nonlinear relationships in the data. To
model a nonlinear relationship, the polynomial regression used
the equation

E=By+P T+ T +p,T° +¢ 3)

The regression models are trained using historical performance
data, including temperature, humidity, energy consumption, and
system load. The training process involves fitting the model to
the data to minimize the error term &. Once trained, the models
are validated using techniques such as k-fold cross-validation,
where the data are divided into & subsets, and the model is trained
and tested k times, each time using a different subset as the valida-
tion set. This ensures the model’s robustness and reliability.

Neural Networks

Neural networks are computational models inspired by the human
brain’s structure and function. They are particularly effective in an-
alyzing complex patterns in operational data. Neural networks con-
sist of layers of interconnected nodes (neurons), each performing a
simple computation. These models learn iteratively to improve pre-
dictive accuracy over time.

A typical neural network architecture includes an input layer,
one or more hidden layers, and an output layer. Each layer consists
of multiple neurons connected by weighted edges.

1. Input layer: Receives raw sensor data (e.g., temperature, humid-
ity, airflow rate).
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2. Hidden layers: Perform computations to identify patterns and re-
lationships in the data.

3. Output layer: Generates predictions (e.g., likelihood of system
failure, maintenance timing).

The neural network is trained using a large data set comprising
historical maintenance records and real-time performance data. The
training process involves adjusting the weights of the connections
between neurons to minimize the prediction error. This is typically
done using backpropagation, an algorithm that calculates the gradi-
ent of the loss function and updates the weights accordingly.

Example training process:

1. Input data are passed through the network, and the output is
computed.

2. The difference between the predicted output and the actual value
is calculated using a loss function (e.g., mean-squared error).

3. The gradients of the loss function with respect to the weights are
computed and used to update the weights, minimizing the error
in subsequent iterations.

The neural network’s performance is validated using techniques
such as k-fold cross-validation and testing on unseen data. The
model’s ability to generalize to new data is crucial for accurate pre-
dictions. Additionally, the neural network is continuously adapted
based on real-time system feedback, allowing it to accommodate
seasonal variations and other dynamic factors.

For example, during winter, the HVAC system might experi-
ence different operational stresses compared with summer. The
neural network model adjusts its predictions based on the seasonal
data, ensuring accurate maintenance scheduling year-round.

Case Study: Implementing Digital Twin Technology
in HVAC Systems at Papa Giovanni XXIIl School

Implementation Overview

Implementing Digital Twin technology in the HVAC system of the
Papa Giovanni XXIII school in Nichelino, Italy, exemplifies a
groundbreaking approach to predictive maintenance. This project
was meticulously planned and executed to demonstrate the practi-
cal benefits of Digital Twin technology in enhancing maintenance
strategies within educational institutions and beyond (Fig. 2). A de-
tailed examination of the school’s HVAC system was conducted to
gain insights into its design, components, and existing operational
challenges. This crucial step identified optimal locations for IoT
sensor placement, ensuring the collection of precise data for the
functional development of the Digital Twin model.

Early engagement with key stakeholders, including school ad-
ministrators and technical staff, was pivotal. These discussions en-
sured alignment on the project’s goals and outcomes, securing
essential support and facilitating a shared understanding of the an-
ticipated impact on the school’s daily operations.

School Building Description

The Papa Giovanni XXIII school is located in Nichelino,
Italy, and serves as an educational facility for Grade K-12. The
building spans an area of approximately 10,000 m* and consists
of multiple sections, including classrooms, laboratories, adminis-
trative offices, and communal areas such as a gymnasium and
auditorium.

The school building is oriented north—south, maximizing natural
light in key learning areas, while minimizing solar heat gain, which
is critical for energy efficiency. The structure is primarily con-
structed of reinforced concrete with large, double-glazed windows
that provide adequate insulation and soundproofing.
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The building envelopes are designed with thermal insulation
properties that comply with current energy efficiency regulations.
External walls are equipped with weather-resistant finishes to with-
stand the local climatic conditions, which include cold winters and
warm summers.

The HVAC system implemented at the Papa Giovanni XXIII
school is a centralized system designed to provide optimal thermal
comfort and air quality across all seasons. It includes the following:
1. Gas-fired boilers supply heat via radiators installed in all rooms,

with automatic controls to adjust the temperature based on real-

time sensor data.

2. Centralized air-conditioning units are equipped with eco-
friendly refrigerants and advanced filtration systems to ensure
clean air circulation.

3. CO, sensors control the mechanical ventilation system, which
adjusts the fresh air supply based on the occupancy and specific
activities in different school zones.

Description of Sensor Mapping

The implementation of IoT sensors within the HVAC system of the

Papa Giovanni XXIII school was strategically designed to optimize

the monitoring and control of environmental parameters critical to

maintaining an efficient and effective learning environment. The
following describes the placement and purpose of each sensor

type within the system, as depicted in Fig. 3.

Air flow detection sensors are strategically placed at key points
in both the delivery and the return ducts of the HVAC system.
These sensors are critical for monitoring the rate and consistency
of air flow throughout the building. By capturing real-time data
on air movement, these sensors help in assessing system efficiency
and detecting anomalies in air distribution that could indicate
blockages or leaks.

The locations were selected as follows:

1. Entry and exit points of the main delivery ducts.

2. Junctions where ducts split to service different building zones.

3. Near the HVAC system output in areas such as the main assem-
bly hall and classrooms, ensuring coverage across varied usage
scenarios.

Temperature sensors are installed at various locations to monitor
the ambient temperature of different school zones. These sensors
provide continuous feedback on the thermal conditions, enabling
the HVAC system to adjust heating or cooling output dynamically
for optimal comfort and energy efficiency.

The locations were selected as follows:

1. Classrooms, laboratories, and administrative offices to ensure
comfort conducive to the activities in these areas.

2. Near external exits and windows to gauge the effect of external
temperature changes on the indoor environment.

3. In proximity to the HVAC central unit to monitor the tempera-
ture of air being circulated.

The data collected by these sensors are integrated into the
school’s BMS, in which advanced control strategies are applied.
The BMS uses these data to execute several key functions.

1. Based on the input from air flow and temperature sensors, the
HVAC system can alter fan speeds and damper positions to
modify air flow rates and adjust heating or cooling intensity al-
most instantaneously.

2. Sensor data help predict potential system failures or identify
maintenance needs before they become critical, reducing down-
time and repair costs.

3. By analyzing trends from the sensor data, the BMS optimizes
the HVAC operations to minimize energy consumption, while
maintaining comfort, contributing to the school’s sustainability
goals.
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Fig. 2. (a) Ground floor; and (b) first floor of the Papa Giovanni XXIII school in Nichelino.

In this research, specific IoT sensors to monitor environmental
conditions and airflow within the HVAC system of the Papa Gio-
vanni XXIII school cafeteria in Nichelino (TO) was employed.
To achieve precision and reliability in the measurements, the
RTD PT100 sensor for temperature detection and the Honeywell
26PC Series differential pressure sensor for airflow measurement
was selected.

The RTD PT100 sensor, a Resistance Temperature Detector,
is renowned for its high accuracy and long-term stability. This
sensor exhibits a resistance of 100 Q at 0°C and operates over
a temperature range of —200°C to +850°C. It maintains a toler-
ance of +0.15°C at 0°C, conforming to IEC 60751 standards.
With a maximum annual drift of just 0.04°C, PT100 is particu-
larly suited for precision temperature monitoring in HVAC appli-
cations, ensuring effective thermal regulation within a cafeteria
environment.

The Honeywell 26PC Series differential pressure sensor to mea-
sure the airflow by detecting pressure differences across air duct re-
strictions was utilized. This sensor offers a measurement range
from 0-1.0 in H,O to 0—10 in H,O (0-0.25 to 0-2.5 kPa) and de-
livers outputs with an accuracy of +0.25% of the full scale. Its out-
put varies from 0.5 to 4.5 V, making it highly reliable for accurate
airflow assessments within the HVAC system ducts.

The RTD PT100 sensors were strategically positioned at critical
locations within the school’s cafeteria to continuously monitor tem-
perature and humidity. Similarly, the Honeywell 26PC Series sen-
sors were installed in the air ducts to provide precise airflow data.
This strategic placement ensures comprehensive monitoring of the
HVAC system’s performance, facilitating optimal environmental
comfort and system efficiency.

These sensors not only enable continuous monitoring but also
enhance the capability to dynamically adjust the HVAC operations
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based on real-time data, thereby maintaining an ideal learning
environment.

Integration of Autodesk’s Tandem with BIM and IoT Data
Autodesk’s Tandem was chosen for its superior ability to integrate
with BIM data and offer intuitive interfaces for IoT data assimila-
tion. The integration process involved several key steps:

1. The first step in the integration process was importing the exist-
ing BIM data of the school’s HVAC system into Autodesk Tan-
dem. These BIM data included detailed information on the
physical and functional characteristics of the HVAC compo-
nents, such as ductwork layouts, equipment specifications, and
spatial configurations.

2. Next, a comprehensive network of IoT sensors was deployed
throughout the HVAC ductwork, targeting critical areas to mon-
itor vital parameters such as airflow rate, temperature, and ve-
locity. Each IoT sensor was mapped to its corresponding BIM
element within the Tandem platform. This mapping process in-
volved associating sensor data points with specific components
in the BIM model, enabling real-time monitoring and data visu-
alization. For example, a temperature sensor installed in a spe-
cific duct segment was linked to the corresponding duct
element in the BIM model, allowing for real-time temperature
data to be visualized within the Digital Twin environment, pro-
viding insights into the thermal performance of that duct
segment.

3. To ensure seamless data integration, custom adapters and data
synchronization algorithms were developed. These tools facili-
tated the accurate and timely transfer of real-time sensor data
into the Tandem platform. The data integration process involved
setting up secure data transmission channels, using end-to-end
encryption to protect data integrity and confidentiality. For
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Fig. 3. Sensor placement map.

instance, real-time data from airflow sensors was continuously
transmitted to the Tandem platform, where it was synchronized
with the BIM model to reflect the current airflow conditions in
the HVAC system.

4. With the BIM data and IoT sensor data integrated into Autodesk
Tandem, the platform provided a dynamic visualization of the
HVAC system’s live status. Facility managers could interact
with the Digital Twin, accessing real-time data and historical
performance metrics to gain a comprehensive understanding
of the system’s condition.

Advanced Analytical Tools and Machine Learning

Algorithms

Utilizing advanced analytical tools and machine learning algo-

rithms, the Digital Twin system identified deviations from perfor-

mance benchmarks, signaling maintenance needs. The specific
tools and algorithms used included the following:

1. Statistical analysis tools were used to analyze historical perfor-
mance data and establish baseline metrics. Techniques such as
mean, median, standard deviation, and regression analysis
helped identify normal operating ranges and detect anomalies.
Autodesk Tandem’s visualization capabilities allowed for real-
time data representation, making it easier to monitor system per-
formance and identify issues visually. For example, a time series
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graph of temperature data could highlight periods where the

temperature deviated from the established baseline, signaling

potential issues in the HVAC system.

2. Regression models predicted system performance trends
based on historical data. Linear regression, multiple regression,
and polynomial regression were used to understand the relation-
ships between different variables and predict future
performance.

3. Neural networks analyzed complex patterns in the operational
data. The neural network architecture included an input layer,
hidden layers, and an output layer. These models learned itera-
tively to improve predictive accuracy over time.

4. Anomaly detection algorithms identified data points that devi-
ated significantly from the established baselines. These algo-
rithms were essential for detecting early signs of system
degradation or failure.

These models were trained and validated using historical data,
employing techniques such as k-fold cross-validation to ensure
their robustness and reliability. The continuous feedback from real-
time data allowed the models to adapt to changing conditions, im-
proving their predictive accuracy over time.

Fig. 4 shows a comparison between actual and predicted energy
consumption over a period of time. The shaded areas highlight pe-
riods of significant deviations where the predicted values
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Fig. 5. Neural network architecture.

substantially differ from the actual values. This graph visually dem-
onstrates the accuracy and predictive capabilities of the regression
model used in the Digital Twin system.

Fig. 5 shows the layers of the neural network, including the
input layer, two hidden layers, and the output layer. Each layer’s
number of neurons is indicated, highlighting the network’s com-
plexity. The time series graph compares the predicted maintenance
needs (represented by a solid line) against the actual interventions
(represented by a dashed line) over a 12-month period (Fig. 6). This
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graph illustrates how the neural network’s predictions align with
the real-world maintenance actions taken, demonstrating the mod-
el’s effectiveness in predicting maintenance needs.

Maintenance Intervention and Outcomes

The introduction of a predictive maintenance strategy at the Papa
Giovanni XXIII school, driven by Digital Twin technology and
real-time data analytics, represents a significant leap forward in
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Fig. 6. Time series graph of predicted maintenance needs versus actual interventions.

the school’s facility management practices. This shift to a proactive
maintenance approach has markedly enhanced the HVAC system’s
reliability and operational efficiency.

The Digital Twin model played a crucial role in this transfor-
mation by generating predictive alerts that informed the facility
management team of imminent system issues. This enabled
them to perform preemptive maintenance, addressing problems
before they could escalate. Documenting these interventions
within the Digital Twin platform created a comprehensive histor-
ical data set, invaluable for refining future predictive models and
strategies.
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Following maintenance interventions, detailed evaluations were
conducted to assess the restoration of the system’s optimal opera-
tions. Continuous monitoring played a pivotal role in verifying
the long-term effectiveness of the predictive maintenance strategy.
This approach not only safeguarded a stable and comfortable in-
door environment for the school community but also led to signifi-
cant operational cost savings. By optimizing resource allocation
and reducing system downtime, the school realized a more efficient
use of its maintenance budget.

Fig. 7 displays the airflow measurements from sensors installed
in the HVAC system before the maintenance intervention. The
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Fig. 7. Airflow data before maintenance.
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Fig. 8. Airflow data after maintenance.
graph shows the airflow rate in cubic meters per hour (m*h) over Following maintenance interventions, Fig. 8 illustrates the air-
a 24-h period, demonstrating consistent performance with minimal flow measurements to evaluate the effectiveness of the performed
fluctuations. The airflow rate is predominantly stable at 134.00 m3/h, maintenance. Similar to the previous Fig. 7, it tracks airflow in
indicating a steady state of operation. This baseline measurement cubic meters per hour over a 24-h period. Postmaintenance data re-
serves as a reference point to assess the impact of maintenance activ- veal a consistent airflow rate of 150.00 m*h, suggesting an im-
ities on system performance. provement in system efficiency.
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Fig. 9. Comparative airflow analysis.
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Fig. 9 integrates the data from the previous two Figs. 7 and 8
offering a side-by-side comparison of airflow rates before and
after maintenance. This comparative analysis is crucial for validat-
ing the impact of maintenance on HVAC performance. The graph
underscores a clear improvement in airflow, supporting the effec-
tiveness of the maintenance strategies employed.

The success of this predictive maintenance strategy highlights
the evolving nature of building system management and the critical
importance of incorporating innovative technologies and adopting
a mindset geared toward continuous improvement. The Papa Gio-
vanni XXIII school serves as an exemplary model within the edu-
cational sector, illustrating the profound impact that Digital Twin
technology can have on enhancing the efficiency and reliability
of building maintenance practices.

Through this case study, the transformative potential of leverag-
ing Digital Twin technology for predictive maintenance in educa-
tional settings is clearly demonstrated. The school has set a
benchmark in the sector, providing a compelling example of how
embracing advanced technologies can lead to improved system re-
liability, enhanced comfort for building occupants, and operational
cost savings.

Challenges and Solutions

The integration of Digital Twin technology and IoT sensors into the

Papa Giovanni XXIII school’s HVAC system presented several

challenges, each necessitating innovative solutions and strategic

planning to ensure the project’s success. This initiative tested not
only the technical capabilities but also the ability to collaborate ef-
fectively with all stakeholders.

The foremost challenge was the integration of IoT sensors into
an HVAC system that was not initially designed to accommodate
such technology. Through detailed compatibility assessments, the
existing system’s specifications against the operational require-
ments of various sensors were examined. This led to the identifica-
tion of a need for custom adapters, designed and fabricated to
enable seamless sensor integration without compromising the sys-
tem’s integrity or performance.

Solution implementation:

1. Conducted comprehensive evaluations of HVAC components
and potential sensors, focusing on power requirements, data out-
put formats, and physical dimensions.

2. Collaborated with engineering firms to design and manufacture
custom adapters, bridging the gap between the sensors and the
HVAC system’s existing components.

Handling the massive influx of data from the IoT sensors
posed a significant challenge due to the volume and variety of
data generated. Optimizing cloud storage solutions and imple-
menting advanced data compression techniques allowed us to
manage the data efficiently, reducing storage costs and enhanc-
ing processing speed. A selective data analysis strategy was
adopted to focus on the most relevant data points for predictive
maintenance.

Solution implementation:

1. Utilized cloud computing platforms for scalable storage solu-
tions and robust data management capabilities.

2. Applied state-of-the-art data compression algorithms to mini-
mize data size without sacrificing essential information.

3. Developed algorithms to automatically identify and prioritize
critical data points for predictive maintenance, ensuring optimal
use of computational resources.

Overcoming resistance from stakeholders accustomed to tradi-
tional maintenance practices required a thoughtful approach. Inter-
active workshops and training sessions were organized to
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demonstrate the tangible benefits of Digital Twin technology and

the predictive maintenance approach. These sessions, featuring

hands-on demonstrations and real-time data visualization, allowed
stakeholders to witness the potential for system optimization, effi-
ciency gains, and cost savings first-hand.

Solution implementation:

1. Designed tailored sessions to explain the principles of Digital
Twin technology and predictive maintenance, supplemented
by case studies and live demonstrations.

2. Leveraged Tandem’s visualization tools to present real-time
data from the school’s HVAC system, highlighting the insights
gained and issues potentially avoided through predictive
maintenance.

Through targeted strategies and a collaborative approach, the
challenges of implementing Digital Twin technology were success-
fully navigated, laying a solid foundation for its continued develop-
ment and refinement. This experience underscores the value of
adaptability, detailed planning, and active engagement with stake-
holders in adopting new technologies for building maintenance,
providing valuable lessons for future projects.

Results and Discussion

Key Findings

The integration of Digital Twin technology with IoT sensors intro-
duced transformative advancements in the maintenance strategies
of the HVAC system at Papa Giovanni XXIII school, demonstrat-
ing significant improvements in system performance, operational
efficiency, and occupant comfort.

The deployment of IoT sensors enabled detailed monitoring of
critical HVAC parameters, facilitating the early detection of poten-
tial issues. This precision monitoring acted as an early warning sys-
tem, allowing for preemptive maintenance measures that
effectively mitigated system inefficiencies.

Strategic scheduling of maintenance interventions, especially
during less-disruptive periods such as school holidays, significantly
reduced operational disruptions and maintained a conducive learn-
ing environment. This approach optimized resource allocation and
enhanced maintenance efficiency.

A notable decrease in unscheduled HVAC system downtime
was observed, illustrating the benefits of transitioning from a reac-
tive to a proactive maintenance strategy. This transition ensured the
continuous operation of essential heating and cooling systems, ex-
tended the lifespan of HVAC components, and achieved consider-
able cost savings.

Insights from the Digital Twin model informed maintenance ac-
tions that maintained the HVAC system within optimal operational
parameters, crucial for ensuring a stable and comfortable indoor cli-
mate. This directly benefited the learning atmosphere and poten-
tially improved health outcomes by reducing the presence of
allergens and pollutants.

Advanced statistical analysis techniques, including regression
analysis and machine learning algorithms, dissected the vast data
set collected by IoT sensors. Statistical tests validated the signifi-
cant impact of the predictive maintenance strategy on operational
efficiency and indoor environment quality with a high degree of
confidence.

Graphical representations detailed the positive effects of main-
tenance interventions on system performance over time. A compar-
ative evaluation of the HVAC system’s performance before and
after implementing Digital Twin technology and IoT sensor
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Fig. 10. HVAC system performance over time.

integration provided concrete evidence of the tangible benefits of
predictive maintenance.

Fig. 10 illustrates the overall performance of the HVAC system
at the Papa Giovanni XXIII school from January 1, 2023, to May 1,
2023. The line represents the aggregate system performance per-
centage, which is calculated based on key parameters such
as temperature control, humidity levels, airflow rate, energy

consumption, and pressure levels. The “X” marks indicate mainte-
nance interventions, which are crucial in maintaining optimal sys-
tem performance and preventing severe degradation.

Fig. 11 shows the temperature sensor readings (in °C) over the
same period. The line indicates the temperature trend, while the
“X” marks denote maintenance interventions. The steady increase
in temperature reflects seasonal changes and the environmental
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Fig. 11. Temperature sensor readings over time.
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heat load, while the fluctuations and interventions demonstrate the
HVAC system’s efforts to maintain stable indoor conditions.

Comparative Analysis

A pivotal element of this study is the comparative evaluation of the
HVAC system’s performance at the Papa Giovanni XXIII school,
both prior to and following the integration of Digital Twin technol-
ogy and IoT sensors. This analysis, supported by graphical repre-
sentations, not only showcases the tangible benefits of a
predictive maintenance approach but also quantitatively assesses
its impact on system reliability, efficiency, and the indoor environ-
mental quality.

Initial analysis reveals a gradual performance decline in the
HVAC system, characterized by decreasing efficiency and escalat-
ing operational strain. Such trends, indicative of wear and progres-
sive system issues, pose risks of significant downtime or even
catastrophic failure if left unaddressed.

The adoption of a predictive maintenance strategy, enriched by
real-time IoT sensor data and Digital Twin analysis, marked a turn-
ing point. Subsequent maintenance interventions, informed by
data-driven insights and optimally timed, not only arrested the sys-
tem’s performance decline but also initiated an upward trend in op-
erational efficiency. This improvement signifies the restoration of
the system to its optimal operational parameters, with marked re-
ductions in energy consumption.

Two key graphical representations illustrate the strategy’s effi-
cacy. The first [Fig. 12(a)] charts the HVAC system’s performance
over several months, highlighting significant enhancements postin-
tervention. The second [Fig. 12(b)] demonstrates the correlation be-
tween specific [oT sensor readings (e.g., temperature, airflow rates)
and the timing of maintenance actions. These visualizations pro-
vide compelling evidence of the predictive maintenance strategy’s
success, showing how maintenance interventions are closely
aligned with identified deviations in sensor readings, thereby af-
firming the effectiveness of this proactive approach.

The clear correlation between sensor data and maintenance tim-
ing not only ensures that interventions are both timely and targeted
but also underscores the subsequent improvements in system per-
formance. This validation supports the hypothesis that integrating

Performance Trends Over Time

IoT sensors with Digital Twin technology fosters a proactive main-
tenance model, thereby enhancing the system’s reliability and ex-
tending its operational lifespan.

This comparative analysis highlights the considerable advan-
tages of employing Digital Twin technology and IoT sensors
within the maintenance strategies of HVAC systems in educa-
tional settings. By rigorously examining performance trends and
sensor data correlations, the study corroborates the effectiveness
of predictive maintenance, offering substantial contributions to
the discourse on intelligent building management. These insights
advocate for a shift toward data-driven, predictive maintenance
strategies across the construction and facility management
sectors, promising not only optimized operational efficiency and
improved environmental conditions but also setting new standards
for sustainability and occupant well-being in educational
institutions.

Discussion

The implementation of Digital Twin technology and IoT sensors
for predictive maintenance at the Papa Giovanni XXIII school rep-
resents a significant milestone in the field of architectural engineer-
ing. This study highlights a fundamental shift toward a proactive
and data-driven approach to maintenance, underlining the pivotal
role of technology in enhancing building management and
decision-making processes.

The shift toward integrating these advanced digital tools into
building management aligns with the broader trends in the industry,
as highlighted by several key studies. For example, Bynum et al.
(2013) and Issa et al. (2009) discussed the transformative impact
of BIM on construction practices, which laid the foundation for
more advanced applications like Digital Twins. The real-time dy-
namic representation provided by Digital Twin technology, as
demonstrated in this study, extends the capabilities of BIM by en-
abling predictive maintenance strategies that proactively address
system inefficiencies and failures (Mubarak et al. 2022).

Adopting predictive maintenance requires not only technological
changes but also cultural and organizational shifts within institutions.
Watson (2011) discussed the challenges and opportunities of digital
buildings, emphasizing the need for specialized skills in data analysis
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Fig. 12. (a) Performance trends over time; and (b) IoT sensor readings versus maintenance interventions.
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and the complexity of technological integration. Despite these obsta-
cles, the potential for improved building performance, sustainability,
and operational efficiency presents compelling reasons for the indus-
try to overcome these hurdles. This study’s findings corroborated
those of Yang et al. (2022), who highlighted the importance of over-
coming initial investment challenges and technical complexities to
realize the benefits of Digital Twin technology.

The integration of IoT sensors and advanced analytical tools signif-
icantly enhances the predictive capabilities of building management
systems. Studies by Casini (2022) and Cheng et al. (2020) illustrated
the impact of IoT in transforming building maintenance from reactive
to proactive models. The deployment of a comprehensive network of
10T sensors within the school’s HVAC system allowed for detailed
monitoring and early detection of potential issues, which was consis-
tent with the findings of Htet et al. (2023 and Tanasiev et al. (2022) on
the role of 10T in optimizing building operations.

The proactive maintenance approach adopted in this study not
only improved system reliability but also extended the operational
lifespan of HVAC components. This aligned with the research of
Calabrese et al. (2020 and Cmar et al. (2020), who emphasized
the benefits of predictive maintenance in manufacturing and build-
ing systems. The reduction in unscheduled downtime and opera-
tional cost savings observed in this study further validated the
effectiveness of predictive maintenance strategies, as discussed
by Villa et al. (2021) and Opoku et al. (2023).

This study opens several avenues for further research.

1. Investigating how Digital Twin technology can enhance the en-
ergy efficiency of HVAC systems when integrated with renew-
able energy sources like solar or wind energy. This follows the
suggestions of Silva and Araujo (2022) on integrating IoT with
renewable energy sources.

2. Assessing the long-term effects of predictive maintenance on in-
door air quality within educational settings through extensive
monitoring and statistical analysis. This would build on the
work of Long et al. (2023) on the impact of HVAC systems
on indoor environmental quality.

3. Evaluating the effectiveness of predictive maintenance strate-
gies in various climatic conditions to understand regional adap-
tations necessary for optimizing HVAC system performance.
This could be informed by the findings of Parisio et al. (2014)
and Calabrese et al. (2020).

4. Developing cost models to analyze the economic implications
of implementing Digital Twin technology in HVAC mainte-
nance, including the analysis of upfront investments, opera-
tional costs, and the financial benefits derived from system
longevity and energy savings. This would extend the economic
analyses presented by Agouzoul et al. (2023).

The successful application of these technologies at the Papa
Giovanni XXIII school has broader implications, potentially influ-
encing policy, setting new industry standards, and revolutionizing
management practices across educational facilities worldwide. This
underscores the necessity of integrating digital maintenance strate-
gies into building codes and legislation to promote environments
that are not only energy-efficient but also conducive to health
and sustainability, as advocated by Rocha and Rodrigues (2017)
and Egoavil et al. (2022).

This case study advocates for the widespread adoption of pre-
dictive, data-informed maintenance models across the construction
and facility management sectors. Such models can spur innovation
in sensor technology, analytics platforms, and integrated systems,
aligning maintenance strategies with digital advancements to sig-
nificantly impact resource allocation, policy formation, and the
overall quality of indoor environments. Encouraging collaborations
among educational institutions, technology providers, and
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government entities can foster the piloting of similar initiatives,
promoting economies of scale, knowledge exchange, and further
development of predictive maintenance technologies.

In summary, the adoption of Digital Twin technology and IoT
sensors in the maintenance of educational facilities marks a trans-
formative step toward more sophisticated, sustainable, and health-
enhancing built environments. This research not only showcases
the tangible benefits of such technologies but also charts a course
for addressing challenges and harnessing their full potential, with
the integration of artificial intelligence and Digital Twins heralding
an even more promising future.

Conclusions

This research has illuminated the transformative impact of Digital

Twin technology and IoT sensors on the predictive maintenance

of HVAC systems in educational settings, with the Papa Giovanni

XXIII school serving as a prime example. Key conclusions drawn

from the study underscore the significant enhancements in system

reliability, operational efficiency, and indoor environmental quality
facilitated by these technologies. Specifically, the study found the
following:

1. The application of Digital Twin technology, coupled with in-
sights from IoT sensors, helped in the formulation of effective
predictive maintenance strategies. This approach notably re-
duced unplanned downtimes and extended the lifespan of
HVAC components, highlighting the advantages of a proactive
maintenance model.

2. Maintenance interventions, informed by data-driven insights,
led to operational improvements and cost savings. The study
demonstrated how precise failure predictions and maintenance
scheduling can optimize resource utilization, emphasizing the
value of accuracy in maintenance planning.

3. The research stressed the importance of maintaining optimal
HVAC system performance to ensure high-quality indoor envi-
ronmental conditions, essential for conducive learning environ-
ments and positive health outcomes.

While the study’s findings are compelling, its limitations—such
as the focus on a single educational facility and the short-term ob-
servation period—highlight areas for future research. Proposed fu-
ture studies should include the following:

1. Broadening the scope to include diverse educational facilities
across various geographic and climatic conditions will enhance
the understanding of the adaptability and scalability of predic-
tive maintenance strategies.

2. Conducting long-term studies to assess the enduring impacts of
predictive maintenance on system performance, energy effi-
ciency, and cost implications will provide deeper insights into
the sustained benefits of this approach.

3. Investigating the synergy between Digital Twin technology and
renewable energy sources could offer further improvements in
building sustainability and operational efficiency.

The study advocates for a broader integration of Digital Twin
and IoT technologies across different building systems and into
smart city frameworks, exploring their collective potential to im-
prove urban infrastructure management.

To advance the adoption of these technologies in the construc-
tion and facility management sectors, it is recommended that stake-
holders invest in professional training programs, allocate resources
for technology acquisition and implementation, and foster partner-
ships to overcome adoption barriers and promote best practices.

The implementation of Digital Twin technology and IoT sensors
marks a significant advancement in HVAC system management
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within educational facilities, laying a foundation for more efficient,
sustainable, and health-supportive buildings. This study not only
showcases the immediate benefits of these technologies but also
opens avenues for further research and innovation, particularly in
integrating artificial intelligence to enhance system management
in the increasingly digital world.

Reflecting on the study’s scope, there is a clear pathway for on-
going exploration that deepens the understanding of the potential of
these technologies, fostering a culture of continuous improvement
and rigorous evaluation within the architectural engineering field.
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