
Automatica 162 (2024) 111517

a

b

c

d

D
i
r
d
2
e
a
t
I
f
s
s
b
c

(
s

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

A kernel-based approximate dynamic programming approach: Theory
and application✩

Ali Forootani a,∗, Raffaele Iervolino b, Massimo Tipaldi c, Silvio Baccari d
Hamilton Institute, Maynooth University, Maynooth, Co. Kildare W23F2K8, Ireland
Department of Electrical Engineering and Information Technology, University of Naples, 80125 Napoli, Italy
Department of Electrical and Information Engineering, Polytechnic University of Bari, 70126 Bari, Italy
Department of Mathematics and Physics, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy

a r t i c l e i n f o

Article history:
Received 23 January 2023
Received in revised form 14 October 2023
Accepted 11 December 2023
Available online xxxx

Keywords:
Dynamic Programming
Markov Decision Process
Approximate Dynamic Programming
Kernel function
Support Vector Machine
Sensor scheduling

a b s t r a c t

This article proposes a novel kernel-based Dynamic Programming (DP) approximation method to
tackle the typical curse of dimensionality of stochastic DP problems over the finite time horizon. Such
a method utilizes kernel functions in combination with Support Vector Machine (SVM) regression
to determine an approximate cost function for the entire state space of the underlying Markov
Decision Process (MDP), by leveraging cost function computed for selected representative states. Kernel
functions are used to define the so-called kernel matrix, while the parameter vector of the given
kernel-based cost function approximation is computed by moving backwards in time from the terminal
condition and by applying SVM regression. This way, the difficulty of selecting a proper set of features
is also tackled. The proposed method is then extended to the infinite time horizon case. To show
the effectiveness of the proposed approach, the resulting Recursive Residual Approximate Dynamic
Programming (RR-ADP) algorithm is applied to the sensor scheduling design in multi-process remote
state estimation problems.

© 2024 Elsevier Ltd. All rights reserved.
1. Introduction

There are many engineering applications that employ Markov
ecision Processes (MDPs) to address sequential decision mak-
ng problems under uncertainties, e.g., sensor scheduling (Fo-
ootani, Iervolino, Tipaldi, & Dey, 2022), resource allocation in
istributed energy systems (Kandil, Farag, Shaaban, & El-Sharafy,
018), and autonomous vehicles (Pouya & Madni, 2021). How-
ver, in large MDPs, the curse of dimensionality in both the state
nd action space is unavoidable, and this makes their resolu-
ion via exact Dynamic Programming (DP) algorithms (e.g., Value
teration (VI)) infeasible (Bertsekas, 2017; Powell, 2007). There-
ore, efforts have been devoted to investigating methods able to
olve the underlying stochastic DP problem approximately (Bert-
ekas, 2011, 2019a; Forootani et al., 2022). Such methods have
een named differently in the literature and, among them, we
an mention Approximate Dynamic Programming (ADP, used in

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Vijay
Gupta under the direction of Editor Christos G. Cassandras.
∗ Corresponding author.

E-mail addresses: aliforootani@ieee.org (A. Forootani), rafierv@unina.it
R. Iervolino), massimo.tipaldi@poliba.it (M. Tipaldi),
ilvio.baccari@unicampania.it (S. Baccari).
ttps://doi.org/10.1016/j.automatica.2024.111517
005-1098/© 2024 Elsevier Ltd. All rights reserved.
this paper), Reinforcement Learning (RL), and Neural Dynamic
Programming (Bertsekas, 2017, 2019b; Sutton & Barto, 2018).

All the effective implementations of ADP techniques have
approximation approaches at their core, which can be grouped
into two main categories. The former (addressed in this paper) is
the value space approximation where the original cost function
is approximated with another linear or non-linear function (Bert-
sekas, 2019b). The policy space approximation is a common al-
ternative, where a policy is determined by optimizing across a
sufficiently constrained class of policies, generally a paramet-
ric family of some sort (Bertsekas, 2019a; Powell, 2007). The
value space approximation is more directly related to the ba-
sic DP notions of value and policy iteration, while the policy
space approximation exploits more widely applicable optimiza-
tion techniques, e.g., gradient-like descent methods (Bertsekas,
2017; Powell, 2007).

In the domain of cost function approximation, the choice of a
suitable parametric approximation architecture for cost functions
is significant for the success of the applied approximation ap-
proach (Bertsekas, 2017, 2019a). Several parametric
approximation architectures have been considered in the litera-
ture, e.g., neural networks and linear-based architectures (Bert-
sekas, 2019a, 2019b; Forootani, Iervolino, Tipaldi, & Neilson,
2020). As for linear approximation architectures, we can men-
tion projected equation approaches and aggregation methods.

https://doi.org/10.1016/j.automatica.2024.111517
https://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2024.111517&domain=pdf
mailto:aliforootani@ieee.org
mailto:rafierv@unina.it
mailto:massimo.tipaldi@poliba.it
mailto:silvio.baccari@unicampania.it
https://doi.org/10.1016/j.automatica.2024.111517

A. Forootani, R. Iervolino, M. Tipaldi et al. Automatica 162 (2024) 111517

T
T
s
2
d
i
b
g
o
m
e
f
u
s
t
B
s
A
i
w
v
a
a
s
A
f

t
r
p
o
a
a
b
p
i
f
a
n
m
n
t
d
i
f
v
(
a
i
h
t
s
t

m
k
s
(
c
i
m
t
c
o
b
m

w

W
t
t
t
w
s
N
a

J

w
t
f

he projected equation techniques are linked to Least Squares
emporal Difference (LSTD), which has its origins in RL (Bert-
ekas, 2011; Forootani, Iervolino, & Tipaldi, 2019; Sutton & Barto,
018). Aggregate methods address the curse of dimensionality by
efining some aggregation rules of the original system states: for
nstance, one can compute the costs of nonrepresentative states
y interpolating the costs of specific representative states via ag-
regation probabilities (Bertsekas, 2019a). One of the key aspects
f ADP methods is to ensure the convergence of the derived Bell-
an’s operator (implicitly defined in the approximate Bellman’s
quation), used to produce better estimations of the optimal cost
unction (Bertsekas, 2019a). Furthermore, ADP techniques make
se of sampled data (generated by computer simulators or real
ystems, and processed via Monte Carlo or bootstrapping) to solve
he underlying optimality condition related to their approximate
ellman’s equation and tune the parameter vector of the cho-
en approximation architecture (Bertsekas, 2019a; Powell, 2007).
DP cost function approximations usually employ feature vectors
n order to replace the original cost function of a given state
ith a function that depends on such state through its feature
ector (Bertsekas, 2011, 2019b). However, the definition of an
ppropriate set of features can be a difficult task since it requires
deep knowledge of the problem at hand. And, the feature

election process affects both the computational complexity of
DP methods and the quality of the resulting approximate cost
unction (Bertsekas, 2019a, 2019b).

This paper proposes a novel kernel-based function approxima-
ion approach in conjunction with Support Vector Machine (SVM)
egression to address the curse of dimensionality of stochastic DP
roblems and also alleviate the difficulty of defining a proper set
f features for the problem at hand. More specifically, by defining
set of representative states from the original MDP state space
nd employing a kernel function on this set, a kernel matrix can
e built. Such kernel matrix replaces the feature matrix in the
roposed ADP kernel-based architecture. Like aggregate methods,
t is possible to compute the cost function of an arbitrary state
rom such representative states by using the kernel function
nd the parameter vectors computed by our proposed algorithm,
amed Recursive Residual ADP (RR-ADP). More specifically, by
oving backwards over a finite time horizon from the termi-
al conditions and employing the resulting Bellman’s operator,
he cost-to-go function for the set of representative states is
etermined. This way, for each time slot, the parameter vector
s calculated by minimizing the error between the cost-to-go
unctions of two consecutive iterations of the RR-ADP algorithm
ia SVM. It is also worth mentioning the two following aspects:
i) defining a kernel function over the state space of an MDP can
lso provide a continuous framework able to handle its possibly
nfinite dimensional state space; (ii) representative states can
ave particular properties, e.g., they can be the ones with more
ransitions for specific control actions (such states in network
cience are often called hubs, i.e., nodes with a number of links
hat greatly exceeds the average (Albert & Barabási, 2002)).

In the literature, there exist a few works applying kernel-based
ethods to DP. For instance, in Dietterich and Wang (2001) a
ernel version of the linear programming approach for solving
tochastic DP problems was considered. In Ormoneit and Sen
2002), the authors proposed a kernel-based approach to over-
ome the stability problems of RL temporal-difference learning
n continuous state-spaces. In Jung and Polani (2006), the LSTD
ethod was formulated in the framework of least squares SVM

o cope with the large amount of training data, while the QR de-
omposition was employed to solve the underlying kernel-based
ptimization. In Bhat, Farias, and Moallemi (2023), a kernel-
ased variation of the smoothed approximate linear program-

ing approach was proposed as a non parametric ADP method to

2

alleviate sample complexity in the original parametric linear pro-
gramming version reported in Desai, Farias, and Moallemi (2012)
with theoretical guarantees. In Xu, Lian, Zuo, and He (2013),
a kernel-based dual heuristic programming method, integrated
into an actor-critic framework, was applied and tested on real-
time control systems, with gradient-based learning techniques for
approximating near-optimal control policies.

Unlike the previous works, in this paper, we integrate ker-
nel methods and SVM regression into the native mechanism
of the DP backward algorithm (Bertsekas, 2017) to solve ap-
proximately stochastic DP problems with large state space and
mitigate the difficulty of defining a proper set of features for the
chosen approximation architecture. This also allows the applica-
tion of the resulting solution to both the finite and infinite time
horizon. The contributions of this article can be summarized as
follows: (i) proposing a novel ADP-based approach to mitigate the
hardship of defining feature matrices by using a kernel function
approximation architecture for the finite time horizon case; (ii)
analyzing the properties of the consequent kernel-based Bell-
man’s operator when applying the SVM regression; (iii) extending
the proposed approach to the infinite time horizon case; (iv)
evaluating the resulting RR-ADP algorithm on the transmission
scheduling problem (Forootani et al., 2022) to show its effective-
ness and applicability. The remainder of this paper is organized as
follows. After providing some background on MDP, ADP, and SVM
in Section 2, Section 3 presents the kernel-based ADP method
with SVM for the finite time horizon case. In Section 4, the
proposed method is extended to the infinite time horizon case.
The RR-ADP algorithm is applied to the transmission scheduling
problem in Section 5. Finally, Section 6 concludes the paper.

2. Preliminaries

In this paper, stochastic DP problems are formulated via
discrete-time finite space MDPs, defined as a 4-tuple ⟨X ,U, T ,R⟩
here:

• X is the finite set of states with cardinality Ω . We de-
note with x(l) = x ∈ X and x(l + 1) = x′ ∈ X two
generic components of this set at the time slots l and l+ 1,
respectively.
• U is the finite set of actions. We denote with u(l) = u ∈ U a

generic element of this set at the time slot l.
• T : X × U × X → [0, 1] is the state transition probability

function. In particular, it is defined as Txx′ (u) :=
[
P(x′|x, u)

]
and provides the probability of going from a given state x to
the state x′, when the control action u is applied.
• R : X → [0,+∞) is the (non-negative) cost-per-stage

function. We denote with R(x) the cost for a given state
x ∈ X .

e denote with µ(x, l) a decision function, i.e., a mapping be-
ween the entire state space X and the action set U at a given
ime step l. With a slight abuse of notation, in this paper we omit
he explicit dependency on the state and define µl := µ(x, l). If
e define the policy π = {µ0, . . . , µN−1} as the collection of
ubsequent decision functions over a finite time horizon of length
, then the expected cost function associated with such policy π
nd for a given initial state x(0) can be expressed as follows

π

(
x(0)

)
= E

[
N−1∑
l=0

αlR
(
x(l))+ JN

(
x(N)

)]
, (1)

here E{·} represents the expectation operator evaluated along
he MDP trajectory under the policy π , α ∈]0, 1[is the discount
actor, and J (·) is a known terminal cost for the final time slot. As
N

A. Forootani, R. Iervolino, M. Tipaldi et al. Automatica 162 (2024) 111517

f
c

J

h

p
h

−

w
f
a
c

t
m
l
q

l
B

s

or the finite time horizon, the optimal discounted cost function
an be defined as

∗
(
x(0)

)
= min

π
E

[
N−1∑
l=0

αlR
(
x(l))+ JN

(
x(N)

)]
, (2)

with π∗ = {µ∗0, . . . , µ
∗

N−1} being the associate optimal policy.
With a slight abuse of notation, we can define (1) and (2) for
a generic state x ∈ X as Jπ (x) and J∗

(
x
)
, respectively. If we

refer to the entire set X , the global (optimal) cost function vector
is denoted with Jπ ∈ RΩ , with components Jπ (x) (J∗ ∈ RΩ ,
with components J∗(x)). For any cost function J and decision
function µ, we introduce the corresponding Bellman’s operator
F : RΩ → RΩ , which, in compact matrix form, can be expressed
as F J = R + αPJ , with P ∈ RΩ×Ω being the state transition
probability matrix associated to µ, whose elements are Pxx′ :=

Txx′ (µ) (Bertsekas, 2011).1 The optimal Bellman’s operator F∗ :
RΩ → RΩ is defined as

(F∗J)(x) = min
u∈U

[
R(x)+ α

∑
x′∈X

Pxx′ J(x′)
]
, (3)

which, in compact matrix form, becomes F∗J = R + αP∗J , with
P∗ being the state transition probability matrix associated to the
resolution of the minimization operator in (3). The DP backward
algorithm can be used to solve stochastic DP problems over
the finite time horizon (Bertsekas, 2017). This means applying
iteratively the optimal Bellman operator J∗l = F∗J∗l+1 by moving
backwards in time (i.e., l = N − 1, . . . , 0) and starting from the
known terminal cost JN . It is worth noting that both the resulting
optimal cost function J∗l and its related optimal decision function
µ∗l depend on l in general.2

It is worth noting that, by letting N →∞ and setting JN = 0
in the formulas (1), (2), the infinite time horizon case can be
addressed (Bertsekas, 2017). In such a case, the dependency on l is
completely dropped since only stationary policies π = {µ,µ, . . .}
are considered (Bertsekas, 2019a; Forootani et al., 2022). In case
of discounted problems and bounded costs, the optimal stationary
cost function J∗ is the fixed point of the Bellman’s equation,
i.e., J∗ = F∗J∗ and J∗ =

(
I − αP∗

)−1
R (Bertsekas, 2011, 2019a;

Forootani et al., 2019).

2.1. Brief on ADP and Support Vector Regression (SVR)

When dealing with stochastic DP problems of real applica-
tions, large state space issues can easily occur (Bertsekas, 2011;
Forootani et al., 2022). In this paper, the following linear approx-
imation architecture for cost functions is adopted

J̃(x) =
m∑
i=1

wiφi(x) =
⟨
w, φ(x)

⟩
, (4)

where φ(x) = [φ1(x), . . . , φm(x)]T is known as the feature (or
basis function) vector with the corresponding elements φi(x) be-
ing scalar functions, i = 1, . . . ,m. We denote by Φ the feature
matrix, i.e., the matrix whose rows are the features evaluated
at each state. Moreover, we call w = [w1, . . . , wm]

T as the
parameter (or weight) vector. Here the notation

⟨
·, ·

⟩
represents

the standard inner product. The aim of the SVM regression (or
Support Vector Regression (SVR)) is to learn the cost function
J̃(x) by using the above linear approximation architecture (Smola

1 Note that, for the sake of simplicity, the dependency of P on the policy
as been omitted.
2 Since µ∗l can vary over the finite time horizon, the matrix P∗ implicitly de-
ends on l. For the sake of simplicity in the adopted notation, such dependency
as been omitted in this paper.
3

& Schölkopf, 2004). The representation (4) provides a suitable
approximation to the training data set D =

{ (
x, J(x)

)⏐⏐x ∈ X },
where x ∈ X and J(x) are the input and the observed output data,
respectively. During the SVR training procedure, the following
quadratic problem has to be solved (Smola & Schölkopf, 2004)

min
w,ξ,ξ∗

1
2
∥w∥2 + c

∑
x∈X

(
ξ (x)+ ξ ∗(x)

)
(5)

subject to

J(x)−
⟨
w, φ(x)

⟩
≤ ϵ + ξ (x) (6a)

J(x)+
⟨
w, φ(x)

⟩
≤ ϵ + ξ ∗(x) (6b)

ξ (x), ξ ∗(x) ≥ 0, ∀x ∈ X . (6c)

here the term 1
2∥w∥

2 is used to enforce the flatness of the
unction to optimize, for regularization purposes, and to achieve
proper bias–variance trade-off in the resulting approximate

ost function (Smola & Schölkopf, 2004). Moreover, ξ (x) and
ξ ∗(x) are called slack variables. They become active whenever
he distance between the training point J(x) and the approxi-
ating function J̃(x) is greater than ϵ (this is called ϵ-insensitive

oss function (Smola & Schölkopf, 2004)). The resolution of the
uadratic optimization problem (5), (6) is
computationally expensive. Therefore, such optimization prob-

em can be solved in its dual form as follows (Keerthi, Shevade,
hattacharyya, & Murthy, 2001; Smola & Schölkopf, 2004)

max
λ,λ∗
−

1
2

∑
x,x′∈X

(
λ∗(x)− λ(x)

)(
λ∗(x′)− λ(x′)

)⟨
φ(x), φ(x′)

⟩
− ϵ

∑
x∈X

(
λ∗(x)+ λ(x)

)
+

∑
x∈X

J(x)
(
λ∗(x)− λ(x)

)
(7)

ubject to 0 < λ(x), λ∗(x) < c, ∀x ∈ X , with λ(·) and λ∗(·) being
the dual variables. In this setting, the feature vector φ(x) enters
into the optimization as an inner product. This allows defining
the following kernel function

K(x, x′) :=
⟨
φ(x), φ(x′)

⟩
. (8)

Using kernel functions allows reducing the computational over-
head for the parameter vector tuning since it becomes possi-
ble to avoid the direct computation of the feature vectors φ(x)
and φ(x′). Then, we can compute both the parameter vector w
and the approximate cost function J̃(x) by the two following
relations (Keerthi et al., 2001; Smola & Schölkopf, 2004)

w =
∑
x∈X

(
λ(x)− λ∗(x)

)
φ(x), (9)

J̃(x) =
⟨
w, φ(x)

⟩
=

∑
x′∈X

(
λ(x′)− λ∗(x′)

)⟨
φ(x′), φ(x)

⟩
=

∑
x′∈X

(
λ(x′)− λ∗(x′)

)
K(x, x′). (10)

A kernel function K(·, ·) : X × X → R measures the similarity
between two states x and x′. Note that the selection of a suitable
kernel function has a great impact on the success of the learning
method. The kernel matrix Y is defined as the matrix with com-
ponents Yxx′ = K(x, x′), or equivalently, as Y = ΦΦT . In case the
kernel matrix Y is symmetric and positive semi-definite, it is said
to be admissible. If Y is positive definite, it is non-degenerate. Note
that the last property holds whenever the feature matrix Φ is full
column rank.

A. Forootani, R. Iervolino, M. Tipaldi et al. Automatica 162 (2024) 111517

3

c
t
k

l
J
M
u
W
w

R

ξ

T

m

s
a
t
p

. Kernel-based ADP with SVR for the finite time horizon

This section presents the details of our ADP approach which
ombines the standard DP backward algorithm with kernel func-
ion approximation architecture and SVR. Starting from the
nown terminal condition JN and by applying Bellman’s principle

of optimality (Bertsekas, 2017), we move backwards in time and,
at each time slot, we use SVR to approximate the cost function.
More specifically, let us consider one iteration of Bellman’s op-
erator at an arbitrary time slot l which is J∗l = F∗J∗l+1, with
= N − 1, . . . , 0. This relation can be written in the form of
∗

l − F∗J∗l+1 = 0. As mentioned earlier, solving it for large-scale
DPs is impractical since it is a linear system of Ω equations. Let
s call J̃∗l the approximate cost-to-go function at the iteration l.
e introduce the following error norm between two iterations

RE l
 = J̃∗l − F∗ J̃∗l+1

 = (∑
x∈X

⏐⏐J̃∗l −R− αP∗ J̃∗l+1
⏐⏐2) 1

2 , (11)

here the term J̃∗l − F∗ J̃l+1 is called Residual Error (RE) at the
time slot l. Finding an ADP approach to minimize the RE l for a
collection of candidate cost-to-go functions is a kind of art and
complicated since achieving zero error implies solving it exactly.
It is quite obvious that computing such error is impractical since
it requires to be computed for every state of the MDP. Therefore,
it is natural to take representative states from the state space X .
The resulting set is denoted by X̃ . Hence, we will work with the
norm of the Residual Error approximation at time slot l, say R̃E l,
based on these representative states x ∈ X̃ , i.e.R̃E l

 = (∑
x∈X̃

⏐⏐J̃∗l −R− αP∗ J̃∗l+1
⏐⏐2) 1

2 . (12)

Several approximation architectures have been considered in the
literature, in particular, linear and neural network-based archi-
tectures (Bertsekas, 2019b; Bishop, 1995). Such approximation
architectures are finite-dimensional, hence it is not always possi-
ble to satisfy the condition R̃E l = 0. This work proposes a novel
kernel-based ADP method and shows the potential of kernel-
based approximation architectures (Schölkopf, Smola, Bach, et al.,
2002) to guarantee R̃E l = 0. Moreover, SVR is used solve the re-
gression problem resulting from (12). In other words, for a given
MDP and a set of representative states X̃ , the parameter vector
of the kernel-based approximate cost function J̃∗l is computed
under the condition that, for each l, R̃E l is equal to zero. Then,
by employing the chosen kernel function, the linear mapping (10)
is applied to calculate the associate cost-to-go function J̃∗l (x) for
each x ∈ X .

To start with, by using (4), we can write the approximate cost
function J̃∗l at the generic state x ∈ X as an inner product between
the feature vector φ(x) and the weight vector wl as follows

J̃∗l (x) =
⟨
wl, φ(x)

⟩
, x ∈ X . (13)

Then, the recursive residual error can be expressed as follows

RE l(x) = J̃∗l (x)− F∗ J̃l+1(x)

= J̃∗l (x)−
(
R(x)+ α

∑
x′′∈X

P∗xx′′ J̃
∗

l+1(x
′′)

)
, (14)

where x′′ ∈ X is another generic state at the time slot l + 1. By
replacing the first term with its approximate value (13), we have

RE l(x) =
⟨
wl, φ(x)

⟩
−

(
R(x)+ α

∑
P∗xx′′ J̃

∗

l+1(x
′′)

)
. (15)
x′′∈X

4

Since we are moving backwards, the parameter vector wl+1 is
known from the previous iteration, therefore we have

RE l(x) =
⟨
wl, φ(x)

⟩
−

(
R(x)+ α

∑
x′′∈X

P∗xx′′
⟨
wl+1, φ(x′′)

⟩)
. (16)

By replacing the RE l in the SVR framework and by employing
only the representative states x ∈ X̃ , we have

min
wl,ξ+ξ∗

1
2
∥wl∥

2
+ c

∑
x∈X̃

(
ξ (x)+ ξ ∗(x)

)
(17)

subject to

−R(x)+
⟨
wl, φ(x)

⟩
−

(
α

∑
x′′∈X

P∗xx′′
⟨
wl+1, φ(x′′)

⟩)
≤ ϵ + ξ ∗(x),

(18a)

(x)−
⟨
wl, φ(x)

⟩
+

(
α

∑
x′′∈X

P∗xx′′
⟨
wl+1, φ(x′′)

⟩)
≤ ϵ + ξ (x), (18b)

(x), ξ ∗(x) ≥ 0, ∀x ∈ X̃ . (18c)

hen, the dual problem is

ax
λ,λ∗
−

1
2

∑
x,x′∈X̃

(
λ∗(x)− λ(x)

)(
λ∗(x′)− λ(x′)

)⟨
φ(x), φ(x′)

⟩
−ϵ

∑
x∈X̃

(
λ∗(x)+ λ(x)

)
+

∑
x∈X̃

((
R(x)+ α

∑
x′′∈X

P∗xx′′
⟨
wl+1, φ(x′′)

⟩)(
λ∗(x)− λ(x)

))
, (19)

ubject to 0 ≤ λ(x), λ∗(x) ≤ c,∀x ∈ X̃ . Note that, in (18)
nd (19), the state x′′ may not necessarily belong to the set of
he representative states X̃ , since it comes from the transition
robability matrix P∗xx′′ which takes into account all the possible

one-step transitions starting from x ∈ X̃ .
In the SVR framework, the primal parameter vector wl can be

computed as follows

wl =
∑
x∈X̃

(λl(x)− λ∗l (x))φ(x), (20)

where λl(x) and λ∗l (x) represent the dual variables computed at
the iteration l and for any x ∈ X̃ Note that, as for their vector
form, we have λl, λ∗l ∈ RΩ̃ , with Ω̃ being the cardinality of X̃ .
As a result, for any state x ∈ X , the cost function J̃∗l (x) can be
computed as follows

J̃∗l (x) =
⟨
wl, φ(x)

⟩
=

∑
x′∈X̃

(
λl(x′)− λ∗l (x

′)
)⟨
φ(x′), φ(x)

⟩
=

∑
x′∈X̃

(
λl(x′)− λ∗l (x

′)
)
K(x, x′). (21)

The SVR approach in its traditional form was introduced to solve
the problem of noisy data. Therefore, the selection of a regression
function that exactly matches the noisy data is not suitable.
Employing ϵ-insensitive loss function of the forms (18) allows the
data points to be within a distance ϵ of the regression function
without increasing the objective function. However, in our setup,
the instantaneous cost function R(x) is considered exact and
we have a perfect observation. Therefore, to make the recur-
sive residual R̃E l zero, the regression function

⟨
wl, φ(x)

⟩
has to

reproduce the instantaneous cost function precisely, so that

R̃E l(x) =
⟨
wl, φ(x)

⟩
−R(x)− α

∑
P∗xx′′

⟨
wl+1, φ(x′′)

⟩
= 0. (22)
x′′∈X

A. Forootani, R. Iervolino, M. Tipaldi et al. Automatica 162 (2024) 111517

I
p
t

s⟨
B

L

T

f we fix the values c and ϵ, then the constrained minimization
roblem (17), (18) can be expressed in a simpler form. If c = ∞,
hen a feasible solution must satisfy ξ (x) = ξ ∗(x) = 0,∀x ∈ X̃ ,
otherwise the objective function will be unbounded. Moreover,
if ϵ = 0, then inequalities in (18) turn to equalities. It is worth
highlighting that if we set ϵ = 0 and c = ∞, we can reach the
standard SVR problem to satisfy (22). With these explanations, for
ϵ = 0 and c = ∞, the constrained minimization problem (17),
(18) can be written as

min
wl

1
2
∥wl∥

2, (23)

ubject to

wl, φ(x)
⟩
−R(x)− α

∑
x′′∈X

P∗xx′′
⟨
wl+1, φ(x′′)

⟩
= 0, ∀x ∈ X̃ . (24)

y using the Lagrange multiplier approach, we can write

(wl, λ) =
1
2
∥wl∥

2

+

∑
x∈X̃

λ(x)
(⟨
wl, φ(x)

⟩
−R(x)− α

∑
x′′∈X

P∗xx′′
⟨
wl+1, φ(x′′)

⟩)
. (25)

o minimize the above relation, we take the gradient of L(wl, λ)
with respect to wl and set it to 0
∂L
∂wl
= wl −

∑
x∈X̃

λ(x)φ(x) = 0, (26)

hence

wl =
∑
x∈X̃

λ(x)φ(x). (27)

Consequently, we can express the cost function J̃∗l (x) as

J̃∗l (x) =
⟨
wl, φ(x)

⟩
=

∑
x′∈X̃

λ(x′)
⟨
φ(x′), φ(x)

⟩
=

∑
x′∈X̃

λ(x′)
(
K(x′, x)

)
, ∀x ∈ X . (28)

To reach the dual problem, at a generic step, we need to substi-
tute (27) into (25) and maximize it with respect to λ, then we
have

max
λ
−

1
2

∑
x,x′∈X̃

λ(x)λ(x′)
⟨
φ(x), φ(x′)

⟩
+

∑
x∈X̃

λ(x)
(
R(x)+ α

∑
x′′∈X

P∗xx′′
⟨
wl+1, φ(x′′)

⟩)
. (29)

Eq. (29) can be shown in the vector form as follows

max
λ
−

1
2
λTYλ+ λTJl, (30)

where Yxx′ =

⟨
φ(x), φ(x′)

⟩
= K(x, x′), ∀x, x′ ∈ X̃ , and Jl ∈ RΩ̃

with its components given by

Jl(x) = R(x)+ α
∑
x′′∈X

P∗xx′′
⟨
wl+1, φ(x′′)

⟩
,∀x ∈ X̃ . (31)

As we can see, (30) is an unconstrained maximization quadratic
problem. Note that since K is non-degenerative, the associated
residual recursive error is also non-degenerative. Moreover, ma-
trix Y is full-rank and positive definite, hence the quadratic
optimization problem (30) has a unique optimum. Taking the
gradient of (30) and set to 0 we have

Yλ = J , λ ∈ RΩ̃ . (32)
l l l

5

It is worth to highlight that the linear system of equations (32)
has the dimension Ω̃ . The dimensionality of this equation can be
made much lower compared to the original one if Ω̃ ≪ Ω .

In the following theorem, we claim that recursive residual
errors are precisely 0 at the representative states X̃ .

Theorem 3.1. If the kernel function K(x, x′) =
⟨
φ(x), φ(x′)

⟩
is non-

degenerate, then the approximate cost function J̃∗l (x), computed by
solving the constrained minimization problem (23), (24), satisfies the
following

J̃∗l (x) = R(x)+ α
∑
x′′∈X

P∗xx′′ J̃
∗

l+1(x
′′), ∀x ∈ X̃ , (33)

which implies that recursive errors RE l(x) are equal to 0 for all state
x ∈ X̃ .

Proof. We know that K(x, x′) is non-degenerate, then the ma-
trix Y is positive definite and invertible. Hence, the constrained
minimization problem (23), (24) has the unique solution given by
(32). This implies that (33) is satisfied and R̃E l(x) = 0, see (13),
(22), (24), and (28). □

Lemma 3.2. If the kernel function K(x, x′) =
⟨
φ(x), φ(x′)

⟩
is

non-degenerate, and we have X̃ = X , then cost function J̃∗l (x)
generated by our proposed method satisfies the expression J̃∗l (x) =
J∗l (x), ∀x ∈ X , which says that the approximation is identical to the
exact solution.

Proof. Using the results of Theorem 3.1, if X̃ = X , then RE l(x) =
0, ∀x ∈ X . Considering the definition of recursive residual, we
have RE l(x) = J̃∗l (x) − F∗ J̃∗l+1(x), which means that J̃∗l (x) =
J∗l (x). □

Remark 1. Since Theorem 3.1 holds, we have J̃∗l = Jl. This can
be easily verified by comparing the right-hand side of (31) and
(33).

Theorem 3.3. If the kernel function K(x, x′) =
⟨
φ(x), φ(x′)

⟩
is non-

degenerate, and we consider stationary policies, then the sequence
of computed vectors λl is convergent to its steady-state value λ̄ =(
I − αY−1P∗Y

)−1
Y−1R.

Proof. Since K(x, x′) is non-degenerate, then the matrix Y is pos-
itive definite and invertible. Based on the results of Theorem 3.1
and from Remark 1, we can replace J̃∗l with Yλl in Bellman’s
recursive iteration. Therefore, for the case of a stationary policy
with associated transition probability matrix P∗, we have Yλl =
R+ αP∗Yλl+1 and

λl = Y−1R+ αY−1P∗Yλl+1. (34)

Such relation is a difference equation whose behavior is deter-
mined by the term αY−1P∗Y . Being the matrices Y−1P∗Y and P∗

similar, they have the same eigenvalues. Since the eigenvalues of
P∗ are ≤ 1 and being α < 1, the eigenvalues of αY−1P∗Y are
then strictly inside the unit circle, which implies the sequence of
λl is convergent3 and its unique (constant) stationary solution can

be found from (34) by λ̄ =
(
I − αY−1P∗Y

)−1
Y−1R, where λ̄ is

the steady state value of λ, which completes the proof. □

3 The eigenvalues of αP∗ also determine its convergence rate.

A. Forootani, R. Iervolino, M. Tipaldi et al. Automatica 162 (2024) 111517

a

a
i
J
s
o

R

s

R

ξ

N
f

m

Since we make use of Bellman’s backward operator and ap-
ply the residual-based approximation architecture recursively,
we call our approach Recursive Residual Approximate Dynamic
Programming (RR-ADP). Algorithm 1 summarizes the steps of the
RR-ADP for the finite time horizon. As we can notice, the pro-
posed algorithm requires the choice of kernel functions without
the need of specifying the feature vectors. Moreover, by exploit-
ing the native mechanism of the DP backward algorithm (Bert-
sekas, 2017), one can simultaneously compute, at any stage l, the
pproximate optimal decision function, say µ̃∗l .

Algorithm 1 RR-ADP Algorithm
• Select the inputs:

– Appropriate representative set of states X̃
– Suitable kernel function K defined on X × X

• l← N − 1
• Compute the associated kernel function K and the kernel matrix
Y for all x, x′ ∈ X̃ , i.e. Yx,x′ = K(x, x′)
• ∀x ∈ X put JN (x) = R(x), hence we set J̃∗N = JN
while l ≥ 0 do

– ∀x ∈ X̃ , compute R(x)
– ∀x ∈ X̃ , construct Jl(x) based on the Eq. (31)
– Solve linear system of equations (32) to compute λl by using

Y and Jl
– ∀x ∈ X , compute the cost to go function J̃∗l (x) based on (28)
– l← l− 1

end
• Output: λl, l = 0, 1, . . . ,N − 1.

4. Extension to the infinite time horizon

In this section, we consider the case when time goes to infinity
nd we analyze the proposed recursive residual error scheme and
ts properties. For the infinite time horizon case, it is known that
∗
= F∗J∗ and only stationary cost functions and policies are con-

idered (Bertsekas, 2011, 2019a). Consequently, the dependency
n l can be dropped. The residual error at the state x becomes

E(x) = J̃∗(x)−F∗ J̃∗(x) = J̃∗(x)−
(
R(x)+ α

∑
x′∈X

P∗xx′ J̃
∗(x′)

)
. (35)

By replacing the first term of the above relation with the right-
hand side of (13), we have

RE(x) =
⟨
w, φ(x)

⟩
−

(
R(x)+ α

∑
x′∈X

P∗xx′
⟨
w, φ(x′)

⟩)
. (36)

Since the inner product
⟨
·, ·

⟩
is linear, we can write RE(x) as

RE(x) = −R(x)+
⟨
w,

(
φ(x)− α

∑
x′∈X

P∗xx′φ(x
′)
)⟩

= −R(x)+
⟨
w,ψ(x)

⟩
, (37)

with

ψ(x) = φ(x)− α
∑
x′∈X

P∗xx′φ(x
′). (38)

Note that ψ(x) constructs a new feature mapping that represents
a linear combination of the original features φ for the state x
and all the states x′ that are reached by one-step transition from
x. The following Lemma proves that the columns of the matrix
whose rows are made of the feature vectors ψ(x) for all x ∈ X
are linearly independent.
6

Lemma 4.1. If the feature matrix Φ has full column rank, then the
feature matrix Ψ , whose rows are ψ(x) = φ(x)−α

∑
x′∈X Pxx′φ(x′),

has full column rank as well.

Proof. Say Υ the real vector space spanned by the vectors
{φ(x)|x ∈ X }. From (38), we know that ψ(x) is a linear com-
bination of vectors in Υ . Hence, there exists a linear operator
B that maps Φ to Ψ , i.e., Ψ = BΦ , with B = (I − αP). From
the properties of stochastic matrices, the largest eigenvalue of
P is 1, while the others lie within the unit circle. Hence, all the
corresponding eigenvalues of αP have modulus not greater than
α < 1. Moreover, all the eigenvalues of I are equal to 1, therefore
(I − αP) is full rank and dim

(
ker(B)

)
= 0. Hence the matrix Ψ is

full column rank, being Ψ = BΦ and Φ of full column rank. □

By replacing the RE in the SVR framework and by employing
only the representative states x ∈ X̃ , we have

min
w,ξ+ξ∗

1
2
∥w∥2 + c

∑
x∈X̃

(
ξ (x)+ ξ ∗(x)

)
(39)

ubject to

−R(x)+
⟨
w,ψ(x)

⟩
≤ ϵ + ξ ∗(x), (40a)

(x)−
⟨
w,ψ(x)

⟩
≤ ϵ + ξ (x), (40b)

(x), ξ ∗(x) ≥ 0, ∀x ∈ X̃ . (40c)

ote that the original feature vector φ(x) is substituted by the
eature vector ψ(x). Then, the dual problem is

ax
λ,λ∗
−

1
2

∑
x,x′∈X̃

(
λ∗(x)− λ(x)

)(
λ∗(x′)− λ(x′)

)⟨
ψ(x), ψ(x′)

⟩
−ϵ

∑
x∈X̃

(
λ∗(x)+ λ(x)

)
+

∑
x∈X̃

R(x)
(
λ∗(x)− λ(x)

)
(41)

subject to 0 ≤ λ(x), λ∗(x) ≤ c,∀x ∈ X̃ . Note that the dual
minimization problem has the kernel function Γ (x, x′) =

⟨
ψ(x),

ψ(x′)
⟩
. The following relation holds between the two kernel func-

tions K and Γ

Γ (x, x′) =
⟨
ψ(x), ψ(x′)

⟩
=

⟨
φ(x)− α

∑
x′′∈X

P∗xx′′φ(x
′′), φ(x′)− α

∑
x′′∈X

P∗x′x′′φ(x
′′)

⟩
=

⟨
φ(x), φ(x′)

⟩
−α

∑
x′′∈X

(
P∗x′x′′

⟨
φ(x), φ(x′′)

⟩
+ P∗xx′′

⟨
φ(x′), φ(x′′)

⟩)
+α2

∑
x′′,x′′′∈X

P∗xx′′P
∗

x′x′′′

⟨
φ(x′′), φ(x′′′)

⟩
= K(x, x′)− α

∑
x′′∈X

(
P∗x′x′′K(x, x′′)+ P∗xx′′K(x′, x′′)

)
+α2

∑
x′′,x′′′∈X

P∗xx′′P
∗

x′x′′′K(x′′, x′′′). (42)

The following theorem proves the non-degenerate property of
Γ (x, x′).

Theorem 4.2. If the kernel function K(x, x′) =
⟨
φ(x), φ(x′)

⟩
is non-

degenerate, then the new kernel mapping Γ (x, x′) =
⟨
ψ(x), ψ(x′)

⟩
is also non-degenerative, with ψ(x) = φ(x)− α

∑
P∗ φ(x′).
x′∈X xx′

A. Forootani, R. Iervolino, M. Tipaldi et al. Automatica 162 (2024) 111517

P
r
I
f

C

w

roof. If K(x, x′) is non-degenerate, the matrix Φ is full column
ank, and then the kernel matrix Y = ΦΦT is positive definite.
n this regard, as proved in Lemma 4.1, the matrix Ψ is also
ull column rank which directly implies that Γ (x, x′) is non-
degenerate, being its kernel matrix given by ΨΨ T

= BΦΦTBT

positive definite. □

After computing the kernel function Γ (x, x′), the dual problem
can be solved. By applying (9) with ψ(x) and by using the repre-
sentative states x ∈ X̃ , the cost function J̃∗(x) can be defined as
below

J̃∗(x) =
⟨
w, φ(x)

⟩
=

∑
x′∈X̃

(λ(x)− λ∗(x′))
⟨
ψ(x′), φ(x)

⟩
=

∑
x′∈X̃

(λ(x′)− λ∗(x′))
⟨(
φ(x′)− α

∑
x′′∈X

P∗x′x′′φ(x
′′)

)
, φ(x)

⟩
=

∑
x′∈X̃

(λ(x′)− λ∗(x′))
(⟨
φ(x′), φ(x)

⟩
− αP∗x′x′′

⟨
φ(x′′), φ(x)

⟩)
=

∑
x′∈X̃

(λ(x′)− λ∗(x′))
(
K(x, x′)− α

∑
x′′∈X

P∗x′x′′K(x′′, x)
)
. (43)

To make the recursive residual RE l equal to zero, the regression
function

⟨
w,ψ(x)

⟩
has to satisfy the following relation

R̃E(x) = −R(x)+
⟨
w,ψ(x)

⟩
= 0. (44)

If we fix the values c and ϵ, the constrained minimization prob-
lem (39), (40) can be expressed in a simpler form. As done before,
if we set ϵ = 0 and c = ∞, the derived SVR problem satisfies
(44). In other words, we can write the constrained minimization
problem (39), (40) as follows

min
w

1
2
∥w∥2, (45)

subject to

R(x)−
⟨
w,ψ(x)

⟩
= 0,∀x ∈ X̃ . (46)

Using the Lagrange multiplier approach, we can write

L(w, λ) =
1
2
∥w∥2 +

∑
x∈X̃

λ(x)
(
R(x)−

⟨
w,ψ(x)

⟩)
. (47)

To minimize the above relation, we take the gradient of L(w, λ)
with respect to w and set it to 0
∂L
∂w
= w −

∑
x∈X̃

λ(x)ψ(x) = 0, (48)

hence

w =
∑
x∈X̃

λ(x)ψ(x). (49)

onsequently, we can write the cost function J̃∗(x) as

J̃∗(x) =
⟨
w, φ(x)

⟩
=

∑
x′∈X̃

λ(x′)
⟨
ψ(x′), φ(x)

⟩
=

∑
x′∈X̃

λ(x′)
(
K(x′, x)− α

∑
x′′∈X

P∗x′x′′K(x′′, x)
)
, ∀x ∈ X . (50)

To reach the dual problem, we need to substitute (49) into (47)
and maximize it with respect to λ, then we have

max
λ
−

1
2

∑
λ(x)λ(x′)

⟨
ψ(x), ψ(x′)

⟩
+

∑
λ(x)R(x). (51)
x,x′∈X̃ x∈X̃

7

In the vector form, we can write

max
λ
−

1
2
λTGλ+ λTR, (52)

here λ ∈ RΩ̃ and G = ΨΨ T , with Gx,x′ =

⟨
ψ(x), ψ(x′)

⟩
=

Γ (x, x′), is the kernel matrix corresponding to the kernel function
Γ (here, it is only computed for the representative states). The
analytical solution to the optimization problem (52) is given by

Gλ = R. (53)

Note that the solution of (53) exists and is unique since the kernel
matrix G with components Γ (·, ·) is non-degenerate and positive
definite, see Theorem 4.2. Moreover, if Ω̃ ≪ Ω , the system of
equations in (53) has considerably lower size than the original
problem.

Finally, the following interesting result is presented for the
case of symmetric matrix P∗, X̃ = X , and the kernel matrix Y
set to the identity matrix.

Theorem 4.3. Suppose P∗ be symmetric and X̃ = X . Choose the
kernel function to satisfy the following conditions: (i) K(x, x′) = 0
for x ̸= x′; (ii) K(x, x′) = 1 for x = x′. Then, the constrained
minimization problem (45), (46) provides the same solution of the
Bellman’s equation applied over the infinite time horizon.

Proof. By using assumptions (i) and (ii), we can formulate the
kernel function Γ from (42) as follows

Γ (x, x′) = δxx′ − α
∑
x′′∈X

(
P∗x′x′′δxx′′ + P∗xx′′δx′x′′

)
+α2

∑
x′′,x′′′∈X

P∗xx′′P
∗

x′x′′′δx′′x′′′

= δxx′ − α
(
P∗x′x + P∗xx′

)
+ α2

∑
x′′∈X

P∗xx′′P
∗

x′x′′ , (54)

where δxx′ is the Kronecker delta impulse. Thus, the associate
kernel matrix can be expressed as G =

(
I − αP∗

)2. By denoting
with λ̂ the solution of the unconstrained maximization problem
(52), we have λ̂ = G−1R =

(
I − αP∗

)−2
R. Hence, by using (50),

we can calculate the cost function J̃∗(x) as follows

J̃∗(x) =
∑
x′∈X

λ̂(x′)
(
δx′x − α

∑
x′′∈X

P∗x′x′′δx′′x

)
= λ̂(x)− α

∑
x′∈X

λ̂(x′)P∗x′x. (55)

In the vector form, being P∗ symmetric, we have

J̃∗ = λ̂− αP∗λ̂ =
(
I − αP∗

)
λ̂

=
(
I − αP∗

)(
I − αP∗

)−2
R =

(
I − αP∗

)−1
R = J∗, (56)

which concludes the proof. □

5. Application of the RR-ADP to the sensor scheduling prob-
lem

In this section, the RR-ADP algorithm is applied to the trans-
mission scheduling problem for the remote state estimation of
multiple processes. A dedicated sensor is allocated to each pro-
cess and sends its local measurements to a remote estimator
through a wireless communication channel subject to packet
loss. Since multiple sensors can transmit their measurements
simultaneously, interference may occur among them. The remote

estimator has multi-packet reception capability and can receive

A. Forootani, R. Iervolino, M. Tipaldi et al. Automatica 162 (2024) 111517

c
m
v
v
R
a
l
f
c
e
p
R
s
p
o

o

w
t

6

m
(
o

Fig. 1. Base-10 logarithm of the norm-2 for the vector λl in case of 4 different
values of λN (N = 4 dynamical systems and d = 5 maximum packet drops).

sensor estimates if their signal-to-interference-and-noise ratio
(SINR) exceeds a prescribed lower bound. As a consequence,
having a proper sensor scheduling policy becomes necessary. As
shown in Forootani et al. (2022), such policy can be computed
by minimizing the discounted error covariance cost function over
a finite time horizon, which depends on the state estimation
error covariance of each sensor. The whole transmission schedul-
ing problem for Multi Sensors-Multi Processes (MSMP) can be
modeled as an MDP (Forootani et al., 2022), which can require
ADP-based techniques in case of large state space.

Let us consider a set of N processes, modeled as a set of
discrete time Linear Time Invariant (LTI) dynamical systems zi(l+
1) = Aizi(l) + ωi(l), where, for each i = 1, . . .N , zi(l) ∈ Rni is
the state vector of process i, ni ∈ N, and ωi(l) is i.i.d. Gaussian
process noise with zero mean and covariances Qi ∈ Rni×ni . We
onsider a scenario with N sensors, as the number of systems to
onitor, in which the ith sensor has measurement yi(l) = Cizi(l)+

i(l), where yi(l) ∈ Rmi , mi ∈ N, and the measurement noise
i(l) is an i.i.d. Gaussian noise with zero mean and covariance
i. It is supposed that ωi(l) and vi(l) are mutually independent
nd do not depend on the initial state zi(0). Moreover, all the
ocal sensors are supposed to be smart and able to run Kalman
ilters (Forootani et al., 2022). By denoting with xi ∈ Xi the error
ovariance matrix associated with the process i at the remote
stimator, the MDP state for the MSMP transmission scheduling
roblem can be defined as x = (x1, x2, . . . , xN). Moreover, it is
(x) =

∑N
i=1 Tr(xi) (Forootani et al., 2022).4 In this setting, the

tate space dimension is proportional to the number of successive
acket drops. Thus, by denoting with d the maximum number
f successive packet drops for each process, we have Ω = dN

(see Forootani et al. (2022) for more details).
For this application, the radial basis function of the form

K(x, x′) = exp−(x−x
′)TΣ(x−x′) was chosen as kernel function, where

Σ is a positive definite matrix (in particular, the matrix Σ was
set equal to the identity matrix multiplied by a small positive
coefficient). This function measures the distance between two
states, and has its maximum when x = x′. It is worth highlighting
that the kernel matrix Y with elements K(x, x′) is non-degenerate
and symmetric positive definite. In addition, Σ can be regarded
as a weight matrix to trade off the value of the kernel function
for two given states. The RR-ADP algorithm was implemented
as a Python package for computing the parameter vector λl, and
then determining the approximate optimal policy over the finite

4 Note that in Forootani et al. (2022) the instantaneous cost function depends
n both control action and state.
8

Fig. 2. Cost function of the representative states in case of 4 different values of
λN (N = 4 dynamical systems and d = 5 maximum packet drops).

Fig. 3. Norm-2 of error vectors J̃∗l − J̃∗l+1 in case of 4 different values of λN
(N = 4 dynamical systems and d = 5 maximum packet drops).

time horizon (see Forootani et al. (2019, 2022, 2020)). The MSMP
described in Forootani et al. (2022) was considered. In particular,
we considered the case of N = 4 and d = 5, therefore the
cardinality of the spate space was Ω = 5N

= 625. Moreover, we
set the discount factor α to 0.9 and the time horizon N to 100.
We chose 80 representative states, and thus the cardinality Ω̃ of
X̃ was equal to 80 and the parameter vector λl ∈ R80. In Fig. 1,
the logarithm of the norm-2 for the dual parameter vector λl
over the finite time horizon is shown in case of 4 different values
of the parameter λN (with each subplot of Fig. 1 corresponding
to a specific λN). Fig. 2 shows the backward evolution of the
cost function of the representative states in logarithmic scale. For
given any state x ∈ X and at any arbitrary time slot l, the cost
function J̃∗l (x) can be computed by means of (28), being the vector
λl computed for each time slot and being the kernel function
K(x, x′) chosen at the beginning of the algorithm. Finally, Fig. 3
displays the evolution of the norm-2 of the error vector J̃∗l − J̃∗l+1,
hich converges to zero as the backward procedure approaches
he initial time step.

. Conclusion

This paper proposed a kernel-based cost function approxi-
ation approach in conjunction with Support Vector Machine

SVM) regression in order to: (i) tackle the curse of dimensionality
f stochastic Dynamic Programming (DP) problems (over both

A. Forootani, R. Iervolino, M. Tipaldi et al. Automatica 162 (2024) 111517

t
o
I
a
a
s
e
A
m
m
g
c
f
s

R

A

B

B

B

B

B

D

F

F

F

X

he finite and infinite time horizon); (ii) mitigate the difficulty
f defining a proper set of features for the problem at hand.
t was shown that kernel functions can provide a framework
ble to handle large-space Markov Decision Processes (MDPs)
nd compute approximate cost functions of the whole MDP state
pace. The properties of the resulting kernel-based Bellman’s op-
rator were also studied. Finally, the proposed Recursive Residual
pproximate DP (RR-ADP) algorithm was applied to the trans-
ission scheduling problem for a multi-process multi-sensor re-
ote state estimator. As future work, it is planned to investi-
ate the connection between the finite time stability and the
onvergence over the finite time horizon of kernel-based cost
unction approximations in case of stochastic continuous-time
ystems.

eferences

lbert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks.
Reviews of Modern Physics, 74(1), 47.

ertsekas, D. P. (2011). Temporal difference methods for general projected
equations. IEEE Transactions on Automatic Control, 56(9), 2128–2139.

ertsekas, D. P. (2017). Dynamic programming and optimal control, volume I (4th
ed.). Belmont, Massachusetts: Athena Scientific.

ertsekas, D. P. (2019a). Feature-based aggregation and deep reinforcement
learning: A survey and some new implementations. IEEE/CAA Journal of
Automatica Sinica, 6(1), 1–31.

ertsekas, D. P. (2019b). Reinforcement learning and optimal control. Athena
Scientific.

hat, N., Farias, V., & Moallemi, C. C. (2023). Non-parametric approximate
dynamic programming via the kernel method. Stochastic Systems, 25, 1–22.

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford University
Press.

Desai, V. V., Farias, V. F., & Moallemi, C. C. (2012). Approximate dynamic
programming via a smoothed linear program. Operations Research, 60(3),
655–674.

ietterich, T., & Wang, X. (2001). Batch value function approximation via support
vectors. In Advances in neural information processing systems, vol. 14.

orootani, A., Iervolino, R., & Tipaldi, M. (2019). Applying unweighted least-
squares based techniques to stochastic dynamic programming: Theory and
application. IET Control Theory & Applications, 13(15), 2387–2398.

orootani, A., Iervolino, R., Tipaldi, M., & Dey, S. (2022). Transmission scheduling
for multi-process multi-sensor remote estimation via approximate dynamic
programming. Automatica, 136, Article 110061.

orootani, A., Iervolino, R., Tipaldi, M., & Neilson, J. (2020). Approximate dynamic
programming for stochastic resource allocation problems. IEEE/CAA Journal of
Automatica Sinica, 7(4), 975–990.

Jung, T., & Polani, D. (2006). Least squares SVM for least squares TD learning.
In Proceedings of the 2006 conference on ECAI 2006: 17th European conference
on artificial intelligence (pp. 499–503).

Kandil, S. M., Farag, H. E. Z., Shaaban, M. F., & El-Sharafy, M. Z. (2018). A
combined resource allocation framework for PEVs charging stations, renew-
able energy resources and distributed energy storage systems. Energy, 143,
961–972.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (2001).
Improvements to Platt’s SMO algorithm for SVM classifier design. Neural
Computation, 13(3), 637–649.

Ormoneit, D., & Sen, S. (2002). Kernel-based reinforcement learning. Machine
Learning, 49(2), 161–178.

Pouya, P., & Madni, A. M. (2021). Expandable-partially observable Markov
decision-process framework for modeling and analysis of autonomous
vehicle behavior. IEEE Systems Journal, 15(3), 3714–3725.

Powell, W. B. (2007). Approximate dynamic programming: Solving the curses of
dimensionality, vol. 703. John Wiley & Sons.

Schölkopf, B., Smola, A. J., Bach, F., et al. (2002). Learning with kernels: Support
vector machines, regularization, optimization, and beyond. MIT Press.

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression.
Statistics and Computing, 14(3), 199–222.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
Press.

u, X., Lian, C., Zuo, L., & He, H. (2013). Kernel-based approximate dynamic
programming for real-time online learning control: An experimental study.
IEEE Transactions on Control Systems Technology, 22(1), 146–156.
9

Ali Forootani received the M.Sc. degree in electrical
engineering and automatic control system from Power
and Water University of Technology, Iran, in 2011, and
the Ph.D. degree in automatic control system and in-
formation technology from Department of Engineering,
University of Sannio, Italy, in 2019. From 2011 to 2015
he worked both on research and industry at Niroo
Research Institute (Tehran, Iran) and at the Ministry
of Energy and Power (Water and Sewage Khuzestan
Engineering Company). From 2019 to 2020 he served
as Postdoctoral researcher at the Measurement and

Instrumentation Laboratory University of Sannio, as well as University of Salerno
on the topics of drone image signal processing and AI based network disease
analysis. From 2020 to 2022 he was at the Hamilton Institute, Maynooth Uni-
versity, Ireland, as a postdoctoral researcher. Since 2022 he is with Max Planck
Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany,
as a postdoctoral researcher. His current research interests include Markov
decision processes, approximate dynamic programming, reinforcement learning
in optimal control, learning in network control systems, Physics Informed Neural
Network for Nonlinear System Identification and Partial Differential Equation
parameter estimation. He is a Senior Member of IEEE Control System Society
and his papers were considered as the selected publications on International
Journal of Control and IEEE Transaction of Automatica Sinica.

Raffaele Iervolino received the laurea degree cum
laude in aerospace engineering from the University of
Naples, Italy, in 1996, where he also obtained the Ph.D.
degree in electronic and computer science engineering
in 2002. Since 2003 he is an Assistant Professor of
automatic control at the University of Naples. From
2005 he is also a Adjoint Professor of automatic control
with the Department of Electrical Engineering and
Information Technology at the same University. He is
Senior Member of IEEE Control System Society. His
research interests include piecewise affine systems,

opinion dynamics and consensus in social networks, and human telemetry
systems. He is a Senior Member of IEEE Control System Society.

Massimo Tipaldi received the master’s degree in com-
puter science engineering and the Ph.D. degree in
information technology from the University of Sannio,
Benevento, Italy, in 1998 and 2017, respectively. In
2023, he achieved the National Scientific qualification
as associate professor in the Italian higher education
system for the disciplinary field of 09/G1 - Systems
and control engineering. He possesses about 25 years
of industrial experience in the managerial/technical
coordination of European Space Agency (ESA), Agenzia
Spaziale Italiana (ASI), and Centre National D’Etudes

Spatiales (CNES) space projects (satellite systems, experimental equipment for
the International Space Station, and ground segments) and in the writing
of proposals, mainly related to space and research projects. He holds two
patents and has coauthored more than 50 papers published in proceedings
of international conferences or international archival journals. His research
interests include reinforcement learning, approximate dynamic programming,
multiagent systems, advanced system control techniques, safety-critical systems,
and space systems engineering.

Silvio Baccari Born in 1975, he is an engineer with
a Ph.D. in automatic control and currently works as
a researcher at the University of Vanvitelli affiliated
with the Department of Mathematics and Physics. He
is specializing primarily in modeling and control of
electronic power systems and numerical optimization.
Originally from Benevento, he was a visiting student
at Stanford University during his doctoral studies. A
father of five, he is the founder of two innovative start-
ups at the University of Sannio. He is a senior member
of the IEEE and holds several patents. Apart from his

academic passion, he has a keen interest in quantitative finance. Researcher
with a contract co-funded by the European Union - PON Ricerca e Innovazione
2014–2020 ai sensi dell’art. 24, comma 3, lett. (a), della Legge 30 dicembre 2010,
n. 240 e s.m.i. e del D.M. 10 agosto 2021 n. 1062. He is a Senior Member of
IEEE Control System Society.

http://refhub.elsevier.com/S0005-1098(24)00009-8/sb1
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb1
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb1
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb2
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb2
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb2
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb3
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb3
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb3
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb4
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb4
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb4
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb4
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb4
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb5
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb5
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb5
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb6
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb6
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb6
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb7
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb7
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb7
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb8
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb8
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb8
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb8
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb8
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb9
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb9
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb9
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb10
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb10
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb10
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb10
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb10
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb11
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb11
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb11
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb11
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb11
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb12
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb12
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb12
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb12
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb12
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb13
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb13
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb13
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb13
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb13
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb14
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb14
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb14
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb14
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb14
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb14
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb14
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb15
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb15
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb15
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb15
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb15
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb16
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb16
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb16
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb17
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb17
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb17
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb17
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb17
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb18
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb18
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb18
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb19
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb19
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb19
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb20
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb20
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb20
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb21
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb21
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb21
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb22
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb22
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb22
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb22
http://refhub.elsevier.com/S0005-1098(24)00009-8/sb22

	A kernel-based approximate dynamic programming approach: Theory and application
	Introduction
	Preliminaries
	Brief on ADP and Support Vector Regression (SVR)

	Kernel-based ADP with SVR for the finite time horizon
	Extension to the infinite time horizon
	Application of the RR-ADP to the sensor scheduling problem
	Conclusion
	References

