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ABSTRACT In today’s digital landscape, critical services are increasingly dependent on network

connectivity, thus cybersecurity has become paramount. Indeed, the constant escalation of cyberattacks,

including zero-day exploits, poses a significant threat. While Network Intrusion Detection Systems (NIDSs)

leveraging machine-learning and deep-learning models have proven effective in recent studies, they

encounter limitations such as the need for abundant samples of malicious traffic and full retraining upon

encountering new attacks. These limitations hinder their adaptability in real-world scenarios. To address

these challenges, we design a novel NIDS capable of promptly adapting to classify new attacks and

provide timely predictions. Our proposal for attack-traffic classification adopts Few-Shot Class-Incremental

Learning (FSCIL) and is based on the Rethinking Few-Shot (RFS) approach, which we experimentally

prove to overcome other FSCIL state-of-the-art alternatives based on either meta-learning or transfer

learning. We evaluate the proposed NIDS across a wide array of cyberattacks whose traffic is collected

in recent publicly available datasets to demonstrate its robustness across diverse network-attack scenarios,

including malicious activities in an Internet-of-Things context and cyberattacks targeting servers. We

validate various design choices as well, involving the number of traffic samples per attack available, the

impact of the features used to represent the traffic objects, and the time to deliver the classification verdict.

Experimental results witness that our proposed NIDS effectively retains previously acquired knowledge

(with over 94% F1-score) while adapting to new attacks with only few samples available (with over 98%

F1-score). Thus, it outperforms non-FSCIL state of the art in terms of classification effectiveness and

adaptation time. Moreover, our NIDS exhibits high performance even with traffic collected within short

time frames, achieving 95% F1-score while reducing the time-to-insight. Finally, we identify possible

limitations likely arising in specific application contexts and envision promising research avenues to

mitigate them.

INDEX TERMS Attack-traffic classification, deep learning, few-shot class-incremental learning, network

intrusion detection system, network security.

I. INTRODUCTION

IN recent years, cybersecurity has rapidly emerged as

a major concern for society at large, encompassing

individuals, businesses, and governments on a global scale.

As the reliance on technology grows, so does the potential for

disruption and harm caused by cyber threats. The financial

impact of these threats is staggeringly high, with public

administration and healthcare among the most vulnerable

sectors, potentially facing significant financial losses [1]. A

recent survey revealed that 37% of companies that have expe-

rienced a cyberattack have lost more than $100k [2]. Among

the cyber threats, Distributed Denial of Service (DDoS)
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attacks have become particularly notorious. DDoS attacks

involve overwhelming a machine or network resources with

a high volume of network traffic, impairing its availability to

the intended users. The number and variety of such attacks

are growing rapidly. Cloudflare reports a 111% increase from

2021 to 2022 of DDoS attacks based on HTTP and 67%

of Ransom DDoS [3]. An additional layer of complexity

is added by the appearance of novel DDoS attacks capable

of exploiting new vulnerabilities. This is exemplified by

the record-breaking DDoS attack that leveraged the HTTP/2

Rapid Reset vulnerability [4].

Given the escalating threat landscape, there is an urgent

need for effective countermeasures. Network Intrusion

Detection Systems (NIDSs) aim to classify several types of

network attack traffic and distinguish them from legitimate

traffic, providing a line of defense against cyber threats.

Traffic classification techniques have evolved significantly

over the years. Initially reliant on port-IP matching and deep

packet inspection—the former prone to evasion by sophisti-

cated attacks and the latter challenged by encryption—NIDSs

have seen the rise of techniques based on Machine Learning

(ML) and Deep Learning (DL) [5]. While ML offers a

powerful tool for traffic classification, it requires domain

experts to craft effective features capable of modeling

malicious traffic, which can be time-consuming and hardly

automatable. On the other hand, end-to-end DL directly

capitalizes on raw traffic data, hence eliminating the need for

manual feature engineering. However, DL relies on a large

amount of data to provide satisfactory results [6]. Collecting

datasets for network traffic classification is a tough and

expensive task. Indeed, the constant evolution of legitimate

and malicious traffic patterns poses a significant challenge

in maintaining accurate and up-to-date datasets. Moreover,

gathering and labeling network traffic is resource-intensive,

demanding both hardware infrastructure and specialized

personnel.

Continuously and efficiently updating ML/DL-based

NIDSs to incorporate the knowledge about new attacks

collides with two kinds of practical constraints: (i) data on

novel attacks are often limited, resulting in seldom having

enough samples of such attacks to feed the training of the

NIDS; (ii) the process for updating the NIDS cannot rely on

costly retraining from scratch while also needing to retain the

knowledge already incorporated into the classification model.

To address these critical challenges, we propose a NIDS

based on Few-Shot Class-Incremental Learning (FSCIL).

FSCIL offers a solution by learning from a limited number

of samples and incrementally updating the data-driven model

at the core of the NIDS as new attacks emerge. More

intuitively, FSCIL tries to resemble human-level general

intelligence, empowering the NIDS to effectively generalize

from limited labeled traffic samples (viz. few shots)—and

thus excelling in detecting new, unseen attacks—without

losing the NIDS’ capability in dealing with known attacks

(viz. class-incremental learning). In other words, FSCIL

allows for rapid adaptation to new threats while preserving

the knowledge of previous benign and malicious traffic

patterns, thus avoiding the so-called catastrophic forgetting

issue [7].

Based on such considerations, in this paper, we provide

the contributions as outlined below.

• We design a data-driven NIDS that can be swiftly

updated to classify novel attacks not seen during the

training phase as soon as a limited set of samples

for such attacks is available. With this goal in mind,

the NIDS is based on the FSCIL paradigm. This

choice allows for updating the core of the NIDS with

minimal data and allows it to quickly incorporate

new attack knowledge, reducing the time to make it

capable of detecting new threats. More specifically,

we validate the capability of the proposed NIDS to

adapt to various scenarios—e.g., cyberattacks targeting

servers and malicious activities in an Internet of Things

(IoT) context—when facing novel DDoS attacks not

seen during the training phase and characterized by an

extremely limited number of samples. To this aim, we

exploit two real attack-traffic datasets, namely CSE-

CIC-IDS2018 and IoT-NID.

• We adopt different FSCIL approaches based on either

meta-learning or transfer learning, and we choose

the best-performing Rethinking Few-Shot (RFS) as the

central component of our NIDS. We also compare our

proposal against the non-FSCIL state of the art, namely

a NIDS trained from scratch each time a new class of

attack becomes available, without constraints on limited

data.

• We carefully investigate various design choices for our

proposed NIDS, namely: (i) the number of samples

needed to effectively classify new attacks while retain-

ing acquired knowledge; (ii) the usage of effective and

robust features used to represent the traffic objects (i.e.,

the input data) by identifying which features contribute

the most to the NIDS’ performance; (iii) the setting

of a temporal threshold within which the classification

verdict has to be provided to enable a trade-off between

the time-to-insight and classification effectiveness in

scenarios requiring rapid detection (e.g., when facing

slow flooding attacks).

The paper is structured as follows. Section II provides

background information and positions this study against

related work. In Section III, we introduce the proposed

NIDS based on FSCIL, along with the approaches used

for attack-traffic classification. Section IV deepens the spe-

cific configurations employed, concerning datasets, FSCIL

approaches, and other implementation details. The experi-

mental results and corresponding take-home messages are

presented in Section V. Finally, Section VI concludes the

paper and outlines future directions. For the benefit of the

reader, Table 1 summarizes the notations used throughout

the manuscript.
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TABLE 1. List of the notations used in the manuscript.

II. BACKGROUND AND RELATED WORK
This section provides an overview of the key concepts

of meta-learning and transfer learning (Section II-A).

Then, it presents the most related state-of-the-art works

dealing with Few-Shot Learning (FSL), Class-Incremental

Learning (CIL), and the combination of both, i.e., FSCIL

(Section II-B). Lastly, it outlines the novelty of the present

manuscript by establishing its position within the current

literature (Section II-C).

A. BACKGROUND

In this work, we leverage FSCIL approaches by starting

from “traditional” FSL ones. The latter approaches exploit

non-few knowledge of existing classes—where with classes

we refer to different types of malicious traffic (i.e., different

attacks) as well as to the benign traffic—to construct a

model aimed at generalizing to new learning tasks with only

few samples available. Specifically, by building on meta-

learning and transfer learning, we incorporate the constraint

of incremental learning from the CIL paradigm. This implies

that the NIDS must retain the non-few knowledge previously

acquired (i.e., to avoid catastrophic forgetting) while also

learning to identify new attack classes for which only limited

data are collected.

Meta-Learning Fundamentals. Meta-learning aims to

build models with high generalization ability realizing a

learning-to-learn paradigm. Specifically, the training process

is conducted across a wide range of learning tasks to achieve

optimal performance in a broad spectrum of scenarios,

including potentially unseen tasks. In other words, the goal

is to distill meta-knowledge that can enhance performance

on new tasks, even in the presence of few samples for

these latter. Indeed, meta-learning is particularly used in the

context of FSL through the application of episodic-learning.

Such a technique involves organizing the training process

to mimic the operational conditions of FSL through a large

number of classification tasks (aka episodes) with limited

available data. Since the goal is to build models that can

effectively generalize on novel tasks, the learning phases

(i.e., training, validation, and testing) are typically conducted

on data with distinct label spaces. Consequently, the initial

step involves splitting the dataset so that each partition

encompasses different sets of classes. Each partition is then

utilized for a specific phase: meta-training, meta-validation,

and meta-testing.

Like standard training, meta-training is performed in

multiple epochs. During an epoch, a series of independent

episodes/tasks are drawn from the partition designated for

meta-training. Similar procedures are followed for meta-

validation and meta-testing, where a fixed number of

episodes/tasks are sampled. The final score used to evaluate

the meta-learning model’s performance is the average of the

per-episode scores.

More formally, the task sampling procedure is determined

by the triplet of values 〈N,Ks,Kq〉, where: (i) N represents

the number of classes to be selected for each task; (ii) Ks
denotes the number of samples per class that are allocated

for training the model: the resulting support set has N ×Ks
samples in total; (iii) Kq stands for the number of samples

per class that are designated for evaluating the model error

rate: the resulting query set has N×Kq samples in total. The

outcome of this procedure is referred to as an N-way K-shot

task, where K = Ks. We refer to our previous work [8] for

a more comprehensive overview (including the pseudocode

of the learning procedure) on meta-learning.

Transfer-Learning Fundamentals. The objective of

transfer learning is to capitalize on the general knowledge

acquired from an extensive dataset in the pre-training phase

(T0). Specifically, the model optimized in T0—aka the base

model—is then specialized for a new target classification

task, during the so-called fine-tuning phase (T1). As in the

meta-learning paradigm, the label space is not shared across

the two phases (i.e., T0 and T1 have a disjoint label space)

when dealing with FSL. Conversely, in the case of FSCIL,

the label space can partially overlap.

B. RELATED WORK

The literature on automated intrusion detection techniques

is flourishing, with a strong focus on designing DL-

based NIDS for attack-traffic classification. These works

primarily utilize two approaches: anomaly detection and

misuse detection. The former models the anomalies as

deviations from the profile of benign traffic and thus exploits

semi-supervised [22] or unsupervised [23], [24] approaches

to detect malicious (viz. anomalous) traffic samples. In

contrast, misuse detection directly identifies known attack

patterns by training on both benign and malicious samples;

it thus can identify specific threats via single-modal [25] or

multimodal [26] supervised approaches.
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TABLE 2. Related studies focusing on attack-traffic classification using few-shot learning, class-incremental learning, and the combination of both. Papers are listed
chronologically by publication year. The final row provides an overview of the present work. The meaning of acronyms is provided at the bottom of the table.

Recent years have witnessed a noticeable surge in the

research interest in cybersecurity, as highlighted by a

+200% rise in the use of relevant keywords related to

this domain [27], along with a trend towards advanced

solutions for addressing the challenges inherent to DL (and

ML)-based attack-traffic classification. Within this domain,

specific issues have gained substantial attention, influencing

the direction of research endeavors:

i) New attack classes handling: this issue entails devel-

oping approaches capable of classifying threats

previously unseen during the training phase of ML/DL

methods with the fewest possible samples, aiming to

promptly enforce countermeasures.

ii) Class imbalance management: intrusion detection

datasets are often characterized by a skewed class

distribution, since certain attack types generate a high

number of samples (e.g., flooding, probing), while

others yield fewer instances (e.g., data theft, command-

and-control connections).

iii) Knowledge incorporation for continuous learning:

existing approaches need to constantly update their

knowledge of both emerging attacks and normal traffic

patterns; this process must integrate new information

without erasing previously acquired knowledge, all

while being time-efficient to avoid retraining from

scratch with old and new data.

Addressing the first and second challenges often involves

the application of FSL techniques, while the third challenge

finds solutions in CIL. Currently, to the best of our

knowledge, the combination of these two paradigms (i.e.,

FSCIL) emerges as relatively under-explored in the attack-

traffic classification literature despite its natural fit.

Table 2 collects and categorizes the most relevant papers

that leverage FSL, CIL, and FSCIL for attack-traffic

classification. The majority of these studies were published

between 2020 and 2023 (with one exception [9] published

in 2019), demonstrating a growing interest in these topics.

The second and third columns of Table 2 indicate whether

the works apply FSL and/or CIL. Specifically, eight

works [8], [10], [11], [12], [14], [17], [19], [21] employ

FSL approaches, five [9], [15], [16], [18], [20] apply

CIL, and only one [13] proposes a solution combining
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both (viz. FSCIL). This underscores the lack of analyses

regarding methodologies based on FSCIL for attack-traffic

classification in related literature, and thus the absence of an

effective solution that can simultaneously tackle the issues

mentioned at the beginning of this section.

In Table 2, we also report the specific FSL, CIL, or

FSCIL approaches employed in each work. The investiga-

tion of the papers dealing with FSL reveals that most of

them resort to “traditional” FSL meta-learning approaches

originally introduced in the field of computer vision in

2016-2018, such as Matching Networks [28], Prototypical

Networks [29], Relation Network [30], and Model-Agnostic

Meta-Learning (MAML) [31]. These methods are often

employed with only minor modifications from the original

versions. Notably, our previous works [8], [21] stand out

as the only ones that compare meta-learning approaches

with those based on transfer learning. Differently from

the rest of the state of the art, Pawlicki et al. [19]

solely leverage a Siamese neural network as a few-shot

learner for network intrusion detection. The Siamese neural

network embeds traffic samples by taking pairs of samples

from all the classes to generate feature vectors that can

be easily compared; namely, it is capable of discerning

between two classes even when a limited number of samples

from a novel class are available. Matching Networks are

employed in [8], [21] along with other FSL approaches for

IoT-attack-traffic classification, and in [12] as a baseline.

Huang et al. [10] enhance the original Matching Networks by

incorporating a gating technique. These additional gates act

as soft classifiers that detect whether a test sample belongs

to a known or unknown attack type via a sigmoid function.

Ouyang et al. [11] employ Prototypical Networks within the

context of cyberattacks against SCADA networks by orches-

trating principal component analysis for reducing feature

dimension, one-hot encoding, and feature embedding via a

2D-convolutional neural network. Prototypical Networks are

also utilized as the reference FSL approach in [12]—fed with

traffic data converted into grayscale images—and in [8], [21]

as aforementioned. Liang et al. [14] propose an adaptation

of the Relation Network for attack-traffic classification in

distributed IoT systems; specifically, reconstructed feature

embeddings are added to the original Relation Network

aiming at intra-class and inter-class distance optimization

when dealing with an imbalanced (viz. few-shot) attack

dataset. Relation Network is among the FSL approaches

considered in [8] in an IoT-attack scenario. In the network

security context, MAML (or its updated version ANIL [32])

has been used in [8], [12], [17] for FSL and in [13]

for FSCIL. Particularly, the latter work enables MAML

for FSCIL-based attack-traffic classification via a model

expansion technique that combines the logits of old-class

and new-class classifiers. MetaOptNet [33] is a more recent

promising approach derived from computer vision that has

been explored within the context of IoT-attack detection via

FSL only in our previous researches [8], [21], demonstrating

good performance compared to the other meta-learning

approaches. In [21], we also adopt various FSL approaches

based on the transfer-learning paradigm, mainly differing on

the operations performed during the fine-tuning phase. These

include (i) Fine-Tuning, (ii) Freezing (both also used in [8]),

and three recent approaches adapted from the computer

vision domain: (iii) Baseline++ [34], (iv) Rethinking Few-

Shot [35], and (v) Negative Margin [36].

Concerning the works that face attack-traffic classification

using incremental learning, we can notice a less tight

connection with the approaches originally proposed in

computer vision. Indeed, such works commonly propose

CIL approaches purposely devised and tailored for the

considered task. Cerasuolo et al. [20] offer a comparison of

different CIL techniques for IoT-attack-traffic classification:

(i) Learning Without Forgetting [37] and BiC [38] borrowed

from computer vision, (ii) iCaRL+ [39] expressly proposed

for encrypted traffic classification, and (iii) two versions

of Fine-Tuning (i.e., with and without memory storing the

samples of “old” classes). Two approaches based on ML

have been proposed in [9], [16]. Constantinides et al. [9]

describe a method based on a Support Vector Machine

(SVM) equipped with multiple pairs of self-organizing and

incremental neural networks, which use an incremental

clustering method that can handle supervised data. Similarly,

Data and Aritsugi [16] propose an ensemble incremental

learning algorithm, where the Hoeffding Trees are exploited

as the stumps of the incremental AdaBoost model. The

same authors leverage also a CIL approach based on DL

that expands the model into a tree-structured architecture

allowing it to effectively integrate new attack-traffic knowl-

edge [15]. DL is also adopted in the traffic classification

solutions described in [18], whose authors utilize a recurrent

neural network that expands its architecture when new

classes are available (viz. model growth).

Investigating the attack-traffic datasets employed in the

state of the art and comparing them with those used in the

present work, Pawlicki et al. [19] and Bovenzi et al. [8]

employ CSE-CIC-IDS2018 and IoT-NID, respectively;

Lu et al. [17] only preprocess CSE-CIC-IDS2018 to

construct their FSIDS-IOT. Conversely, the most common

datasets in the related literature are the older CIC-

IDS2017 [14], [15], [16], [17], [18] and NSL-KDD [9],

[10], [13], [14], [17]. The latter particularly, despite being

considered a general benchmark for attack-traffic classifica-

tion, is over two decades old and no longer represents the

current profiles of both benign and attack traffic. The choice

of other datasets depends heavily on the use case considered

in the related work. For instance, intrusions in SCADA

networks [11], Android malware (e.g., CICInvesAnd-

Mal2019) [12], and attacks against IoT devices (e.g.,

IoT-23, Bot-IoT) [8], [20], [21].

Another essential aspect to take into account is the

effective utilization of raw input data enabling a paramount

advantage of DL classifiers, that is the automatic extraction

of knowledge (in the form of highly expressive features)

from attack-traffic data. In Table 2, we explicitly flag the
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studies that effectively exploit such input data in the form

of per-network-flow bytes [8], [12] or per-packet informative

fields (e.g., payload length, time-to-live, and TCP flags) [8],

[18], [20], [21]. Conversely, the rest of the works adopt

pre-processed features, such as flow-based statistics derived

from the whole set of packet/payload lengths or inter-arrival

times, which are typically obtained from pre-processed

datasets. When combined with DL classifiers, the latter

choice undermines their aforementioned peculiarity, resulting

in suboptimal solutions.

Table 2 points out that the works exploiting raw input data

can also deal with early attack-traffic classification [8], [12],

[18], [20], [21]. Indeed, such studies typically focus on the

initial bytes/packets of a given traffic object, being able to

promptly detect an attack (ideally when it is still running).

On the other hand, the other works conduct a “post-mortem”

attack-traffic classification, starting only after the malicious

activity has ended.

C. POSITIONING

The last row of Table 2 summarizes the main aspects of our

study. This helps us to position it against the related work,

underlining its novelty.

Among the surveyed literature, only Wang et al. [13]

propose an FSCIL approach for attack-traffic classification.

However, it suffers from a number of issues that hinder

its reproducibility—which is why we do not consider this

proposal as a baseline in our experimentation. Specifically,

(i) the embedding function is not clearly described and

thus it is not reproducible; (ii) the proposed approach is

not naturally compatible with our input designed for early

traffic classification as it is intended to work with flow-based

features in a tabular format (thus suited only for “post-

mortem” intrusion detection); and (iii) it employs the model

growth paradigm, which is not scalable as the number of

classes (i.e., new attacks to be identified) increases.

Compared to our most related previous works [8], [21],

in this study, we introduce stricter real-world constraints

that led to the need to adopt incremental learning besides

considering a few-shot scenario. This entails the design

of a NIDS that effectively leverages FSCIL approaches.

Also, differently from related literature commonly focusing

only on a single paradigm, we evaluate a wide range of

approaches for FSCIL attack-traffic classification based on

meta-learning and transfer-learning paradigms, as the core

for designing our adaptive NIDS exploiting RFS.

As opposed to related literature focusing on post-mortem

(viz. offline) attack-traffic classification [9], [10], [11], [13],

[14], [15], [16], [17], [19] and better-targeted than the works

performing early attack-traffic classification [8], [12], [18],

[20], [21], we further stress the latter capability by explicitly

taking into account the time required to collect packets before

delivering the classification verdict, and its trade-off with

the efficacy.

Finally, we assess the generalization capability and broad

applicability of the designed NIDS in different network

contexts. To this end, we show the performance attained

on two recent and publicly-available datasets, namely CSE-

CIC-IDS2018 and IoT-NID, unlike studies using outdated

traffic data [9], [10], [13], [14], [15], [16], [17], [18]. Also,

to the best of our knowledge, we are the first to jointly

exploit such datasets to cross-validate our NIDS by operating

it on the attack traffic belonging to the dataset not used for

training.

III. DESIGNING CLASS-INCREMENTAL NIDS BASED ON
FSCIL
This section first formalizes the problem statement and

outlines the challenges addressed in the present work

(Section III-A). Then, we introduce the foundational blocks

of the comprehensive workflow for the proposed class-

incremental NIDS that uses only few samples of new attack

classes (Section III-B). Finally, we describe the FSCIL

approaches exploited for the NIDS design and how we

have adopted them starting from standard FSL methods

(Section III-C).

A. PROBLEM STATEMENT

The state of the art highlights the effectiveness of DL-

based NIDS for attack-traffic classification [26], [40], [41],

especially when large amounts of data are available for model

training. However, attacks rapidly evolve in a real-world

cybersecurity scenario, often leading to the emergence of

attacks different from those available during the training of

the NIDS. This constant evolution of the threat landscape

requires the update of the NIDS to deal with previously

unknown attacks.

Unfortunately, training a traffic classifier using classic DL

approaches every time new attack class samples become

available is a time-consuming process. Until this training is

complete, the NIDS cannot mitigate such unseen attacks.

This process is hindered by a number of interrelated practical

issues: (i) training a classification model from scratch every

time the traffic of a previously unseen attack becomes

available is a resource-demanding task in terms of both time

and computing power; (ii) retraining the model with the

full previous knowledge along with a limited number of

samples of new attacks generates significant class imbalance,

thereby limiting the NIDS ability to detect these new attacks;

(iii) capturing sufficient samples of new attack traffic takes

time, further extending the period during which the NIDS

is ineffective. To overcome such issues, in this study, we

design a NIDS based on the FSCIL paradigm. We evaluate

its effectiveness in the mentioned scenario, i.e., when the

classification model has to adapt to face the emergence of

new attacks for which only few samples are available.

Formally, we refer to the traffic classes available during

the initial training as Cold (including both malicious and

benign traffic), and to those not seen during this training as

Cnew. We assume that large amounts of samples belonging

to Cold are initially available. On the other hand, later in

the process only a limited number of samples (e.g., K ≤
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FIGURE 1. Comparison between a NIDS based on FSCIL (top, in red) and non-FSCIL alternative (bottom, in gray). The first two phases—i.e., (initial) training and
operational—are common in both cases. The NIDS is first trained to classify known attacks and benign traffic (i.e., Cold ) using a large dataset and then it becomes operational.
During the operational phase, the availability of attack traffic of a new type (i.e., Cnew ) requires the NIDS to be retrained to detect it. The FSCIL NIDS needs a short adaptation

phase using few samples of Cnew and a small memory of Cold . Differently, the non-FSCIL alternative must be (re)trained from scratch—hence the old model is discarded—using
(sufficient) samples of Cnew plus the entire original training dataset (i.e., all samples of Cold ), resulting in a much longer process.

FIGURE 2. Workflow of the FSCIL NIDS. The methodological blocks regarding attack-traffic processing are colored in blue. The methodological blocks constituting the FSCIL

classification steps are colored in red. Each block includes the parameters that characterize it along with its output.

10) are available for each class in Cnew. Figure 1 depicts

the process just discussed. The training phase involves the

initial training of the NIDS using the large dataset containing

samples of classes in Cold. Once trained, the NIDS is ready

for deployment and operational use. However, to detect new

attacks (i.e., those in Cnew), the NIDS requires to be updated.

Hence, the FSCIL paradigm involves an adaptation phase.

Such an adaptation phase allows the aforementioned practical

issues of training the model from scratch to be avoided.

We can summarize the dual objective of the proposed

approach as follows:

i) Integrating knowledge about new, unforeseen attacks

(i.e., Cnew) into a model that has already been trained

on a set of benign traffic and known attacks. This

integration must be fast to minimize periods of

ineffectiveness and ensure that it does not erase the

model’s prior knowledge about the training classes

(i.e., Cold).

ii) Effectively learning from a small number of sam-

ples belonging to Cnew. This capability enables the

avoidance of time-consuming campaigns to collect

attack-traffic data related to Cnew.

B. FSCIL NIDS WORKFLOW

The workflow of our NIDS based on FSCIL is depicted

in Figure 2. Hereinafter, we detail the workflow’s four-step

process that a NIDS follows to classify the traffic of

attacks. The first two steps are traffic processing operations

(Section III-B1) which involve (i) the segmentation of traffic

into relevant aggregates and (ii) the extraction of key features

essential for characterizing potential attack traffic. Such input

data are fed to the FSCIL classification part of the workflow

(Section III-B2), which encompasses (iii) the embedding

of extracted features via a proper embedding function

(responsible for dimensionality and complexity reduction)

and (iv) the actual attack-traffic classification (depending on

the specific FSCIL approach utilized).

1) FSCIL TRAFFIC PROCESSING

The FSCIL traffic processing consists of two key operations

specific to the attack-traffic classification domain, performed

before feeding the training or the operational phase of the

NIDS. The first operation involves segmenting the traffic into

units being the objects of the attack-traffic classification task.

Such traffic objects are processed in the second operation,

where relevant features are extracted to characterize benign

and malicious traffic samples. These features are the input

of the data-driven core of the NIDS.

Traffic Object Segmentation. Network traffic is initially

segmented into traffic objects (i.e., aggregates of network

packets). Specifically, the packets are aggregated into bidi-

rectional flows (biflows), with each biflow gathering all
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TABLE 3. Per-packet input features extracted for each biflow.

packets that have identical 5-tuple attributes (comprising

srcIP, dstIP, srcPort, dstPort, and L4Proto).

Note that such traffic segmentation does not take into account

the direction of the communication (i.e., whether swapping

source and destination endpoints, the packets still belong to

the same biflow).

Input-Data Extraction. Each biflow is then processed

to extract features crucial for attack-traffic classification. In

line with the state of the art [8], [18], [20], [21], only

the initial Np packets of each biflow are considered. Such

a choice enables early traffic classification, i.e., it allows

the classifier to provide a verdict based only on the initial

part of the biflow and thus enhances the responsiveness of

the NIDS. In line with this goal, the designed NIDS also

enforces an additional cut based on a temporal threshold

such that only the packets of a biflow that arrive before

Ts seconds are taken into account. Enforcing such a cut is

particularly important for promptly detecting slow flooding

attacks (cf. Section V-E). Indeed, these attacks involve the

attacker gradually exhausting the limited resources of a vic-

tim machine by establishing and maintaining a large number

of concurrent connections over an extended period (e.g., the

attacker could slowly send partial HTTP headers forcing

the server to keep several connections open) [42]. Given

such long disrupting consequences, their early detection is

paramount. Relying solely on the first packets or bytes—as

in the case of related literature [8], [12], [18], [20], [21]—

is therefore not sufficient. The attackers can spread packets

over time, slowing down the classification process, especially

in the case of slow flooding attacks. Particularly, this delay

increases the time-to-insight, namely the period from when

traffic-data collection begins to when actionable insights can

be drawn from the model (i.e., based on the NIDS verdict).

After collecting Np packets of a biflow or once Ts has

expired, 6 per-packet features are extracted, as also suggested

in [18], [21], [26], [40]. These features include: (i) the packet

size, (ii) the packet direction, (iii) the TCP window size, (iv)

the inter-arrival time, (v) the Time-to-Live (TTL), and (vi)

the TCP flags. Table 3 summarizes the aforementioned input

features. At the end of this process, an Np × 6 input matrix

x is obtained for each biflow. If due to the effect of the Ts
threshold, fewer than Np packets are collected, appropriate

zero-padding is added to ensure x ∈ R
Np×6. Lastly, x is

normalized in the range [0, 1] via a Min-Max function.

FIGURE 3. Architecture of the embedding function used in this work.
Hyperparameter meaning: in_chn=number of input channels, out_chn=number of
output channels, kernel=width and height of the kernel as a tuple, in=dimension of
the input tensor, out=dimension of the output tensor. The in parameter is dependent
from the chosen Np value (i.e., Np = 20).

2) FSCIL CLASSIFICATION

The FSCIL classification part of the workflow consists of

the steps carried out via the data-driven embedding function

(θ) and the attack-traffic classifier (φ) employed in our

NIDS.

Feature Embedding. The embedding function θ(x) per-

forms a transformation that maps high-dimensional input

x ∈ R
Np×6 into a richer d-dimensional embedded space

while preserving a meaningful structure (such a process is

called feature embedding); more formally: θ(x) : RNp×6 →

R
d and υ ∈ R

d is the resulting feature vector. Concerning

the specific embedding function, we adopt a well-known

DL architecture originally proposed for IoT-traffic clas-

sification in [40] and also exploited for attack-traffic

classification [8], [21], [26]. It encompasses two bidimen-

sional convolutional layers interleaved with max-pooling and

batch normalization. The output of the convolutional layers

is activated by a ReLU function. Lastly, such output tensor

is flattened and fed into a fully connected (viz. dense) layer

that produces a 200-dimensional feature vector. Additional

details about the embedding function layers and related

hyperparameters are shown in Figure 3.

Attack-Traffic Classification. The attack-traffic classifier

φ(υ) takes the embedded feature vector υ as input and

outputs a vector of probabilities ŷ over C classes, more for-

mally: φ(υ) : Rd → R
C . The specific implementation of the

classifier varies depending on the particular FSCIL approach

adopted. The most common implementations typically utilize

a fully-connected layer or a metric-based function. We

provide more details on these technical aspects in the next

Section III-C.

C. TAILORING FSL APPROACHES TO FSCIL

Here we detail the FSCIL approaches at the core of the

NIDS we have designed. Specifically, we revise state-of-

the-art FSL approaches, tailoring them for FSCIL, namely

when retaining previous knowledge is also required. In detail,
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we consider the adoption of two learning paradigms: meta-

learning and transfer learning.

1) META-LEARNING

According to episodic learning, meta-learning approaches

are trained on Cold using N-way K-shot tasks extracted from

a training set in the meta-training phase. Subsequently, they

are validated via tasks from a validation set (again on Cold) in

the meta-validation phase; this allows us to select the model

that achieves the highest accuracy. In the adaptation phase—

i.e., meta-testing—a new N-way K-shot task is drawn from a

dataset containing both Cold and Cnew classes (see Evaluation

Procedure in Section IV-B for further details on the datasets

setup).

We underline that the number of classes N selected for

each task can differ between the different phases—and this

is actually the case. Going into detail, the task in the

adaptation phase features a support set with |Call| × Ks
samples, where Call = Cold ∪ Cnew (i.e., the number

of ways N for meta-testing is equal to |Call|) and Ks(=

K) is the number of labeled biflows of Cnew (viz. the

number of shots, cf. Section II-A). Hence, a portion of the

support set encompasses new and few data (i.e., |Cnew| ×Ks
samples) used for the model adaptation to Cnew. Whereas,

|Cold| ×Ks samples constitute the model memory.1 Notably,

such memory samples of Cold are not employed in standard

FSL approaches that do not require keeping old knowledge.

Finally, after learning from the support set, the adapted model

is tested on unseen biflows of Cnew and Cold from the query

set using |Call| × Kq samples.

When tailoring meta-learning from FSL to FSCIL, some

specific concerns must be taken into account. In particular,

meta-learning approaches need the learning objectives to

coincide during both meta-training and meta-testing to

perform well, which is the common setup of standard FSL.2

Consequently, since the number of ways for the meta-

testing tasks is fixed and equal to |Call|, the number of

meta-training ways has been set to the closest possible

value which is |Cold|. Accordingly, meta-training and meta-

validation are carried out using |Cold|-way K-shot tasks, while

meta-testing exploits |Call|-way K-shot tasks. It is also worth

noticing that classification performance and computational

cost per episode are in trade-off as the number of ways

increases. In fact, using a higher number of ways leads to

better performance thanks to the correspondence between

the learning objective at training and adaptation time. On the

other hand, the number of samples increases significantly

with a higher number of ways, which causes a rise in

computational cost that typically does not happen in standard

1In the context of CIL and FSCIL, memory refers to a mechanism
for storing information about previously learned classes (i.e., Cold). This
information is useful to overcome the catastrophic forgetting problem, where
a model forgets Cold as it learns new classes (i.e., Cnew). Here, we use an
exemplar-based memory, where Ks samples of Cold are stored.

2This outcome is both demonstrated in [28] and further confirmed via
preliminary experiments not reported for brevity.

meta-learning FSL setups characterized by a reduced number

of ways and shots. Therefore, in complex cases, namely

when N is higher, it is preferable to use FSCIL approaches

based on the transfer-learning paradigm.

Meta-Learning Approaches. We adopt three meta-

learning approaches initially introduced in the field of FSL

for computer vision. These approaches reduce the risk

of overfitting by narrowing the hypothesis space, which

encompasses all possible solutions for a learning problem.

Such a result is achieved by meta-training the embedding

function using similarity metrics. In detail:

i) Matching Networks (MatchingNet) [28] use a

classifier φ(·), which is a generalized form of the

nearest-neighbor matching. Specifically, after the fea-

ture embedding, φ(·) calculates the prediction ŷ with

the formula: ŷ =
∑Ks

i=1 a(υ(xquery), υ(xi))yi. Here, an

attention mechanism a(·, ·) is used to measure the

similarity between the embedding of the query instance

to be labeled (i.e., υ(xquery)) and the embedded

samples of the support set (i.e., υ(xi)).
3 Finally, xquery

is assigned the class of the most similar instance of

the support set.

ii) Prototypical Networks (ProtoNet) [29] also rely

on a similarity metric as the classifier φ(·), but

with a fundamental distinction from MatchingNet:

the similarity is calculated between an embedded

query sample and the centroid of each class, which

is derived from the support set and referred to as

prototype. Formally, pc = 1
Ks

∑Ks
i=1 υ(xi), where pc is

the prototype for a generic class c in the support set.

iii) Conversely, MetaOptNet [33] leverages a classifier

φ(·), which consists of an SVM trained on embedded

support set samples.

In these three approaches, the embedding function θ(·) is

frozen after meta-training. This means that the knowledge

acquired on the train classes is fixed, which helps to prevent

forgetting phenomena on Cold.

2) TRANSFER LEARNING

According to the transfer-learning paradigm

(cf. Section II-A), we consider a base model 〈θ(·), φold(·)〉,

where θ(·) is the embedding function and φold(·) is a fully-

connected classifier consisting of |Cold| neurons. During the

pre-training phase (T0), the base model is trained, validated,

and tested on the respective disjointed sets with the same

Cold label space. The model with the highest validation

accuracy is chosen for the following fine-tuning (T1), which

coincides with the adaptation phase. In the latter phase,

the model is further refined using the |Call| × Ks samples

from the support set in a similar way to the meta-testing of

meta-learning approaches—hence, leveraging a memory of

|Cold| × Ks biflows and Ks unseen biflows of Cnew. Finally,

3For instance, the attention mechanism could be a distance metric, such
as the cosine or the Euclidean distance.
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the performance is assessed on Call via the query set (i.e.,

using |Call| × Kq samples).

Transfer-Learning Approaches. We consider three

transfer-learning approaches that share a similar T0 learning

methodology. They mainly differ on the specific strategy

applied during T1. In more detail:

i) Fine-Tuning (FT) appends a new fully-connected

classifier of |Cnew| neurons (i.e., φnew(·)) to φold(·).

The weights of the whole model 〈θ(·), φold(·), φnew(·)〉

are optimized during the adaptation phase.

ii) Freezing (FZ) also appends a φnew(·) classifier simi-

larly to FT. However, it solely updates the weights of

this newly added classifier, while the rest of the model

(i.e., 〈θ(·), φold(·)〉) remains fixed.

iii) Rethinking Few-Shot (RFS) [35] uses sequential

knowledge distillation to build an effective base

model during T0. In particular, sequential knowledge

distillation involves exploiting the knowledge of a

teacher. The training proceeds over n learning cycles

(also called self-distillation cycles). In the generic

ith learning cycle (where i ≤ n), the teacher is the

student from the previous (i− 1)th cycle. The student

is then trained to minimize a weighted sum (through α

and β) of the cross-entropy loss (Lce(·)) between the

predictions (ŷs) and the ground-truth labels (y), and

the Kullback-Leibler divergence (KL(·)) between the

student predictions (ŷs) and the soft targets predicted

by the teacher (ŷt). Formally:

(θ, φold)
′ = arg min

(θ,φold)

(

α · Lce(ŷs, y) + β · KL(ŷs, ŷt)
)

where (θ, φold)
′ are the updated weights of the whole

student model. In T1, θ(·) is frozen, and RFS employs

either the logistic regression or the nearest-neighbor

classifier as φ(·)—replacing the φold(·) trained in T0.

When using the nearest-neighbor classifier, the model

weights remain completely unchanged.

For FZ and RFS, the fixed representation helps to limit

forgetting, similar to meta-learning approaches. Conversely,

this problem is more acute for FT, since the embedding

function θ(·) is also updated. However, the usage of Cold

data during T1 (i.e., the model memory) helps to mitigate

forgetting.

IV. EXPERIMENTAL SETUP
This section details the setup adopted in our study for the

experimental evaluation. Section IV-A introduces the threat

categories we consider and the public datasets we adopt.

Then, we delve into the specifics of the FSCIL setup in

Section IV-B.

A. THREAT SCENARIO AND DATASETS

The threat scenario addressed in this paper includes flooding,

trojan, brute force, injection, information gathering, and

man-in-the-middle attacks.

• Flooding (i.e., DoS and DDoS attacks) is a targeted

effort to render a resource—be it a website, application,

or server—unavailable for its intended purpose. Several

TCP/UDP packets overwhelm the server processing

and network capabilities, leading to system paralysis.

DDoS poses a greater challenge than DoS due to

their coordinated assault from multiple locations (e.g.,

botnets managed by a command-and-control server),

resulting in faster attack speed and more traffic volume.

Such differences are also reflected in intrusion detection

datasets [43], [44], [45], which commonly separate DoS

and DDoS attack labels.

• Trojan is a type of malware that deceives users by

disguising itself as a legitimate program. Once on a

victim device, Trojans give attackers remote access,

allowing them to steal sensitive information, download

or upload files, install ransomware, spy on keystrokes,

etc.

• Brute force consists of an attacker systematically trying

to gain access to a system using predefined combina-

tions for access credentials. For the sake of efficiency,

an attacker may try to use common user names and

passwords or may vary the credentials within a large

range.

• Injection consists of an attacker trying to insert mali-

cious code into a system. This malicious code can

then compromise both the targeted system (e.g., the

database) and potentially other connected users, leading

to data breaches, unauthorized access, or even system

manipulation.

• Information gathering attacks (e.g., port scanning, OS

detection, and host discovery) represent the initial

steps to map network vulnerabilities. These techniques

involve sending several probes and analyzing the

responses to identify active devices, open ports, and the

type of operating systems running on those devices.

• Man-in-the-middle (MITM) attacks are deceptive tactics

to intercept and manipulate communication channels

between two parties. The attacker acts as a legitimate

intermediary between the victim and the intended

recipient.

We use CSE-CIC-IDS2018 and IoT-NID for assessing

the performance of the proposed FSCIL NIDS. A series

of reasons lead us to choose these datasets. (i) They

accurately reflect the threat landscape introduced above.

(ii) They capture diverse network scenarios; specifically,

CSE-CIC-IDS2018 collects the traffic of various types

of malicious activities, such as incoming attacks from

external networks and PCs infected with malware (e.g.,

keylogging and ransomware); in contrast, IoT-NID focuses

on the IoT environment, encompassing attacks that target

and exploit compromised IoT devices (i.e., IoT botnets).

(iii) Finally, these datasets have been collected recently and

are widely used in the scientific literature, particularly CSE-

CIC-IDS2018.
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The FSCIL NIDS is evaluated against attackers from out-

side and inside the local network it monitors, which we refer

to as external attackers and internal attackers, respectively.

Following this nomenclature, CSE-CIC-IDS2018 collects

the traffic from both external and internal attackers, whereas

IoT-NID only from internal attackers.

CSE-CIC-IDS2018. CSE-CIC-IDS2018 [43] is the out-

come of a collaborative project between the Communications

Security Establishment (CSE) and the Canadian Institute

for Cybersecurity (CIC). The experimental campaign has

been carried over 10 non-consecutive days, during which

both benign and 14 types of malicious traffic are generated,

including attack classes such as bruteforce, DoS, DDoS,

injection, infiltration, and botnets.4 The generated traffic is

directed towards a LAN hosted on Amazon Web Services

(AWS). The LAN consists of 6 subnets with 450 machines

running different operating systems, applications, and vulner-

abilities. The attack traffic is generated from another external

network of 30 machines using the concept of profiles to

emulate the behavior of real users (via the so called B(enign)-

profile) and attackers (via the M(alicious)-profile). Captured

traffic is released by the authors of the dataset in CSV format

and as PCAP file—viz. raw traffic traces. In this paper, we

leverage the PCAP files and apply to it the traffic processing

techniques presented in Section III.

Given its large size (≈ 3.5M biflows), we downsample

the original dataset by capping the classes (including the

Benign class) at their median size.5 Such a downsampling

procedure has been extensively validated in our previous

works [8], [21], [26] and (being random) it does not impact

the original distribution of (attack and benign) traffic sam-

ples. Furthermore, we carry out a careful dataset cleaning.

We discard Bruteforce-FTP and DoS SlowHTTPTest traffic

due to the sole presence of SYN packets followed by

RST+ACK packets, which suggests misconfiguration at

capture time (i.e., the server under-attack does not have the

probed ports open, thus refusing to open the connection).

We remove the last packets in biflows when appearing after

an unexpectedly long silence span (i.e., with an average IAT

of ≈ 650s compared to ≈ 7s of the other packets). This

characteristic appears in 12% of DoSGoldenEye biflows.

Lastly, we split the biflows of DoS GoldenEye when a new

TCP three-way handshake is observed in the packet sequence

(≈ 19% of the biflows), suggesting that the same 5-tuple is

reused, possibly due to the design of the attack automation

process. The pre-processing phase yields a dataset with 109k

biflows and 12 classes—see Figure 4 (top).

IoT-NID. IoT-NID [45] was collected in 2019 by a

group of researchers from the Hacking and Countermeasure

Research Lab. It consists of network traffic captured during

various types of attacks on two smart home devices: SKT

4See https://www.unb.ca/cic/datasets/ids-2018.html for more details on
labeling.

5We also remove the class Infiltration, as it only includes 5 biflows, i.e.,
an insufficient number of samples to rigorously adapt and test the FSCIL
approaches.

FIGURE 4. Number of per-class biflows (in log scale) of pre-processed
CSE-CIC-IDS2018 (top) and IoT-NID (bottom) datasets. Bars with diagonal hatching
represent DDoS attacks (i.e., Cnew ).

NUGU and EZVIZ Wi-Fi Camera. Such IoT devices—

alongside laptops and smartphones—are interconnected

within the same wireless network, simulating a realistic

smart-home environment. The dataset consists of 42 PCAP

files, each captured at different time intervals. IoT-NID

encompasses 5 macro-categories (i.e., normal traffic, MITM

attacks, Mirai botnet, DoS, and scanning). From these

macro-categories, it is possible to derive 10 sub-categories

concerning the particular attack technique (e.g., HTTP and

ACK flooding). Except for Mirai—where the attacks are

simulated through packets generated on a laptop and manip-

ulated to appear as if originating from the IoT device—all

other attacks involve packets captured during the simulation

of the attack using tools like Nmap. IoT-NID is released as

PCAP files. Labeling is performed by applying filter rules

defined by the authors usingWireshark. Following the phases

of data extraction from the PCAP files and pre-processing,

we end up with a dataset that comprises 196k biflows and

10 classes—see Figure 4 (bottom).

Table 4 highlights how the attacks of the two datasets

are distributed across the threat categories introduced at the

beginning of the present section.

B. FSCIL SETUP

In the following, we detail the FSCIL setup to foster

the reproducibility of our study. The main aspects are

summarized in Table 5.

Evaluation Procedure. In line with the alarming emer-

gence of (D)DoS threats (see Section I), Cnew includes

different types of DDoS attacks for evaluation purposes.

Such a choice enables a thorough analysis of DDoS clas-

sification: we investigate both the ability of the approaches

to differentiate among DDoS attacks and their capability

to discern them from other known attacks and normal

traffic (we recall that all the attack classes are considered

in our evaluation process). Therefore, the traffic classes

6746 VOLUME 5, 2024



TABLE 4. Categorization of the attacks present in CSE-CIC-IDS2018 and IoT-NID.

TABLE 5. Parameters characterizing the episodes for both CSE-CIC-IDS2018 and
IoT-NID.

FIGURE 5. FSCIL evaluation procedure.

in the considered datasets are divided into Cnew and Cold

as follows. Concerning CSE-CIC-IDS2018, Cnew contains

DDoS LOIC-UDP, DDoS LOIC-HTTP, and DDoS HOIC.

For IoT-NID, Cnew includes Mirai ACK Flooding, Mirai

HTTP Flooding, andMirai UDP Flooding. For both datasets,

classes in Cnew are depicted with diagonal hatching in

Figure 4. Remaining attacks and benign traffic are in Cold.

After defining Cnew and Cold, we split the datasets for

selecting the portions used for each FSCIL phase to perform

a fair evaluation between the meta-learning and transfer-

learning approaches. For brevity, we refer to Figure 5 for the

particular evaluation procedure. Notably, the last two splits

to obtain Dtrain
old , Dval

old, and Dtest
old are performed via stratified

hold-out.6 The dataset partitions obtained in this way are

utilized as follows:

i) Regarding meta-learning approaches: Dtrain
old is used

for meta-training, Dval
old for meta-validation, and Dtest

all

(= Dnew ∪ Dtest
old , see Figure 5) for meta-testing

(viz. adaptation phase).

ii) Regarding transfer-learning approaches: Dtrain
old is

employed for training, Dval
old for validation, and Dtest

old

for testing during pre-training; Dtest
all is used during

fine-tuning (viz. adaptation phase).

As mentioned in Section III-C, we draw a set of adaption

episodes from Dtest
all . Each episode comprises two data

partitions: one used to learn novel knowledge during the

adaptation phase (i.e., the support set) and one to test the

model on both new (Cnew) and previously encountered (Cold)

classes (i.e., the query set). Further details on episode setup

are provided in the next paragraph.

Episode Setup. Herein, we elaborate on the triplet

〈N,Ks,Kq〉, which characterizes the episode sampling.

During the meta-testing phase (resp. fine-tuning) for meta-

learning (resp. transfer-learning) approaches, we leverage

|Call|-way K-shot tasks when sampling from Dtest
all . This

results in N = 12 for CSE-CIC-IDS2018 and N = 10

for IoT-NID. We keep Ks = K = 10 and Kq = 5 for

both datasets. Regarding meta-training and meta-validation

of meta-learning approaches, we fix the triplet to 〈N =

|Cold|,Ks = 10,Kq = 5〉, where |Cold| = 9 for CSE-CIC-

IDS2018 and |Cold| = 7 for IoT-NID. Such information

is also reported in Table 5 for reader convenience. The

approaches from both learning paradigms are evaluated

across 100 episodes.

Hyperparameter Configuration. We set the hyperparam-

eters determining the configuration of the FSCIL approaches

based on preliminary tuning experiments (not reported for

the sake of brevity), results from state-of-the-art papers

proposing the original approaches, or analyses performed in

our previous works [8], [21], [26].

In terms of approach-specific hyperparameters,

MetaOptNet is trained with a regularization parameter

set to 0.1 and a maximum of 15 SVM iterations. Both

MatchingNet and ProtoNet resort to the Euclidean

distance as similarity metric. RFS is characterized by α =

β = 0.5, and employs a nearest-neighbor classifier during

the fine-tuning phase and one self-distillation cycle (see

Section III-C2 for the meaning of hyperparameters).

Concerning the general hyperparameters, the cross-

entropy loss is used to measure the classification error,

except for RFS which adds the Kullback-Leibler divergence

as an additional loss term during pre-training. A custom

early-stopping mechanism is employed to address overfitting

during the meta-training and pre-training phases. It monitors

both accuracy and loss on Dval
old, with a minimum delta

6To sample episodes with an adequate number of samples, 15 is chosen
as the minimum number of biflows per class when performing the hold-out
technique.
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of 10−3 and patience of 20 epochs. Below, we report the

remaining general hyperparameters according to the learning

phases to which they refer:

• During the meta-training and pre-training phases of

meta-learning and transfer-learning approaches, respec-

tively, we set the maximum number of epochs to 200

and use the Adam optimizer with 10−4 learning rate.

The transfer-learning approaches use a batch size of 64

samples.

• During the fine-tuning phase—performed only for

transfer-learning approaches, except RFS leveraging the

nearest-neighbor classifier—the batch size is 4 samples,

the maximum number of epochs is 200, and the learning

rate of the Adam optimizer is set to 10−3.

Regarding traffic segmentation, we set Np = 20 packets.7

In our initial analyses, we empirically set Ts (cf. Section III-

B1) to 330s. This choice guarantees sufficiently fast

classification in the worst cases, while allowing the NIDS

to collect enough packets also for slow DoS attacks, such

as DoS Slowloris and DoS GoldenEye. In addition, in

Section V-E, we showcase the NIDS performance for various

values of Ts.

Non-FSCIL State-of-the-Art Approach. We evaluate our

FSCIL-based NIDS against the non-FSCIL state-of-the-

art way of handling novel attacks, that is training the

model from scratch whenever new attack knowledge becomes

available. This approach is referred to as SOTAnonFSCIL

in the following. The model is trained using the maximum

number of available Cnew samples (i.e., there is no K-shot

constraint). SOTAnonFSCIL comprises an embedding function

θ(·) having the same architecture presented in Section III-B2,

specifically designed for IoT-traffic classification [40] and

attack-traffic classification [8], [21], [26]. The embedding

function is followed by a fully-connected layer φ(·), with

|Call| neurons and Softmax activation function.

Regarding the evaluation scenario for SOTAnonFSCIL,

we partition the full dataset D into 3 subsets: training,

test, and validation, using a stratified hold-out technique.

The test set comprises 30% of D, while the 70% of

D is further split for the training set (90%) and the

validation set (10%). SOTAnonFSCIL is trained, validated,

and tested using the respective aforementioned subsets. As

for the hyperparameters (i.e., epochs, learning rate, etc.),

SOTAnonFSCIL shares the same configuration of transfer-

learning approaches during the pre-training phase.

Performance Metrics. We employ the F1-score and

confusion matrices for evaluating the performance of our

FSCIL-based NIDS and the Accuracy, False Positive Rate

(FPR), and True Positive Rate (TPR or Recall) for in-detail

insights. Specifically, for each metric, we compute the mean

per-episode score—i.e., the average of the scores achieved

on the 100 episodes sampled during the adaptation phase (see

7This choice is based on sensitivity analyses conducted in our previous
works [21], [26] and on IoT-NID. In the latter case, we have varied Np
from 10 to 50 packets with a step of 10. The results show a growth of the
F1-score up to Np = 20 after which a plateau is reached.

Sections II-A and IV-B for details)—and the corresponding

confidence interval (at the 95% confidence level) on the

query sets extracted from Dtest
all .

To compute the FPR and Recall, we combine all attack

classes into a single class—turning the problem into a binary

classification task (benign vs. malicious). In this way, we

can use the FPR and Recall to validate the NIDS’ ability to

determine whether a biflow is malicious or not.

The FPR indicates the probability that a NIDS will

generate false alarms, and thus it needs to be minimized.

The FPR is formally computed as:

FPR =
FP

FP+ TN

where TP (True Positive) represents the number of correctly

predicted benign biflows, FP (False Positive) the number

of malicious biflows incorrectly predicted as benign, TN

(True Negative) the number of correctly predicted malicious

biflows, and FN (False Negative) the number of benign

biflows incorrectly predicted as malicious.

Conversely, the Recall is the proportion of actual positives

(i.e., benign biflows) correctly identified; formally:

Recall =
TP

TP+ FN

Regarding the evaluation of multi-class performance, the

(macro) F1-score is calculated as the per-class average of

the harmonic mean of Precision and Recall, formally:

F1-score =
1

|C|

|C|
∑

i=1

2 × Precisioni × Recalli

Precisioni + Recalli

Here, |C| denotes the number of classes (i.e., the cardinality

of Cnew, Cold, or Call), Precisioni measures the ratio of

predictions of class Ci being correct, Recalli measures

the ratio of biflows actually belonging to class Ci correctly

classified, and the F1-score takes into account both these

aspects via their harmonic mean.

The Accuracy is the ratio of correctly classified biflows

to the total number of biflows:

Accuracy =
1

|D|

|D|
∑

i=1

1
(

ŷi = yi
)

where |D| denotes the number of biflows in the dataset D,

1(·) is a function that returns 1 if the predicted label equals

the ground truth (i.e., the condition is true) and 0 otherwise,

yi is the ground truth, and ŷi is the prediction for the ith

biflow.

Lastly, we leverage the confusion matrices to identify the

most frequent misclassification patterns. Indeed, they offer an

intuitive visual representation of actual vs. predicted biflows

for each class, where the diagonal of the matrix represents

the correct predictions.

Implementation Details. All the analyses in this paper are

executed on a machine with 12 Intel Xeon CPU E5-2430 v2

@ 2.50GHz and 62GB of memory. We tailored the PyTorch

implementations of ProtoNet and MetaOptNet from the
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FIGURE 6. Sensitivity analysis to the number of shots on CSE-CIC-IDS2018 (a) and IoT-NID (b). Note that the figures related to the F1-score on the Cnew classes have the
upper part zoomed in to highlight the differences between the various approaches.

learn2learn framework [46], MatchingNet from the code

provided in [28], while RFS from the LibFewShot frame-

work [47]. We implemented FT, FZ, and SOTAnonFSCIL

according to their commonly known designs [48].

V. EXPERIMENTAL EVALUATION
In the following, we report the results of the experimen-

tal analysis. First, in Section V-A, we evaluate various

FSCIL approaches (belonging to both the meta-learning

and transfer-learning paradigms) based on their ability to

classify new attacks with a varying (though limited) number

of samples (i.e., biflows). The goal is to select the best-

performing approach as the core for our FSCIL-based NIDS.

In Section V-B, we assess the efficacy of this FSCIL-

based proposal versus the non-FSCIL state of the art, which

(re)trains the model from scratch when dealing with new

attack classes. Afterward, we validate different properties

of the proposed FSCIL-based NIDS. In Section V-C, we

investigate its performance in classifying both malicious

and benign traffic. We also cross-validate its robustness

when operating on traffic from a dissimilar network context

compared to the traffic seen during training. In Section V-D,

we evaluate the usefulness of the NIDS’ input data through

a feature-ablation study. Finally, in Section V-E, we analyze

the performance of our proposed NIDS in a tight early-

classification scenario, aiming to find a good trade-off

between the time-to-insight and classification effectiveness.

A. SENSITIVITY TO THE NUMBER OF SHOTS

The goal of this first analysis is to evaluate the impact of the

number of shots composing episodes on the performance of

the FSCIL approaches in classifying traffic biflows (viz. the

effect of adapting the NIDS with few samples). Additionally,

this analysis serves to select the best approach to be used

as the core of the NIDS. This assessment is conducted after

integrating a limited number of samples from previously

unseen (i.e., during training) DDoS attacks, where the

quantity is determined by the value of K(= Ks). Therefore,

we show the F1-score achieved on Cnew, Cold, and Call

while varying the number of shots in the tasks used during

the meta-testing and fine-tuning phase. In particular, we

consider 6 possible values for K, namely K ∈ [5, 10].

In fact, with K < 5, the approaches exploiting metric-

based classifiers (e.g., MatchingNet, ProtoNet, RFS)

show a high variability given the low representativeness of

the support set (having only one sample per class when

K = 1). Results on CSE-CIC-IDS2018 and IoT-NID are

summarized in Figure 6.

Performance on CSE− CIC− IDS2018. Figure 6(a)

reveals satisfactory performance across all FSCIL

approaches when considering the F1-score obtained on Cnew

for CSE-CIC-IDS2018: all of them achieve F1-score values

greater than 97%, showing high effectiveness in classifying

novel DDoS attacks with few samples. MetaOptNet is

the best performing, with a near-perfect trend consistently

close to 99.5% for values of K from 5 to 9. ProtoNet

is following closely and also exhibits significant values

around 99.5% starting from K = 6. In contrast, RFS

exhibits a poorer (although still satisfactory) F1-score but

with a loss always lower than 3%. Similar to MetaOptNet,

MatchingNet shows a fairly stable trend with negligible

degradation with K = 10. The remaining approaches exhibit

a positive upward trend as K increases.

The performance on Cold is switched: RFS achieves the

highest results even when employing an extremely limited

number of K = 5 memory samples. Additionally, it gains

+4% from K = 5 to K = 10 reaching up to 95% F1-score.

This result likely originates from its sequential knowledge

distillation strategy. By effectively transferring knowledge

from the teacher model, RFS strengthens its representation
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of Cold, thus building a grounded base model for FSCIL.

MetaOptNet also shows a similarly high F1-score but only

with K = 10. Although the remaining approaches do not

reach the peaks of RFS and MetaOptNet, they still obtain

significant F1-score values (up to 90%).

Finally, for Call, we can draw conclusions similar to Cold,

with RFS outperforming the other approaches for all K

values. This outcome demonstrates that the 9 classes in Cold

weigh more than the 3 classes in Cnew.

Performance on IoT-NID. Figure 6(b) depicts the F1-

score on Cnew, Cold, and Call for IoT-NID. Starting with

the values obtained on Cnew, the F1-score reveals note-

worthy trends among the different approaches. Except for

ProtoNet, all exhibit good performance for the considered

shot values. In detail, ProtoNet shows lower F1-scores,

ranging between 75% and 85%. This could be attributed to

the shape of its feature-vector clusters in the embedded space,

which hinders the effective utilization of the prototypes

especially for lower shots. On the other hand, both RFS

and FZ achieve satisfactory F1-scores (i.e., from 92% with

K = 5 to 95% with K = 10). The remaining approaches

(i.e., MatchingNet, FT, and MetaOptNet) report F1-

score values between 85% and 90% with K = 5. As the

number of shots increases, the gap among the approaches

narrows, converging around 95% F1-score.

Regarding Cold, all the approaches but FT and FZ achieve

satisfactory results, reaching F1-scores up to 92%. As the

value of K increases, a slight upward trend is observed, with

FT experiencing the most substantial increase. FZ exhibits

notably poor performance ranging between 30% and 40%,

indicating that the sole fine-tuning of φnew is insufficient

for this dataset. Similar considerations can be brought also

for Call where all the approaches present slightly better

performance than Cold.

Take-Home Messages. All FSCIL approaches (except FZ

on IoT-NID) exhibit excellent performance in classifying

attacks whose samples were absent in the training set (Cnew).

Regarding the performance achieved when classifying the

attacks observed during the training phase (Cold), RFS

stands out due to its knowledge distillation strategy, which

enables a highly effective model. This underscores that

incorporating novel knowledge about DDoS attacks does

not compromise the representation learned for Cold. This is

further confirmed by the fact that on Call, RFS is the overall-

best-performing approach, and then it is chosen as the core

component of our NIDS.

B. COMPARISON WITH NON-FSCIL STATE OF THE ART

Building on the previous analysis, in this section we evaluate

whether using an NIDS based on FSCIL results in greater

effectiveness compared to the traditional SOTAnonFSCIL

method. As aforementioned, we consider RFS as the base

approach for our FSCIL-based NIDS. RFS is evaluated on

different Ks shots, namely Ks ∈ [5, 10] with step 1. On the

other hand, as described in Section IV-B, SOTAnonFSCIL is

FIGURE 7. Comparison between RFS and SOTAnonFSCIL on Call . RFS is evaluated by
varying Ks , while SOTAnonFSCIL uses the maximum number of samples available for
Cnew .

FIGURE 8. Comparison in terms of F1-score [%], Accuracy (Acc) [%], FPR [%], and
Recall [%] between RFS (with Ks = 10) and SOTAnonFSCIL on Call . To better highlight the
results, the radial axis is zoomed between 80% and 100%. We report the complement
of FPR to 100% to make such a metric comparable to the others (i.e., the higher the
better).

trained from scratch by leveraging all the available samples

of Cnew (i.e., there is no few-shot constraint).

RFS vs. SOTAnonFSCIL: Classification Performance. For

both datasets, the performance of RFS in terms of F1-score

is comparable to SOTAnonFSCIL already with Ks = 5 on Call

(see Figure 7). Specifically, on CSE-CIC-IDS2018, RFS

equals SOTAnonFSCIL with Ks = 5. With a higher number

of shots (i.e., Ks = 10), RFS reaches an F1-score of 95%,

gaining +3% compared to SOTAnonFSCIL. On IoT-NID,

RFS achieves an F1-score of 90% with Ks = 5 versus the

88% of SOTAnonFSCIL. The gap increases up to +5% in

favor of RFS with 9 shots.

When considering the performance on Cnew (figure omitted

for the sake of brevity), SOTAnonFSCIL slightly surpasses

RFS by +1% F1-score on CSE-CIC-IDS2018 and by +4%

on IoT-NID with Ks = 10. Indeed, SOTAnonFSCIL is trained

using all samples of Cnew, thereby providing an upper bound

to the performance of RFS, which is limited to Ks samples.

Figure 8 provides further insights into the intrusion

detection capability of the two approaches. Specifically,

SOTAnonFSCIL achieves +5% Accuracy compared to RFS.

Detailing, SOTAnonFSCIL achieves a higher Accuracy due

to its bias towards majority classes, as it is trained on all

available samples. This results in a class imbalance issue,

evident when comparing the F1-score of SOTAnonFSCIL

with that of RFS. On the other hand, RFS leverages a

balanced number of Cold memory samples and Cnew shots,
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thus mitigating such an issue. When merging all attack

classes into a single malicious class (cf. Section IV-B),

SOTAnonFSCIL shows superior performance in terms of

Recall on IoT-NID. Conversely, there is no significant

difference on CSE-CIC-IDS2018 and in terms of FPR.

RFS vs. SOTAnonFSCIL: Time Analysis. Another fun-

damental aspect to consider is the time required to adapt

the model to new classes—during meta-testing for meta-

learning approaches, T1 for transfer-learning approaches, and

retraining from scratch for SOTAnonFSCIL. In particular, the

adaptation time is extremely short for RFS (≈ 0.2 seconds

with K = 10), while the full retrain of SOTAnonFSCIL

is much longer (≈ 620 seconds): namely, FSCIL guar-

antees a ≈ 3000× adaptation-time reduction compared to

SOTAnonFSCIL.

Take-Home Messages. RFS achieves classification

performance on par with SOTAnonFSCIL already with very

few shots and surpasses it for higher shots. This demon-

strates its high adaptability even with few available samples.

Additionally, our RFS-based NIDS exhibits an adaptation

time 3 orders of magnitude shorter than the time required

by SOTAnonFSCIL for training the model as the few samples

of previously unseen attacks become available.

C. MISUSE-DETECTION STUDY

This analysis delves into the behavior of our NIDS based

on the best-performing RFS approach in the challenging

scenario where only 10 samples for each previously unseen

attack are available (Ks = 10). The objective is to validate

the RFS ability to distinguish between various (DDoS)

attacks not available at the training phase, telling them apart

from other malicious and benign traffic.

Validation on Single Datasets. The confusion matrix on

CSE-CIC-IDS2018 classes (denoted as CCICall ) is depicted in

Figure 9(a). Overall, the separability among DDoS attacks is

notably high, with negligible misclassifications. For the train-

ing classes (CCICold ), the maximum confusion arises between

SQL Injection and Bruteforce Web: 18% of SQL Injection (i)

instances are classified as Bruteforce Web (g). This outcome

suggests a certain similarity between these two attacks.

Notably, 9% of Benign (a) biflows are confused with various

attacks, including 5% as DDoS LOIC-HTTP (k) and 2% as

DDoS HOIC (j). Starting from these results, we aggregate the

attack classes into a single malicious class (cf. Section IV-B).

We observe that the FPR and Recall achieve satisfactory

values, i.e., 0.8% and 98.7%, respectively. To deepen the

investigation, Figure 9(c) presents the projection of the

feature vectors υ produced by the embedding function

trained with RFS into a two-dimensional space via the t-

Distributed Stochastic Neighbor Embedding (t-SNE). This

method allows us to visualize the quality of the output

produced by the embedding CNN [49]. In fact, given that

t-SNE aims to preserve the local structure of υ—i.e., nearby

(resp. distant) elements should also be close (resp. far) in

the two-dimensional space—we can observe how the classes

are organized into well-defined clusters. This outcome is

FIGURE 9. Confusion matrices of RFS when tested with tasks having Ks = 10 on
(a) CCIC

all and (b) CNID

all . Feature vectors projected in a two-dimensional space via t-SNE
on (d) CCIC

all and (c) CNID

all . For (a) and (b), white lines separate Cold from Cnew , which are
the last three classes.

CSE-CIC-IDS2018 label encoding:
a = Benign, b = Bot, c = DoS Hulk, d = DoS GoldenEye, e = DoS Slowloris,
f = B-SSH*, g = B-Web*, h = B-XSS*, i = SQL Inj. j = DDoS HOIC, k = DDoS
LOIC-HTTP, l = DDoS LOIC-UDP, * B stands for Bruteforce.

IoT-NID label encoding:
α = Benign, β = DoS SYN F*, γ = Port Scanning, δ = Host Discovery, ǫ = OS Detection,
ζ = MITM ARP S†, η = Mirai Host B‡, θ = Mirai ACK F*, ι = Mirai HTTP F*, κ = Mirai UDP
F*, * F stands for Flooding; † S stands for Spoofing; ‡ B stands for Bruteforce.

particularly useful when the classification is carried out with

a distance metric applied on feature vectors (as for RFS).

Only minor overlapping can be observed between Bruteforce

Web (g), Bruteforce XSS (h), and SQL Injection (i), hence

confirming the effectiveness of the Euclidean distance used

by RFS.

Figure 9(b) showcases the confusion matrix of the classes

in IoT-NID (CNIDall ). The examination of Cnew reveals a

7% misclassification rate where Mirai HTTP Flooding (ι)

biflows are erroneously classified as Mirai Host Bruteforce

(η). Conversely, 11% of Mirai Host Bruteforce (η) biflows

are mistakenly classified as Mirai HTTP Flooding (ι).

Regarding Cold, 9% of MITM ARP Spoofing (ζ ) biflows

are confused with Benign (α) and OS Detection (ǫ). This

confusion might stem from the similarity in ARP traffic

among these three classes. On the other hand, a specular

trend emerges: 2% of Benign (α) biflows are wrongly

classified as Os Detection (ǫ) and another 2% as MITM ARP

Spoofing (ζ ). Differently from the results obtained on CSE-

CIC-IDS2018, the Recall tends to be lower (87.8%), while

the FPR is relatively the same (0.7%). In Figure 9(d), we

depict the two-dimensional projection also for the samples

of CNIDall . It can be noticed that the previous observations

on ARP traffic are reflected in this figure. Benign traffic

is divided into three clusters, two of which are partially

overlapped with the projections of MITM ARP Spoofing (ζ ).

Cross-Validation on Different Datasets. We further

enrich our analysis by cross-validating RFS on different
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FIGURE 10. Confusion matrices of RFS when tested with tasks having Ks = 10 on
(a) CNID

old ∪ CCIC
new and (b) CCIC

old ∪ CNID
new . Feature vectors projected in a two-dimensional

space via t-SNE on (c) CNID

old ∪ C
CIC
new and (d) CCIC

old ∪ C
NID
new . Label encoding is the same as

reported in Figure 9.

datasets, i.e., by evaluating the effectiveness in classifying

previously-unseen attacks for which few labeled samples are

available when the model has been trained on the traffic of

another dataset. The objective is twofold: (i) Assessing the

resilience of an already trained NIDS in a context where it

faces also attacks with a different nature; this analysis allows

for an evaluation of how well the existing model generalizes

and adapts to diverse attack scenarios, shedding light on its

robustness in varied landscapes. (ii) Validating the possibility

of training a NIDS in a simpler scenario (e.g., a controlled

laboratory environment or a scenario with only internal

attackers) and effortlessly adapting it to more complex cases

(e.g., an open-world environment or a scenario comprising

external attackers) even with a very limited number of

samples for new classes. In line with the previous analyses

and the datasets considered (see Section IV-A for details),

we discuss the performance when Cold are taken from one

dataset and Cnew from the other one: namely, CNIDold ∪ CCICnew

and CCICold ∪ CNIDnew .

Figure 10(a) assesses the performance for CNIDold ∪ CCICnew .

The 3 DDoS attacks from CSE-CIC-IDS2018 are perfectly

classified. Such a behavior is also confirmed in Figure 10(c),

where the projections of these classes are grouped in distinct

clusters. However, concerning the training classes of IoT-

NID, a misclassification pattern is evident: 8% of the biflows

of MITM ARP Spoofing (ζ ) are confused with DDoS LOIC-

HTTP (k). This discrepancy is likely due to the inadequate

representation of these classes in the embedded space. There

is a slight decline compared to the evaluation on CNIDall , with

the FPR standing at 1% and the Recall at 86.5%.

On the other side, Figure 10(b) presents the confu-

sion matrix obtained with CCICold ∪ CNIDnew . Differently than

Figure 9(a), a better separation between Cnew and Cold

emerges. However, there is a slight confusion among

CNIDnew . Especially, 7% of the Mirai ACK Flooding (θ)

biflows are misclassified with Mirai HTTP Flooding (ι).

The remaining classes of CCICold do not exhibit noteworthy

differences from previously discussed observations. The lack

of noteworthy shifts is also confirmed by the FPR (0.7%)

and Recall (96.8%). These outcomes are further confirmed

in Figure 10(d). Indeed, the clusters related to CCICold remain

relatively similar to their respective clusters in Figure 9(c),

while a slight overlap can be noticed between Mirai ACK

Flooding (θ) and Mirai HTTP Flooding (ι).

Take-Home Messages. When tested on CSE-CIC-

IDS2018 or IoT-NID, the NIDS based on the

best-performing RFS approach is able to distinguish

previously-unseen attacks with just 10 biflows for each

attack-traffic class not observed during training. Minor

confusion exists between specific pairs of classes. The cross-

validation on different datasets reveals the approach to be

robust against DDoS attacks as captured in diverse scenarios

compared to those considered in the training phase. However,

misclassifications tend to be slightly higher, emphasizing

the need for further refinement in handling diverse attack

scenarios.

D. FEATURE-ABLATION STUDY

In this section, we investigate the performance of the

proposed RFS-based NIDS with Ks = 10 when ruling out

the 6 input features one at a time (cf. Section III-B1),

namely packet length (PL), inter-arrival time (IAT), TCP

window size (WIN), time-to-live (TTL), TCP flags (FLG),

and direction (DIR). Such an ablation study aims to evaluate

which features help RFS the most in classifying benign and

attack traffic.

Table 6 displays the values of the F1-score related to this

analysis conducted on CSE-CIC-IDS2018 and IoT-NID.

Furthermore, the distributions of the values for the 6 features

for each attack and benign traffic are illustrated in Figure 11

(left) via box plots. This provides a more comprehensive

overview of the characteristics of malicious and benign

traffic in both datasets, thus allowing us to provide an initial

explanation of the attained results.

Ablation Analysis on CSE-CIC-IDS2018. The removal

of any feature does not yield significant improvements in

classifying Cnew (being always lower than the confidence

interval over the number of episodes). In detail, the ablation

of PL, WIN, TTL, and FLG results in a small F1-score

boost—up to +1.06% when removing WIN. Regarding the

WIN feature, the observed improvement is not due to a better

classification of Cnew biflows (i.e., the true positives are

almost unchanged compared to the case without ablation)

but rather to confusion between Benign and Cnew. In fact,

7% of Benign biflows that were previously misclassified as

DDoS LOIC-HTTP or DDoS HOIC have now decreased to

4%. This can be explained by observing how the distribution

of WIN for the Benign class is similar to that of DDoS

HOIC, as shown in Figure 11. A different trend emerges
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TABLE 6. F1-scores [%] of RFS for different ablated features (AF ) when Ks = 10. Results achieved with the complete set of features are highlighted in bold. Red and green
colors indicate performance losses and gains, respectively, compared to the scenario without feature removal. The confidence interval is always < 2%.

when ablating IAT and DIR. The removal of the former

leads to a higher percentage (9%) of DDoS LOIC-HTTP

biflows misclassified as Benign. This is likely because the

IAT exhibits distributions substantially different between the

classes (see Figure 11), easing their differentiation. A similar

consideration holds when ablating DIR but involving fewer

classes (e.g., Bruteforce and SQL Injection attacks), hence

with less impact on results.

On the other hand, different outcomes can be observed on

Cold. While the ablation of WIN, TTL, and FLG has again a

minor effect, removing the PL has a non-negligible negative

impact (≈ −6%) on the F1-score. Such feature plays indeed

a relevant role in distinguishing between Bruteforce Web and

SQL Injection attacks, which would otherwise be too similar

when compared in terms of the remaining 5 features, as

illustrated in Figure 11. The ablation of IAT affects Cold

similarly to what is noticed on Cnew. On the contrary, the

opposite behavior is observed when removing DIR (and to a

lesser extent WIN): in this case, Bruteforce-Web/Bruteforce-

XSS and SQL Injection share a distribution of DIR and WIN

values extremely similar. Therefore, the elimination of these

features leads to an improved separability between these

attack classes.

Ablation Analysis on IoT-NID. The ablation study

reveals two noteworthy outcomes regarding Cnew. First,

when removing PL the F1-score gains +0.72%. Such an

improvement is primarily attributed to a smaller percentage

of Mirai HTTP Flooding biflows mistakenly classified as

Mirai Host Bruteforce. This phenomenon can be explained

by the analogous PL distribution between the two attacks, as

depicted in the right part of Figure 11. Secondly, removing

TTL leads to a substantial performance drop of ≈ −12%.

The reason behind this result lies mainly in the confusion

between Mirai ACK and HTTP Flooding. Specifically, the

packets of the former attack mostly have a TTL set to 64,

while those of the latter have it set to 128. This discrepancy in

TTL values significantly influences the classification process,

highlighting a relevant role in distinguishing between the

two aforementioned DDoS attacks. However, this finding

raises concerns about the vulnerability of the model to the

manipulation of TTL values, potentially enabling evasion

strategies. The removal of the remaining features results in

relatively minor shifts in performance. Only FLG constitutes

a notable exception: removing it produces a performance

decrease of ≈ −2%. This drop can be attributed to a general

degradation of the misclassification errors that were already

present in the model trained without feature ablation.

Regarding the performance on Cold, a slight improvement

is observed upon the removal of PL. The cause can be

ascribed to the improved separability between OS Detection

and MITM ARP Spoofing. However, it should be noted

that malicious samples classified as Benign slightly increase

in number, highlighting the effectiveness of this feature

in distinguishing malicious and benign traffic (which are

characterized by distinct distributions of PL). The opposite

behavior (i.e., −2% in F1-score) is observed when removing

WIN. Specifically, this ablation leads to an increase in con-

fusion between MITM ARP Spoofing and Benign. Similarly

to previous cases, the rationale behind this shift becomes

apparent when examining Figure 11, where it is detected

that the distribution of WIN diverges slightly between the

two classes.

Take-Home Messages. Experimental results show that

removing any of the features leads to a drop or a negligible

gain in the F1-score when classifying Cnew. This demon-

strates that each selected feature is essential for the NIDS

to effectively handle all the attacks of the threat scenario.

The drop is more significant when considering the effect

of ablation on Cold. Notably, the absence of TTL leads to

a significant ≈ −12% F1-score decrease due to increased

confusion between Mirai ACK and HTTP Flooding,

thus raising challenges concerning the vulnerability of the

NIDS to TTL manipulation. Nevertheless, this outcome also

reveals insights into the importance of this feature along with

the other ones chosen to feed our RFS-based NIDS.

E. SENSITIVITY TO THE TEMPORAL THRESHOLD

This last analysis showcases the performance of our NIDS as

the threshold Ts varies. The value chosen for Ts influences

the time-to-insight, namely the time elapsed from the arrival

of the first packet of a biflow to its classification (then driving

the actions/countermeasures of the network administrator).

In fact, the other terms that affect such time (i.e., the time

needed for input-data extraction and feature embedding) are

VOLUME 5, 2024 6753



MONDA et al.: FEW-SHOT CLASS-INCREMENTAL LEARNING FOR NETWORK INTRUSION DETECTION SYSTEMS

FIGURE 11. Data distribution of CSE-CIC-IDS2018 (left) and IoT-NID (right) classes.
Regarding the box plots, the cyan line represents the median value, outliers are
depicted with gray dashes, � is the maximum value, whereas � is the minimum.
Traffic classes are grouped based on their threat category. PL, IAT, and DIR are
represented in log scale, WIN and FLG in symlog for visualization purposes.

significantly lower compared to Ts values on the order of

tens of seconds.

The value of Ts is expected to impact the performance

of the NIDS as follows: when Ts is low (e.g., less than

a minute), we expect degraded performance of the NIDS,

albeit with a reduced time-to-insight; conversely, higher Ts
values should lead to performance enhancement due to the

availability of more data (i.e., more packets per biflow)

but with a longer time-to-insight, thus potentially increasing

vulnerability to slow flooding attacks. Therefore, we aim at

finding a good trade-off between classification effectiveness

and time-to-insight.

Based on the results of the previous investigations, for this

analysis, we employ RFS with Ks = 10 and all the 6 input

features. We focus on CSE-CIC-IDS2018, as it contains

biflows of longer duration, e.g., slow flooding attacks. This

analysis has no practical interest for the traffic in IoT-NID

as 90% of its biflows complete within 0.95s.

Figure 12 presents the confusion matrices obtained by

varying Ts ∈ {1s, 5s, 10s, 50s, 100s,MAXb}, where MAXb =

1340s is the maximum biflow duration in CSE-CIC-

IDS2018. As anticipated, the F1-scores in Figure 12 show a

gain of +9% passing from Ts = 1s to Ts = 10s. Specifically,

with Ts = 1s, the percentage of biflows affected by the

threshold equals 41.17%, while it decreases to 22.88% at

Ts = 10s. Despite setting Ts = 1s reduces the number of

packets to be capitalized for a significant number of biflows

(i.e., 41.17% of CSE-CIC-IDS2018 samples), the F1-score

is partially affected down to 86%. This outcome is mainly

due to the higher rate of false-positive misclassifications

(16.6%): higher values for Ts are required to decrease

the ratio of undetected intrusions. In fact, increasing Ts
beyond 10s exhibits a substantial plateau with only negligible

fluctuations. Setting Ts to MAXb does not yield performance

improvements, indicating that a short Ts (e.g., Ts = 10s)

allows for an excellent trade-off between time-to-insight and

classification performance.

The confusion matrices in Figure 12 allow us to delineate

a fine-grained investigation of the benign and attack traffic

which discloses three interesting misclassification patterns:

i) As discussed in Section V-C, a confusion between

the three attack types Bruteforce-Web (g), Bruteforce-

XSS (h), and SQL Injection (i) is evident. The pattern

remains consistent regardless of the Ts value, suggest-

ing a common profile for these attacks.

ii) DoS Slowloris (e) is confused with DoS GoldenEye

(d) or DoS HULK (c). This misclassification is partic-

ularly noticeable for short Ts values: to address this

issue, a minimum observation time of Ts ≥ 10s is

recommended. Indeed, the packets generated by this

attack tend to have higher IAT values, as evident by

the IAT distribution in Figure 11.

iii) Lastly, some Benign biflows (a) are misclassified as

DDoS LOIC-HTTP (k). The confusion decreases for

higher Ts: from 9.5% of misclassified benign samples

with Ts = 1s to 2.8% with Ts = 100s. Nonetheless, a

good compromise is reached at Ts = 50s, with 3% of

benign samples erroneously classified.

Take-Home Messages. This analysis shows that properly

adjusting the threshold Ts can improve both the time-to-

insight and the accuracy of a NIDS. An appropriate trade-off

is needed based also on the attack types to be detected—for

instance, certain slow DoS attacks require more time (e.g.,

Ts = 50s) for accurate detection. Overall, by setting a short

Ts (e.g., equal to 10s), the NIDS can achieve satisfactory

performance without sacrificing a prompt time-to-insight.

VI. CONCLUSION AND FUTURE PERSPECTIVES
In order to deal with the constant evolution of the threat

landscape, in this paper, we designed a NIDS based on the
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FIGURE 12. Confusion matrices of RFS when tested with Ks = 10 tasks and different Ts values. Results are in log scale to enhance small errors.

CSE-CIC-IDS2018 label encoding: a = Benign, b = Bot, c = DoS Hulk, d = DoS GoldenEye, e = DoS Slowloris, f = B-SSH*, g = B-Web*, h = B-XSS*, i = SQL Inj., j = DDoS HOIC, k =
DDoS LOIC-HTTP, l = DDoS LOIC-UDP; * B stands for Bruteforce.

FSCIL paradigm. Our proposal can adapt to classify attacks

not observed at the training phase when only few samples

of each (i.e., less than 10) become available. It demonstrates

excellent and rapid adaptability to new attacks (Cnew) while

retaining knowledge of old traffic classes (Cold). This work

delved into the key aspects that define our proposed NIDS.

Our key findings are as follows: (i) a comparison between

three meta-learning approaches and three transfer-learning

approaches revealed that RFS offers excellent performance

on both Cnew and Cold; (ii) RFS outperforms SOTAnonFSCIL
on Call (up to a +5% F1-score) and slightly underperforms

(−4% F1-score, at most) on Cnew—with only 10 samples,

unlike SOTAnonFSCIL not imposing constraints on the

(limited available) number of Cnew samples for training; (iii)

FSCIL approaches adapt to Cnew in a time 3 orders of mag-

nitude shorter than SOTAnonFSCIL; (iv) a cross-validation

analysis confirmed that RFS is effective in detecting DDoS

not seen during training and related to attack scenarios

different from those already observed; (v) the whole set of

features characterizing the input proved necessary for the

classification of various considered cyberattacks; (vi) the cut

to the input packets based on a temporal threshold enables

the NIDS to output its verdict in a timely manner still

guaranteeing satisfactory results (95% F1-score when the

threshold is set to 10 seconds).

Limitations and Future Avenues. We envision several

promising avenues for future research based on the findings

presented in this paper, and that will allow us to also

deal with possible limitations of the proposed approach: (i)

addressing the robustness of FSCIL-based NIDSs against

the poisoning of input data by exploring the use of ad-

hoc adversarial learning for attack-traffic classification,

therefore providing a deeper understanding of how FSCIL

approaches behave in this context; (ii) coping with the

scarcity of available samples of new attack classes via the

integration of generative techniques to augment the support

set—e.g., conditional variational autoencoders, generative

adversarial networks, or generative pre-trained transformers;

(iii) dealing with forgetting and poor adaptation to new

classes through the adoption of advanced strategies borrowed

from CIL approaches—e.g., regularization [37] and bias

correction [38]; (iv) shedding light on the “black box” of DL-

based FSCIL NIDSs and providing understandable insights

into their decision-making process [50] adopting eXplainable

AI techniques (e.g., SHAP, Integrated Gradients, GradCAM)

in line with recent regulatory frameworks concerning this

matter—e.g., the EU AI Act [51].
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